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Abstract

Many scientific and industrial applications require
the joint optimization of multiple, potentially com-
peting objectives. Multi-objective Bayesian op-
timization (MOBO) is a sample-efficient frame-
work for identifying Pareto-optimal solutions. At
the heart of MOBO is the acquisition function,
which determines the next candidate to evaluate
by navigating the best compromises among the
objectives. Acquisition functions that rely on inte-
grating over the objective space scale poorly to a
large number of objectives. In this paper, we show
a natural connection between the non-dominated
solutions and the highest multivariate rank, which
coincides with the extreme level line of the joint
cumulative distribution function (CDF). Moti-
vated by this link, we propose the CDF indica-
tor, a Pareto-compliant metric for evaluating the
quality of approximate Pareto sets, that can com-
plement the popular hypervolume indicator. We
then introduce an acquisition function based on
the CDF indicator, called BOtied. BOtied can be
implemented efficiently with copulas, a statisti-
cal tool for modeling complex, high-dimensional
distributions. Our experiments on a variety of
synthetic and real-world experiments demonstrate
that BOtied outperforms state-of-the-art MOBO
algorithms while being computationally efficient
for many objectives.

1. Introduction

Bayesian optimization (BO) has demonstrated promise in a
variety of scientific and industrial domains where the goal is
to optimize an expensive black-box function using a limited
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Figure 1. Illustration of the conceptual link between the empirical
Pareto front probed by the HV indicator and innermost level line
of the CDF probed by the BOtied CDF indicator. The blue set of
candidates dominates the orange. The HV indicator is consistent
with this ordering; the area of the box dominated by the blue set is
greater. The BOtied CDF values and associated multivariate ranks
also favor the blue.

number of potentially noisy function evaluations (Romero
etal., 2013; Calandra et al., 2016; Kusne et al., 2020; Shields
etal.,2021; Zuo et al., 2021; Bellamy et al., 2022; Park et al.,
2022). In BO, we fit a probabilistic surrogate model on the
available observations so far. Based on the model, the ac-
quisition function determines the next candidate to evaluate
by balancing exploration (evaluating highly uncertain candi-
dates) with exploitation (evaluating designs believed to be
optimal). Often, applications call for the joint optimization
of M >2 multiple, potentially competing objectives (Marler
& Arora, 2004; Jain et al., 2017; Tagasovska et al., 2022).
Unlike in single-objective settings, a single optimal solution
may not exist and we must identify a set of solutions that
represents the best compromises among the multiple objec-
tives. The acquisition function in multi-objective Bayesian
optimization (MOBO) navigates these trade-offs as it guides
the optimization toward regions of interest.

Many bona fide MO acquisition functions without scalar-
ization involve high-dimensional integrals and scale poorly
with increasing M. Moreover, improvement-based acqui-
sition functions including some variants of random scalar-
ization are sensitive to non-informative monotonic transfor-
mations of the objectives. This is a pain point for many
practical applications. For instance, in biochemistry, the
dissociation constant K is typically expressed in terms
of its log transformation, the pKp = —log;,(Kp). It
would be desirable to work with acquisition functions that
are invariant to the choice of such unit conversions.
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Figure 2. Level lines of the CDF (left) and the PDF (right) from
kernel density estimation based on 200 observations (gray dots).
The zero level line of the CDF closely traces the true Pareto front
(solid red curve).

To address these challenges, we propose BOtied', a novel
acquisition function based on multivariate ranks. We show
that BOtied has the desirable property of being invariant
to relative rescaling or monotonic transformations of the
objectives. While it maintains the multivariate structure of
the objective space, its implementation has highly favorable
time complexity and we report wall-clock time competitive
with random scalarization.

In Figure 1, we present the intuition behind BOtied. Con-
sider a minimization setup for M =2 where we seek to iden-
tify solutions on the true Pareto front (solid red curves),
unknown to us. Suppose we have many candidates, rep-
resented as circular posterior blobs in the objective space,
where the predictive distributions have been output by our
surrogate model. For simplicity, assume the uncertainties
(sizes of blobs) are comparable among the candidates. How
do we estimate the quality of our solutions (i.e., each candi-
date set’s proximity to the true Pareto front)? One quality
indicator is the hypervolume (HV; Zitzler et al., 2003), de-
fined as the size of the polytope bounded from above by a
predefined reference point and dominated by the candidate
set (shaded areas in the leftmost panel). When one candidate
set dominates another, its HV is greater. We can visually
confirm that the HV of the blue Pareto approximation is
greater than that of the orange.

Next, let us adopt the related, but distinct, perspective of
multivariate ranking (see, e.g., Ghosal & Sen, 2022). De-
fine the random objective vector Y = [f1(X),. .., far(X)]
taking values in R™, which is the result of applying the
objective function f : R? — RM on the random design
variable X that takes values in R?. How do we compare
two realizations of Y, say ¢ and y'?

Ranking vectors is non-trivial, as there is no natural order-
ing in Euclidean spaces when M >2. We propose to use
the joint cumulative distribution function (CDF), defined
as the probability of y being weakly dominated: Fy (y) =
P(Yi<y1,...,Yir<ym), where y = [y1,...,yn] € RM.

'The name stems from non-dominated solutions considered to
be “tied.”

The CDF formalizes the rank ordering of vectors as weak
dominance in the joint minimization of M objectives (Bi-
nois et al., 2015). Specifically, The CDF scores and their
a-level lines LYY = {y : Fy(y) = a} are depicted in the
middle panel of Figure 1 for multiple values of o € [0, 1].
All candidates with equal multivariate rank, or ties, lie on
the same level line, as shown in the rightmost panel.

Multivariate ranking via the CDF can be understood in rela-
tion to the associated probability density function (PDF), as
the CDF is the integral of the PDF. Figure 2 shows the CDF
and the associated PDF side by side for a bi-objective setting
(M =2). The right panel shows the PDF fit on 200 outcome
samples (gray dots) via kernel density estimation, where the
outcome samples were drawn from an elliptical Gaussian.
The left panel shows the level lines of the corresponding
CDF. The a-level lines converge to the approximate Pareto
front as & — 0. The lowermost level line (~0) closely
traces the convex shape of the true Pareto front shown as
the solid red curve.

Contributions Motivated by the interpretation of multi-
variate ranks as a MO indicator, we make the following
contributions: (i) We propose a new Pareto-compliant per-
formance criterion, the CDF indicator (section 3); (ii) We
propose a scalable and robust acquisition function based on
the CDF and associated multivariate ranks, which we call
BOtied (section 4); and (iii) We release the full codebase
implementing our evaluations of MOBO acquisitions in a
variety of synthetic and real-world data scenarios (section 5).

2. Related work

MO indicators and acquisition functions. A computation-
ally attractive approach to MOBO scalarizes the objectives
with random preference weights (Knowles, 2006; Paria et al.,
2020) and applies a single-objective acquisition function.
The distribution of the weights, however, may be insufficient
to encourage exploration when there are many objectives
with unknown scales.

