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ABSTRACT

Reliability is key to realizing the promise of autonomous UI-agents, multimodal
agents that directly interact with the apps humans use, as users must be able
to trust an agent to complete a given task. Current evaluations rely on fixed
environments—often clones of existing apps— which are limited in that they can
only shed light on whether or how often an agent can complete a task within a
specific environment. When deployed however, agents are likely to encounter
variations in app design and content that can affect an agent’s ability to complete
a task. To address this blind spot of measuring agent reliability across app vari-
ations, we develop OPENAPPS, a light-weight open-source ecosystem with six
apps (messenger, calendar, maps, etc.) that are configurable in appearance and
content. OPENAPPS requires just a single CPU to run, enabling easy generation
and deployment of thousands of versions of each app. Specifically, we run more
than 10,000 independent evaluations to study reliability across seven leading mul-
timodal agents. We find that while standard reliability within a fixed app is rela-
tively stable, reliability can vary drastically when measured across app variations.
Task success rates for many agents can fluctuate by more than 50% across app
variations. For example, Kimi-VL-3B’s average success across all tasks fluctuates
from 63% to just 4% across app versions. We also find agent behaviors such as
looping or hallucinating actions can differ drastically depending on the environ-
ment configuration. These initial findings highlight the importance of measuring
reliability along this new dimension of app variations.
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Figure 1: OPENAPPS can generate thousands of configurable versions of apps. OPENAPPS
contains six apps covering common digital tasks with configurable appearance and app data for
measuring a new dimension of reliability: across app variations agents are likely to encounter.
OPENAPPS can be deployed anywhere Python can run with a single CPU (without specialized hard-
ware, emulators or setup). In the right panel, we see average success rates for the same tasks and
agents can fluctuate across app versions, suggesting app variation is a key axis of reliability.

1 INTRODUCTION

Recent advances in foundation models have spurred growing interest in building autonomous UI-
agents capable of executing complex, multi-step workflows across digital environments. Such agents
hold the promise of serving as capable assistants in everyday and professional contexts, from coor-
dinating schedules to managing documents. Key to realizing the promise of UI-agents is reliability:
users must be able to trust an agent can successfully complete the task. Researchers have invested
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considerable effort to measure the reliability of agents by cloning existing apps or web sites. For
example environments such as OSWorld (47), (Visual)WebArena (60, 21), and TheAgentCompany
(49) allow researchers to measure reliability in terms of how often an agent can successfully com-
plete a task within a fixed app clone.

When deployed, however, agents are likely to encounter numerous variations in app design, appear-
ance, and content. For example, there are (conservatively) dozens of calendar apps, each with an
ever evolving style and configurable content and appearance. An agent may struggle when the con-
tents of the calendar are dense with events or find it easier to navigate UI-elements in dark mode.
In short, the reliability of an agent’s task performance depends on the variation in app versions an
agent encounters. This dimension of reliability across app variations however, can not be measured
in current environments that rely on fixed clones of apps.

To capture this crucial dimension of reliability, we develop OPENAPPS. OPENAPPS is a light-
weight open-source ecosystem for generating thousands of versions of apps with transparent logic
and state. OPENAPPS includes calendar, messenger, todo, maps, shopping, and code editing apps.
In contrast to environments that pre-record trajectories or pre-defined tool APIs (27, 54), multimodal
agents directly interact with OPENAPPS using the same actions as humans (click, type, scroll, etc.).
OPENAPPS allows researchers to

• Generate thousands of versions of each App. Each app comes with configurable appear-
ance and content variables allowing researchers to generate thousands of versions of each
app to study reliability of agents across app variations (see Figure 1).

• Access app logic and ground truth underlying state. The full app state and logic of each
app is exposed in Python for researchers to study or extend. Additionally, each task reward
is based on the underlying app state thereby avoiding noisy reward signals and reward
hacking behavior (62).

• Deploy OPENAPPS on any machine that runs Python for lightweight scalable exper-
iments. Unlike many existing environments that require specialized emulators or con-
tainers, OPENAPPS requires a single CPU and runs on any machine that can run Python
thereby enabling scalable parallel experiments across app variations.

Using OpenApps, we study agent behaviors across app variations. We run over 10,000 trials
across seven leading agents spanning both closed and open multimodal foundation models includ-
ing Claude, OpenAI, Qwen-VL, and specialized UI-models (UI-Tars). We find that while agents are
reliable within a single app variation, reliability across app variations can differ drastically, and task
success rates can vary by more than 50% across app variations. For example, Kimi-VL-3B average
success across all tasks fluctuates from 63% to just 4% across app versions. Furthermore, agent
behaviors such as looping or hallucinating actions can also heavily depend on the app variations an
agent encounters. For example, UI-Tars is 5× more likely to hallucinate actions depending on the
app variation. The findings suggest app variations play a crucial role in ensuring agents are reliable.

2 RELATED WORK

While text-only tool calling agents can interact with Apps via pre-defined interfaces such as MCP
(27, 32), here we focus on UI-agents that directly interact with the multimodal environment (with-
out requiring a pre-defined API interface). In Appendix C, we review how foundation models are
adapted for agentic workflows, including post-training strategies that boost performance in such
settings. We also highlight the critical role of simulators in reinforcement learning. This section fo-
cuses specifically on environments and benchmarks for digital autonomous agents. Aforementioned
can be distinguished by the platform and the capabilities they target, how they assign rewards, what
modalities they support, where they lie on the the sim2real spectrum, their scale and how easily they
are deployable.

Web Agent Benchmarks. Benchmarks designed for web applications typically target consumer
tasks of web browsing such as online shopping (53, 12), travel and food planning (55, 17), and more
generally search and navigation (60, 21, 18, 56). While some benchmarks crowd-source (17, 55)
the tasks they test on, most provide a relatively small list of meta tasks such as "Search for
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the best/least expensive X". All UI-agent benchmarks we are aware of rely on website
clones to ensure realism, the complexity of these clones makes it hard to design strategic interven-
tions to website design or content. As a consequence of this lack of controllability, when reporting
agent failure, authors typically rely on anecdotal evidence alone. Reward functions are typically
based either on human demonstration trajectories or on state-change signals. Our approach follows
the latter, but differs in that we evaluate the full environment state (see section 3.3), ensuring that
rewards cannot be gamed by completing adversarial side tasks. A key distinction of our environment
is its position in the trade-off between realism and computational efficiency that allows for deploy-
ment at scale. Full website clones, as used in WebArena (60), can require over 100GB of memory
per site, which severely limits scalability or is very expensive to run at scale. At the other extreme,
lightweight environments such as MiniWoB(37) match our efficiency but fall short in realism. Fi-
nally, BrowserGym (22) provides a standardized interface across web benchmarks, and underpins
both REAL (17), TheAgentCompany (49), and our environment.

OS-Level Benchmarks. Beyond everyday web tasks, several benchmarks target general computer
use. WorkArena (13), WorkArena++ (6) and TheAgentCompany (49) are UI-benchmarks that focus
on corporate workflow automation (e.g., HR, customer support) in a few specific apps. OSWorld
(48) on the other hand simulates a full Linux based operating system, where the distribution of tasks
reflects more general use. AgentBench (25) focused on an even broader range of tasks, such as
puzzle solving, knowledge retrieval, operating systems or web browsing. Equivalently, there exist
environments targeting mobile OSs (8, 40, 24). Although the tasks in OPENAPPS are less complex
than those in many of these environments, agents still struggle to complete them. Moreover, the
heavy compute demands of virtual machine–based environments make them impractical for large-
scale trajectory generation just as web-agent-benchmarks.

3 OPENAPPS: FRAMEWORK AND ENVIRONMENT

Orchestrating an agent to interact with an environment of apps towards a goal involves many moving
pieces. Consequently, we organize agent interactions in OPENAPPS within the established termi-
nology of reinforcement learning. As shown in Figure 3, the agent receives visual (and in some
cases simplified text representations of UI-elements) observations O from OPENAPPS then directly
acts with an action from the space A consisting of common actions available to humans such as
click, type, scroll, etc. (see Section 3.2). Finally, we assess using OPENAPPS underly-
ing state, such as the list of events in the calendar for example, whether at a given step t the agent
successfully completed the task (see Section 3.3).

