Under review as a conference paper at ICLR 2026

OPENAPPS: SIMULATING ENVIRONMENT VARIATIONS
TO MEASURE UI-AGENT RELIABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Reliability is key to realizing the promise of autonomous Ul-agents, multimodal
agents that directly interact with the apps humans use, as users must be able
to trust an agent to complete a given task. Current evaluations rely on fixed
environments—often clones of existing apps— which are limited in that they can
only shed light on whether or how often an agent can complete a task within a
specific environment. When deployed however, agents are likely to encounter
variations in app design and content that can affect an agent’s ability to complete
a task. To address this blind spot of measuring agent reliability across app vari-
ations, we develop OPENAPPS, a light-weight open-source ecosystem with six
apps (messenger, calendar, maps, etc.) that are configurable in appearance and
content. OPENAPPS requires just a single CPU to run, enabling easy generation
and deployment of thousands of versions of each app. Specifically, we run more
than 10,000 independent evaluations to study reliability across seven leading mul-
timodal agents. We find that while standard reliability within a fixed app is rela-
tively stable, reliability can vary drastically when measured across app variations.
Task success rates for many agents can fluctuate by more than 50% across app
variations. For example, Kimi-VL-3B’s average success across all tasks fluctuates
from 63% to just 4% across app versions. We also find agent behaviors such as
looping or hallucinating actions can differ drastically depending on the environ-
ment configuration. These initial findings highlight the importance of measuring
reliability along this new dimension of app variations.

OpenApps Configurable Reliability
== - = || | operodos Across App Variations
= = [~] 70
B : — . = W Appvi
! @ . = 0 53 App v2
=2 Code Editor 97 Mok o= gé v v §
meE i 5 -
g (i = o= (")
- Calendc ; S ~T=_ n= || — —
— 0= Uars KimiVL Qwen2.5-VL

Figure 1: OPENAPPS can generate thousands of configurable versions of apps. OPENAPPS
contains six apps covering common digital tasks with configurable appearance and app data for
measuring a new dimension of reliability: across app variations agents are likely to encounter.
OPENAPPS can be deployed anywhere Python can run with a single CPU (without specialized hard-
ware, emulators or setup). In the right panel, we see average success rates for the same tasks and
agents can fluctuate across app versions, suggesting app variation is a key axis of reliability.

1 INTRODUCTION

Recent advances in foundation models have spurred growing interest in building autonomous UlI-
agents capable of executing complex, multi-step workflows across digital environments. Such agents
hold the promise of serving as capable assistants in everyday and professional contexts, from coor-
dinating schedules to managing documents. Key to realizing the promise of Ul-agents is reliability:
users must be able to trust an agent can successfully complete the task. Researchers have invested

Under review as a conference paper at ICLR 2026

considerable effort to measure the reliability of agents by cloning existing apps or web sites. For
example environments such as OSWorld (47), (Visual)WebArena (60, 21)), and TheAgentCompany
(49) allow researchers to measure reliability in terms of how often an agent can successfully com-
plete a task within a fixed app clone.

When deployed, however, agents are likely to encounter numerous variations in app design, appear-
ance, and content. For example, there are (conservatively) dozens of calendar apps, each with an
ever evolving style and configurable content and appearance. An agent may struggle when the con-
tents of the calendar are dense with events or find it easier to navigate Ul-elements in dark mode.
In short, the reliability of an agent’s task performance depends on the variation in app versions an
agent encounters. This dimension of reliability across app variations however, can not be measured
in current environments that rely on fixed clones of apps.

To capture this crucial dimension of reliability, we develop OPENAPPS. OPENAPPS is a light-
weight open-source ecosystem for generating thousands of versions of apps with transparent logic
and state. OPENAPPS includes calendar, messenger, todo, maps, shopping, and code editing apps.
In contrast to environments that pre-record trajectories or pre-defined tool APIs (27,154), multimodal
agents directly interact with OPENAPPS using the same actions as humans (click, type, scroll, etc.).
OPENAPPS allows researchers to

* Generate thousands of versions of each App. Each app comes with configurable appear-
ance and content variables allowing researchers to generate thousands of versions of each
app to study reliability of agents across app variations (see Figure|l)).

* Access app logic and ground truth underlying state. The full app state and logic of each
app is exposed in Python for researchers to study or extend. Additionally, each task reward
is based on the underlying app state thereby avoiding noisy reward signals and reward
hacking behavior (62).

* Deploy OPENAPPS on any machine that runs Python for lightweight scalable exper-
iments. Unlike many existing environments that require specialized emulators or con-
tainers, OPENAPPS requires a single CPU and runs on any machine that can run Python
thereby enabling scalable parallel experiments across app variations.

Using OpenApps, we study agent behaviors across app variations. We run over 10,000 trials
across seven leading agents spanning both closed and open multimodal foundation models includ-
ing Claude, OpenAl, Qwen-VL, and specialized UI-models (UI-Tars). We find that while agents are
reliable within a single app variation, reliability across app variations can differ drastically, and task
success rates can vary by more than 50% across app variations. For example, Kimi-VL-3B average
success across all tasks fluctuates from 63% to just 4% across app versions. Furthermore, agent
behaviors such as looping or hallucinating actions can also heavily depend on the app variations an
agent encounters. For example, UI-Tars is 5x more likely to hallucinate actions depending on the
app variation. The findings suggest app variations play a crucial role in ensuring agents are reliable.

2 RELATED WORK

While text-only tool calling agents can interact with Apps via pre-defined interfaces such as MCP
(27, 132), here we focus on Ul-agents that directly interact with the multimodal environment (with-
out requiring a pre-defined API interface). In Appendix [C] we review how foundation models are
adapted for agentic workflows, including post-training strategies that boost performance in such
settings. We also highlight the critical role of simulators in reinforcement learning. This section fo-
cuses specifically on environments and benchmarks for digital autonomous agents. Aforementioned
can be distinguished by the platform and the capabilities they target, how they assign rewards, what
modalities they support, where they lie on the the sim2real spectrum, their scale and how easily they
are deployable.

Web Agent Benchmarks. Benchmarks designed for web applications typically target consumer
tasks of web browsing such as online shopping (53} [12), travel and food planning (55} 17)), and more
generally search and navigation (60, 21} [18, 156). While some benchmarks crowd-source (17, 55))
the tasks they test on, most provide a relatively small list of meta tasks such as "Search for

Under review as a conference paper at ICLR 2026

the best/least expensive X". All Ul-agent benchmarks we are aware of rely on website
clones to ensure realism, the complexity of these clones makes it hard to design strategic interven-
tions to website design or content. As a consequence of this lack of controllability, when reporting
agent failure, authors typically rely on anecdotal evidence alone. Reward functions are typically
based either on human demonstration trajectories or on state-change signals. Our approach follows
the latter, but differs in that we evaluate the full environment state (see section @]), ensuring that
rewards cannot be gamed by completing adversarial side tasks. A key distinction of our environment
is its position in the trade-off between realism and computational efficiency that allows for deploy-
ment at scale. Full website clones, as used in WebArena (60), can require over 100GB of memory
per site, which severely limits scalability or is very expensive to run at scale. At the other extreme,
lightweight environments such as MiniWoB(37) match our efficiency but fall short in realism. Fi-
nally, BrowserGym (22)) provides a standardized interface across web benchmarks, and underpins
both REAL (17), TheAgentCompany (49), and our environment.

OS-Level Benchmarks. Beyond everyday web tasks, several benchmarks target general computer
use. WorkArena (13)), WorkArena++ (6)) and TheAgentCompany (49)) are UI-benchmarks that focus
on corporate workflow automation (e.g., HR, customer support) in a few specific apps. OSWorld
(48)) on the other hand simulates a full Linux based operating system, where the distribution of tasks
reflects more general use. AgentBench (25) focused on an even broader range of tasks, such as
puzzle solving, knowledge retrieval, operating systems or web browsing. Equivalently, there exist
environments targeting mobile OSs (8}, 140l 24). Although the tasks in OPENAPPS are less complex
than those in many of these environments, agents still struggle to complete them. Moreover, the
heavy compute demands of virtual machine-based environments make them impractical for large-
scale trajectory generation just as web-agent-benchmarks.

3 OPENAPPS: FRAMEWORK AND ENVIRONMENT

Orchestrating an agent to interact with an environment of apps towards a goal involves many moving
pieces. Consequently, we organize agent interactions in OPENAPPS within the established termi-
nology of reinforcement learning. As shown in Figure |3 the agent receives visual (and in some
cases simplified text representations of Ul-elements) observations O from OPENAPPS then directly
acts with an action from the space A consisting of common actions available to humans such as
click, type, scroll, etc. (see Section . Finally, we assess using OPENAPPS underly-
ing state, such as the list of events in the calendar for example, whether at a given step ¢ the agent
successfully completed the task (see Section [3.3).

3.1 OPENAPPS ENVIRONMENT

OPENAPPS is a browser-based, highly customizable, open-source, low resource and isolated en-
vironment for Ul agents. This ecosystems comes with six fully functional apps written in Python.
OPENAPPS contains a range of apps needed for common digital tasks: OpenCalendar, OpenMessen-
ger, OpenMaps, OpenToDo, OpenCodeEditor, and OpenShop. OpenCalendar for example, allows
the user to view, create, and delete events in a fully functional calendar app. To our knowledge this
is the first UI agent environment written in Python the lingua franca of Al researchers and practi-
tioners, making it easy for researchers (and possibly coding agents) to understand and modify the
internal logic of each app. This choice improves accessibility relative to existing environments that
often depend on languages less known to researchers (Kotlin, javascript, CSS) or require specialized
infrastructure such as Android emulators, large databases, or containers. We accomplish this by
building OPENAPPS using the FastHTML framework. Configuring the apps is made easy by pro-
viding access to appearance variables and underlying data via editable YAML files. Because these
YAML files fully represent the environment, we treat them as the initial environment state sq. When
the agent takes an action a, the state s; is updated accordingly.

