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Abstract001

Video question answering benefits from the002
rich information available in videos, enabling003
a wide range of applications. However, the004
large volume of tokens generated from longer005
videos presents significant challenges to mem-006
ory efficiency and model performance. To al-007
leviate this issue, existing works propose to008
compress video inputs, but usually overlooking009
the varying importance of static and dynamic010
information across different queries, leading to011
inefficient token usage within limited budgets.012
To tackle this, we propose a novel token se-013
lection strategy, EXPLORE-THEN-SELECT, that014
adaptively adjust static and dynamic informa-015
tion needed based on question requirements.016
Our framework first explores different token al-017
locations between key frames, which preserve018
spatial details, and delta frames, which capture019
temporal changes. Next, it employs a query-020
aware attention-based metric to select the opti-021
mal token combination without model updates.022
Our proposed framework is plug-and-play that023
can be seamlessly integrated within diverse024
video-language models. Extensive experiments025
show that our method achieves significant per-026
formance improvements (up to 5.8%) among027
various video question answering benchmarks.028
The code is accessible at the anonymous link.029

1 Introduction030

Video Question Answering (VideoQA) has broad031

applications across various fields (Mogrovejo and032

Solorio, 2024; Zhang et al., 2024a). Compared to033

text, videos provide more intuitive and dynamic034

information, delivering richer context and details035

by combining visual and temporal elements. Cur-036

rent research primarily leverages powerful large037

language models to build video-language mod-038

els (VideoLMs) (Lin et al., 2023; Zhang et al.,039

2024b), significantly enhancing AI performance040

in VideoQA tasks. However, the extensive visual041

information in long videos leads to a dramatic in-042

crease in token counts. For instance, if one frame043

…

Question1: How many Spider-Men are visible in the video?

Question2: As can be seen in the video, what happens when the 
black spider-man is blamed by the other spider-man?

Question3: What is the traffic situation in the city?

… …

… … …

Figure 1: Different question types vary in their depen-
dence on static and dynamic information in videos. For
example, Question 2 relies on fine-grained dynamic
information, while Question 1 and 3 only require key
frames. The frames needed to answer the questions are
highlighted with corresponding colored boxes.

generates 196 tokens (Li et al., 2024a), a 5-minute 044

video sampled at 1fps would produce nearly 60,000 045

tokens, posing significant challenges to memory re- 046

quirements and model capabilities. 047

Given the strict token limitations in practical 048

VideoLM deployments, effectively representing es- 049

sential video information requires a careful alloca- 050

tion between static and dynamic content. Static in- 051

formation, which refers to the visual content within 052

individual frames, is crucial for questions like ob- 053

ject recognition, where spatial details dominate. In 054

contrast, dynamic information captures temporal 055

changes and motion patterns across consecutive 056

frames, which are essential for understanding ac- 057

tions or events. Figure 1 illustrates different types 058

of questions, which vary in their reliance on static 059

and dynamic information. Considering these vary- 060

ing dependencies, the challenge lies in optimiz- 061

ing the allocation of limited tokens to preserve the 062
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most relevant aspects of both static and dynamic063