Alternatively, we may preserve the MO structure by seeking
improvement on a set-based performance metric, such as
the HV indicator (Embrechts et al., 2003) or the R2 indica-
tor (Deutz et al., 2019a;b). Improvement-based acquisition
functions such as the expected hypervolume improvement
(EHVI; Emmerich et al., 2011; Daulton et al., 2020; 2021)
are sensitive to the rescaling of the objectives, which may
carry drastically different natural units. In particular, com-
puting the HV has time complexity that is super-polynomial
in the number of objectives, because it entails computing the
volume of an irregular polytope (Yang et al., 2019). Despite
the efficiency improvement achieved by box decomposition
algorithms (Déchert et al., 2017; Yang et al., 2019), HV
computation remains slow when M >4.
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Another class of acquisition strategies is entropy search,
which focuses on maximizing the information gain from
the next observation (Villemonteix et al., 2009; Hennig
& Schuler, 2012; Hoffman & Ghahramani, 2015; Shah &
Ghahramani, 2015; Hernandez-Lobato et al., 2016b; Be-
lakaria et al., 2019; Tu et al., 2022). Entropy searches are
commonly implemented in box decompositions as well, but
are costly to evaluate without using more tractable bounds
to serve as approximations.

Multivariate ranking. The scale-invariant properties of
ranking makes it an attractive tool for optimization. Binois
et al. (2015) relates the Pareto front to the extreme level
line of the CDF, Fy. Considering ranking dominance as
an alternative to Pareto dominance, Kukkonen & Lampinen
(2007) propose computing the ranks of individual objec-
tives separately and combining them post-hoc with a simple
aggregation function (min, max, average) to obtain the over-
all fitness value for a given candidate. Binois et al. (2020)
explores the question of how to choose from the set of non-
dominated solutions, which grows with M, and makes a
game-theoretic argument for how to make the compromise.
In particular, they define trade-offs in the copula space,
which is the scale-invariant rank transformation of the orig-
inal objective function. For single-objective BO, Picheny
et al. (2019) propose Ordinal BO, which uses a Gaussian
process (GP) surrogate that is only sensitive to the rankings
of the inputs and objective values. Notably, this method can
robustly handle ill-conditioned and multi-modal distribu-
tions in the objective function values, for which GP models
are known to often fail. Similarly, Eriksson & Poloczek
(2021) use the rank transformations to magnify values at
the end of the observed ranges. To our knowledge, however,
our work is the first to incorporate multivariate rankings
enabled by the joint CDF into a MOBO algorithm. We ex-
plicitly account for the structure of the M -variate objective
distribution in identifying the full Pareto front.

A more detailed overview and positioning of BOtied with
respect to the MO literature can be found in Appendix A.

3. Background
3.1. Bayesian Optimization

Bayesian optimization (BO) is a popular technique for
sample-efficient black-box optimization (see Shahriari et al.,
2015; Frazier, 2018, for a review). In a single-objective
setting, suppose our objective f : X — R is a black-box
function of the design space X that is expensive to evaluate.
Our goal is to efficiently identify a design * € X minimiz-
ing? f. BO leverages two tools, a probabilistic surrogate

?For simplicity, we define the task as minimization in this paper
without loss of generality. For maximization, we can negate f, for
instance.

model and a utility function, to trade off exploration (evalu-
ating highly uncertain designs) and exploitation (evaluating
designs believed to minimize f) in a principled manner.

For each iteration ¢, we have a dataset D; =
{(2™,yM), .. (™) 4 (N)YY where for each n €
[V,], y(™ is a potentially noisy observation of f(x(™). We
first infer the posterior distribution p(f|D;), which serves
as a cheap approximation of f. Next, we introduce a utility
function v : X X F x %, :— R. The acquisition function
a(x) is simply the expected utility of & with respect to our
current belief about f:

o) = / w(@, £, Dy) p(fIDy) df. ()

For example, we obtain the expected improvement (EI)
acquisition function if we take ug(x, f,D) = [f(z) —
max(gz ,ep, ¥ |+, where []4 = max(-,0) (Mockus,
1975; Jones et al., 1998). We select a maximizer of a as the
new design, evaluate f, and append the observation to the
dataset. The surrogate is then refit on the expanded dataset
and the procedure repeats.

3.2. Multi-objective optimization

When there are multiple objectives of interest, a single best
design may not exist. Suppose there are M objectives,
f: & — RM_ The goal of MOBO is to identify the set of
Pareto-optimal solutions such that improving one objective
within the set leads to worsening another. We say that «
dominates @', or f(x) < f(&), if fr(x) < fin(2') for
all m € [M] and f,,(x) < fm(2') for some m. The set
of non-dominated solutions Z* is defined in terms of the
Pareto front P*:

2 ={x: f(x) € P*},
where P* = {f(z) :x € X, iz’ € X st. f(2') < f(x)}.
MOBO algorithms typically aim to identify a finite subset

of Z™*, which may be infinite, within a given budget of
function evaluations.

Hypervolume One way to measure the quality of an ap-
proximate Pareto front P is to compute the hypervolume
(HV) HV (P|ryet) of the polytope bounded from above by P
and from below by 7...¢, where r,of € RMisa user-specified
reference point. More specifically, the HV indicator for a
set A is

)= [ A2y <rldy. @

We obtain the expected hypervolume improvement (EHVI)
acquisition function if we take

UEHVI (33, f, D) = HVI('PI, P|’f‘ref) =
v (P’ |7ves) — Ty (P|Tres)] 4+ 3)
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where P’ = PU{f(x)} (Emmerich, 2005; Emmerich et al.,
2011).

Noisy observations In the noiseless setting, the observed
baseline Pareto front is the true baseline Pareto front, i.e.
Pr=1{y:y <€V Py € Vst y < y}, where
YV = {y(")}ﬁil. This does not, however, hold in many
practical applications, where measurements carry noise. For
instance, given a zero-mean Gaussian measurement process
with noise covariance Y, the feedback for a candidate @
isy ~ N (f(x),X), not f(x) itself. The noisy expected
hypervolume improvement (NEHVI) acquisition function
marginalizes over the surrogate posterior at the previously
observed points X; = {x(™ 1V |

unenvi(z, f, D) = HVI(P}, Py|ryer), (4)

where P, = {f(x) : ¢ € X, P’ € X, st f(z) <
f(x)}and P’ = P U {f(x)} (Daulton et al., 2021).

4. Multi-objective BO with multivariate ranks

In MOBO, it is common to evaluate the quality of an ap-
proximate Pareto set X’ by computing its distance from the
optimal Pareto set X'* in the objective space, defined by
some distance metric d : 2¥ x 2Y¥ — R where 2% denotes
the power set of the objective space ). HVI (Equation 3)
is a popular metric, for instance. One advantage of HV
is its sensitivity to any type of improvement; whenever an
approximation set A dominates another approximation set
B, then the measure yields a strictly better quality value
for the former (Zitzler et al., 2003). On the other hand, HV
suffers from sensitivity to transformations of the objectives
and scales super-polynomially with M, which hinders its
practical value. An alternative approach is to use distance-
based indicators (Miranda & Von Zuben, 2016; Shilton et al.,
2018) that assign scores for the solutions based on a signed
distance from each point to the approximate Pareto front,
which is again computationally expensive.

In the following, the (weak) Pareto-dominance relation is
used as a preference relation < on ) indicating that a solu-
tion g’ is at least as good as a solution y (denoted ¥’ < ¥y)
iff fi(y") < fi(y) Vi € [M]. This relation can be canon-
ically extended to sets of solutions where a set A C X
weakly dominates a set B C X (denoted A < B) iff
Yy € B3y € A:y' <y (Zitzler et al., 2003). Given the
preference relation, we consider the optimization goal of
identifying a set of solutions that approximates the set of
Pareto-optimal solutions and ideally this set is not strictly
dominated by any other approximation set.