Configuring OPENAPPS. As shown in Figure (1] the data underlying each app is configurable
via yaml files. For example, to modify the existing list of todos in OpenToDo, users can edit or
supply their own list of todos as strings in the target yaml file. Along with the granular control
over each element, we provide pre-populated high-level configurations for appearance and content
variations. For appearance variations, we include a light theme, a black-and-white theme, a dark

Under review as a conference paper at ICLR 2026

OpenToDo OpenCalendar OpenMessenger

== = o
Welcome to OpenShop

OpenMaps OpenCodeEditor OpenShop

Figure 2: Screenshots with example appearance variations of all six apps in OPENAPPS: OpenToDo,
OpenCalendar, OpenMessenger, OpenMaps, OpenCodeEditor, and OpenShop. Each app is a fully
functional Python application with editable state and appearance. OpenApps can be configured via
simple YAML files.

theme, and the use of challenging fonts with Brush Script MT, as illustrated in Figures [2| and
For content variation, we enrich the environment with extended descriptions for each application,
intentionally drafted misleading descriptions, adversarial text, and German translations alongside
the default English contents. Rather than attempting to cover every possible variation, our approach
focuses on a curated selection. All granular appearance and content variables (titles, colors for
Ul-elements, etc.) available in OPENAPPS for researchers to modify via simple yaml to generate
thousands of versions of each app.

Large scale reproducible experiments with OPENAPPS. Because each instance of OPENAPPS
runs in a single lightweight Python process, we can deploy many parallel experiments on modest
hardware (even a single CPU) and memory (< 10MB). To guarantee reliable and reproducible
execution, every run starts from a local copy of the full environment state—including all app data
and appearance variables—which is reset at initialization. Our design keeps the overall memory
footprint low while ensuring that experiments can be reproduced exactly, with ground-truth reward
signals available by default (thus following best practices from (62))).

OPENAPPS can be combined with any agent scaffolding and task orchestration approach. In the
next section, we show one example of how this can be realized using the BrowserGym framework
to implement tasks and agents with OPENAPPS.

3.2 DEPLOYING AGENTS IN OPENAPPS: OBSERVATION AND ACTION SPACE

To implement agent actions and capture observations with OPENAPPS we use BrowserGym (22)—
a popular web agent framework used in prior works (33, 161). Given a prompt with a goal, at time
step t the agent receives observations o, from OPENAPPS as visual screenshots (akin to what a
human would see) and for agents that support text inputs also simplified text representations of Ul-
elements (using AX Tree generated by browsers). The agent then sends an action a; from the set of
actions available to humans suchas click, type, scroll, etc. thatdirectly interacts with
OPENAPPS to update the state from s; to sy (set of available actions detailed in Appendix .

For specialized agents post-trained in other ecosystems, it is sometimes necessary to translate their
native APIs into the BROWSERGYM interface. We have implemented such parsers, for instance for
the popular open-weights agent UI-TARS, a specialized user-interface agent (31). Results presented

Under review as a conference paper at ICLR 2026

Task

r"Delete the Brooklyn Bridge from my saved places"

OpenApps environment - Agent
o - = 4 Instruction Prompt
B - | Observation oy

History h = {a;_1,0}}

Available actions (BrowserGym API)

Abstract and explicit examples

v
[@E’B policy (a; | h)]

state s;

reward r = 0[,,] T

Figure 3: We organize agents interactions with OPENAPPS using the standard terminologylof re-
inforcement learning. The environment state s; is defined by design and content variables, and
initialized from a YAML specification. At each step ¢, the agent receives observations o, (screen-
shot and accessibility tree) and issues an action a; ~ 7(a¢|{a;—1, 0;}}) through BrowserGym API
calls. Task success is evaluated using the underlying app state s;.

later in this work omit these translation details. Whenever standard system prompts or model config-
urations (e.g., temperature) have been proposed in the original works, we adopt them to ensure fair
and optimal evaluation of all agents (we provide additional temperature ablations in Figure 9. It is
worth emphasizing that not all agents are equally compatible with all observation modalities, often
due to their (partially unknown) training regimes. Accordingly, we report results under optimized
configurations for each agent. For example, UI-TARS can only operate as a visual agent and is not
compatible with text-based APIs that rely on text representation inputs.

3.3 TASK DESIGN AND SUCCESS

We provide a set of simple fifteen tasks such as adding an item to the calendar or saving a location
to your favorites in maps. We ensure each task has multiple goal prompts and that each app has at
least two tasks (full set of tasks is in Section [3.3|and sample goals in Table).

To evaluate task success, existing benchmarks typically adopt one of two alternatives: (a) human-
trajectory rewards, where an agent is rewarded for imitating demonstrations. This approach is overly
restrictive, since many valid action sequences may lead to the same goal (“many roads lead to
Rome”); (b) change-based checks, where only the presence of a specific modification is verified.
This can be exploited by agents taking unintended or malicious actions (e.g., purchasing a flight but
also submitting credit card information to a third party) as shown in Zhu et al. (62).

We avoid both pitfalls by granting the reward function access to the complete app state at each time
step t. For example, the state may include the full set of calendar events or all messages together
with their metadata (see Appendix [I] for examples). In our implementation, environment states are
serialized into lightweight yaml files, which can be represented as structured vectors. Rewards are
defined as a deterministic indicator function of whether the target state has been reached,

r=29 [se=

Starget] ?

so that a task is considered complete only if all state conditions are satisfied. This design provides
an objective and reproducible measure of an agent’s ability to perform precise state changes (a list of
tasks is available in Table[I)and Table[d). Because app logic and reward definitions are implemented
in Python, researchers can easily extend or redefine reward functions to measure alternative notions
of task success.

Under review as a conference paper at ICLR 2026

90 min
80 85 o median
82 81
max
73
ﬁ 60 63
8 59
5 49
45
< 40
o
28
20
19
4 11 4
o 7 N 0 0 0 0
Ger, o, @, K, Ong by, Gy,
Yo % S, by 2 - o)
Sop,, 2.8 S ‘6., Vs
~, ~. (o)
e, ’730 8 /70/7/
Yer Y)

Figure 4: Agents are sensitive to app variations. We show that the average success rate over all
tasks differs across app variations. Each bar represents the average success rate over all tasks within
a single app version (with three random seeds per task). Note we filter tasks where an agent has a
success rate of 0 across all app variations. We see success rates can differ considerably across app
versions.

4 MULTIMODAL AGENT RELIABILITY WITH OPENAPPS

We introduce how OPENAPPS can be used to study agent reliability along the dimension of app
variations. We first show agents are sensitive to app variations in Section4.1] We find fixed app en-
vironments do not capture the considerable fluctuations in agent success rates across app variations.
Next in Sections and[4.3] we study how agent behaviors such as looping or hallucinating actions
as well as deployment configuration can also differ across app variations, which in all confirms app
variations is an important axis of agent reliability.

EXPERIMENTAL SETUP

For each task, we apply each of the eight content and appearance variations (shown in Section [3.1]
and Figure [/) to all apps simultaneously. For example, all apps would be set to their dark theme.
Rather than create a challenging benchmark, we focus on fifteen simple tasks, such as add buy
milk to my todo list, thatrequire only a few steps to isolate changes in reliability (shown
in Table d). We then launch more than 10,000 independent evaluations with seven agents spanning
both closed and open multimodal foundation models including Claude, OpenAl, Qwen-VL, and
specialized Ul-models (UI-Tars).

Reliability of task success. Beyond average success rates, reliability captures fluctuations in suc-
cess rates when an agent is deployed. To measure reliability, we measure fluctuation in agent success
rates using the standard deviation of rewards across runs for a given task. Given a set of rewards R,,;
from an agent deployed in a fixed app version (vi), we call std(R,1) the deviation within a fixed
app version. When deployed, however, an agent is likely to encounter many versions of an app. For
example, for a calendar there are several dozen (if not more) calendar apps, each with ever evolving
updates and configurations, yielding many app variations. To measure reliability more generally to
include the many app variations an agent is likely to encounter, we compute std({Ry1, Ry2,--.}),
which we call the overall deviation across app variations. Finally, we compare the ratio of Fixed
App Reliability | Overall Reliability to assess how performance fluctuation can stems from variations
in apps, which we show can be quite large in the coming sections.

Under review as a conference paper at ICLR 2026

Claude Sonnet 4 - 31.9 deviation
. Within Fixed Apps

Claude Sonnet 4 (Fixed Apps) - 23.8 Across App Versions
GPT-40 - 17.7
GPT-40 (Fixed Apps) -| 12.4
Kimi-VL-A3B-Instruct - 40.5
Kimi-VL-A3B-Instruct (Fixed Apps) - 16.5
LLaVA-v1.6-7B - 18.5
LLaVA-v1.6-7B (Fixed Apps) | 10.7
Qwen2.5-VL - 32.0
Qwen2.5-VL (Fixed Apps) - 16.8
UI-TARS-1.5-7B - 375
UI-TARS-1.5-7B (Fixed Apps) - 175

T T T T T T T T T
-40 -30 -20 -10 0 10 20 30 40
STD Task Success

Figure 5: Reliability within fixed app versions underestimates fluctuations in performance. In
the middle of each bar we show the standard deviation of task success. We compare two settings:
within a fixed app version compared to overall deviation that also accounts for difference in agent
success rates across app variations.

4.1 AGENTS ARE SENSITIVE TO APP VARIATIONS

Agents are sensitive to app variations. In Figure 4] we show each agent’s performance in terms
of the average task success rate across app variations. Each bar measures average task success
rate across different app versions. We find agents are sensitive to app variations with some agents
exhibiting more sensitivity than others. For example, Kimi-VL performance can vary between 4%
and 63% task success depending on the app variant (a more than 10X difference), suggesting agent
success can dramatically differ across app variations. Even for closed models that have high overall
performance such as Claude Sonnet and GPT-40 (when inputs also contain simplified text AX tree
representation), success rates on individual tasks can fluctuate drastically as shown in Table[3] For
example, the send message task success fluctuates from 42% to 0% for GPT-40 and 75% to 20%
for Claude 4 Sonnet depending the app variation the agent encounters. We report the breakdown by
task of agent performance and reliability in the default app version in Tables [2]and 5]

Task success within a fixed app version overestimates reliability. In Figure[5] we compare devia-
tions in task success within a fixed version of apps (as is the case with existing environment clones)
versus the overall deviation across app variations an agent is likely to encounter. We find fixed apps
overestimate reliability across the app variations that agents are likely to encounter, as task success
consistently fluctuates more than within a fixed app version. In many cases, for example Qwen2.5-
VL, Kimi-VL, and UI-Tars, standard deviations in task success across app variations are more than
twice those observed within fixed apps. These finding suggest studying reliability within a fixed app
clone underestimates fluctuations in agents’ task success. We also measure absolute deviation in
task success in Figure [I0] which provides similar conclusions.