information, depending on specific question re-064

quirements. Although existing studies (Shen et al.,065

2024; Nie et al., 2024) have explored token com-066

pression through changing frame sampling rates067

or intra-frame downsampling, they fail to address068

the varying dependencies on static and dynamic069

information across different question types.070

To achieve an effective allocation between static071

and dynamic information in video token compres-072

sion, we propose a novel token selection strategy,073

EXPLORE-THEN-SELECT, that adaptively aligns074

video tokens with textual queries under a limited075

token budget. Unlike previous approaches that rely076

on fixed rules, our strategy autonomously and adap-077

tively combines static and dynamic content based078

on the nature of the questions (e.g., action descrip-079

tion, event sequence, or object recognition), ensur-080

ing more precise responses to diverse queries.081

Specifically, we categorize video frames into key082

and delta frames. key frames are fully retained to083

preserve essential spatial details, such as objects,084

while delta frames are sparsely processed, keep-085

ing only a subset of tokens to capture important086

temporal changes. To optimize token allocation be-087

tween these two types of frames, EXPLORE-THEN-088

SELECT uses a two-stage process. In the explo-089

ration stage, we construct a search space compris-090

ing various combinations of key and delta frames,091

each yielding a token subsequence of equal con-092

strained length. By adjusting the proportion of key093

and delta frames, we can prioritize either static de-094

tails or dynamic changes based on question require-095

ments. In the selection stage, we evaluate each096

combination using an query-aware metric derived097

from the shallow attention layers of VideoLMs.098

This metric quantifies the alignment between the099

query and video tokens, enabling us to select the100

optimal combination to answer the question.101

Notably, our framework is training-free, as nei-102

ther the exploration nor selection processes require103

model updates. Leveraging its seamless integra-104

tion with diverse VideoLMs, we demonstrate the105

effectiveness of our approach on two widely recog-106

nized VideoLMs across multiple benchmarks for107

both long and short videos. Using our framework,108

models can achieve improvements of up to 5.8%.109

Our key contributions are summarized as follows:110

• Building on the observation that questions rely111

differently on static and dynamic video infor-112

mation, we propose a novel EXPLORE-THEN-113

SELECT framework to adaptively and effec- 114

tively select video tokens reflecting the opti- 115

mal balance of static and dynamic information 116

under limited token budgets. 117

• To address static and dynamic information 118

needs, we design an effective search space 119

of key-delta frame combinations. During the 120

selection phase, we employ a query-aware ap- 121

proach, leveraging an attention-based metric 122

to adaptively evaluate candidates and select 123

the optimal combination for each question. 124

• We conduct extensive experiments on both 125

long- and short-video benchmarks, demon- 126

strating the effectiveness of our method. 127

Thanks to its plug-and-play design, our ap- 128

proach generalizes well across different mod- 129

els without extra fine-tuning and enables di- 130

rect control over the token budget for flexible 131

adaptation to resource constraints. 132

2 Related Work 133

2.1 Video Language Models 134

Significant progress has been made in video lan- 135

guage model research based on LLMs. These 136

models can be primarily classified into two types: 137

general-purpose vision-language models (Team 138

et al., 2024; Chen et al., 2024b; OpenAI, 2024; 139

Yao et al., 2024; Ye et al., 2023) and specialized 140

video language models (Lin et al., 2023; Zhang 141

et al., 2024c; Li et al., 2024c; Zhang et al., 2025; 142

Liu et al., 2024). Among the former, LLaVA- 143

OneVision (Li et al., 2024a) unifies image and 144

video tasks, while Qwen2-VL (Wang et al., 2024) 145

introduces dynamic resolution support and three- 146

dimensional positional encoding for enhanced vi- 147

sual feature capture. Among specialized models, 148

VideoChat (Li et al., 2023b) targets deep video un- 149

derstanding and interaction, and LongVA (Zhang 150

et al., 2024b) extendeds the context length of lan- 151

guage models, transferring their advantages in long- 152

text processing to the video domain. 153

2.2 Visual Token Compression 154

Some studies (Bolya et al., 2022) focus on com- 155

pressing visual tokens in video encoders. For ex- 156

ample, RLT (Choudhury et al., 2024) effectively 157

reduces the number of tokens by replacing repeated 158

patches in videos with a single patch. Other works 159

(Li et al., 2024b; Qian et al., 2025; Shen et al., 160
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Method Pre- Training-Video-
Input Free Specific

FastV (Chen et al., 2024a) ✗ ✓ ✗

ZipVL (He et al., 2024b) ✗ ✓ ✗

FrameFusion (Fu et al., 2024b) ✗ ✓ ✓

TokenPacker (Li et al., 2024b) ✓ ✗ ✗

VideoStreaming (Qian et al., 2025) ✓ ✗ ✓

SlowFocus (Nie et al., 2024) ✓ ✗ ✓

LongVU (Shen et al., 2024) ✓ ✗ ✓

Ours ✓ ✓ ✓

Table 1: Feature comparison with existing methods.
“Pre-Input” refers to methods which reduce tokens be-
fore feeding them into large language models, while
“Video-Specific” denotes methods which leverage the
unique characteristics of video data.