Since the generalized weak Pareto dominance relation de-
fines only a partial order on )/, there may be incomparable
sets in Y. Incomparability is a key challenge in search and

performance assessment for multi-objective optimization
and becomes more serious as M increases (Fonseca et al.,
2005). One way to circumvent this problem is to define a
total order on ) which guarantees that any two objective
vector sets are mutually comparable. To this end, quality
indicators have been introduced that assign, in the simplest
case, each approximation set a real number — that is, a
(unary) indicator function I : Y — R (Zitzler et al., 2003).
One important feature an indicator should have is Pareto
compliance (Fonseca et al., 2005), which dictates that it
must not contradict the order induced by the Pareto domi-
nance relation.

In particular, this means that whenever A < B A B i
A, then the indicator value of A must not be worse than
the indicator value of B. A stricter version of compliance
would be to require that the indicator value of A is strictly
better than the indicator value of B (if better means a lower
indicator value):

A< BABY A= I(A) < I(B). (5)

4.1. CDF indicator

We propose the CDF indicator, a Pareto-compliant indicator
for measuring the quality of Pareto approximations.

Definition 4.1 (Cumulative distribution function). The CDF
of a real-valued random variable Y is the function:?

Frly) = POV <y = [ Do ©

representing the probability that Y takes a value less than
or equal to y.

For more than two variables, the joint CDF is given by

Fy, . vu@)=PYi<yi,....Yu <ym) (D
(Y1,--ynmr)

= / fy(s)ds. (8)
(

00,11, —00)

Properties of the CDF. Every multivariate CDF is mono-
tonically non-decreasing for each Y;, right-continuous in
each Y;, and takes values in [0,1]. The monotonically
non-decreasing property means that Fy (ai,...,ap) >
Fy (by,...,by) whenever a; > by,...,ax > by. We
leverage these properties to define our CDF indicator.

Definition 4.2 (CDF Indicator). The CDF indicator (Icpg)
is defined as the minimum multivariate rank:

Icpr(A) = ;neiEFY(y) = max 1—-Fy(y), O

where A is an approximation set in ).

3In this section, we use the standard notation for densities ( iD)
and distributions (F) defined on the objective space. It will be
clear from the context whenever f is again used to refer to the
objective function.
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Theorem 4.3 (Pareto compliance). For any pair of approxi-
mation sets A € Y and B € ),

A<BAB % A=>ICDF(A) < ICDF(B)- (10)

The proof can be found in Appendix C.

Remark 4.4. Note that I, only depends on the best element
in the Fy rank ordering. One consequence of this is that
I, does not discriminate sets with the same best element.

4.1.1. ESTIMATING THE CDF WITH COPULAS

Estimating Fy is challenging in high dimensions. Naively
estimating the joint multivariate density fy and then com-
puting the high-dimensional integral to obtain Fy would be
computationally intensive. To address this, we turn to copu-
las (Nelsen, 2007; Bedford & Cooke, 2002), a statistical tool
for flexible density estimation in high dimensions. Vine cop-
ulas provide consistent factorization of high-dimensional
joints into a product of bivariate densities.

Theorem 4.5. [Skiar’s theorem (Sklar, 1959)] The contin-
uous random vector Y = (Y1,...,Yr) has a joint distri-
bution Fy and marginal distributions I, ..., Fyy iff there
exists a unique copula C, which is the joint distribution of

U == (Ul,‘..,UM) = Fl(Yl),...7Fd(Y]V[).

A copula is a multivariate distribution function C
[0,1]™ — [0, 1] that joins (couples) uniform marginal dis-
tributions F'(y1,...,ynm) = C (Fi(y1),--., Fu(yam)). To
be able to estimate a copula, we need to transform the vari-
ables of interest to uniform marginals. We do so by the
following operation.

Definition 4.6 (Probability integral transform). PIT of a
random variable Y with distribution Fy is the random
variable U = Fy(Y'), which is uniformly distributed:
U ~ Unif([0, 1]).

Theorem 4.5 implies the following corollaries establishing
the invariance of the CDF indicator to different scales.

Corollary 4.7 (Scale invariance). A copula based estimator
for the CDF indicator is scale-invariant.

Corollary 4.8 (Invariance under monotonic transforma-
tions). Let Y1,Y5 be continuous random variables with
copula Cv, y,. If o, : R = R are strictly increasing
functions, then:

Cai),p(va) = Ovi v, (11)

where Co(v,),8(v») 18 the copula function corresponding to
variables o(Y1) and B(Y3).

Corollary 4.7 follows from the PIT required for copula
estimation. The proof for Corollary 4.8, based on Haugh
(2016), can be found in subsection C.2 and, without loss
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Figure 3. Top: The CDF indicator is invariant to arbitrary mono-
tonic transformations of the objectives (here transforming f> via
arctan). Bottom: The HV indicator is highly sensitive to them.
The color gradient corresponds to indicator value at each solution
(g = 1). Gray circles are overlaid on the five solutions with the
top indicator scores. CDF chooses the same five solutions, but HV
prefers ones with high f; after fo becomes squashed.

of generality, can be extended to M >2. In Figure 3 we
demonstrate the robustness of the copula-based estimator.

The benefits of using copulas to estimate the CDF are three-
fold: (i) scalability and flexibility with large M, (ii) in-
variance to relative scales of the different objectives, (iii)
invariance to monotonic transformations of the objectives.

From copula density to CDF. It follows from The-
orem 4.5 that a joint density of any bivariate ran-
dom vector (Y7,Y2), can be expressed as f(y1,y2) =
fiw) f2(y2)e (Fi(y1), F2(y2)) where fi, fo are the
marginal densities, F, F, are the marginal distributions,
and c is the copula density. In other words, we can factor-
ize the joint density into a product of the marginals and a
copula density. The copula density captures the dependence
structure between the two variables after all the complex-
ities in the individual margins are removed. The factor-
ization speeds up the estimation, which breaks down into
two simpler steps: estimating the density of the marginal
distributions and estimating the copula density. The param-
eters of the copula and the margins can be estimated with
maximum likelihood given a choice of parametric copula
families (lower or upper tail dependence, survival copulas,
Gaussian, etc.). In addition, recent progress in nonparamet-
ric estimation of copulas has enabled the estimation of more
complex distributions (Geenens et al., 2017). Once a copula
density is fit, the CDF can be obtained analytically in the
parametric case or by Monte-Carlo (MC) integration over
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the density for the nonparametric case. For further details,
please refer to Appendix D, Aas et al. (2009), and Joe et al.
(2010).

4.1.2. HIGH-DIMENSIONAL CDF WITH VINE COPULAS

The above factorization can be generalized to any number
of variables. The pair copula constructions called vines are
hierarchical models, constructed from cascades of bivari-
ate copula blocks, that can accommodate more than two
variables (Nagler et al., 2017). Any M -dimensional copula
density can be decomposed into a product of M (M — 1)/2
bivariate (conditional) copula densities (Joe, 1997; Bed-
ford & Cooke, 2002). The factorization is not unique and
can be organized in a graphical model, as a sequence of
M—1 nested trees. We denote a tree as T, = (Vi, Ex)
with Vi, and Ej, the sets of nodes and edges of tree k for
k=1,..., M—1. Each edge e is associated with a bivariate
copula. We provide a full example of vine copula decom-
position in Appendix D. In practice, in order to construct a
vine, one has to choose two components: (1) the structure,
or the set of trees Ty, = (Vi, Ey) for k € [M —1] and (2) the
pair copulas for ¢;_j |p, where e € Ey and k € [M—1].
There are efficient algorithms for both steps and we use the
implementation by Nagler & Vatter (2018).