App appearance can affect agent success (UI-TARS case-study). When OPENAPPS has a dark
theme, the performance of UI-TARS degrades (see Figure [6). This could be due to lower contrast
in the dark theme setting. Given that dark themes are common on real-world websites, this finding
highlights the importance of measuring agent reliability with respect to appearance variations. Here,
we choose UI-TARS as a case study because it is a Ul-visual only agent and is thus likely most
susceptible to appearance variations. We provide the full breakdown of task success rates for all
agents and appearance variations in Table[5]in the appendix. While the trend for UI-TARS does not
hold for the other agents, we still observe that appearance variations can change model performance.
Upon qualitative inspection, we find that Qwen2.5-VL can struggle to remove a saved place in the
map when a dark theme is deployed. In a similar vein, OPENAPPS enables agent developers to stress
test their agents across different appearance variations and dig deeper into failure modes.

Under review as a conference paper at ICLR 2026

UI-TARS-1.5-7B Kimi-VL-A3B-Instruct

default

challenging font

long descriptions —

black and white

descriptions

Appearance
Content

default

german —————

dark th
ark theme adversarial descriptions fe————

0.0 0.1 02 03 0.4 05 0.6 000 005 010 015 020 025 030 035
Avg. task success. Avg. task success

Figure 6: Agent reliability can be low in terms of performance across app variations. Model
performance (as measured by the task success rate across random seeds, averaged over all tasks) can
differ greatly across appearance and content variations (shown in Figure[7). For example, we notice
a sizable drop in the performance of UI-TARS-1.5-7B (a vision-only model) compared to the default
when the app has a dark theme, and likewise a drop in the performance of Kimi-VL-A3B-Instruct
when the app is in German or contains adversarial page descriptions. The black bars capture the
standard deviation of rewards across seeds, averaged over tasks. The task prompt is explicit and
fixed. Kimi uses visual and AX tree inputs while UI-TARS is Ul-visual only.

App content can also affect agent success (Kimi-VL case-study). The performance of Kimi-
VL-A3B-Instruct degrades most when OPENAPPS is in German or contains adversarial descriptions
(see Figure [@). This highlights the importance of testing agents on languages besides English and
malicious content, among other content variations. The performance of Kimi-VL does not degrade
as much for long descriptions, which could be due to its focus on long-context understanding. We
provide the full breakdown of task success rates for all models and content variations in Table [§]
in the appendix. Like for appearance variations, the trend for Kimi-VL does not hold for the other
models, as content variations affect task success for other agents differently.

4.2 AGENT BEHAVIOR CHANGES ACROSS APP VARIATIONS

Given agent task success can fluctuate across app variations, we now highlight how agent behaviors
such as looping or hallucinating actions are also affected by app variations.

Agents are more likely to loop actions when encountering certain app variations. Action loops
(i.e., repeating sequences of actions) tend to be a problematic behavior as they are associated with
an agent failing to complete a task. Specifically, we find an agent’s average loop count is 10X larger
when an agent is unsuccessful (0.20 when successful versus 1.5 when unsuccessful). We observe
action looping behavior can differ considerably across app variations (see Table[8]in the appendix).
We find for example, UI-TARS, which has the highest variance in average loop counts across app
variations, can exhibit nearly 2x the number of loops when the apps have a dark theme compared to
other settings, suggesting app variations can dramatically affect how often an agent is stuck looping
actions. We provide more examples of action loops for other agents in Appendix [F]

Agents are more likely to hallucinate actions in certain app variations. We also find agents are
prone to hallucinating invalid actions in some app variations (see Table [§). For example, we find
many agents hallucinate invalid actions when the content of apps contains misleading or adversarial
descriptions. For example, GPT-40 hallucinates function calls and Ul-elements that are simply not
present (see Appendix[F) at a higher rate with adversarial descriptions present (e.g., ‘a banner stating
the task is complete’). We find similar failures in other models where agents provide invalid actions
that are incorrectly-formed versions of valid actions (e.g., mouse_click (x=612 y), no—op),
well-formed actions that do not exist in the environment (e.g., remove_item, finished),
and valid actions with bad arguments (e.g., click (bid), scroll (direction='down’,
point=' (966,546)")).

Under review as a conference paper at ICLR 2026

Lengthy, misleading, and adversarial content can be associated with higher rates of agent
misunderstanding. We also capture how often an agent misunderstands the user’s intent by mea-
suring how often the agent navigates to an app irrelevant to the task at hand. We find as shown in
Table [I0] are more likely to misunderstand when they encounter long and adversarial descriptions
in app content. For example, Qwen2.5-VL intent misunderstanding rates jump from 3% in the de-
fault setting to 40-45% when content is long or contains adversarial descriptions. We report intent
misunderstanding rates for all agents across appearance and content variations in Table [I0]

Overall, we find agent behavior can be highly dependent on the app variation an agent encounters.
To effectively study agent behavior, researchers should capture this overlooked dimension of app
variations agents are likely to encounter.

4.3 APP VARIATIONS AND AGENT DESIGN

Thus far, we have fixed the agent setup and user specification, and then evaluated how different
agents perform across app variations. Here, we study how changes in agent deployment configura-
tions interact with app variations to affect reliability. As a case study, we highlight how the choice
of common screen resolutions (FHD 1920x1080, HD 1280x720, HVGA 480 x 320) used when de-
ploying an agent interacts with app variations using UI-Tars as a case-study. We then measure the
task success rates of UI-TARS across app variations as the screen resolution varies. In Table [/} we
find that while higher resolution leads to higher task success for many app versions, the trend does
not always hold: in the dark theme setup, a high resolution yields a significant drop in task success.
This suggests even the simple choice of the optimal screen resolution used when deploying an agent
can be drastically different depending on the app variation.

5 CONCLUSION

Foundation models (FMs) endowed with agentic capabilities may enable automated execution of
increasingly complex tasks—provided they behave reliably. We introduce OPENAPPS, the first
testbed designed to systematically evaluate the reliability of Ul-agents under varying environment
configurations, rather than merely evaluating policy reliability (within a fixed environment). Our
main contribution is a flexible simulator that offers full observability and supports a large number
of parallelized, controlled experiments. Our evaluation highlights that superficial variations in app
appearance or content can lead to substantial performance differences—differences that are model-
specific. For instance, agentic systems encountering German-language variants of the interface ex-
hibit both significantly improved and degraded performance, depending on the model. We further
demonstrate that such variations provoke distinct failure modes, including action loops and halluci-
nated behavior. These diagnostics may offer actionable insights for agent development. Importantly,
our findings also inform deployment: we find that although agents deployed with higher resolution
inputs tend to have higher task success rates, for some app variations the opposite is in fact true.
Together these findings highlight that app variations are a key axis of reliability in terms of agent
performance, behaviors, and deployment.

Limitations and future work OPENAPPS offers calendar, messenger, maps, etc., apps which
encompass many common digital tasks. In this work however, we focus on simple tasks such as
adding an item to a todo list that require only a few steps to complete and do not
necessarily represent the complexity or distribution of real world tasks. Even with such simple
tasks, we see considerable fluctuation in agent success rates. Future work can extend the set of
tasks to include more complex or longer-horizon tasks to form a benchmark for Ul-agent reliabil-
ity. Furthermore, here we focus on varying each app appearance or content factor independently.
Of course interactions between multiple app variation factors can also expose interesting behaviors
that we leave to future work. Finally, here we focus on autonomous agents, though agents can cer-
tainly also incorporate human validation or interaction when completing a task. Beyond evaluating
reliability, OPENAPPS can also serve as a wealth of training data. Thanks to the thousands of app
variations OPENAPPS can generate, OPENAPPS can be used to scale digital agent training pipelines,
provide a safe sandbox for deploying agents without real-world risk, and allow researchers to study
generalization across app variations. We elaborate on these exciting possibilities in Appendix

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

To ensure transparency and reproducibility, we open-source all components of our work, including
the environment, experimental setups, and evaluation code. This enables other researchers to fully
replicate our results and build upon our framework without restrictions.

REFERENCES

[1] Tamer Abuelsaad, Deepak AKkkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and
Ravi Kokku. Agent-E: From Autonomous Web Navigation to Foundational Design Prin-
ciples in Agentic Systems, July 2024. URL http://arxiv.org/abs/2407.13032.
arXiv:2407.13032 [cs] version: 1.

[2] Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang.
Agent s: An open agentic framework that uses computers like a human. arXiv preprint
arXiv:2410.08164, 2024.

[3] Pierre Andrews, Amine Benhalloum, Gerard Moreno-Torres Bertran, Matteo Bettini, Amar
Budhiraja, Ricardo Silveira Cabral, Virginie Do, Romain Froger, Emilien Garreau, Jean-
Baptiste Gaya, Hugo Laurengon, Maxime Lecanu, Kunal Malkan, Dheeraj Mekala, Pierre
Ménard, Grégoire Mialon, Ulyana Piterbarg, Mikhail Plekhanov, Mathieu Rita, Andrey
Rusakov, Thomas Scialom, Vladislav Vorotilov, Mengjue Wang, and Ian Yu. Are: Scaling
up agent environments and evaluations. arXiv preprint arXiv: 2509.17158, 2025.

[4] Szilard Aradi. Survey of deep reinforcement learning for motion planning of autonomous
vehicles. arXiv preprint arXiv:2001.11231, 2020.

[5] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

[6] Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault de Chezelles, Quentin
Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. Workarena++: To-
wards compositional planning and reasoning-based common knowledge work tasks. Advances
in Neural Information Processing Systems, 37:5996-6051, 2024.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A.
Plummer. A dataset for interactive vision-language navigation with unknown command feasi-
bility. European Conference on Computer Vision, 2022. doi: 10.1007/978-3-031-20074-8_18.

[9] Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Automan-
ual: Constructing instruction manuals by 1lm agents via interactive environmental learning.
Advances in Neural Information Processing Systems, 37:589-631, 2024.