3.1 OPENAPPS ENVIRONMENT

OPENAPPS is a browser-based, highly customizable, open-source, low resource and isolated en-
vironment for UI agents. This ecosystems comes with six fully functional apps written in Python.
OPENAPPS contains a range of apps needed for common digital tasks: OpenCalendar, OpenMessen-
ger, OpenMaps, OpenToDo, OpenCodeEditor, and OpenShop. OpenCalendar for example, allows
the user to view, create, and delete events in a fully functional calendar app. To our knowledge this
is the first UI agent environment written in Python the lingua franca of AI researchers and practi-
tioners, making it easy for researchers (and possibly coding agents) to understand and modify the
internal logic of each app. This choice improves accessibility relative to existing environments that
often depend on languages less known to researchers (Kotlin, javascript, CSS) or require specialized
infrastructure such as Android emulators, large databases, or containers. We accomplish this by
building OPENAPPS using the FastHTML framework. Configuring the apps is made easy by pro-
viding access to appearance variables and underlying data via editable YAML files. Because these
YAML files fully represent the environment, we treat them as the initial environment state s0. When
the agent takes an action at, the state st is updated accordingly.

Configuring OPENAPPS. As shown in Figure 1 the data underlying each app is configurable
via yaml files. For example, to modify the existing list of todos in OpenToDo, users can edit or
supply their own list of todos as strings in the target yaml file. Along with the granular control
over each element, we provide pre-populated high-level configurations for appearance and content
variations. For appearance variations, we include a light theme, a black-and-white theme, a dark
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OpenToDo OpenCalendar OpenMessenger

OpenMaps OpenCodeEditor OpenShop

Figure 2: Screenshots with example appearance variations of all six apps in OPENAPPS: OpenToDo,
OpenCalendar, OpenMessenger, OpenMaps, OpenCodeEditor, and OpenShop. Each app is a fully
functional Python application with editable state and appearance. OpenApps can be configured via
simple YAML files.

theme, and the use of challenging fonts with Brush Script MT, as illustrated in Figures 2 and 7.
For content variation, we enrich the environment with extended descriptions for each application,
intentionally drafted misleading descriptions, adversarial text, and German translations alongside
the default English contents. Rather than attempting to cover every possible variation, our approach
focuses on a curated selection. All granular appearance and content variables (titles, colors for
UI-elements, etc.) available in OPENAPPS for researchers to modify via simple yaml to generate
thousands of versions of each app.

Large scale reproducible experiments with OPENAPPS. Because each instance of OPENAPPS
runs in a single lightweight Python process, we can deploy many parallel experiments on modest
hardware (even a single CPU) and memory (< 10MB). To guarantee reliable and reproducible
execution, every run starts from a local copy of the full environment state—including all app data
and appearance variables—which is reset at initialization. Our design keeps the overall memory
footprint low while ensuring that experiments can be reproduced exactly, with ground-truth reward
signals available by default (thus following best practices from (62)).

OPENAPPS can be combined with any agent scaffolding and task orchestration approach. In the
next section, we show one example of how this can be realized using the BrowserGym framework
to implement tasks and agents with OPENAPPS.

3.2 DEPLOYING AGENTS IN OPENAPPS: OBSERVATION AND ACTION SPACE

To implement agent actions and capture observations with OPENAPPS we use BrowserGym (22)—
a popular web agent framework used in prior works (53, 61). Given a prompt with a goal, at time
step t the agent receives observations ot from OPENAPPS as visual screenshots (akin to what a
human would see) and for agents that support text inputs also simplified text representations of UI-
elements (using AX Tree generated by browsers). The agent then sends an action at from the set of
actions available to humans such as click, type, scroll, etc. that directly interacts with
OPENAPPS to update the state from st to st+1 (set of available actions detailed in Appendix D.4).

For specialized agents post-trained in other ecosystems, it is sometimes necessary to translate their
native APIs into the BROWSERGYM interface. We have implemented such parsers, for instance for
the popular open-weights agent UI-TARS, a specialized user-interface agent (31). Results presented
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Figure 3: We organize agents interactions with OPENAPPS using the standard terminologylof re-
inforcement learning. The environment state st is defined by design and content variables, and
initialized from a YAML specification. At each step t, the agent receives observations ot (screen-
shot and accessibility tree) and issues an action at ∼ π(at|{ai−1, oi}t0) through BrowserGym API
calls. Task success is evaluated using the underlying app state st.

later in this work omit these translation details. Whenever standard system prompts or model config-
urations (e.g., temperature) have been proposed in the original works, we adopt them to ensure fair
and optimal evaluation of all agents (we provide additional temperature ablations in Figure 9). It is
worth emphasizing that not all agents are equally compatible with all observation modalities, often
due to their (partially unknown) training regimes. Accordingly, we report results under optimized
configurations for each agent. For example, UI-TARS can only operate as a visual agent and is not
compatible with text-based APIs that rely on text representation inputs.

3.3 TASK DESIGN AND SUCCESS

We provide a set of simple fifteen tasks such as adding an item to the calendar or saving a location
to your favorites in maps. We ensure each task has multiple goal prompts and that each app has at
least two tasks (full set of tasks is in Section 3.3 and sample goals in Table 1).

To evaluate task success, existing benchmarks typically adopt one of two alternatives: (a) human-
trajectory rewards, where an agent is rewarded for imitating demonstrations. This approach is overly
restrictive, since many valid action sequences may lead to the same goal (“many roads lead to
Rome”); (b) change-based checks, where only the presence of a specific modification is verified.
This can be exploited by agents taking unintended or malicious actions (e.g., purchasing a flight but
also submitting credit card information to a third party) as shown in Zhu et al. (62).

We avoid both pitfalls by granting the reward function access to the complete app state at each time
step t. For example, the state may include the full set of calendar events or all messages together
with their metadata (see Appendix 1 for examples). In our implementation, environment states are
serialized into lightweight yaml files, which can be represented as structured vectors. Rewards are
defined as a deterministic indicator function of whether the target state has been reached,

r = δ[st=starget],

so that a task is considered complete only if all state conditions are satisfied. This design provides
an objective and reproducible measure of an agent’s ability to perform precise state changes (a list of
tasks is available in Table 1 and Table 4). Because app logic and reward definitions are implemented
in Python, researchers can easily extend or redefine reward functions to measure alternative notions
of task success.
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Figure 4: Agents are sensitive to app variations. We show that the average success rate over all
tasks differs across app variations. Each bar represents the average success rate over all tasks within
a single app version (with three random seeds per task). Note we filter tasks where an agent has a
success rate of 0 across all app variations. We see success rates can differ considerably across app
versions.

4 MULTIMODAL AGENT RELIABILITY WITH OPENAPPS

We introduce how OPENAPPS can be used to study agent reliability along the dimension of app
variations. We first show agents are sensitive to app variations in Section 4.1. We find fixed app en-
vironments do not capture the considerable fluctuations in agent success rates across app variations.
Next in Sections 4.2 and 4.3, we study how agent behaviors such as looping or hallucinating actions
as well as deployment configuration can also differ across app variations, which in all confirms app
variations is an important axis of agent reliability.

EXPERIMENTAL SETUP

For each task, we apply each of the eight content and appearance variations (shown in Section 3.1
and Figure 7) to all apps simultaneously. For example, all apps would be set to their dark theme.
Rather than create a challenging benchmark, we focus on fifteen simple tasks, such as add buy
milk to my todo list, that require only a few steps to isolate changes in reliability (shown
in Table 4). We then launch more than 10,000 independent evaluations with seven agents spanning
both closed and open multimodal foundation models including Claude, OpenAI, Qwen-VL, and
specialized UI-models (UI-Tars).