4.2. CDF-based acquisition function: BOtied

Suppose we fit a CDF on y"), y@) ... y(N*) the N; mea-
surements acquired thus far. Denote the resulting CDF as
F‘(~; D;), where we have made explicit the dependence on
the dataset up to time ¢. The utility function of our BOtied

acquisition function is as follows:
u(x, f,Dr) =1 = F(f(x); Dy). (12)

As with the CDF indicator, our CDF-based acquisition func-
tion has an efficient implementation based on vine copulas.
For a more precise description of how a CDF-based acqui-
sition function fits within a single round of MOBO, we
include Algorithm 1 in Appendix B.

5. Empirical results

Experimental setup. To empirically evaluate the sample
efficiency of BOtied, we execute simulated BO rounds on a
variety of problems. See Appendix F for more details about
our setup. For all the experiments, the surrogate model
was an independent GP with a Matern 5/2 ARD kernel.
The GP hyperparameters were inferred via maximum a
posteriori (MAP) estimation. The code that reproduces
all of our experiments and plots is available at https:
//github.com/jiwoncpark/botied ).

Metrics. We use the HV indicator presented in section 4,
a standard evaluation metric for MOBO, as well as our

STEP 1: PIT transformation - e Aree?

TPSA,
Permeability

import pyvinecopulib as pv
’(««?‘J\?’
@

u = pv.to_pseudo_obs (caco2) \<\\\,

ClogP,
Permeability

Permeability
pair
copulas
vine_copula

STEP 3: evaluate CDF

botied scores = cop.cdf (u)

STEP 2: fit a vine copula

data
Pareto front

fam set = [pv.BicopFamily.Clayton]
fam set = [pv.BicopFamily.tll]

fam set = None
controls = pv.FitControls(fam_set)

vine_copula = pv.Vinecop(u, controls) "

Figure 4. A recipe for estimating the CDF with copulas, in three
simple steps and fewer than 5 lines of Python code. Plots are based
on the Caco2+ dataset.

CDF indicator Icpr on the noiseless function values. We
rely on efficient algorithms for HV computation based on
hyper-cell decomposition as described in (Fonseca et al.,
2006; Ishibuchi et al., 2011) and implemented in BoTorch
(Balandat et al., 2020).

BOtied implementation We implement two versions of
BOtied that differ in the incorporation of predictive uncer-
tainties in the CDF estimation. In one version (v1), we fit the
CDF on all of the MC predictive posterior samples across all
the candidates. This can sometimes result in poor CDF fit,
particularly when uncertainties are large. The other version
(v2) alleviates this issue by fitting the CDF on the posterior
means of the candidates. The algorithms for both versions
can be found in Algorithm 1, Appendix B. We optimize the
BOtied acquisition values using the gradient-free CMA-ES
algorithm (Hansen, 2006). The CDF estimation is detailed
in Appendix E and BOtied optimization in Appendix F.

Baselines We compare BOtied with the noisy versions of
popular acquisition functions. The baseline acquisition
strategies are NEHVI (Daulton et al., 2020) described in
Equation 4; noisy NParEGO (NParEGO; Knowles, 2006)
which uses noisy EI on top of random augmented Chebyshev
scalarization; predictive entropy search (PES; Hernandez-
Lobato et al., 2016a), maximum entropy search (MES; Be-
lakaria et al., 2019), and joint entropy search (JES; Hvarfner
et al., 2022) — the differences being the estimation of en-
tropy in the inputs, objectives, or both, respectively; and
random (Sobol) selection.

Synthetic datasets. We include synthetic test functions
for direct evaluation of f. We focus on ones that sup-
port M > 3: DTLZ2 (d=6, M=4 and d=7, M =6; Deb
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Table 1. HV indicators (in the original units) and Icpr across datasets. Higher is better for HV and lower is better for Icpr. The best per
column is marked in bold. We report the mean and standard error of each metric across 20 random seeds.

Penicillin (d =7,M =3,qg=1)

DTLZ2 (d=6,M =4,q = 1)

DTLZ2 (d=7,M =6,q = 1)

Icpr | HV 71 Icpr | HV 1 Icpr | HV 1
BOted vl 026 (0.01) 325741 (29515) 025 (0.01) 2.26 (0.09) 0.071 (0.005) 0.36 (0.03)
BOtied v2  0.20 (0.02) 342762 (13599) 0.11 (0.02) 2.32(0.06) 0.064 (0.004) 0.42 (0.02)
NParEGO  0.28 (0.01) 303707 (15118)  0.10 (0.02) 2.20 (0.11) 0.065 (0.005) 0.38 (0.02)
NEHVI 0.28 (0.01) 314294 (14498) 0.24 (0.01) 1.80 (0.06) 0.074 (0.007) 0.27 (0.01)
PES 0.27 (0.01) 297107 (17383) 0.24 (0.01) 1.85(0.11) 0.069 (0.004) 0.23 (0.06)
MES 0.24 (0.02) 305874 (14694) 0.10 (0.02) 2.12(0.08) 0.059 (0.004) 0.27 (0.06)
JES 028 (0.01) 316302 (21193)  0.24(0.01) 1.97 (0.07) 0.069 (0.006) 0.25 (0.05)
Random  0.24 (0.02) 307896 (22889)  0.11(0.02) 0.91 (0.08) 0.076 (0.005) 0.10 (0.01)

Penicillin (d=7, M=3, ¢=1)

DTLZ2 (d=6, M=4, ¢=1)

DTLZ2 (d=7, M=6, ¢=1)

T
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Figure 5. HV vs. iterations for three synthetic test functions. We show the mean and two standard errors over 20 random seeds.

& Gupta, 2005) and Penicillin (d=7, M =3; Liang & Lai,
2021), which simulates the penicillin yield, time to produc-
tion, and undesired byproduct for various parameters of the
production process. See Appendix F for more detail.

Real-world datasets. To emulate a multi-objective drug
design setting, we postprocess the real-world dataset Caco2
(Wang et al., 2016) from the Therapeutics Data Commons
database (Huang et al., 2021; 2022) to create Caco2+. The
original Caco2 dataset consists of 906 drug molecules an-
notated with experimentally measured cell permeability, or
the rates of passing through a human colon epithelial cancer
cell line. Permeability is a key property in the absorption,
distribution, metabolism, and excretion (ADME) profile
of drugs. We augment the dataset with additional proper-
ties using RDKit (Landrum et al., 2023), including ClogP
related to fat solubility and topological polar surface area
(TPSA). Subsets of these properties (e.g., permeability and
TPSA) are inversely correlated and thus compete with one
another during optimization. In late-stage lead-molecule
optimization, the trade-offs become more dramatic and as
more properties are added (Sun et al., 2022). Demonstrating
effective sampling of Pareto-optimal solutions in this setting
is thus of great value. We represent each molecule as a
concatenation of fingerprint and fragment feature vectors
(Thawani et al., 2020).

We also include experiments over three datasets from the
DDMOP benchmark (He et al., 2020). Differently from
the synthetic test functions which have analytical solu-
tions, each DDMOP dataset represents a complex objective
function approximated by expensive numerical simulations.
These datasets address cab car optimization, power system
chip placement and neural network. Details and table re-
sults on each dataset can be found in subsection F.5. See
Appendix F for more detail about these datasets.