[10] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

[11] DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan

10

http://arxiv.org/abs/2407.13032

Under review as a conference paper at ICLR 2026

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang
Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao
Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yonggiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,
and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948,

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun,
and Yu Su. Mind2Web: Towards a Generalist Agent for the Web, December 2023. URL
http://arxiv.org/abs/2306.06070. arXiv:2306.06070.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme,
Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapa-
dos, and Alexandre Lacoste. WorkArena: How Capable Are Web Agents at Solving Common
Knowledge Work Tasks?, July 2024. URL http://arxiv.org/abs/2403.07718.
arXiv:2403.07718.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge. Advances in Neural Information Processing
Systems, 35:18343-18362, 2022.

Shiqing Fan, Xichen Ding, Liang Zhang, and Linjian Mo. Mcptoolbench++: A large scale ai
agent model context protocol mcp tool use benchmark, 2025. URL https://arxiv.org/
abs/2508.07575.

Yao Fu, Dong-Ki Kim, Jackyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon
Bae, and Honglak Lee. Autoguide: Automated generation and selection of context-aware
guidelines for large language model agents. Advances in Neural Information Processing Sys-
tems, 37:119919-119948, 2024.

Divyansh Garg, Shaun VanWeelden, Diego Caples, Andis Draguns, Nikil Ravi, Pranav
Putta, Naman Garg, Tomas Abraham, Michael Lara, Federico Lopez, et al. Real: Bench-
marking autonomous agents on deterministic simulations of real websites. arXiv preprint
arXiv:2504.11543, 2025.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal
models. Annual Meeting of the Association for Computational Linguistics, 2024. doi: 10.
48550/arXiv.2401.13919.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. A. Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909-4926, 2022. doi: 10.
1109/TITS.2021.3054625.

11

https://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2306.06070
http://arxiv.org/abs/2403.07718
https://arxiv.org/abs/2508.07575
https://arxiv.org/abs/2508.07575

Under review as a conference paper at ICLR 2026

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWebArena:
Evaluating Multimodal Agents on Realistic Visual Web Tasks, June 2024. URL http://
arxiv.org/abs/2401.13649. arXiv:2401.13649.

Thibault Le Sellier de Chezelles, Maxime Gasse, Alexandre Lacoste, Massimo Caccia,
Alexandre Drouin, Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi
Shayegan, Lawrence Keunho Jang, Xing Han Lu, Ori Yoran, Dehan Kong, Frank F. Xu, Siva
Reddy, Graham Neubig, Quentin Cappart, Ruslan Salakhutdinov, and Nicolas Chapados. The
browsergym ecosystem for web agent research. Transactions on Machine Learning Research
(TMLR),2025. URL https://openreview.net/forum?id=5298fKGmv 3| Preprint,
to appear.

Jiajian Li et al. Open-world reinforcement learning over long short-term imagination. arXiv
preprint arXiv:2410.03618, 2024.

Yang Li, Jiacong He, Xiaoxia Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural
language instructions to mobile ui action sequences. Annual Meeting of the Association for
Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.729.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Xinbei Ma, Yiting Wang, Yao Yao, Tongxin Yuan, Aston Zhang, Zhuosheng Zhang, and
Hai Zhao. Caution for the Environment: Multimodal Agents are Susceptible to Envi-
ronmental Distractions, August 2024. URL http://arxiv.org/abs/2408.02544,
arXiv:2408.02544.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants. In The Twelfth International Conference on Learn-
ing Representations, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529-533, 2015.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters.
Robust reinforcement learning: A review of foundations and recent advances. Machine Learn-
ing and Knowledge Extraction, 4(1):276-315, 2022.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue
Yang, Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online
curriculum reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu
Lin, Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li,
Yaowei Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li,
Haihua Yang, Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. UI-TARS: Pioneering
Automated GUI Interaction with Native Agents, January 2025. URL http://arxiv.org/
abs/2501.12326. arXiv:2501.12326 [cs].

Ella Rabinovich and Ateret Anaby-Tavor. On the robustness of agentic function calling. arXiv
preprint arXiv: 2504.00914, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Er-
mon, and Chelsea Finn. Direct preference optimization: Your language model
is secretly a reward model. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing

12

http://arxiv.org/abs/2401.13649
http://arxiv.org/abs/2401.13649
https://openreview.net/forum?id=5298fKGmv3
http://arxiv.org/abs/2408.02544
http://arxiv.org/abs/2501.12326
http://arxiv.org/abs/2501.12326

Under review as a conference paper at ICLR 2026

Systems, volume 36, pp. 53728-53741. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
a85b405ed65c6477a4fe8302bbel6bce’/-Paper-Conference.pdf.

[34] Shyam Sundhar Ramesh, Yifan Hu, lason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa,
Haitham Bou Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-
free rlhf. arXiv preprint arXiv:2405.20304, 2024.

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[36] Junhong Shen, Atishay Jain, Zedian Xiao, Ishan Amlekar, Mouad Hadji, Aaron Podolny, and
Ameet Talwalkar. Scribeagent: Towards specialized web agents using production-scale work-
flow data. arXiv preprint arXiv:2411.15004, 2024.

[37] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In International Conference on Machine
Learning, pp. 3135-3144. PMLR, 2017.

[38] Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies
for web actions. arXiv preprint arXiv:2310.03720, 2023.

[39] Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan O Arik. Learn-
by-interact: A data-centric framework for self-adaptive agents in realistic environments. arXiv
preprint arXiv:2501.10893, 2025.

[40] Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: To-
wards multi-modal conversational agents on mobile gui. Conference on Empirical Methods in
Natural Language Processing, 2022. doi: 10.48550/arXiv.2205.11029.

[41] Victor Talpaert, Ibrahim Sobh, B. Ravi Kiran, Patrick Mannion, Senthil Yogamani, Ahmad
A. A. Sallab, and Patrick Pérez. Exploring applications of deep reinforcement learning for
real-world autonomous driving systems. arXiv preprint arXiv:1901.01536, 2019.

[42] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23—
30. IEEE, 2017.

[43] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
5026-5033. IEEE, 2012.

[44] Dheeraj Vattikonda, Santhoshi Ravichandran, Emiliano Penaloza, Hadi Nekoei, Megh
Thakkar, Thibault Le Sellier de Chezelles, Nicolas Gontier, Miguel Muiioz-Marmol, Sa-
har Omidi Shayegan, Stefania Raimondo, et al. How to train your llm web agent: A statistical
diagnosis. arXiv preprint arXiv:2507.04103, 2025.

[45] Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
arXiv preprint arXiv:2409.07429, 2024.

[46] Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang
Xu, Chao Zhang, Bing Yin, et al. Webagent-r1: Training web agents via end-to-end multi-turn
reinforcement learning. arXiv preprint arXiv:2505.16421, 2025.

[47] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmark-
ing multimodal agents for open-ended tasks in real computer environments. arXiv preprint
arXiv:2404.07972, 2024.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking
Multimodal Agents for Open-Ended Tasks in Real Computer Environments, May 2024. URL
http://arxiv.org/abs/2404.07972. arXiv:2404.07972 [cs].

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z
Wang, Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm
agents on consequential real world tasks. arXiv preprint arXiv:2412.14161, 2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-Mark
Prompting Unleashes Extraordinary Visual Grounding in GPT-4V, November 2023. URL
http://arxiv.org/abs/2310.11441. arXiv:2310.11441 [cs].

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering. Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
Huzefa Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents. arXiv
preprint arXiv:2410.13825, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. WebShop: Towards Scalable
Real-World Web Interaction with Grounded Language Agents, February 2023. URL http:
//arxiv.org/abs/2207.01206. arXiv:2207.01206 [cs].

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark
for tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/
abs/2406.12045.

Suyu Ye, Haojun Shi, Darren Shih, Hyokun Yun, Tanya Roosta, and Tianmin Shu. Realwe-
bassist: A benchmark for long-horizon web assistance with real-world users. arXiv preprint
arXiv: 2504.10445, 2025.

Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and Jonathan
Berant. AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks?, July
2024. URL http://arxiv.org/abs/2407.15711, arXiv:2407.15711.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in health-
care: A survey. ACM Computing Surveys, 55(1):1-36, 2021. doi: 10.1145/3477600.

Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, and Jeff Clune. Darwin godel machine:
Open-ended evolution of self-improving agents. arXiv preprint arXiv:2505.22954, 2025.

Yanzhe Zhang, Tao Yu, and Diyi Yang. Attacking Vision-Language Computer Agents via Pop-
ups, November 2024. URL http://arxiv.org/abs/2411.02391) arXiv:2411.02391.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi
Cheng, Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web envi-
ronment for building autonomous agents. arXiv preprint arXiv:2307.13854, 2023. URL
https://webarena.devl

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A re-
alistic web environment for building autonomous agents. arXiv preprint arXiv:2307.13854,
2024.

Yuxuan Zhu, Tengjun Jin, Yada Pruksachatkun, Andy Zhang, Shu Liu, Sasha Cui, Sayash
Kapoor, Shayne Longpre, Kevin Meng, Rebecca Weiss, Fazl Barez, Rahul Gupta, Jwala
Dhamala, Jacob Merizian, Mario Giulianelli, Harry Coppock, Cozmin Ududec, Jasjeet Sekhon,
Jacob Steinhardt, Antony Kellermann, Sarah Schwettmann, Matei Zaharia, Ion Stoica, Percy
Liang, and Daniel Kang. Establishing best practices for building rigorous agentic benchmarks,
2025. URL https://arxiv.org/abs/2507.02825.

14

http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2310.11441
http://arxiv.org/abs/2207.01206
http://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
http://arxiv.org/abs/2407.15711
http://arxiv.org/abs/2411.02391
https://webarena.dev
https://arxiv.org/abs/2507.02825

Under review as a conference paper at ICLR 2026

[63] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

15

Under review as a conference paper at ICLR 2026

A STATEMENT ABOUT USAGE OF LLMS

We used LLMs in two ways: (1) to edit grammar, style, and suggest alternative phrasings during
manuscript preparation, and (2) to assist in coding and generating application data for experiments.
All conceptual contributions, study design, and analysis were carried out by the authors.