Reliability of task success. Beyond average success rates, reliability captures fluctuations in suc-
cess rates when an agent is deployed. To measure reliability, we measure fluctuation in agent success
rates using the standard deviation of rewards across runs for a given task. Given a set of rewards Rvi

from an agent deployed in a fixed app version (vi), we call std(Rv1) the deviation within a fixed
app version. When deployed, however, an agent is likely to encounter many versions of an app. For
example, for a calendar there are several dozen (if not more) calendar apps, each with ever evolving
updates and configurations, yielding many app variations. To measure reliability more generally to
include the many app variations an agent is likely to encounter, we compute std({Rv1, Rv2, . . .}),
which we call the overall deviation across app variations. Finally, we compare the ratio of Fixed
App Reliability / Overall Reliability to assess how performance fluctuation can stems from variations
in apps, which we show can be quite large in the coming sections.
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Figure 5: Reliability within fixed app versions underestimates fluctuations in performance. In
the middle of each bar we show the standard deviation of task success. We compare two settings:
within a fixed app version compared to overall deviation that also accounts for difference in agent
success rates across app variations.

4.1 AGENTS ARE SENSITIVE TO APP VARIATIONS

Agents are sensitive to app variations. In Figure 4, we show each agent’s performance in terms
of the average task success rate across app variations. Each bar measures average task success
rate across different app versions. We find agents are sensitive to app variations with some agents
exhibiting more sensitivity than others. For example, Kimi-VL performance can vary between 4%
and 63% task success depending on the app variant (a more than 10× difference), suggesting agent
success can dramatically differ across app variations. Even for closed models that have high overall
performance such as Claude Sonnet and GPT-4o (when inputs also contain simplified text AX tree
representation), success rates on individual tasks can fluctuate drastically as shown in Table 3. For
example, the send message task success fluctuates from 42% to 0% for GPT-4o and 75% to 20%
for Claude 4 Sonnet depending the app variation the agent encounters. We report the breakdown by
task of agent performance and reliability in the default app version in Tables 2 and 5.

Task success within a fixed app version overestimates reliability. In Figure 5, we compare devia-
tions in task success within a fixed version of apps (as is the case with existing environment clones)
versus the overall deviation across app variations an agent is likely to encounter. We find fixed apps
overestimate reliability across the app variations that agents are likely to encounter, as task success
consistently fluctuates more than within a fixed app version. In many cases, for example Qwen2.5-
VL, Kimi-VL, and UI-Tars, standard deviations in task success across app variations are more than
twice those observed within fixed apps. These finding suggest studying reliability within a fixed app
clone underestimates fluctuations in agents’ task success. We also measure absolute deviation in
task success in Figure 10, which provides similar conclusions.

App appearance can affect agent success (UI-TARS case-study). When OPENAPPS has a dark
theme, the performance of UI-TARS degrades (see Figure 6). This could be due to lower contrast
in the dark theme setting. Given that dark themes are common on real-world websites, this finding
highlights the importance of measuring agent reliability with respect to appearance variations. Here,
we choose UI-TARS as a case study because it is a UI-visual only agent and is thus likely most
susceptible to appearance variations. We provide the full breakdown of task success rates for all
agents and appearance variations in Table 5 in the appendix. While the trend for UI-TARS does not
hold for the other agents, we still observe that appearance variations can change model performance.
Upon qualitative inspection, we find that Qwen2.5-VL can struggle to remove a saved place in the
map when a dark theme is deployed. In a similar vein, OPENAPPS enables agent developers to stress
test their agents across different appearance variations and dig deeper into failure modes.

7
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Figure 6: Agent reliability can be low in terms of performance across app variations. Model
performance (as measured by the task success rate across random seeds, averaged over all tasks) can
differ greatly across appearance and content variations (shown in Figure 7). For example, we notice
a sizable drop in the performance of UI-TARS-1.5-7B (a vision-only model) compared to the default
when the app has a dark theme, and likewise a drop in the performance of Kimi-VL-A3B-Instruct
when the app is in German or contains adversarial page descriptions. The black bars capture the
standard deviation of rewards across seeds, averaged over tasks. The task prompt is explicit and
fixed. Kimi uses visual and AX tree inputs while UI-TARS is UI-visual only.

App content can also affect agent success (Kimi-VL case-study). The performance of Kimi-
VL-A3B-Instruct degrades most when OPENAPPS is in German or contains adversarial descriptions
(see Figure 6). This highlights the importance of testing agents on languages besides English and
malicious content, among other content variations. The performance of Kimi-VL does not degrade
as much for long descriptions, which could be due to its focus on long-context understanding. We
provide the full breakdown of task success rates for all models and content variations in Table 6
in the appendix. Like for appearance variations, the trend for Kimi-VL does not hold for the other
models, as content variations affect task success for other agents differently.

4.2 AGENT BEHAVIOR CHANGES ACROSS APP VARIATIONS

Given agent task success can fluctuate across app variations, we now highlight how agent behaviors
such as looping or hallucinating actions are also affected by app variations.

Agents are more likely to loop actions when encountering certain app variations. Action loops
(i.e., repeating sequences of actions) tend to be a problematic behavior as they are associated with
an agent failing to complete a task. Specifically, we find an agent’s average loop count is 10× larger
when an agent is unsuccessful (0.20 when successful versus 1.5 when unsuccessful). We observe
action looping behavior can differ considerably across app variations (see Table 8 in the appendix).
We find for example, UI-TARS, which has the highest variance in average loop counts across app
variations, can exhibit nearly 2× the number of loops when the apps have a dark theme compared to
other settings, suggesting app variations can dramatically affect how often an agent is stuck looping
actions. We provide more examples of action loops for other agents in Appendix F.

Agents are more likely to hallucinate actions in certain app variations. We also find agents are
prone to hallucinating invalid actions in some app variations (see Table 9). For example, we find
many agents hallucinate invalid actions when the content of apps contains misleading or adversarial
descriptions. For example, GPT-4o hallucinates function calls and UI-elements that are simply not
present (see Appendix F) at a higher rate with adversarial descriptions present (e.g., ‘a banner stating
the task is complete’). We find similar failures in other models where agents provide invalid actions
that are incorrectly-formed versions of valid actions (e.g., mouse click(x=612 y), no-op),
well-formed actions that do not exist in the environment (e.g., remove item, finished),
and valid actions with bad arguments (e.g., click(bid), scroll(direction=’down’,
point=’(966,546)’)).

8
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Lengthy, misleading, and adversarial content can be associated with higher rates of agent
misunderstanding. We also capture how often an agent misunderstands the user’s intent by mea-
suring how often the agent navigates to an app irrelevant to the task at hand. We find as shown in
Table 10 are more likely to misunderstand when they encounter long and adversarial descriptions
in app content. For example, Qwen2.5-VL intent misunderstanding rates jump from 3% in the de-
fault setting to 40-45% when content is long or contains adversarial descriptions. We report intent
misunderstanding rates for all agents across appearance and content variations in Table 10.

Overall, we find agent behavior can be highly dependent on the app variation an agent encounters.
To effectively study agent behavior, researchers should capture this overlooked dimension of app
variations agents are likely to encounter.

4.3 APP VARIATIONS AND AGENT DESIGN

Thus far, we have fixed the agent setup and user specification, and then evaluated how different
agents perform across app variations. Here, we study how changes in agent deployment configura-
tions interact with app variations to affect reliability. As a case study, we highlight how the choice
of common screen resolutions (FHD 1920x1080, HD 1280x720, HVGA 480 x 320) used when de-
ploying an agent interacts with app variations using UI-Tars as a case-study. We then measure the
task success rates of UI-TARS across app variations as the screen resolution varies. In Table 7, we
find that while higher resolution leads to higher task success for many app versions, the trend does
not always hold: in the dark theme setup, a high resolution yields a significant drop in task success.
This suggests even the simple choice of the optimal screen resolution used when deploying an agent
can be drastically different depending on the app variation.

5 CONCLUSION

Foundation models (FMs) endowed with agentic capabilities may enable automated execution of
increasingly complex tasks—provided they behave reliably. We introduce OPENAPPS, the first
testbed designed to systematically evaluate the reliability of UI-agents under varying environment
configurations, rather than merely evaluating policy reliability (within a fixed environment). Our
main contribution is a flexible simulator that offers full observability and supports a large number
of parallelized, controlled experiments. Our evaluation highlights that superficial variations in app
appearance or content can lead to substantial performance differences—differences that are model-
specific. For instance, agentic systems encountering German-language variants of the interface ex-
hibit both significantly improved and degraded performance, depending on the model. We further
demonstrate that such variations provoke distinct failure modes, including action loops and halluci-
nated behavior. These diagnostics may offer actionable insights for agent development. Importantly,
our findings also inform deployment: we find that although agents deployed with higher resolution
inputs tend to have higher task success rates, for some app variations the opposite is in fact true.
Together these findings highlight that app variations are a key axis of reliability in terms of agent
performance, behaviors, and deployment.