Vine Copulas for MOBO in practice In Figure 4, we
present a simple recipe for estimating CDFs with vine copu-
las, in three simple steps and fewer than five lines of code.
We use the Caco2+ dataset (M =3) as an example. First, the
PIT transformation yields the uniform margins. We then
choose a copula shape from parametric or non-parametric
families, or we leave this undetermined and run model se-
lection based on the Bayesian information criterion (BIC).
In the case of Caco2+, we can use the domain knowledge
that permeability and TPSA are negatively correlated and
specify a Clayton copula. Once a vine copula has been fit, it
is fully described by the trees (structure) and bivariate (pair)
copula densities associated with each edge. This is all we
need to evaluate the CDF on the data points in Step 3. Note
that the darker shaded points corresponding to higher CDF
scores indeed approach the Pareto front.
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Figure 6. HV vs. iterations for real-world datasets. We show the
mean and two standard errors over 20 random seeds.
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Figure 7. Wall-clock time per single call of acquisition function.
Error bars are standard deviations across five repeated calls.

5.1. Results and discussion

We compare the performance of BOtied with baseline ac-
quisition strategies in terms of both the HV and the CDF
indicators, on synthetic test functions (Figure 5) as well as
on real-world datasets (Figure 6). The metrics for these ex-
periments and additional experiments using various g batch
sizes are tabulated in Table 1. Although there is no single
best method across all the datasets, the best numbers are con-
sistently achieved by either BOtied v1 or v2 with NParEGO
being a close competitor. The NEHVI performance visibly
degrades as M increases.

Figure 7 shows that the wall-clock time for NEHVI and
JES become very slow for M >3. At the same time, BOtied
is significantly faster than NEHVI/JES and is as fast as
NParEGO, which is based on scalarizing the M objectives.

There are two main benefits to using Icpr rather than HV
for evaluation. First, the CDF is bounded between 0 and
1, with scores close to 0 corresponding to the solutions
closest to our approximate Pareto front. Unlike HV values,
for which the scales do not carry information about the
internal ordering, the Icpr values have an interpretable
scale. Second, assuming the GP and copula have been
properly fit, we can use the magnitude of /cpr to determine
the orthogonality, or degree of competition, of the objectives
in a given task. In particular, when a candidate strongly
dominates a set of points, its Icpr tends below 0.1, while
for points that weakly dominate with respect to a small
subset of the objectives, the Icpr value is higher.

We stress-test BOtied in a series of ablation studies in Ap-
pendix G. In particular, we vary the number of MC posterior
predictive samples and find that BOtied v1 is robust to the
number of posterior samples, i.e., the multivariate ranks
associated with the best-fit copula model do not change
significantly with varying numbers of samples. When the
posterior shape is complex such that many MC samples are
required to fully characterize the posterior, BOtied v2 (in
which the copula is fit on the mean of the posterior samples)
is more appropriate than v1.

Limitations When fitting the CDF model, there’s a trade-
off between flexibility and complexity. Increasing M re-
quires us to adopt more flexible models, which increases the
number of modeling choices. In our experiments, we per-
form model selection based on the Akaike information crite-
rion (AIC) to choose among nonparametric and parametric
copula families (Akaike, 1998). Moreover, the current im-
plementation of BOtied is not differentiable, which necessi-
tates the use of gradient-free algorithms such as CMA-ES
for optimizing acquisition values where a gradient-based
one may be more efficient.

6. Conclusion

We introduce a new perspective on MOBO based on the
multivariate CDFE. Our proposed MOBO acquisition func-
tion, BOtied, is computed by fitting a multivariate CDF on
the surrogate predictions and extracting the ranks associated
with the CDF scores. It is computationally attractive, as the
CDF can be efficiently fit with vine copulas even when M
is large. Moreover, it enables model-based estimation of the
Pareto front. When domain knowledge about the distribu-
tion of the objective values is available, it can be injected
into the specification of the CDF model family. We also
propose a new Pareto-compliant indicator for measuring
the quality of approximate Pareto fronts, the CDF indicator.
The CDF indicator, equipped with desirable properties such
as invariance to monotonic transformations of the objectives,
promises to complement the popular HV indicator.

Our method is general and lends itself to a number of im-
mediate extensions. First, whereas we have implemented
gradient-free optimization of BOtied in this work, we can
take advantage of gradient-based optimization for improved
efficiency. In conjunction with a differentiable sorting al-
gorithm (e.g., Cuturi et al., 2019; Blondel et al., 2020), the
computation of our acquisition function can be made differ-
entiable for many parametric copula families. Second, we
can consider constrained or discrete extensions for broader
applicability. Finally, as many applications carry noise in
the input as well as the function of interest, accounting for
input noise through the established connection between cop-
ulas and multivariate value-at-risk (MVaR) estimation will
be of great practical interest.
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A. Related work in multi-objective optimization

Table 2. Comparison of BOtied with related work

Type of Scoring | MO Scalability ~ Scale Bayesian Non GP
groundwork method | criteria with M invariance optimization surrogates
Multivariate ranks/CDF, BOtied
Copula, Copula space ‘ (this work) v 4 4 4
Copula space, . . -
Game theory Kalai-Smorodinsky MO (Binois et al., 2020) v v v v X
Multivariate Aggregate Rank (Kukkonen & Lampinen, 2007) v v v X X
ranks Ordinal BO (Picheny et al., 2019) v X X v v
Joint Entropy Search
Information (Tu et al., 2022; Hvarfner et al,, 2022) | ¥ X / v X
Theoret'cl Predictive Entropy Search (Hernandez-Lobato et al., 2016a) v X X v X
1 Max-Value Entropy Search (Belakaria et al., 2019) v X X v X
Hypervolume \ EHVI variants (Daulton et al., 2021; 2022) \ v X X v v
Random ‘ ParEGO (Knowles, 2006) ‘ v v x v v
scalarization
dBi‘;'t‘::cae’y ‘ SVM-variants (Miranda & Von Zuben, 2016; Shilton et al., 2018) ‘ v v X v X
S . Pareto improvement , EmaX (Bautista, 2009)
Maxmin, Pareto Indicator Maximin improvement (Svenson, 2011) 4 X 4 4
Completeness Averaged completeness indicator (Svenson, 2011) v X v v X
Estimated completeness indicator improvement (Svenson, 2011) v v v v v
B. Algorithm

Algorithm 1 MOBO with BOtied: a CDF-based acquisition function

1:

10:

11:
12:
13:
14:
15:

Input: Surrogate model f, initial data Dy = {(n,y,)} 2, X € RL Y ¢ R, number of MOBO

n=1>

iterations 7', size of the candidate pool used in each inner-loop optimization of the acquisition function N,

number of posterior predictive sample L
Output: Optimal selected subset Dr.
for {t=1,...,T} do
while converged do
Sample the candidate pool X =[xy, - ,&n] C X
Obtain the predictive distribution p(f|Ds—1, X)
Draw L predictive samples f) ~ p(f|D;_1, X), for j € [L]
Version 1: Fit a CDF F on the pooled samples, { f(/ Y ieln)-

Version 2: Fit a CDF F' on the mean-aggregated samples, % 25:1 f () (or posterior mean parameters

if they are directly available from the parameterization of the f posterior).

for{i=1,...,N} do

Version 1: Evaluate the fit CDF F' on the samples and take the mean across the samples S(x;)

£ 0 (77)

Version 2: Evaluate the fit CDF " on the posterior means S(x;) = C' (% Zle fi(j ))

end for
end while
i* < argmax;c ) S(x;)
Dy <D, 1 U {(wi*,yi*)}
end for
return D
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C. Properties of the CDF indicator
C.1. Theorem 1: Pareto compliance of the CDF indicator
We state Theorem 4.3 again and provide the proof here.