B FUTURE DIRECTIONS

Beyond the design of benchmarks to evaluate reliability, OPENAPPS also lays the foundation for
future advances in post-training agentic of foundation model:

Simulators for Agentic Post-Training. Reinforcement learning (RL) fine-tuning has become the
de facto approach for adapting FMs—whether for alignment via RLHF (10, 163)) or DPO (35} 133)), or
for improving reasoning performance via methods like GRPO (34} [11). These approaches require
extensive interaction data—be it human preference annotations or curated reasoning datasets. In
these settings, effective learning typically requires large volumes of interaction data - human prefer-
ence annotations for alignment, or curated reasoning problems for mathematical and logical tasks.
Agentic learning poses an even greater data challenge: unlike single-turn settings, agents must of-
ten take multiple sequential actions, expanding the state—action space exponentially with planning
horizon, and thus becoming substantially more sample-inefficient. OPENAPPS offers a fast and
compute-effective solution for generating large-scale agentic interaction trajectories in a controlled
setting.

Safe Training Without Real-World Risk. Even with abundant data, training agents directly on
production systems poses unacceptable risks—ranging from leaking private user data and corrupting
critical files to executing harmful operations or triggering unintended purchases. In similarly high-
stakes domains such as healthcare (57) and autonomous driving (20, 41}, |4), the RL community
has long relied on simulators to train and test agents safely. OPENAPPS provides an analogous
capability: it supports the generation of risky, logically inconsistent, or noisy trajectories that would
be infeasible or dangerous to collect in real-world systems. This opens the door to adversarial
training, robust optimization, and curriculum learning over safety-critical scenarios.

Self-Improving Agents via Simulation. Inspired by systems like AlphaZero, future work could
use OPENAPPS not only for evaluation but also for generating new tasks and configurations to
support self-improvement. For example, agents could generate increasingly difficult task variants or
use judge-based verification to refine internal policies.

Sim2Real Transfer and Generalization. The vision layed out in this section assumes that skills
learned in the simulator transfer meaningfully to the real world—a challenge widely studied in sim-
to-real transfer literature (42)). Future research should explore the generalization of agent behavior
across task distributions and under robustness requirement (29).

C ADDITIONAL RELATED WORK

C.1 AGENT FAILURE EVALUATION

Recent studies show digital agents are vulnerable to adversarial conditions. Zhang et al. (59)) report
that adversarial pop-ups reduce success rates dramatically (e.g., VisualWebArena from 92.7% to
73.1%). Ma et al. (26) show that distractions such as coupon banners derail agent trajectories. Ope-
nApps, with fine-grained controllability and noise injection, provides a testbed for systematically
stress-testing such failure modes.

C.2 BUILDING AND TRAINING AGENTS
The pipeline for building an autonomous agent mainly involves selecting an appropriate, fixed foun-

dation model (LLM or VLM), defining input/output spaces, and optionally configuring memory
modules. AgentOccam (52) reveals that simplifying both input structures and output action sets can

16

Under review as a conference paper at ICLR 2026

unlock remarkable performance gains. SWE-agent (51) highlights the advantages of a specialized
Agent-Computer Interface for foundation models. Sodhi et al. (38), Chen et al. (9), Fu et al. (16)
demonstrates that human-written/data-driven rules foster greater generalization. Agent Workflow
Memory (45) introduces the concept of storing annotated trajectories as reusable workflows, en-
abling agents to recall and apply them in analogous scenarios. Agent S (2) envisions a dual-memory
system, episodic and narrative, evolving in tandem to enrich the agent’s adaptability. Meanwhile,
Automated Design of Agentic Systems (19) and Darwin Godel Machine (58] advocate the auto-
matic design and dynamic updating of system wrappers through code, thereby minimizing the need
for manual design or intervention.

While much progress has been made in boosting agent performance with fixed foundation models,
a new wave of research is now focused on training these models directly within their deployment
environments. ScribeAgent (36) demonstrates that fine-tuning with large-scale, real-world workflow
data can yield significant gains. Learn-by-interact (39) generates hindsight semantic labels for agent
trajectories, which are then leveraged for further fine-tuning. WebRL (30) introduces a self-evolving
curriculum to address the challenge of task scarcity, enabling agents to adapt and learn more effec-
tively. WebAgent-R1 (46) investigates end-to-end, multi-turn RL for agents. Vattikonda et al. (44)
provides empirical insights into balancing computational resources between supervised fine-tuning
and on-policy reinforcement learning for optimal agent training.

Beyond benchmarks, methods to boost agent performance include labeling visual web elements (50)
and hierarchical architectures with HTML simplification (1). New agent models such as AgentOc-
cam and GAIA have also been introduced, specializing in web-based tasks via fine-tuning. More
recently, GAIA2 expose app functionality via text using the MCP protocol (3). Our OpenApps
complements these works by providing a platform to systematically evaluate such methods under
controlled conditions and can potentilaly be intergated with orchestration frameworks such as ARE
(3 15).

C.3 SIMULATED ENVIRONMENTS IN RL

Simulators have long played a central role in reinforcement learning (RL). Because RL agents typi-
cally require vast amounts of interaction data, direct deployment in the real world is often infeasible
due to cost, safety, or logistical constraints. Simulated environments offer several advantages: they
can be run at accelerated speed, reset deterministically, and instrumented for complete state access,
thereby enabling reproducibility and controlled experimentation. Foundational work such as the Ar-
cade Learning Environment (ALE) (5) and OpenAl Gym (7)) provided standardized benchmarks and
interfaces that allowed the community to compare algorithms under shared conditions. The land-
mark DQN work (28)) further demonstrated the effectiveness of simulators by showing human-level
performance on Atari games through large-scale training in ALE.

In robotics and control, physics-based simulators such as MuJoCo (43), PyBullet, and Isaac Gym
have become indispensable. These platforms make it possible to train agents in environments that
approximate real-world dynamics without exposing hardware to risk or degradation. They also en-
able advanced techniques such as domain randomization (42), where simulated environments are
deliberately varied to improve transferability to the real world. By serving as safe and scalable prox-
ies for embodied interaction, these simulators have been central to progress in continuous control
and sim-to-real transfer.

More recently, RL research has expanded toward open-ended and high-dimensional environments,
where agents must master long-horizon exploration and compositional skills. Beyond Atari, ALE
has been extended with more challenging tasks, and platforms such as MineDojo (14) and LS-
Imagine (23] leverage Minecraft-style open worlds to study the challenges of exploration, planning,
and credit assignment across vast state spaces. These environments highlight the role of simula-
tors not just for safe and efficient data collection, but also as a means of stress-testing agents on
increasingly realistic and unstructured tasks.

Our work seeks to join the spirit of this line of work for the domain of digital agents.

17

Under review as a conference paper at ICLR 2026

D METHOD

D.1 EXAMPLE OF CONFIGURATION YAML FILE

Listing 1: Example YAML to configure OpenCalendar in OpenApps

style:

Event visual placeholder for UI agent, text aria label for AXTree

add_event_display:
placeholder:
title: 'Event Title'

date: 'YYYY-MM-DD' # Date format
description: 'Event description...'

url: 'https://example.com'

invitees: 'John, Jane, etc.'

location: 'None'
aria_label:
title: 'Event title'

date: 'Event date, YYYY-MM-DD'
description: 'Event description'

url: 'Event URL'
invitees: 'Event invitees'
location: 'Event location'

Color scheme

colors:
primary: '#1095cl’
primary_hover: '#0a6d8a'

secondary: '#6c¢757d’
background: '"#ffffff’
text: '"#212529'
error: '#dc3545"
border: '#ced4dda'

Typography

typography:
font_family: 'sans-serif'
heading_font: 'sans-serif'
base_font_size: 'lo6px'
heading_size: 'l.5rem’

Button styles

buttons:
border_radius: '0.375rem'
padding: 'O.5rem lrem'

Layout

layout:
container_width: '100%"
spacing: 'lrem'

events:

e

H o e o

+

+ =

Primary color for buttons, links, etc.
Hover state for primary elements

Secondary color for less important elements
Main background color

Main text color

Error messages color

Border color

Main font family
Font for headings
Base font size

Size for headings

Border radius for buttons
Button padding

Width of the main container
Standard spacing between elements

- title: WACV 2026 Abstract Deadline

date: 2025-07-11
description: |

WACV 2026 Abstract Deadline

Winter Conference on Applications of
Computer Vision abstract submission deadline.

18

Under review as a conference paper at ICLR 2026

Important Dates:
— Abstract Deadline: July 11, 2025
— Full Paper Deadline: July 18, 2025

Submit abstracts through the conference portal.
url: https://wacv2026.thecvf.com
location: Online
invitees: null

- title: WACV 2026 Paper Deadline
date: 2025-07-18
description: |
WACV 2026 Full Paper Deadline

Final deadline for Winter Conference
on Applications of Computer Vision
paper submissions.

Papers must be submitted in the

required format with all supplementary materials.
url: https://wacv2026.thecvf.com
location: Online
invitees: null

D.2 VISUAL EXAMPLES OF APP VARIATIONS

OperTudes O
B o
o=
P
= o=
ams am
o= -1 -]
o= o=
o= o=
om o=
‘o= om
sy o=
Default Dark theme © — — Black and white Challenging font German o= Misleading description

Figure 7: Examples of the OpenTodo page with different app variations.

D.3 TASKS

We pre-populated OPENAPPS with 15 high level task objects, each with several natural language
goal variants. We show a sample of the task goals in Table[T]

19

Under review as a conference paper at ICLR 2026

Table 1: Sample goals for the evaluated tasks

Ask Bob ’Are we playing basketball on Saturday?’

Save 'Bockelwitz, Germany’ to the ’Saved Locations’ panel in maps.

Make a calendar entry for Christmas shopping on the 14th (2025).

I need a calendar entry for the team lunch on July 22nd, 2025 at noon.

Create an empty python (.py) file under the developing folder in code editor.

Can you add "Play piano’ to my todo list?

Create an empty python (.py) file under the code editor directory.

Go to the Calendar app and add my meeting with Dennis on April 1st of 2026.

Return to the home page

Can you delete the AAAI paper submission deadline from my calendar? It should be early August 2025.
Please remove the "WACYV 2026 Abstract Deadline’ event from July 11th, 2025 from my calendar.
Can you mark ’Answer emails’ done in my todo list?