Limitations and future work OPENAPPS offers calendar, messenger, maps, etc., apps which
encompass many common digital tasks. In this work however, we focus on simple tasks such as
adding an item to a todo list that require only a few steps to complete and do not
necessarily represent the complexity or distribution of real world tasks. Even with such simple
tasks, we see considerable fluctuation in agent success rates. Future work can extend the set of
tasks to include more complex or longer-horizon tasks to form a benchmark for UI-agent reliabil-
ity. Furthermore, here we focus on varying each app appearance or content factor independently.
Of course interactions between multiple app variation factors can also expose interesting behaviors
that we leave to future work. Finally, here we focus on autonomous agents, though agents can cer-
tainly also incorporate human validation or interaction when completing a task. Beyond evaluating
reliability, OPENAPPS can also serve as a wealth of training data. Thanks to the thousands of app
variations OPENAPPS can generate, OPENAPPS can be used to scale digital agent training pipelines,
provide a safe sandbox for deploying agents without real-world risk, and allow researchers to study
generalization across app variations. We elaborate on these exciting possibilities in Appendix B.
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6 REPRODUCIBILITY STATEMENT

To ensure transparency and reproducibility, we open-source all components of our work, including
the environment, experimental setups, and evaluation code. This enables other researchers to fully
replicate our results and build upon our framework without restrictions.
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[4] Szilárd Aradi. Survey of deep reinforcement learning for motion planning of autonomous
vehicles. arXiv preprint arXiv:2001.11231, 2020.

[5] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.
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Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapa-
dos, and Alexandre Lacoste. WorkArena: How Capable Are Web Agents at Solving Common
Knowledge Work Tasks?, July 2024. URL http://arxiv.org/abs/2403.07718.
arXiv:2403.07718.

[14] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge. Advances in Neural Information Processing
Systems, 35:18343–18362, 2022.

[15] Shiqing Fan, Xichen Ding, Liang Zhang, and Linjian Mo. Mcptoolbench++: A large scale ai
agent model context protocol mcp tool use benchmark, 2025. URL https://arxiv.org/
abs/2508.07575.

[16] Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon
Bae, and Honglak Lee. Autoguide: Automated generation and selection of context-aware
guidelines for large language model agents. Advances in Neural Information Processing Sys-
tems, 37:119919–119948, 2024.

[17] Divyansh Garg, Shaun VanWeelden, Diego Caples, Andis Draguns, Nikil Ravi, Pranav
Putta, Naman Garg, Tomas Abraham, Michael Lara, Federico Lopez, et al. Real: Bench-
marking autonomous agents on deterministic simulations of real websites. arXiv preprint
arXiv:2504.11543, 2025.

[18] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal
models. Annual Meeting of the Association for Computational Linguistics, 2024. doi: 10.
48550/arXiv.2401.13919.

[19] Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

[20] B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. A. Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2022. doi: 10.
1109/TITS.2021.3054625.

11

https://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2306.06070
http://arxiv.org/abs/2403.07718
https://arxiv.org/abs/2508.07575
https://arxiv.org/abs/2508.07575


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[21] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWebArena:
Evaluating Multimodal Agents on Realistic Visual Web Tasks, June 2024. URL http://
arxiv.org/abs/2401.13649. arXiv:2401.13649.

[22] Thibault Le Sellier de Chezelles, Maxime Gasse, Alexandre Lacoste, Massimo Caccia,
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A STATEMENT ABOUT USAGE OF LLMS

We used LLMs in two ways: (1) to edit grammar, style, and suggest alternative phrasings during
manuscript preparation, and (2) to assist in coding and generating application data for experiments.
All conceptual contributions, study design, and analysis were carried out by the authors.

B FUTURE DIRECTIONS

Beyond the design of benchmarks to evaluate reliability, OPENAPPS also lays the foundation for
future advances in post-training agentic of foundation model:

Simulators for Agentic Post-Training. Reinforcement learning (RL) fine-tuning has become the
de facto approach for adapting FMs—whether for alignment via RLHF (10, 63) or DPO (35, 33), or
for improving reasoning performance via methods like GRPO (34, 11). These approaches require
extensive interaction data—be it human preference annotations or curated reasoning datasets. In
these settings, effective learning typically requires large volumes of interaction data - human prefer-
ence annotations for alignment, or curated reasoning problems for mathematical and logical tasks.
Agentic learning poses an even greater data challenge: unlike single-turn settings, agents must of-
ten take multiple sequential actions, expanding the state–action space exponentially with planning
horizon, and thus becoming substantially more sample-inefficient. OPENAPPS offers a fast and
compute-effective solution for generating large-scale agentic interaction trajectories in a controlled
setting.

Safe Training Without Real-World Risk. Even with abundant data, training agents directly on
production systems poses unacceptable risks—ranging from leaking private user data and corrupting
critical files to executing harmful operations or triggering unintended purchases. In similarly high-
stakes domains such as healthcare (57) and autonomous driving (20, 41, 4), the RL community
has long relied on simulators to train and test agents safely. OPENAPPS provides an analogous
capability: it supports the generation of risky, logically inconsistent, or noisy trajectories that would
be infeasible or dangerous to collect in real-world systems. This opens the door to adversarial
training, robust optimization, and curriculum learning over safety-critical scenarios.

Self-Improving Agents via Simulation. Inspired by systems like AlphaZero, future work could
use OPENAPPS not only for evaluation but also for generating new tasks and configurations to
support self-improvement. For example, agents could generate increasingly difficult task variants or
use judge-based verification to refine internal policies.

Sim2Real Transfer and Generalization. The vision layed out in this section assumes that skills
learned in the simulator transfer meaningfully to the real world—a challenge widely studied in sim-
to-real transfer literature (42). Future research should explore the generalization of agent behavior
across task distributions and under robustness requirement (29).

C ADDITIONAL RELATED WORK

C.1 AGENT FAILURE EVALUATION

Recent studies show digital agents are vulnerable to adversarial conditions. Zhang et al. (59) report
that adversarial pop-ups reduce success rates dramatically (e.g., VisualWebArena from 92.7% to
73.1%). Ma et al. (26) show that distractions such as coupon banners derail agent trajectories. Ope-
nApps, with fine-grained controllability and noise injection, provides a testbed for systematically
stress-testing such failure modes.

C.2 BUILDING AND TRAINING AGENTS

The pipeline for building an autonomous agent mainly involves selecting an appropriate, fixed foun-
dation model (LLM or VLM), defining input/output spaces, and optionally configuring memory
modules. AgentOccam (52) reveals that simplifying both input structures and output action sets can
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unlock remarkable performance gains. SWE-agent (51) highlights the advantages of a specialized
Agent-Computer Interface for foundation models. Sodhi et al. (38), Chen et al. (9), Fu et al. (16)
demonstrates that human-written/data-driven rules foster greater generalization. Agent Workflow
Memory (45) introduces the concept of storing annotated trajectories as reusable workflows, en-
abling agents to recall and apply them in analogous scenarios. Agent S (2) envisions a dual-memory
system, episodic and narrative, evolving in tandem to enrich the agent’s adaptability. Meanwhile,
Automated Design of Agentic Systems (19) and Darwin Godel Machine (58) advocate the auto-
matic design and dynamic updating of system wrappers through code, thereby minimizing the need
for manual design or intervention.

While much progress has been made in boosting agent performance with fixed foundation models,
a new wave of research is now focused on training these models directly within their deployment
environments. ScribeAgent (36) demonstrates that fine-tuning with large-scale, real-world workflow
data can yield significant gains. Learn-by-interact (39) generates hindsight semantic labels for agent
trajectories, which are then leveraged for further fine-tuning. WebRL (30) introduces a self-evolving
curriculum to address the challenge of task scarcity, enabling agents to adapt and learn more effec-
tively. WebAgent-R1 (46) investigates end-to-end, multi-turn RL for agents. Vattikonda et al. (44)
provides empirical insights into balancing computational resources between supervised fine-tuning
and on-policy reinforcement learning for optimal agent training.