Theorem 4.3: For any arbitrary approximation sets A € X and B € X where X C R, the following holds:

Proof. 1f we have A < B A B % A, then the following two conditions hold: V&’ € B3z € A : < «' and
Ix € As.t. Pz’ € B: 2’ < x. Recall that the weak Pareto dominance x < x’ implies that Vi € [M] : f;(x) < fi(x').
From the definition and fundamental property of the CDF being a monotonic non-decreasing function, it follows that
Vi e [M]: fi(x) < fi(x') = Fy(x) < Fy(z).

Define the set of non-dominated solutions in B, Pg := {x € B,V&’ € B : « < «'}. Note that [p(B) = Ip(Pg) =
Ir({z}) forany z € Pp. Now let x5 € Pp. Thereis x4 € A such that x4 =< @, and we have that Fy-(x4) < Fy (xp).
By definition, Ip(A) < Ir({xa}) sowehave Ir(A) < Ir({xa}) < Ir({xp}) = Ir(B) as desired. O
C.2. Corollary 2: Invariance under monotonic transformations

This proof closely follows the one in (Haugh, 2016).

Corollary 2: Let Y7, Y5 be continuous random variables with copula Cy, y,. If @, 3 : R — R are strictly increasing
functions, then:

Ca(y1),6(v2) = Cvi,vs (13)

where C(v,),5(y2) 1s the copula function corresponding to variables a(Y7) and 5(Ya2).

Proof. We first note that for the distribution function of «(Y7) it holds that
Fagy,y = P(a(Y1) <y1) = P(Y1 < o™ (1)) = Fy, (07 (1)) (14)

and analogously,

Fs(Y1)(y1) = Fv, (B~ (1)) (15)

From Sklar’s theorem, we have that for all y;,y2 € R

Cav)ave) (Favi) (1), Fave) (¥2)) = Favi)avz) (Y1, Y2)
= P(a(Y1) < y1, B(Ya) < y2)
=P(Y1 <o (1), Y2 < B (12))
= Fy, v, (a ' (y1), 871 (12)))
= Cy, v, (Fy, (@™ (1)), Fyo (B (12)))
= Cvy,v2 (Favi) (W1): F(vz) (¥2))

Equalities one and five follow from Sklar’s theorem. In the third equality we make use of fact that o and 3 are increasing
functions. The last equality follows from Equation C.2 and Equation C.2. O

D. (Vine) copula overview and example

According to Sklar’s theorem (Sklar, 1959), the joint density of any bivariate random vector (X, X5), can be expressed as

f(@1,22) = fi(z1) f2(22)e (Fi(21), Fa(22)) (16)
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where f;* are the marginal densities, F; the marginal distributions, and ¢ the copula density.

That is, any bivariate density is uniquely described by the product of its marginal densities and a copula density, which is
interpreted as the dependence structure. For self-containment of the manuscript, we borrow an example from (Tagasovska
et al., 2023). Figure D.7 illustrates all of the components representing the joint density.

As a benefit of such factorization, by taking the logarithm on both sides, one can estimate the joint density in two steps, first
for the marginal distributions, and then for the copula. Hence, copulas provide a means to flexibly specify the marginal and
joint distribution of variables. For further details, please refer to (Aas et al., 2009; Joe et al., 2010).

There exist many parametric representations through different copula families, however, to leverage even more flexibility, in
this paper, we focus on the kernel-based nonparametric copulas of (Geenens et al., 2017).

Equation 16 can be generalized and holds for any number of variables. To be able to fit den-
sities of more than two variables, we make use of the pair copula constructions, namely vines;
hierarchical models, constructed from cascades of bivariate copula blocks (Nagler et al., 2017).

According to (Joe, 1997; Bedford & Cooke, 2002), any M-
dimensional copula density can be decomposed into a product of
M(fo_l) bivariate (conditional) copula densities. Although such
factorization may not be unique, it can be organized in a graphical
model, as a sequence of M — 1 nested trees, called vines. We
denote a tree as Ty, = (V,,, Ey) with V,,, and E,, the sets of
nodes and edges of tree m form = 1,..., M — 1. Each edge e
is associated with a bivariate copula. An example of a vine copula
decomposition is given in Figure D.

joint distribution o< marginals + copula

In practice, in order to construct a vine, one chooses two com-
ponents: (1) the structure, the set of trees T,,, = (V;,,, Ey,) for
m € [M — 1] and (2) the pair copulas, the models for ¢;_ 1. |p,
fore € E,, and m € [M —1].

marginals

Tree 1

conditional unconditional

Corresponding algorithms exist for both of those steps and in
the rest of the paper, we assume consistency of the vine copula
estimators for which we use the implementation by (Nagler &
Czado, 2016), namely its Python version -pyvinecopulib.

conditional

»
L 2@
S 1,412,3

The complexity for fitting the vine copulas as currently imple- o xarxa, xa) = Cuaps-Crs-Caspprereasrea i (1) . 00) fo (%) fa )
mented scales as O(ngotaMp) in the case of density estimation, Figure 8. Top: expressing joint densities with copulas; Bot-
where nota1 is the number of points being fit and p is the vine  tom: Multivariate joint density factorized with a vine cop-
depth. Both estimation and sampling involve a double loop over ula.

M and p with an internal step scaling linearly with n¢ota1. The

computational complexity is linearly impacted by L (number of

predictive samples). For BOtied v1, we have ntota1 = n, so this

translates to O(nLMp), where n is the number of query candi-

dates, while for BOtied v2, we use the expectation of the posterior samples only, S0 n¢ota1 = 1L and the complexity remains
as O(nMp). Note that p € [M] can be truncated for additional efficiency.

D.1. Complexity of the copula estimation

D.2. Copulas in BO

In the low-data regime, empirical Pareto frontiers tend to be noisy. When we have access to domain knowledge about
the objectives, we can use it to construct a model-based Pareto frontier using vine copulas. This section describes how to
incorporate (1) the known correlations among the objectives to specify the tree structure (vine) and (2) the pairwise joint
distributions (including the tail behavior), approximately estimated from domain knowledge, when specifying the copula
models.

“In this section, we use the standard notations for densities ( f) and distributions (F) as commonly done in the copula literature.
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Caco2+ Vine Copula Tree 1 Tree 2
structure and dependence modeling TPSA
ClogP S
9 Permeability
tree edge | family
1 3,Gaussian (par = -0.65, tau = -0.45)
3,Rotated Clayton 90 degrees (par = -0.64, tau = -0.24)
2 2,1jsurvival Clayton (par = 0.03, tau = 0.01)
- TPSA
type: C-vine logLik: 340.1 AIC: -674.21 BIC: -659.77
) ClogP,
1 <-> Permeability, 2 <-> CrippenClogP, 3 <-> TPSA Permeability
tree structure (vine)
pairwise dependence (copula) Permeabili ty

Figure 9. (a). Regardless of the distributions of the marginals, the CDF score from a copula is the same. (b) An example of explicitly
encoding domain knowledge in a BO procedure by imposing the blue tree structure (specifying the matrix representation of the vine) and
selection of pairwise dependencies (choice of parametric/non-parametric family).