Mark ‘Update calendar’ as done in my todos.

Please remove the "WACYV 2026 Abstract Deadline’ from my calendar.

Can you remove ’Answer emails’ from my todo list.

I need to duplicate the CHI 2026 Paper Deadline event. Please create a copy next year.
Go to code editor, and remove the entire folder with name *empty_folder’.

Add the following item, Mens Casual Cargo in ’orange’, to my cart.

Create an empty c++ (.cpp) file under the code editor directory.

Go to code editor and remove the entire folder with name ’developing’.

Send Charlie my last message from Bob

Forward Charlie my most recent message from Bob.

Can you add "Buy milk’ to my todos?

Add the following item, OWYN - 100% Vegan Plant-Based Protein Shakes to my cart.
Add ’get grandma a gift’ to my todos.

Navigate to the todo app page

Go to code editor, and delete all existing files and folders.

Demande Bob ’est-ce qu’on va jouer du Basketball samedi?’

Can you mark *Buy groceries’ done in my todos?

Go to the todo app page

Add the following item, Magical Hair Treatment Mask in *120ml’, to my cart.

Find the conference deadline on July 18th, 2025 and duplicate it to October 15th, 2025.
Remove ‘water plants‘ from my todos.

Help me delete everything in my current cart.

Add Bockelwitz to my places.

Ajouter Bockelwitz sur mes lieux préférés.

Can you remove ‘Make fruit salad‘ from my todos.

I need to duplicate the CHI 2026 Paper Deadline event.

Go to the shop app, click on cart, and remove all items.

20

Under review as a conference paper at ICLR 2026

D.4 ACTIONS

Category Primitive Description
£ill(bid, text) Fill an input field with text.
click(bid, button) Click an element.
dblclick(bid, button) Double-click an element.
X hover (bid) Hover the mouse over an element.

bid . . .
press(bid, key_comb) Focus an element and press a combination of keys.
focus(bid) Focus an element.
clear(bid) Clear an input field.
select_option(bid, options) Select one or multiple options in a drop-down element.
drag_and_drop(from_bid, to_bid) Drag and drop one element to another.
upload_file(bid, file) Click a ’filechooser’ element, then select one or multiple

input files for upload.

mouse_move(x, y) Move the mouse to a location.
mouse_down(x, y, button) Move the mouse then press and hold a button.
mouse_up(x, y, button) Move the mouse then release a button.
mouse_click(x, y, button) Move the mouse and click a button.
mouse_dblclick(x, y, button) Move the mouse and double-click a button.

coord mouse_drag_and_drop(from_x, from_y, to_x, to_y) Drag and drop from a location to a location.
mouse_upload_file(x, y, file) Click a ’filechooser’ location, then select one or multiple

input files for upload.

keyboard_down (key) Press and holds a keyboard key.
keyboard_up (key) Release a keyboard key.
keyboard_press (key_comb) Press a combination of keys.
keyboard_type (text) Types a string of text through the keyboard.
keyboard_insert_text (text) Insert a string of text in the currently focused element.
new_tab() Open a new tab.

tab tab_close() Close the current tab.

tab_focus (index)

Bring a tab to front (activate tab).

go_back() Navigate to the previous page in history.
nav go_forward() Navigate to the next page in history.
goto(url) Navigate to a url.

misc

send_msg_to_user (message)
report_infeasible(reason)
scroll(dx, dy)

noop (seconds)

Send a message to the user in the chat.

Send a special message in the chat and terminate.
Scroll pixels in X and/or Y direction.

‘Wait and do nothing.

Figure 8: The action set provided through BrowserGym, copied from Appendix A (22)

Our agents rely on a subset of the action set provided through the BrowserGym API, see Figure [§]

for detail. Here we provide the full set of actions available to agents:

click ,

scroll ,

mouse_down ,
mouse_drag_and_drop ,
keyboard_up,

fill ,
drag_and_drop ,

dblclick ,
hover ,
mouse_click ,
mouse_up ,

clear ,
go_back,

mouse_click ,

keyboard_press ,

select_option ,
go_forward , goto ,
mouse_dblclick ,
mouse_dblclick ,
mouse_upload_file ,
keyboard_type,

mouse_move ,

keyboard_down ,
keyboard_insert_text.

For visual only agents such as UI-TARS provide the subset supported by Ul-agents:

go_back,

go_forward , goto, mouse_click

mouse_dblclick , scroll , mouse_move , mouse_down ,

mouse_up , mouse_click , mouse_dblclick ,

mouse_drag_and_drop , mouse_upload_file ,keyboard_down ,
keyboard_up , keyboard_press , keyboard_type ,
keyboard_insert_text.

D.5 MEAN ABSOLUTE DEVIATION

In addition to standard deviation, to measure reliability, we also measure fluctuation in agent success
rates using the mean absolute deviation (MAD) of rewards across runs for a given task. Given a set
of rewards R, from an agent deployed in a fixed app version (vk), we measure reliability for app
vk as:

21

Under review as a conference paper at ICLR 2026

Table 2: Tasks with the largest fluctuation in success rate across application variations. We show
maximum and minimum success rates across app variations.

Model Task Maximum pass@1 Minimum pass@1 Difference
GPT-40 ForwardMessageTask 0.43 0.00 0.43
Kimi-VL-A3B-Instruct ~ NavigateToPageTask 1.00 0.00 1.00
Qwen2.5-VL NavigateToPageTask 1.00 0.00 1.00
UI-TARS-1.5-7B RemoveSavedPlace 1.00 0.00 1.00
claude_4_sonnet ForwardMessageTask 1.00 0.00 1.00
llava-v1.6-mistral-7b-hf ~ NavigateToPageTask 0.50 0.00 0.50
. N 1 1
Fixed vk App Reliability = -~ Z Ty — — Z i, (1)
ri€ERyi T €ERyk

where n is the number of times an agent attempts the given task. Equation (I)) is a measure of
reliability that can be captured with common agent environments that rely on fixed clones of apps.

When deployed, however, an agent is likely to encounter many versions of an app. For example,
for a calendar there are several dozen (if not more) calendar apps, each with ever-evolving updates
and configurations, yielding many app variations. To measure reliability more generally in way that
includes the many app variations an agent is likely to encounter, we compute:

. 1 1
Overall Reliability = o Z i Z | 2
T,;G{va,...,R,,,d} TjG{vaa-~~7Rvd}

where d is the number of variations we simulate. Crucially, Equation (2) also captures fluctuations
in agent performance across app variations that an agent is likely to encounter when deployed. In
our evaluations, we compare the ratio of Fixed App Reliability / Overall Reliability to assess how
performance fluctuation can stems from variations in apps, which we show can be quite large in the
coming sections.

E ADDITIONAL EXPERIMENTAL RESULTS

We show in Table [2] the task with the largest change in success rate across app variations. We find
all agents success rates can fluctuate from 0 to 100% success depending on the app variations; with
the exception of GPT-40 that fluctuates from O to 43%. We also show task success across all app
variations in Table [3] where we see even closed source agents based GPT and Claude can have very
different success rates depending on the app variation encountered.

In Figure[9] we show many temperature values yield reasonable performance. We show performance
for Claude and Kimi-VL on three tasks across varying values for temperature. In Figure[I0] we show
agent reliability across app variations using mean absolute deviation (see Appendix[D.5). In Table[d]
we report the success rate and reliability of each agent by task. In Table[5] we show the performance
across appearance variations, and across content variations in Table[6] We show a resolution analysis
across app variations in Table

22

Under review as a conference paper at ICLR 2026

Table 3: Tasks with variable success rate across app variations. We show all app variations for each
task.

Agent Task App Variation Task Success
GPT-40 ForwardMessageTask adversarial_descriptions 0.00
GPT-40 ForwardMessageTask black_and_white 14.29
GPT-40 ForwardMessageTask challenging_font 42.86
GPT-40 ForwardMessageTask dark_theme 28.57
GPT-40 ForwardMessageTask default 7.14
GPT-40 ForwardMessageTask german 0.00
GPT-40 ForwardMessageTask long_descriptions 0.00
GPT-40 ForwardMessageTask misleading_descriptions 0.00
Kimi-VL-A3B-Instruct NavigateToPageTask adversarial_descriptions 12.50
Kimi-VL-A3B-Instruct NavigateToPageTask black_and_white 100.00
Kimi-VL-A3B-Instruct ~ NavigateToPageTask challenging_font 87.50
Kimi-VL-A3B-Instruct ~ NavigateToPageTask dark_theme 100.00
Kimi-VL-A3B-Instruct NavigateToPageTask default 92.86
Kimi-VL-A3B-Instruct ~ NavigateToPageTask german 0.00
Kimi-VL-A3B-Instruct ~ NavigateToPageTask long_descriptions 75.00
Kimi-VL-A3B-Instruct NavigateToPageTask misleading_descriptions 75.00
Qwen2.5-VL NavigateToPageTask adversarial_descriptions 12.50
Qwen2.5-VL NavigateToPageTask black_and_white 0.00
Qwen2.5-VL NavigateToPageTask challenging_font 0.00
Qwen2.5-VL NavigateToPageTask dark_theme 0.00
Qwen2.5-VL NavigateToPageTask default 5.88
Qwen2.5-VL NavigateToPageTask ~ german 0.00
Qwen2.5-VL NavigateToPageTask long_descriptions 90.00
Qwen2.5-VL NavigateToPageTask misleading_descriptions 100.00
UI-TARS-1.5-7B RemoveSavedPlace adversarial _descriptions 0.00
UI-TARS-1.5-7B RemoveSavedPlace black_and_white 100.00
UI-TARS-1.5-7B RemoveSavedPlace challenging_font 100.00
UI-TARS-1.5-7B RemoveSavedPlace dark_theme 0.00
UI-TARS-1.5-7B RemoveSavedPlace default 93.33
UI-TARS-1.5-7B RemoveSavedPlace german 100.00
UI-TARS-1.5-7B RemoveSavedPlace long_descriptions 0.00
UI-TARS-1.5-7B RemoveSavedPlace misleading_descriptions 20.00
Claude_4 _sonnet ForwardMessageTask adversarial_descriptions 50.00
Claude_4_sonnet ForwardMessageTask black_and_white 50.00
Claude_4_sonnet ForwardMessageTask challenging_font 33.33
Claude_4 _sonnet ForwardMessageTask dark_theme 20.00
Claude_4_sonnet ForwardMessageTask default 2222
Claude_4_sonnet ForwardMessageTask german 75.00
Claude_4_sonnet ForwardMessageTask long_descriptions 100.00
Claude_4_sonnet ForwardMessageTask misleading_descriptions 25.00
Llava-v1.6-mistral-7b-hf ~NavigateToPageTask adversarial_descriptions 0.00
Llava-v1.6-mistral-7b-hf NavigateToPageTask black_and_white 50.00
Llava-v1.6-mistral-7b-hf NavigateToPageTask challenging_font 12.50
Llava-v1.6-mistral-7b-hf = NavigateToPageTask dark_theme 10.00
Llava-v1.6-mistral-7b-hf NavigateToPageTask default 35.29
Llava-v1.6-mistral-7b-hf = NavigateToPageTask german 0.00
Llava-v1.6-mistral-7b-hf = NavigateToPageTask long_descriptions 0.00
Llava-v1.6-mistral-7b-hf =~ NavigateToPageTask = misleading_descriptions 0.00