Beyond benchmarks, methods to boost agent performance include labeling visual web elements (50)
and hierarchical architectures with HTML simplification (1). New agent models such as AgentOc-
cam and GAIA have also been introduced, specializing in web-based tasks via fine-tuning. More
recently, GAIA2 expose app functionality via text using the MCP protocol (3). Our OpenApps
complements these works by providing a platform to systematically evaluate such methods under
controlled conditions and can potentilaly be intergated with orchestration frameworks such as ARE
(3, 15).

C.3 SIMULATED ENVIRONMENTS IN RL

Simulators have long played a central role in reinforcement learning (RL). Because RL agents typi-
cally require vast amounts of interaction data, direct deployment in the real world is often infeasible
due to cost, safety, or logistical constraints. Simulated environments offer several advantages: they
can be run at accelerated speed, reset deterministically, and instrumented for complete state access,
thereby enabling reproducibility and controlled experimentation. Foundational work such as the Ar-
cade Learning Environment (ALE) (5) and OpenAI Gym (7) provided standardized benchmarks and
interfaces that allowed the community to compare algorithms under shared conditions. The land-
mark DQN work (28) further demonstrated the effectiveness of simulators by showing human-level
performance on Atari games through large-scale training in ALE.

In robotics and control, physics-based simulators such as MuJoCo (43), PyBullet, and Isaac Gym
have become indispensable. These platforms make it possible to train agents in environments that
approximate real-world dynamics without exposing hardware to risk or degradation. They also en-
able advanced techniques such as domain randomization (42), where simulated environments are
deliberately varied to improve transferability to the real world. By serving as safe and scalable prox-
ies for embodied interaction, these simulators have been central to progress in continuous control
and sim-to-real transfer.

More recently, RL research has expanded toward open-ended and high-dimensional environments,
where agents must master long-horizon exploration and compositional skills. Beyond Atari, ALE
has been extended with more challenging tasks, and platforms such as MineDojo (14) and LS-
Imagine (23) leverage Minecraft-style open worlds to study the challenges of exploration, planning,
and credit assignment across vast state spaces. These environments highlight the role of simula-
tors not just for safe and efficient data collection, but also as a means of stress-testing agents on
increasingly realistic and unstructured tasks.

Our work seeks to join the spirit of this line of work for the domain of digital agents.
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D METHOD

D.1 EXAMPLE OF CONFIGURATION YAML FILE

Listing 1: Example YAML to configure OpenCalendar in OpenApps
style:

# Event visual placeholder for UI agent, text aria label for AXTree
add_event_display:

placeholder:
title: 'Event Title'
date: 'YYYY-MM-DD' # Date format
description: 'Event description...'
url: 'https://example.com'
invitees: 'John, Jane, etc.'
location: 'None'

aria_label:
title: 'Event title'
date: 'Event date, YYYY-MM-DD'
description: 'Event description'
url: 'Event URL'
invitees: 'Event invitees'
location: 'Event location'

# Color scheme
colors:

primary: '#1095c1' # Primary color for buttons, links, etc.
primary_hover: '#0a6d8a' # Hover state for primary elements
secondary: '#6c757d' # Secondary color for less important elements
background: '#ffffff' # Main background color
text: '#212529' # Main text color
error: '#dc3545' # Error messages color
border: '#ced4da' # Border color

# Typography
typography:

font_family: 'sans-serif' # Main font family
heading_font: 'sans-serif' # Font for headings
base_font_size: '16px' # Base font size
heading_size: '1.5rem' # Size for headings

# Button styles
buttons:

border_radius: '0.375rem' # Border radius for buttons
padding: '0.5rem 1rem' # Button padding

# Layout
layout:

container_width: '100%' # Width of the main container
spacing: '1rem' # Standard spacing between elements

events:
- title: WACV 2026 Abstract Deadline

date: 2025-07-11
description: |

# WACV 2026 Abstract Deadline

Winter Conference on Applications of
Computer Vision abstract submission deadline.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

## Important Dates:
- Abstract Deadline: July 11, 2025
- Full Paper Deadline: July 18, 2025

Submit abstracts through the conference portal.
url: https://wacv2026.thecvf.com
location: Online
invitees: null

- title: WACV 2026 Paper Deadline
date: 2025-07-18
description: |

# WACV 2026 Full Paper Deadline

Final deadline for Winter Conference
on Applications of Computer Vision
paper submissions.

Papers must be submitted in the
required format with all supplementary materials.

url: https://wacv2026.thecvf.com
location: Online
invitees: null

D.2 VISUAL EXAMPLES OF APP VARIATIONS

Default Dark theme Black and white Challenging font German Misleading description 

Figure 7: Examples of the OpenTodo page with different app variations.

D.3 TASKS

We pre-populated OPENAPPS with 15 high level task objects, each with several natural language
goal variants. We show a sample of the task goals in Table 1.
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Table 1: Sample goals for the evaluated tasks

Ask Bob ’Are we playing basketball on Saturday?’
Save ’Bockelwitz, Germany’ to the ’Saved Locations’ panel in maps.
Make a calendar entry for Christmas shopping on the 14th (2025).
I need a calendar entry for the team lunch on July 22nd, 2025 at noon.
Create an empty python (.py) file under the developing folder in code editor.
Can you add ’Play piano’ to my todo list?
Create an empty python (.py) file under the code editor directory.
Go to the Calendar app and add my meeting with Dennis on April 1st of 2026.
Return to the home page
Can you delete the AAAI paper submission deadline from my calendar? It should be early August 2025.
Please remove the ’WACV 2026 Abstract Deadline’ event from July 11th, 2025 from my calendar.
Can you mark ’Answer emails’ done in my todo list?
Mark ‘Update calendar’ as done in my todos.
Please remove the ’WACV 2026 Abstract Deadline’ from my calendar.
Can you remove ’Answer emails’ from my todo list.
I need to duplicate the CHI 2026 Paper Deadline event. Please create a copy next year.
Go to code editor, and remove the entire folder with name ’empty folder’.
Add the following item, Mens Casual Cargo in ’orange’, to my cart.
Create an empty c++ (.cpp) file under the code editor directory.
Go to code editor and remove the entire folder with name ’developing’.
Send Charlie my last message from Bob
Forward Charlie my most recent message from Bob.
Can you add ’Buy milk’ to my todos?
Add the following item, OWYN - 100% Vegan Plant-Based Protein Shakes to my cart.
Add ’get grandma a gift’ to my todos.
Navigate to the todo app page
Go to code editor, and delete all existing files and folders.
Demande Bob ’est-ce qu’on va jouer du Basketball samedi?’
Can you mark ’Buy groceries’ done in my todos?
Go to the todo app page
Add the following item, Magical Hair Treatment Mask in ’120ml’, to my cart.
Find the conference deadline on July 18th, 2025 and duplicate it to October 15th, 2025.
Remove ‘water plants‘ from my todos.
Help me delete everything in my current cart.
Add Bockelwitz to my places.
Ajouter Bockelwitz sur mes lieux préférés.
Can you remove ‘Make fruit salad‘ from my todos.
I need to duplicate the CHI 2026 Paper Deadline event.
Go to the shop app, click on cart, and remove all items.
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D.4 ACTIONS

Figure 8: The action set provided through BrowserGym, copied from Appendix A (22)

Our agents rely on a subset of the action set provided through the BrowserGym API, see Figure 8
for detail. Here we provide the full set of actions available to agents:

c l i c k , f i l l , d b l c l i c k , c l e a r , s e l e c t o p t i o n ,
d r a g a n d d r o p , hover , go back , go fo rward , goto ,
s c r o l l , m o u s e c l i c k , m o u s e d b l c l i c k , mouse move ,
mouse down , mouse up , m o u s e c l i c k , m o u s e d b l c l i c k ,
m o u s e d r a g a n d d r o p , m o u s e u p l o a d f i l e , keyboard down ,
keyboard up , k e y b o a r d p r e s s , k e y b o a r d t y p e , k e y b o a r d i n s e r t t e x t .