The advantages of integrating copula-based estimators for our metric and acquisition function are threefold: (i) scalability
from the convenient pair copula construction of vines, (ii) robustness wrt marginal scales and transformations thanks
to inherent copula properties Theorem 4.7 and Equation 4.8, and (iii) domain-aware copula structures from the explicit
encoding of dependencies in the vine copula matrix, including choice of dependence type (e.g., low or high tail dependence).

Figure 9 illustrates the use of copulas in the context of optimizing multiple objectives in drug discovery, where data tends
to be sparse. In panel (a) we see that, thanks to the separate estimation of marginals and dependence structure, different
marginal distributions have the same Pareto front in the PIT space, in which we evaluate our CDF scores. Hence, with
copula-based estimators, we can guarantee robustness without any overhead for scalarization or standardization of the data
as required by other counterparts. In panel (b) we show how we can encode domain knowledge of the interplay between
different molecular properties in the Caco2+ dataset. Namely, permeability is often highly correlated with ClogP and TPSA,
with positive and negative correlation, respectively, which is even more notable at the tails of the data (see panel (a) and
Appendix F). Such dependence can be encoded in the vine copula structure and in the choice of copula family for each pair.
For example, we specified a rotated Clayton copula so that the tail dependence between TPSA and permeability is preserved.

E. Other multivariate CDF estimators

Copulas are not the only statistical tool we can use for estimating multivariate CDFs. Here we include three more alternatives
for the CDF acquisition function based on: empirical CDF, kernel density estimation and multivariate Gaussian. However,
not all of them enjoy the fast computation in higher dimensions as vine copulas, and they all lack the guarantees for
invariance to scale and transformation. The sensitivity analysis doesn’t show significant difference between the performance
of the estimators, thus, the choice can be made based on users’ preference.

We want to highlight the general form of our proposed score, by showing how the CDF estimator as well as the BOTIED
acquisition function can be computed with other parametric and non-parametric estimators. In what follows we include:

* Multivariate Gaussian CDF (BOtied,,,,,) We compute the sample mean and covariance (u, ) from the training
data, and than use a closed—form analytical solution to obtain the multivariate Gaussian distribution with which we can
compute our CDF scores. F'(x) = P(X < x) where X ~ (1, X)

* Empirical CDF (BOtiedempirical) The empirical cumulative distribution function is a step function that jumps up by
% at each of the n data points. Its value is the fraction of observations of the measured variable that are less than or

equal to the specified value: F), (t) = #elements in_sample <t - L§~0 g,

¢ Kernel densityAestimation (BOtiedkpg) Finally, we can also use a mixture of densityA estimators, such as KDE. Since
the density is f(z) = L Zﬁl fi(z), then the joint CDF is the mixture of CDFs, F'(z) = L Z£1 F;(x). With a

_ $(z—2)) o(z—z')

Gaussian kernel we have f;(z) and analogously F; = where o is the kernel bandwidth.
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Table 3. HV indicators (computed in the original units) and /cpr different batch size on for the Penicillin dataset. Higher is better and best
per column is marked in bold. We report the average metric across twenty random seeds along with their standard error in parentheses.
Penicillin (M=3, q=1) Penicillin (M=3, q=2) Penicillin (M=3, q=4)
Icpr HV Icpr HV Icpr HV
BOtied vl  0.15(0.06) 32.69e4(1.78e4) 0.33(0.09) 34.08e4(2.7e4) 0.31(0.08) 33.55e4(2.4e4)
BOtied v2  0.26(0.08) 31.05e4(2.11e4) 0.31(0.07) 30.06e4(2.21e4) 0.29(0.07) 33.34e4(2.2e4)
NParEGO 0.19(0.08) 31.31e4(1.96e4) 0.18(0.06) 30.79e4(2.26e4) 0.18(0.08) 31.67e4(1.4e4)
NEHVI 0.16(0.09) 30.72e4(2.06e4) 0.19(0.08)  32.04e4(1.85e4) 0.19(0.01) 32.2e4(2.8e4)
Random 0.34(0.05) 10804(112305) 0.21(0.11))  30.8e4(1.86e4)  0.18(0.09) 30.65e4(1.5¢e4)

F. Experimental detail and additional results

We executed batched BO simulations with sequential greedy optimization and varying batch sizes ¢ € {1,2,4}. The number
of iterations 7" varied across the experiments.

Sequential greedy optimization In batch BO, we seek joint optimization over the ¢ design points, so the decision variable
is effectively ¢xd-dimensional. When ¢ is large, we may employ a sequential greedy scheme, where the ¢ designs are
selected in series by fantasizing observations at the predictive mean of already-selected designs and conditioning on them to
select the next design (Wilson et al., 2018). For the baseline acquisition functions supported in the BoTorch, we use the
optimize_acqgf function with sequential=True.

Other parameters include: the initial data size Ny, the size of the pool NV, and the number of predictive posterior samples L.
We fixed the size of the pool relative to the selected batch, at N/B = 100. We also fixed L = 20, which was found to yield
good sample coverage and a stable BOtied acquisition value.

Unless otherwise stated, the surrogate model was a multi-task Gaussian process (MTGP) with a Matern kernel implemented
in BoTorch (Balandat et al., 2020) and GPyTorch (Gardner et al., 2014). The inputs and outputs were both scaled to
the unit cube for fitting the MTGP, but the outputs were scaled back to their natural units for evaluating the respective
acquisition functions.

F.1. Branin-Currin
Branin-Currin (d=2, M =2 Belakaria et al., 2019) is a composition of the Branin and Currin functions featuring a concave

Pareto front (in the maximization setting). We maximize

fi(zr,z0) = — 7£x2+§x — 2+10(17i)cos(x)+10
1\ L1, L2) = L2 47T217717’ 8 1

1 )]2300x§ + 190022 + 209221 + 60

) = —[1 — - ’
fo(z1,22) [1 —exp < 10023 + 5002% + 4x1 + 20

2wy

where 21,22 € [0, 1]. We used T = 30.

F.2. DTLZ2
We took two configurations of DTLZ2 with d=6, M =4 and d=7, M =6 (Deb & Gupta, 2005).

F.3. Penicillin production

The penicillin production problem (d=7, M =3; Liang & Lai, 2021) simulates the penicillin yield, time to production, and
undesired byproduct for seven input parameters of the production process.

F.4. Caco2+

For the Caco2 problem (M = 3; Wang et al., 2016) the objective is to identify molecules with maximum cell permeability.
Here, permeability describes the degree to which a molecule passes through a cellular membrane. This property is critical
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for drug discovery (DD) programs where the disease protein being targeted resides within the cell (intracellularly). In
each experiment, a molecule x; is applied to a monolayer of Caco?2 cells and, after incubation, the concentration c of x;
is measured on both the input and output side of the monolayer, giving c;, and cou(Van Breemen & Li, 2005). The ratio
Cout/Cin 18 then treated as the final permeability label yf .

Cellular membranes are composed of a complex mixture of lipids and other biomolecules. In order to enter and (passively)
diffuse through a membrane, molecule x; should interact favorably with these biomolecules and/or avoid disrupting their
packing structure. Increasing the lipophilicity (logP) of x; is thus one strategy to increase permeability. However, increasing
logP often results in promiscuous binding of x; to non-disease related proteins, which can lead to undesired side-effects. As
such, we seek to minimize the computed logP (clogP, %!) in our optimization task and note that this could directly compete
with (i.e., harm) permeability.