23

Under review as a conference paper at ICLR 2026

Claude Sonnet Kimi-VL-3B-Instruct

agent temperature: 0.6 agent temperature: 0.6

agent temperature: 0 agent temperature: 0.4

agent.temperature: 0.2 agent.temperature: 0.8

agent.temperature: 0.4 agent.temperature: 0.2

|
l

agenttemperature: 0.8 agent temperature: 0

agent.temperature: 1 agent.temperature: 1

|
1

o

0.1 02 03 0.4 05 0.6 0.7 08 0.9 1.

o
°

0.1 02 03 0.4 05 0.6 0.7 08 0.9 1.

o

Figure 9: We compare agent performance for Claude (left) and Kimi-VL (right) as the temperature
varies.

Claude Sonnet 4 - 26.3 deviation
§ Within Fixed Apps

Claude Sonnet 4 (Fixed Apps) - 18.3 Across App Versions
GPT-40 12.1
GPT-40 (Fixed Apps) | 9.5
Kimi-VL-A3B-Instruct - 34.2
Kimi-VL-A3B-Instruct (Fixed Apps) - 12.7
LLaVA-v1.6-7B — 10.8
LLaVA-v1.6-7B (Fixed Apps) - 8.2
Qwen2.5-VL 24.6
Qwen2.5-VL (Fixed Apps) - 13.0
UI-TARS-1.5-7B 33.7
UI-TARS-1.5-7B (Fixed Apps) - 13.5

T T T T T T T T T
-40 -30 -20 -10 0 10 20 30 40

MAD Task Success

Figure 10: Performance within a fixed app version overestimates reliability. We compare the
mean absolute deviation of task success rates in two settings: 1) within a fixed app version (in blue),
compared to 2) overall deviation that also accounts for difference in agent success rates across app
variations.

24

Under review as a conference paper at ICLR 2026

pass@1 std MAD

Task Model
Kimi-VL-A3B-Instuct 0.00 000 0.00

llava-vl 6-mistral-To-hf 0,00 000 0.00

Add2CartASingleltemTask 8;”;'/‘\2,{55\1”;73 8:; 8;; 8:32
claude 4 sonnet 090 032 0.8

GPT-do 100 000 000

Kimi-VL-AIBTastoet 0,00 000 0.00

llava-vl 6-mistral-To-hf 0,00 000 0.00

R Quen25-VL 000 000 0.00
AddEventTask UL-TARS-1.5-78 006 025 0.12
claude 4 sonnet 064 050 046

GPT-do 100 000 0.00

UFTARS-T5-78 000000 0.00

Kimi-VL-A3B-Instruct 0,00 000 0.00

Qwen2.5-V 000 000 0.00

AddFiles2CodeEditorTask llava-v1.6-mistral-7o-hf 0,00 000 0.00

GPT-40 060 052 048
claude 4 sonnet 060 052 048

Tava-v1 G-mistal 7B 000 000 0.00

Qwen2.5-VL 000 000 0.00

Kimi-VL-A3B-Instruct — 0.56 0.51 0.49

Addltem2ToDolistTask ULTARS-15-7B 080 041 032
claude 4 sonnet 091 030 017

GPT-40 100 000 0.00

GPT o 000 000 0.00

Kimi-VL-A3B-Instruct 0.0 0.00 0.00

) ; Qwen2.5-VL 000 000 0.00
DuplicateEventTask ULTARS-1.5-7B 000 000 0.00
claude 4 sonnet 000 000 0.00

llava-vl 6-mistral-7ohf 0,00 000 0.00

Kimi-VL-A3B-Tnstruet 0.0 000 0.00

ULTARS-1.5-7B 000 000 0.00

. . Qwen2.5-VL 000 000 0.00
ForwardMessageTask liava-v1.6-mistral-To-hf 0,00 000 0.00
GPT-4o 008 029 0.5

claude 4 sonnet 025 046 038

Thava-v1 6-mistal-76-hf 000 0.0 0.00

Qwen2.5-VL 021 043 034

Kimi-VL-A3B-Instruct 043 051 0.49

MarkltemAsDoneTask ULTARS-1.5-7B 071 046 041
claude 4 sonnet 100 000 0.0

GPT-40 100 000 000

Thava-v1 6-mistal-7b-hf 0,00 000 0.00

Kimi-VL-A3B-Instruct 0,00 0.00 0.00

MessageXTask ULTARS-1.5-7B 013 035 023
ssageXTas Qwen2.5-VL 021 043 034
GPT-4o 086 036 024

claude 4 sonnet 100 000 000

Qwen2 5-VL 006 024 0.11

llava-vl 6-mistral-Tohf 035 049 0.46

Kimi-VL-A3B-Instruct 093 027 0.13

NavigateToPageTask UL-TARS-1.5-7B 100 000 000
GPT-40 100 000 000

claude 4 sonnet 100 000 000

Qwen2 5-VL 000 000 0.00

llava-vl 6-mistral-7ohf 0.0 000 0.00

RemoveEventTask Kimi-VL-A3B-Instuct 0,00 0.00 0.00
ULTARS-15-7B 020 041 032

claude 4 sonnet 090 032 018

GPT-40 093 027 013

Kimi-VL-ASB Tasiwet 000 000 0.00

ULTARS-15-7B 000 000 0.00

) . Qwen25VL 000 000 000
RemoveFromCodeBditorTask 11,0 v 6 mistral 7-hf — 0.00 000 0.00
GPT-40 043 051 049

claude 4 sonnet 050 053 0.50

Kimi-VL-ASB Tasiruet 000 000 0.00

llava-vl 6-mistral-Tohf 000 000 0.00

RemoveltemFromToDoListTask g&:ﬂ"z‘*ﬂ‘,:m oo 0 o
GPT-40 100 000 000

claude 4 sonnet 100 000 0.00

Tava-v1 6-mistal 7o BT 000 000 0.00

Qwen 000 000 000

RemoveltemsFromCar(Task KIMeVI-ASBdnstruet 078 049 038
ULTARS-1.5-7B 091 030 017

GPT-40 100 000 0.00

Tava-v1 G-mistal TR 000 000 0.00

Quwen2.5-VL 033 049 044

RemoveSavedPlace Kimi-VL-A3B-Instruct ~ 0.50 .53 0.50
claude 4 sonnet 090 032 018

ULTARS-1.5-7B 093 026 012

GPT-40 100 000 0.00

Kimi-VL-ASB Tastuct 0,00 000 0.00

llava-vl 6-mistral-Tohf 0.0 0.0 0.00

SavePlace Qwen2.5-VL 015 038 026
avePla ULTARS-1.5-78 072 046 040
claude 4 sonnet 073 047 040

GPT-40 086 036 024

Table 4: Breakdown of model performance by task. Model performance (as measured by pass@1
over random seeds) on all tasks. We report the mean absolute deviation (MAD) and standard devi-
ation (std) of rewards over random seeds. We use the default environment content and appearance,
and the task prompt is explicit and fixed. All models use visual and AX tree inputs, with the excep-
tion of UI-TARS, which is a Ul-visual only model.

25

Under review as a conference paper at ICLR 2026

avg. pass@1 avg. std avg. MAD

Model Appearance
dark theme 0.69 0.29 0.23
claude 4 sonnet default 0.75 0.27 0.21
challenging font 0.76 0.26 0.21
black and white 0.77 0.23 0.19
default 0.78 0.15 0.12
dark theme 0.81 0.13 0.11
GPT-4o black and white 082 008 0.06
challenging font 0.84 0.11 0.10
dark theme 0.12 0.10 0.08
.. default 0.21 0.15 0.13
Kimi-VL-A3B-Instruct j jcn0ing font 023 0.16 0.13
black and white 0.29 0.15 0.12
dark theme 0.01 0.02 0.01
. challenging font 0.01 0.02 0.01
llava-v1.6-mistral-7b-hf default 0.02 003 003
black and white 0.04 0.06 0.05
challenging font 0.03 0.06 0.05
black and white 0.05 0.11 0.08
Qwen2.5-VL dark theme 005 009 0.08
default 0.08 0.17 0.12
dark theme 0.05 0.10 0.07
default 0.41 0.24 0.18
UL-TARS-1.5-7B black and white 042 0.8 0.14
challenging font 0.43 0.15 0.12

Table 5: Agent reliability can be low in terms of performance across appearance variations.
Model performance (as measured by the pass@1 across random seeds averaged over all tasks) can
differ greatly across content variations. We report the standard deviation and mean absolute devia-
tion of rewards across seeds, averaged over tasks. The task prompt is explicit and fixed.