For visual only agents such as UI-TARS provide the subset supported by UI-agents:

go back , go fo rward , goto , m o u s e c l i c k
m o u s e d b l c l i c k , s c r o l l , mouse move , mouse down ,
mouse up , m o u s e c l i c k , m o u s e d b l c l i c k ,
m o u s e d r a g a n d d r o p , m o u s e u p l o a d f i l e , keyboard down ,
keyboard up , k e y b o a r d p r e s s , k e y b o a r d t y p e ,
k e y b o a r d i n s e r t t e x t .

D.5 MEAN ABSOLUTE DEVIATION

In addition to standard deviation, to measure reliability, we also measure fluctuation in agent success
rates using the mean absolute deviation (MAD) of rewards across runs for a given task. Given a set
of rewards Rvk from an agent deployed in a fixed app version (vk), we measure reliability for app
vk as:
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Table 2: Tasks with the largest fluctuation in success rate across application variations. We show
maximum and minimum success rates across app variations.

Model Task Maximum pass@1 Minimum pass@1 Difference
GPT-4o ForwardMessageTask 0.43 0.00 0.43
Kimi-VL-A3B-Instruct NavigateToPageTask 1.00 0.00 1.00
Qwen2.5-VL NavigateToPageTask 1.00 0.00 1.00
UI-TARS-1.5-7B RemoveSavedPlace 1.00 0.00 1.00
claude 4 sonnet ForwardMessageTask 1.00 0.00 1.00
llava-v1.6-mistral-7b-hf NavigateToPageTask 0.50 0.00 0.50

Fixed vk App Reliability =
1

n

∑
ri∈Rvk

∣∣∣∣∣∣ri − 1

n

∑
rj∈Rvk

rj

∣∣∣∣∣∣ , (1)

where n is the number of times an agent attempts the given task. Equation (1) is a measure of
reliability that can be captured with common agent environments that rely on fixed clones of apps.

When deployed, however, an agent is likely to encounter many versions of an app. For example,
for a calendar there are several dozen (if not more) calendar apps, each with ever-evolving updates
and configurations, yielding many app variations. To measure reliability more generally in way that
includes the many app variations an agent is likely to encounter, we compute:

Overall Reliability =
1

nd

∑
ri∈{Rv1,...,Rvd}

∣∣∣∣∣∣ri − 1

nd

∑
rj∈{Rv1,...,Rvd}

rj

∣∣∣∣∣∣ , (2)

where d is the number of variations we simulate. Crucially, Equation (2) also captures fluctuations
in agent performance across app variations that an agent is likely to encounter when deployed. In
our evaluations, we compare the ratio of Fixed App Reliability / Overall Reliability to assess how
performance fluctuation can stems from variations in apps, which we show can be quite large in the
coming sections.

E ADDITIONAL EXPERIMENTAL RESULTS

We show in Table 2 the task with the largest change in success rate across app variations. We find
all agents success rates can fluctuate from 0 to 100% success depending on the app variations; with
the exception of GPT-4o that fluctuates from 0 to 43%. We also show task success across all app
variations in Table 3 where we see even closed source agents based GPT and Claude can have very
different success rates depending on the app variation encountered.

In Figure 9, we show many temperature values yield reasonable performance. We show performance
for Claude and Kimi-VL on three tasks across varying values for temperature. In Figure 10, we show
agent reliability across app variations using mean absolute deviation (see Appendix D.5). In Table 4,
we report the success rate and reliability of each agent by task. In Table 5, we show the performance
across appearance variations, and across content variations in Table 6. We show a resolution analysis
across app variations in Table 7.
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Table 3: Tasks with variable success rate across app variations. We show all app variations for each
task.

Agent Task App Variation Task Success

GPT-4o ForwardMessageTask adversarial descriptions 0.00
GPT-4o ForwardMessageTask black and white 14.29
GPT-4o ForwardMessageTask challenging font 42.86
GPT-4o ForwardMessageTask dark theme 28.57
GPT-4o ForwardMessageTask default 7.14
GPT-4o ForwardMessageTask german 0.00
GPT-4o ForwardMessageTask long descriptions 0.00
GPT-4o ForwardMessageTask misleading descriptions 0.00
Kimi-VL-A3B-Instruct NavigateToPageTask adversarial descriptions 12.50
Kimi-VL-A3B-Instruct NavigateToPageTask black and white 100.00
Kimi-VL-A3B-Instruct NavigateToPageTask challenging font 87.50
Kimi-VL-A3B-Instruct NavigateToPageTask dark theme 100.00
Kimi-VL-A3B-Instruct NavigateToPageTask default 92.86
Kimi-VL-A3B-Instruct NavigateToPageTask german 0.00
Kimi-VL-A3B-Instruct NavigateToPageTask long descriptions 75.00
Kimi-VL-A3B-Instruct NavigateToPageTask misleading descriptions 75.00
Qwen2.5-VL NavigateToPageTask adversarial descriptions 12.50
Qwen2.5-VL NavigateToPageTask black and white 0.00
Qwen2.5-VL NavigateToPageTask challenging font 0.00
Qwen2.5-VL NavigateToPageTask dark theme 0.00
Qwen2.5-VL NavigateToPageTask default 5.88
Qwen2.5-VL NavigateToPageTask german 0.00
Qwen2.5-VL NavigateToPageTask long descriptions 90.00
Qwen2.5-VL NavigateToPageTask misleading descriptions 100.00
UI-TARS-1.5-7B RemoveSavedPlace adversarial descriptions 0.00
UI-TARS-1.5-7B RemoveSavedPlace black and white 100.00
UI-TARS-1.5-7B RemoveSavedPlace challenging font 100.00
UI-TARS-1.5-7B RemoveSavedPlace dark theme 0.00
UI-TARS-1.5-7B RemoveSavedPlace default 93.33
UI-TARS-1.5-7B RemoveSavedPlace german 100.00
UI-TARS-1.5-7B RemoveSavedPlace long descriptions 0.00
UI-TARS-1.5-7B RemoveSavedPlace misleading descriptions 20.00
Claude 4 sonnet ForwardMessageTask adversarial descriptions 50.00
Claude 4 sonnet ForwardMessageTask black and white 50.00
Claude 4 sonnet ForwardMessageTask challenging font 33.33
Claude 4 sonnet ForwardMessageTask dark theme 20.00
Claude 4 sonnet ForwardMessageTask default 22.22
Claude 4 sonnet ForwardMessageTask german 75.00
Claude 4 sonnet ForwardMessageTask long descriptions 100.00
Claude 4 sonnet ForwardMessageTask misleading descriptions 25.00
Llava-v1.6-mistral-7b-hf NavigateToPageTask adversarial descriptions 0.00
Llava-v1.6-mistral-7b-hf NavigateToPageTask black and white 50.00
Llava-v1.6-mistral-7b-hf NavigateToPageTask challenging font 12.50
Llava-v1.6-mistral-7b-hf NavigateToPageTask dark theme 10.00
Llava-v1.6-mistral-7b-hf NavigateToPageTask default 35.29
Llava-v1.6-mistral-7b-hf NavigateToPageTask german 0.00
Llava-v1.6-mistral-7b-hf NavigateToPageTask long descriptions 0.00
Llava-v1.6-mistral-7b-hf NavigateToPageTask misleading descriptions 0.00
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Figure 9: We compare agent performance for Claude (left) and Kimi-VL (right) as the temperature
varies.