Lastly and related, common objectives during MPO in DD settings include increasing the affinity and specificity of target
binding. As opposed to non-specific lipophilic interactions as above, polar contacts (such as hydrogen bonds) between drug
molecules and proteins often result in higher affinity and more specific binding. We compute the topological polar surface
area (TPSA, yf) of each candidate x; as one indicator of its ability to form such interactions and seek to maximize it in
our optimization. As with decreasing logP, increasing TPSA can negatively impact permeability and we thus consider it a
competing objective.

It is important to note that the treatment of each of these optimization tasks as unidirectional (max or min) is a simplification
of many practical DD settings. There is often an acceptable range of each value that is targeted, and leaving the bounds in
either direction can be problematic for complex reasons. We direct the reader to (D. Segall, 2012) for a comprehensive
review.

For fitting the MTGP on the Caco2+ data, we represent each input molecule as a concatenation of fingerprint and fragment
feature vectors, known as fragprints (Thawani et al., 2020) and use the Tanimoto kernel implemented in GAUCHE (Griffiths
et al., 2022).

F.5. Real-world datasets for data-driven evolutionary multi-objective optimization

To evaluate BOtied in real-world scenarios, we include experiments over three datasets from the DDMOP benchmark (He
et al., 2020). Differently from the synthetic test functions which have analytical solutions, DDMOP, proposes a testbed of
complex objective functions, approximated by expensive numerical simulations, formulated as Data-Driven Multi-objective
Optimization Problems, hence the name DDMOP. We select the three scenarios 3.

* Car cab from (Deb et al., 2009), optimization of vehicle frontal structure, d = 11, M = 9, N = 120. The objectives
represent the performance of the car cab, through weight of the car, fuel economy, acceleration time, road noise at
different speed, and roominess of the car.

* Power system (Kavasseri & Srinivasan, 2011), d = 11, M = 3, N = 120. The objectives relate to the performance
of a power system, active power loss, voltage deviation and generation cost based on the optimal joint placement of
phasor measurement units.

¢ Neural network performance (Jin & Sendhoff, 2008), d = 17, M = 2, N = 186. One objective denotes the
complexity of the network in terms of nonzero weights, while the second objective is the classification error rate of the
neural network.

We negate all three problems to turn them into maximization objectives. As we approach these problems from a realistic
perspective, we ran the experiments with batch size ¢ = 4, T = 20 and initial set of 24,9, 10 points respectively. The
reference points for each dataset were chosen as the minimum per objective decreased by le-3.

F.6. Details on wall clock time

Details for Figure 7. For all acquisition functions, we report the wall clock time per single acquisition function evaluation
as computed on a Tesla V100 SXM2 GPU (16GB RAM) and an Intel Xeon CPU @ 2.30GHz (240GB RAM). A single call

SWhich have more than 100 data points in the latest version of that datasets we were provided by the authors at the time of writing this
paper
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Table 4. HV and Icpr across three DDMOP datasets. Mean and sterr in brackets.

CarCab (M=9)

PowerSystem (M=3)

NeuralNetwork (M=2)

Icpr HV Icpr HV Icpr HV
BOtied v1  0.095(0.01) 2.39e5 (0.21e5) 0.732(002)  0.0235(0.001) 0.852(0.01) 0.512(0.02)
BOtied v2 0.091(0.02) 2.44e5(0.30e5)  0.732(002) 0.0235(0.001) 0.849(0.02) 0.511(0.02)
NPareGo  0.094(0.02) 2.36e5(0.23e5) 0.729(0.02) 0.0233(0.001) 0.847(002) 0.509(0.03)
NEHVI 0.090(0.02)  2.3e5(0.35e5)  0.724(0.02) 0.0218(0.002) 0.847(0.02) 0.502(0.03)
random 0.079(0.02) 2.24e5(0.31e5) 0.721(0.05) 0.0222(0.002)  0.850(0.02) 0.504(0.03)

takes in the surrogate inference results for the candidate pool as well as the previously evaluated points and computes the
acquisition scores.

* BC M=2: ¢ batch size = 4, number of predictive samples=40, initial n = 10, pool size = 40

e DTLZ M=4: q batch size = 4, number of predictive samples=20, initial n = 50, pool size = 40

e DTLZ M=6: q batch size = 4, number of predictive samples=20, initial n = 50, pool size = 40.

Na* ‘
0] N N o)
' 7
o]

Figure 10. Examples of molecules in the Caco2+ dataset. The goal for the Caco2+ problem is to minimize log p, maximize permeability,
and maximize TPSA.

logp=-129 Permeability=-4.33 TPSA=49.36

(a) Desirable properties

logp=-104 Permeability=-4.35 TPSA=72.68
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G. Ablation studies
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Figure 11. Ablation studies for BOtied v1. (a) BOtied is robust to the number of posterior samples drawn. (b) Increasing the batch size
improves acquisition, particularly as it improves the CDF fit quality in earlier iterations.

H. Importance of invariance to scaling and monotonic transformations

Consider a scenario that occurs commonly in drug design, where both objectives are “zero-inflated,” meaning that they
are distributed with an abundance of zero (null) values plus a wide dispersion of valid, non-null values (Figure 12). We
linearly scale the objective values to the [0, 1] range and define the “null” value at 1 for both objectives. The color gradient
corresponds to the indicator value at each solution (¢ = 1). With HV, we need to specify a reference point, set at [1.1,
1.1] in this case. Because the having a null value in even one of the objectives makes the HV small for a solution, the HV
indicator can only distinguish points with non-null values in both objectives (lower left corner) from all other points. It
assigns near-zero scores to regions with null values in only one objective (upper left and lower right corners), which should
be included in the approximate Pareto front. On the other hand, the CDF indicator effectively identifies the full Pareto front,
including the upper left and lower right corners.

1. Discontinuous Pareto fronts

Copulas can flexibly model multi-modal outcome distributions as well, particularly those with discontinuous Pareto fronts.
In Figure 13, we consider objectives distributed as a mixture of two well-separated Gaussians. On the 200 simulated
observations, we fit a CDF with a Gaussian mixture copula and kernel density estimation (KDE) marginals. The zero level
line of the CDF closely traces the true Pareto front (solid red curve).
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(a) HV indicator

Figure 12. A scenario where both objectives are "null-inflated,” meaning that they are distributed with an abundance of null values plus a
wide dispersion of valid, non-null values. We linearly scale the objective values to the [0, 1] range and define the “null” value at 1 for both
objectives. The color gradient corresponds to the indicator value at each solution (¢g=1). (a) With HV, we need to specify a reference
point, set at [1.1, 1.1] in this case. Because the having a null value in even one of the objectives makes the HV small for a solution, the HV
indicator can only distinguish points with non-null values in both objectives (lower left corner) from all other points. It assigns near-zero
scores to regions with null values in only one objective (upper left and lower right corners), which should be included in the approximate
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Pareto front. (b) The CDF indicator effectively identifies the full Pareto front, including the upper left and lower right corners.
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Figure 13. Level lines of the CDF (left) and the PDF (right) from a CDF fit with Gaussian mixture copula and kernel density estimation
(KDE) marginals, based on 200 observations simulated from a mixture of two Gaussians (gray dots). The zero level line of the CDF

closely traces the true Pareto front (solid red curve).
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