26

Under review as a conference paper at ICLR 2026

avg. pass@1 avg. std avg. MAD

Model Content
default 0.75 0.27 0.21
adversarial descriptions 0.75 0.22 0.17
claude 4 sonnet misleading descriptions 0.75 0.26 0.20
long descriptions 0.78 0.23 0.18
german 0.82 0.21 0.16
default 0.78 0.15 0.12
misleading descriptions 0.79 0.11 0.08
GPT-40 german 0.79 0.09 0.07
adversarial descriptions 0.81 0.09 0.07
long descriptions 0.82 0.07 0.05
adversarial descriptions 0.02 0.05 0.03
german 0.02 0.06 0.04
Kimi-VL-A3B-Instruct misleading descriptions 0.07 0.06 0.05
long descriptions 0.12 0.03 0.03
default 0.21 0.15 0.13
misleading descriptions 0.00 0.00 0.00
german 0.00 0.00 0.00
llava-v1.6-mistral-7b-hf long descriptions 0.00 0.00 0.00
adversarial descriptions 0.01 0.02 0.01
default 0.02 0.03 0.03
german 0.02 0.06 0.04
default 0.08 0.17 0.12
Qwen2.5-VL adversarial descriptions 0.10 0.15 0.12
long descriptions 0.14 0.11 0.08
misleading descriptions 0.23 0.12 0.09
long descriptions 0.19 0.11 0.09
adversarial descriptions 0.23 0.12 0.10
UI-TARS-1.5-7B misleading descriptions 0.23 0.16 0.14
default 0.41 0.24 0.18
german 0.42 0.17 0.13

Table 6: Agent reliability can be low in terms of performance across content variations. Model
performance (as measured by the pass@]1 across random seeds averaged over all tasks) can differ
greatly across content variations. We report the standard deviation and mean absolute deviation of
rewards across seeds, averaged over tasks. The task prompt is explicit and fixed.

Appearance black and white challenging font dark theme default
screen resolution

FHD (1920 x 1080) 0.64 0.76 0.06 0.69
HD (1280 x 720) 0.52 0.70 0.61 0.63
Low (480 x 320) 0.42 0.42 0.47 0.48

Table 7: Higher HD is no longer always better when we fix the the content and vary the appearance.

27

Under review as a conference paper at ICLR 2026

F AGENT BEHAVIORS

Loops. In Table we show the average loop count across models, appearance vari-
ations, and content variations. = When inspecting loops qualitatively, the most common
loops are sequences of the same action being repeated, e.g., GPT-40 produces click (47)
click(47)click (47)click (47)click(47)click(47)click (47), Kimi-VL gener-
ates click (17)click (17)click (17)click(17)click(17)click(17)click(17)
click (17)click(17)click(17)click(17)click(17)click(17)click(17)
click(17)click (17)click(17)click(17)click(17)click(17), and UI-TARS-
1.5-7B outputs keyboard.-press (key="ctrl a’)keyboard.press (key='ctrl a’).
These examples reveal that loops can be, but are not always problematic. The bid [17] corre-
sponds to Section ’’, which is a task-irrelevant empty section header. In contrast, the bid [47]
corresponds to button ’Next >’ in OpenCalendar, which agents are often required to click
multiple times to navigate to the next calendar page to complete calendar tasks.

Invalid actions. Models may hallucinate actions more due to content than appearance variations,
and when an application contains distractor information, e.g., adversarial or misleading descriptions
(see Table[9)). The five most common invalid actions for each model include:

e GPT40: click (23), noop, check_ax_tree(), mouse_click (x=612 vy)

e Kimi-VL-A3B-Instruct: click (bid)\n*'", click (bid)\n<\action>,
click (bid)\n<\action>\n""‘python\npyautogui.click (x=0.523,
y=0.466)\n"'", click (bid)\n***\n''‘python\npyautogui.click (x=0.000,
y=0.000)\n"'", click (bid)\n"" ‘python\npyautogui.click (x=0.000,
y=0.000)\n“‘

e llava-v1.6-mistral-7b-hf: remove_item (water plants), duplicate(17)

* Qwen2.5-VL: click ([67] link 'main-page’, enter (searchlInput,

Bockelwitz, Germany), no-op, go_to(’'https://www.example.com/maps’),

type (OWYN - 100% Vegan Plant-Based Protein Shakes | Cold Brew
Coffee, 12 F1 Oz | Dairy-Free, Gluten-Free, Soy-Free, Tree
Nut-Free, Egg-Free, Allergy-Free, Vegetarian)

e UI-TARS-1.5-7B: finished (), wait(), scroll (direction=’"down’,
point=’ (966,546)’), finished, None

Qualitatively, we observe diverse kinds of invalid actions: incorrectly-formed versions of valid
actions (e.g., mouse_click (x=612 y), no-op), well-formed actions that do not exist in
the environment (e.g., remove_item, finished), and valid actions with bad arguments (e.g.,
click (bid), scroll (direction='down’, point=' (966,546)")).

Instruction copying. We do not observe that any models regurgitate in-context examples
from their system prompt (e.g., £ill(’4’, ’'my text’), mouse_click (200, 300,
button='"1left’)).

Intent misunderstandings. In Table[I0] we show the intent misunderstanding rate across models,
appearance variations, and content variations. We note that we do not consider NavigateToPageTask,
as the explicit goal of this task is to navigate to a page rather than to understand user intent. An
agent navigating to an incorrect page is not always fatal (i.e., yields an unsuccessful run); however,
unnecessary steps in runs can yield higher costs for agent developers. Additionally, agents may
navigate to irrelevant pages outside the OPENAPPS environment, e.g., https://www.example.
com/online-shop, https://leafletjs.com/.

28

Under review as a conference paper at ICLR 2026

avg. loop count

Model Appearance Content
german 0.10
default long descriptions 0.11
dark theme default 0.14
claude 4 sonnet default adversarial descriptions 0.14
challenging font default 0.14
black and white default 0.15
misleading descriptions 0.15
default default 0.15
challenging font default 0.32
black and white default 0.34
dark theme default 0.41
default 0.41
GPT-40 misleading descriptions 0.42
default adversarial descriptions 0.44
german 0.45
long descriptions 0.46
default Tong descriptions 1.16
black and white default 1.20
dark theme default 1.27
. default misleading descriptions 1.33
Kimi-VL-A3B-Instruct challenging font default £ . 1.40
default 1.43
default german 1.66
adversarial descriptions 1.74
black and white default 1.18
default adversarial descriptions 1.18
challenging font default 1.23
llava-v1.6-mistral-7b-hf dark theme default 1.24
german 1.25
long descriptions 1.28
default misleading descriptions 1.29
default 1.35
misleading descriptions 1.22
default long descrgiptions b 1.32
dark theme default 1.33
challenging font default 1.38
Qwen2.5-VL black and white —default TAT
default 1.43
default adversarial descriptions 1.45
german 1.80
black and white default 0.93
default german 1.09
challenging font default 1.21
default 1.24
UI-TARS-1.5-78 default misleading descriptions 1.47
adversarial descriptions 1.54
long descriptions 1.63
dark theme default 2.21

Table 8: Agents are more or less prone to loop actions depending on the app variations they
encounter. The average count of loops (across all tasks and random seeds) varies across appearance
and content variations. We define loops as maximal sequences of actions entirely consisting of a
repeated subsequence. The task prompt is explicit and fixed.

29

Under review as a conference paper at ICLR 2026

avg. invalid action count

Model Appearance Content
default default 0.00
GPT-40 dark theme default 0.01
default adversarial descriptions 0.07
default 0.01
default german 0.07
Kimi-VL-A3B-Instruct long descriptions 0.07
black and white default 0.07
default adversarial descriptions 0.21
. erman 0.05
llava-v1.6-mistral-7b-hf default il isleading descriptions 013
default default 0.01
black and white default 0.02
Qwen2.5-VL misleading descriptions 0.07
default german 0.15
long descriptions 0.20
dark theme default 0.71
default german 1.84
black and white default 1.88
challenging font default 1.91
UI-TARS-1.5-7B Jofault 13
misleading descriptions 2.23
default long descrgiptions b 2.25
adversarial descriptions 2.60

Table 9: Agents are more likely to hallucinate actions in certain app variations than others.
The average count of invalid actions (across all tasks and random seeds) seems to be higher when
the content of apps contains misleading or adversarial descriptions. We define invalid actions as
generated actions that do not have the correct syntax, are not part of the custom or default actions of
a model, or have bad arguments (e.g., type error, argument does not exist). Any unreported models,
appearance variations, and content variations have an average invalid action count of 0. The task
prompt is explicit and fixed.

30

Under review as a conference paper at ICLR 2026

intent misunderstanding rate

Model Appearance Content
GPT-40 default german 0.06
default misleading descriptions 0.01
challenging font default 0.18
. black and white default 0.24
Kimi-VL-A3B-Instruct —grug default 0.25
dark theme default 0.30
default german 0.50
misleading descriptions 0.03
default adversarial descriptions 0.06
long descriptions 0.08
. . challenging font default 0.11
llava-v1.6-mistral-To-hf —g g e default 0.12
black and white default 0.18
. german 0.21
default default 0.23
dark theme default 0.02
default default 0.03
challenging font default 0.04
Qwen2.5-VL black and white default 0.05
german 0.31
y misleading descriptions 0.36
default long descriptions 0.40
adversarial descriptions 0.45
challenging font default 0.02
black and white default 0.05
default 0.05
: 14 german 0.14
UL-TARS-1.5-7B default adversarial descriptions 0.31
long descriptions 0.35
misleading descriptions 0.37
dark theme default 0.50

Table 10: Agents may be more prone to misunderstand users’ intent when the apps content
lengthy, misleading, or adversarial content. We report the rate of intent misunderstandings over
tasks and random seeds for each appearance and content variation. An agent “misunderstands intent”
when it navigates to a page irrelevant to the task. Any unreported models, appearance variations,
and content variations have an intent misunderstanding rate of 0. The task prompt is explicit and
fixed.

31

	Introduction
	Related Work
	OpenApps: Framework and Environment
	OpenApps environment
	Deploying agents in OpenApps: Observation and Action Space
	Task Design and Success

	Multimodal Agent Reliability with OpenApps
	Agents are sensitive to app variations
	Agent behavior changes across app variations
	App variations and agent design

	Conclusion
	Reproducibility statement
	Statement about usage of LLMs
	Future Directions
	Additional Related Work
	Agent Failure Evaluation
	Building and training Agents
	Simulated Environments in RL

	Method
	Example of Configuration YAML file
	Visual Examples of App Variations
	Tasks
	Actions
	Mean Absolute Deviation

	Additional Experimental Results
	Agent Behaviors