−40 −30 −20 −10 0 10 20 30 40
MAD Task Success

Claude Sonnet 4
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GPT-4o

GPT-4o (Fixed Apps)
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Kimi-VL-A3B-Instruct (Fixed Apps)

LLaVA-v1.6-7B
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Figure 10: Performance within a fixed app version overestimates reliability. We compare the
mean absolute deviation of task success rates in two settings: 1) within a fixed app version (in blue),
compared to 2) overall deviation that also accounts for difference in agent success rates across app
variations.
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pass@1 std MAD
Task Model

Add2CartASingleItemTask

Kimi-VL-A3B-Instruct 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
Qwen2.5-VL 0.11 0.33 0.20
UI-TARS-1.5-7B 0.56 0.53 0.49
claude 4 sonnet 0.90 0.32 0.18
GPT-4o 1.00 0.00 0.00

AddEventTask

Kimi-VL-A3B-Instruct 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
Qwen2.5-VL 0.00 0.00 0.00
UI-TARS-1.5-7B 0.06 0.25 0.12
claude 4 sonnet 0.64 0.50 0.46
GPT-4o 1.00 0.00 0.00

AddFiles2CodeEditorTask

UI-TARS-1.5-7B 0.00 0.00 0.00
Kimi-VL-A3B-Instruct 0.00 0.00 0.00
Qwen2.5-VL 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
GPT-4o 0.60 0.52 0.48
claude 4 sonnet 0.60 0.52 0.48

AddItem2ToDoListTask

llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
Qwen2.5-VL 0.00 0.00 0.00
Kimi-VL-A3B-Instruct 0.56 0.51 0.49
UI-TARS-1.5-7B 0.80 0.41 0.32
claude 4 sonnet 0.91 0.30 0.17
GPT-4o 1.00 0.00 0.00

DuplicateEventTask

GPT-4o 0.00 0.00 0.00
Kimi-VL-A3B-Instruct 0.00 0.00 0.00
Qwen2.5-VL 0.00 0.00 0.00
UI-TARS-1.5-7B 0.00 0.00 0.00
claude 4 sonnet 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf 0.00 0.00 0.00

ForwardMessageTask

Kimi-VL-A3B-Instruct 0.00 0.00 0.00
UI-TARS-1.5-7B 0.00 0.00 0.00
Qwen2.5-VL 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
GPT-4o 0.08 0.29 0.15
claude 4 sonnet 0.25 0.46 0.38

MarkItemAsDoneTask

llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
Qwen2.5-VL 0.21 0.43 0.34
Kimi-VL-A3B-Instruct 0.43 0.51 0.49
UI-TARS-1.5-7B 0.71 0.46 0.41
claude 4 sonnet 1.00 0.00 0.00
GPT-4o 1.00 0.00 0.00

MessageXTask

llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
Kimi-VL-A3B-Instruct 0.00 0.00 0.00
UI-TARS-1.5-7B 0.13 0.35 0.23
Qwen2.5-VL 0.21 0.43 0.34
GPT-4o 0.86 0.36 0.24
claude 4 sonnet 1.00 0.00 0.00

NavigateToPageTask

Qwen2.5-VL 0.06 0.24 0.11
llava-v1.6-mistral-7b-hf 0.35 0.49 0.46
Kimi-VL-A3B-Instruct 0.93 0.27 0.13
UI-TARS-1.5-7B 1.00 0.00 0.00
GPT-4o 1.00 0.00 0.00
claude 4 sonnet 1.00 0.00 0.00

RemoveEventTask

Qwen2.5-VL 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
Kimi-VL-A3B-Instruct 0.00 0.00 0.00
UI-TARS-1.5-7B 0.20 0.41 0.32
claude 4 sonnet 0.90 0.32 0.18
GPT-4o 0.93 0.27 0.13

RemoveFromCodeEditorTask

Kimi-VL-A3B-Instruct 0.00 0.00 0.00
UI-TARS-1.5-7B 0.00 0.00 0.00
Qwen2.5-VL 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
GPT-4o 0.43 0.51 0.49
claude 4 sonnet 0.50 0.53 0.50

RemoveItemFromToDoListTask

Kimi-VL-A3B-Instruct 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
UI-TARS-1.5-7B 0.05 0.22 0.09
Qwen2.5-VL 0.06 0.24 0.11
GPT-4o 1.00 0.00 0.00
claude 4 sonnet 1.00 0.00 0.00

RemoveItemsFromCartTask

llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
Qwen2.5-VL 0.00 0.00 0.00
Kimi-VL-A3B-Instruct 0.75 0.45 0.38
claude 4 sonnet 0.88 0.35 0.22
UI-TARS-1.5-7B 0.91 0.30 0.17
GPT-4o 1.00 0.00 0.00

RemoveSavedPlace

llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
Qwen2.5-VL 0.33 0.49 0.44
Kimi-VL-A3B-Instruct 0.50 0.53 0.50
claude 4 sonnet 0.90 0.32 0.18
UI-TARS-1.5-7B 0.93 0.26 0.12
GPT-4o 1.00 0.00 0.00

SavePlace

Kimi-VL-A3B-Instruct 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf 0.00 0.00 0.00
Qwen2.5-VL 0.15 0.38 0.26
UI-TARS-1.5-7B 0.72 0.46 0.40
claude 4 sonnet 0.73 0.47 0.40
GPT-4o 0.86 0.36 0.24

Table 4: Breakdown of model performance by task. Model performance (as measured by pass@1
over random seeds) on all tasks. We report the mean absolute deviation (MAD) and standard devi-
ation (std) of rewards over random seeds. We use the default environment content and appearance,
and the task prompt is explicit and fixed. All models use visual and AX tree inputs, with the excep-
tion of UI-TARS, which is a UI-visual only model.
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avg. pass@1 avg. std avg. MAD
Model Appearance

claude 4 sonnet

dark theme 0.69 0.29 0.23
default 0.75 0.27 0.21
challenging font 0.76 0.26 0.21
black and white 0.77 0.23 0.19

GPT-4o

default 0.78 0.15 0.12
dark theme 0.81 0.13 0.11
black and white 0.82 0.08 0.06
challenging font 0.84 0.11 0.10

Kimi-VL-A3B-Instruct

dark theme 0.12 0.10 0.08
default 0.21 0.15 0.13
challenging font 0.23 0.16 0.13
black and white 0.29 0.15 0.12

llava-v1.6-mistral-7b-hf

dark theme 0.01 0.02 0.01
challenging font 0.01 0.02 0.01
default 0.02 0.03 0.03
black and white 0.04 0.06 0.05

Qwen2.5-VL

challenging font 0.03 0.06 0.05
black and white 0.05 0.11 0.08
dark theme 0.05 0.09 0.08
default 0.08 0.17 0.12

UI-TARS-1.5-7B

dark theme 0.05 0.10 0.07
default 0.41 0.24 0.18
black and white 0.42 0.18 0.14
challenging font 0.43 0.15 0.12

Table 5: Agent reliability can be low in terms of performance across appearance variations.
Model performance (as measured by the pass@1 across random seeds averaged over all tasks) can
differ greatly across content variations. We report the standard deviation and mean absolute devia-
tion of rewards across seeds, averaged over tasks. The task prompt is explicit and fixed.
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avg. pass@1 avg. std avg. MAD
Model Content

claude 4 sonnet

default 0.75 0.27 0.21
adversarial descriptions 0.75 0.22 0.17
misleading descriptions 0.75 0.26 0.20
long descriptions 0.78 0.23 0.18
german 0.82 0.21 0.16

GPT-4o

default 0.78 0.15 0.12
misleading descriptions 0.79 0.11 0.08
german 0.79 0.09 0.07
adversarial descriptions 0.81 0.09 0.07
long descriptions 0.82 0.07 0.05

Kimi-VL-A3B-Instruct

adversarial descriptions 0.02 0.05 0.03
german 0.02 0.06 0.04
misleading descriptions 0.07 0.06 0.05
long descriptions 0.12 0.03 0.03
default 0.21 0.15 0.13

llava-v1.6-mistral-7b-hf

misleading descriptions 0.00 0.00 0.00
german 0.00 0.00 0.00
long descriptions 0.00 0.00 0.00
adversarial descriptions 0.01 0.02 0.01
default 0.02 0.03 0.03

Qwen2.5-VL

german 0.02 0.06 0.04
default 0.08 0.17 0.12
adversarial descriptions 0.10 0.15 0.12
long descriptions 0.14 0.11 0.08
misleading descriptions 0.23 0.12 0.09

UI-TARS-1.5-7B

long descriptions 0.19 0.11 0.09
adversarial descriptions 0.23 0.12 0.10
misleading descriptions 0.23 0.16 0.14
default 0.41 0.24 0.18
german 0.42 0.17 0.13

Table 6: Agent reliability can be low in terms of performance across content variations. Model
performance (as measured by the pass@1 across random seeds averaged over all tasks) can differ
greatly across content variations. We report the standard deviation and mean absolute deviation of
rewards across seeds, averaged over tasks. The task prompt is explicit and fixed.

Appearance black and white challenging font dark theme default
screen resolution

FHD (1920 x 1080) 0.64 0.76 0.06 0.69
HD (1280 x 720) 0.52 0.70 0.61 0.63
Low (480 x 320) 0.42 0.42 0.47 0.48

Table 7: Higher HD is no longer always better when we fix the the content and vary the appearance.
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F AGENT BEHAVIORS

Loops. In Table 8, we show the average loop count across models, appearance vari-
ations, and content variations. When inspecting loops qualitatively, the most common
loops are sequences of the same action being repeated, e.g., GPT-4o produces click(47)
click(47)click(47)click(47)click(47)click(47)click(47), Kimi-VL gener-
ates click(17)click(17)click(17)click(17)click(17)click(17)click(17)
click(17)click(17)click(17)click(17)click(17)click(17)click(17)
click(17)click(17)click(17)click(17)click(17)click(17), and UI-TARS-
1.5-7B outputs keyboard press(key=’ctrl a’)keyboard press(key=’ctrl a’).
These examples reveal that loops can be, but are not always problematic. The bid [17] corre-
sponds to Section ’’, which is a task-irrelevant empty section header. In contrast, the bid [47]
corresponds to button ’Next >’ in OpenCalendar, which agents are often required to click
multiple times to navigate to the next calendar page to complete calendar tasks.

Invalid actions. Models may hallucinate actions more due to content than appearance variations,
and when an application contains distractor information, e.g., adversarial or misleading descriptions
(see Table 9). The five most common invalid actions for each model include:

• GPT-4o: click(23), noop, check ax tree(), mouse click(x=612 y)

• Kimi-VL-A3B-Instruct: click(bid)\n‘‘‘, click(bid)\n<\action>,
click(bid)\n<\action>\n‘‘‘python\npyautogui.click(x=0.523,
y=0.466)\n‘‘‘, click(bid)\n‘‘‘\n‘‘‘python\npyautogui.click(x=0.000,
y=0.000)\n‘‘‘, click(bid)\n‘‘‘python\npyautogui.click(x=0.000,
y=0.000)\n‘‘‘

• llava-v1.6-mistral-7b-hf: remove item(water plants), duplicate(17)

• Qwen2.5-VL: click([67] link ’main-page’, enter(searchInput,
Bockelwitz, Germany), no-op, go to(’https://www.example.com/maps’),
type(OWYN - 100% Vegan Plant-Based Protein Shakes | Cold Brew
Coffee, 12 Fl Oz | Dairy-Free, Gluten-Free, Soy-Free, Tree
Nut-Free, Egg-Free, Allergy-Free, Vegetarian)

• UI-TARS-1.5-7B: finished(), wait(), scroll(direction=’down’,
point=’(966,546)’), finished, None

Qualitatively, we observe diverse kinds of invalid actions: incorrectly-formed versions of valid
actions (e.g., mouse click(x=612 y), no-op), well-formed actions that do not exist in
the environment (e.g., remove item, finished), and valid actions with bad arguments (e.g.,
click(bid), scroll(direction=’down’, point=’(966,546)’)).

Instruction copying. We do not observe that any models regurgitate in-context examples
from their system prompt (e.g., fill(’4’, ’my text’), mouse click(200, 300,
button=’left’)).

Intent misunderstandings. In Table 10, we show the intent misunderstanding rate across models,
appearance variations, and content variations. We note that we do not consider NavigateToPageTask,
as the explicit goal of this task is to navigate to a page rather than to understand user intent. An
agent navigating to an incorrect page is not always fatal (i.e., yields an unsuccessful run); however,
unnecessary steps in runs can yield higher costs for agent developers. Additionally, agents may
navigate to irrelevant pages outside the OPENAPPS environment, e.g., https://www.example.
com/online-shop,https://leafletjs.com/.
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avg. loop count
Model Appearance Content

claude 4 sonnet

default german 0.10
long descriptions 0.11

dark theme default 0.14
default adversarial descriptions 0.14
challenging font default 0.14
black and white default 0.15

default misleading descriptions 0.15
default 0.15

GPT-4o

challenging font default 0.32
black and white default 0.34
dark theme default 0.41

default

default 0.41
misleading descriptions 0.42
adversarial descriptions 0.44
german 0.45
long descriptions 0.46

Kimi-VL-A3B-Instruct

default long descriptions 1.16
black and white default 1.20
dark theme default 1.27
default misleading descriptions 1.33
challenging font default 1.40

default
default 1.43
german 1.66
adversarial descriptions 1.74

llava-v1.6-mistral-7b-hf

black and white default 1.18
default adversarial descriptions 1.18
challenging font default 1.23
dark theme default 1.24

default

german 1.25
long descriptions 1.28
misleading descriptions 1.29
default 1.35

Qwen2.5-VL

default misleading descriptions 1.22
long descriptions 1.32

dark theme default 1.33
challenging font default 1.38
black and white default 1.41

default
default 1.43
adversarial descriptions 1.45
german 1.80

UI-TARS-1.5-7B

black and white default 0.93
default german 1.09
challenging font default 1.21

default

default 1.24
misleading descriptions 1.47
adversarial descriptions 1.54
long descriptions 1.63

dark theme default 2.21

Table 8: Agents are more or less prone to loop actions depending on the app variations they
encounter. The average count of loops (across all tasks and random seeds) varies across appearance
and content variations. We define loops as maximal sequences of actions entirely consisting of a
repeated subsequence. The task prompt is explicit and fixed.
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avg. invalid action count
Model Appearance Content

GPT-4o
default default 0.00
dark theme default 0.01
default adversarial descriptions 0.07

Kimi-VL-A3B-Instruct
default

default 0.01
german 0.07
long descriptions 0.07

black and white default 0.07
default adversarial descriptions 0.21

llava-v1.6-mistral-7b-hf default german 0.05
misleading descriptions 0.13

Qwen2.5-VL

default default 0.01
black and white default 0.02

default
misleading descriptions 0.07
german 0.15
long descriptions 0.20

UI-TARS-1.5-7B

dark theme default 0.71
default german 1.84
black and white default 1.88
challenging font default 1.91

default

default 2.12
misleading descriptions 2.23
long descriptions 2.25
adversarial descriptions 2.60

Table 9: Agents are more likely to hallucinate actions in certain app variations than others.
The average count of invalid actions (across all tasks and random seeds) seems to be higher when
the content of apps contains misleading or adversarial descriptions. We define invalid actions as
generated actions that do not have the correct syntax, are not part of the custom or default actions of
a model, or have bad arguments (e.g., type error, argument does not exist). Any unreported models,
appearance variations, and content variations have an average invalid action count of 0. The task
prompt is explicit and fixed.
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intent misunderstanding rate
Model Appearance Content
GPT-4o default german 0.06

Kimi-VL-A3B-Instruct

default misleading descriptions 0.01
challenging font default 0.18
black and white default 0.24
default default 0.25
dark theme default 0.30
default german 0.50

llava-v1.6-mistral-7b-hf

default
misleading descriptions 0.03
adversarial descriptions 0.06
long descriptions 0.08

challenging font default 0.11
dark theme default 0.12
black and white default 0.18

default german 0.21
default 0.23

Qwen2.5-VL

dark theme default 0.02
default default 0.03
challenging font default 0.04
black and white default 0.05

default

german 0.31
misleading descriptions 0.36
long descriptions 0.40
adversarial descriptions 0.45

UI-TARS-1.5-7B

challenging font default 0.02
black and white default 0.05

default

default 0.05
german 0.14
adversarial descriptions 0.31
long descriptions 0.35
misleading descriptions 0.37

dark theme default 0.50

Table 10: Agents may be more prone to misunderstand users’ intent when the apps content
lengthy, misleading, or adversarial content. We report the rate of intent misunderstandings over
tasks and random seeds for each appearance and content variation. An agent “misunderstands intent”
when it navigates to a page irrelevant to the task. Any unreported models, appearance variations,
and content variations have an intent misunderstanding rate of 0. The task prompt is explicit and
fixed.
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