2024; Lan et al., 2024) introduce dedicated mod-161

ules for token compression, such as BLIP-2 (Li162

et al., 2023a), which uses a Q-Former module with163

learnable queries to generate compact semantic rep-164

resentations. Additionally, inspired by KV cache165

compression in long-text processing (Zhang et al.,166

2023), some methods apply similar strategies to vi-167

sual tokens (He et al., 2024b; Chen et al., 2024a; Fu168

et al., 2024b). These methods optimize token usage169

efficiency by setting thresholds based on specific170

metrics to prune visual tokens.171

We compare existing methods in Table 1, not-172

ing that training-free approaches mainly compress173

tokens within the KV cache, reducing FLOPs but174

not addressing the issue of excessive token input to175

the large language model. In contrast, methods that176

reduce tokens in advance typically require training.177

This paper introduces a novel pre-input, training-178

free framework for more effective compression,179

considering query-aware static and dynamic infor-180

mation balancing.181

3 Preliminary182

In this section, we outline the common inference183

pipeline of VideoLMs as the setup for our approach.184

It consists of three key steps, including video frame185

sampling, visual encoding and embedding, and186

multimodal inference.187

Video Frame sampling. Given an input video, N188

frames are uniformly sampled to form a represen-189

tation V ∈ RN×C×Hv×Wv , where C = 3 denotes190

the RGB channels, and Hv and Wv represent the191

height and width of each frame, respectively.192

Visual Encoding and Embedding. The sampled193

frames are decomposed into non-overlapping spa-194

tiotemporal patches, which are processed by a vi- 195

sion encoder to extract spatiotemporal features. 196

These features are projected into the language 197

model’s token space via a linear projector, result- 198

ing in visual token embeddings F ∈ RT×H×W×D, 199

where T represents the temporal resolution, H and 200

W denote the spatial resolutions, and D is the to- 201

ken embedding dimension. 202

Multimodal Processing. The visual token em- 203

beddings F are then flattened into a sequence 204

Tv ∈ RTHW×D, where the sequence length is 205

L = T×H×W . The sequence Tv, instruction em- 206

beddings Ti, and query embeddings Tq are concate- 207

nated into a unified input T = [Ti,Tv,Tq], where 208

[·] denotes token concatenation. Finally, VideoLM 209

processes the unified input sequence T to generate 210

a textual response to the question. 211

4 Method 212

4.1 Problem Definition 213

Due to GPU memory and model capability con- 214

straints, the number of visual tokens processed dur- 215

ing inference is capped at Lb. The fixed token 216

budget limits frame sampling to a reduced number 217

of frames, resulting in significant loss of rich visual 218

information, particularly in long videos. 219

In this work, we aim to sample more frames 220

to expand the amount of information we can cap- 221

ture, which generates an excessive number of to- 222

kens, leading to a sequence length L ≫ Lb. Then 223

we compress the tokens to meet the token budget, 224

enabling more effective utilization of rich visual 225

information within the limited length. 226

To meet our goal, we propose a token-efficient 227

framework that automatically and adaptively se- 228

lects a limited yet informative set of visual tokens 229

by leveraging the textual query’s relevance to both 230

static and dynamic visual information. Our method 231

emphasizes balancing these two types of informa- 232

tion, ensuring that the selected tokens maximize 233

their alignment with the query while maintaining 234

memory efficiency. 235

4.2 Framework Overview 236

We adopt an EXPLORE-THEN-SELECT framework, 237

as illustrated in Figure 2. In the token exploration 238

stage (Section 4.3), we construct a search space 239

of n visual token subsequences, each of length Lb, 240

where every visual token subsequence reflects a dis- 241

tinct balance of static and dynamic information. In 242
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Figure 2: Overview of our EXPLORE-THEN-SELECT framework for token selection. In the exploration stage, we
generate different subsequences of different combinations of key and delta-frame tokens. In the selection stage, we
evaluate their query-aware metrics based on shallow attention layers and select the optimal one for input to LLMs.

the token selection stage (Section 4.4), we identify243

the optimal sequence that best aligns with the query244

requirements. Details will be discussed below.245

4.3 Exploration: Search Space Design246

This section describes the generation of n token247

subsequences, each of length Lb, from a token se-248

quence of length L. To balance static and dynamic249

information in videos based on query requirements,250

we classify frames into key and delta frames. It is251

worth noting that since some models employ tem-252

poral reduction, here we refer to “frames” as F and253

the number of frames is T . Based on whether the254

tokens in a subsequence originate from key or delta255

frames, we divide them into two subsets: key-frame256

tokens Tkey and delta-frame tokens Tdelta.257

Key-frame Token. The key-frame tokens are ex-258

tracted from the key frames. Assuming Ns key259

frames are chosen in the video, we uniformly se-260

lect them from F . The temporal indices of these261

frames are:262

I =

{⌊
kT

Ns

⌋
+ 1 | k = 0, 1, . . . , Ns − 1

}
, (1)263

where the first frame is always selected as a key264

frame. We preserve all tokens from these key265

frames to constitute Tkey as:266

{F i,h,w | i ∈ I, h ∈ [1, H], w ∈ [1,W ]}, (2)267

where F i,h,w ∈ RD represents the token embed-268

ding at the i-th frame and spatial location (h,w)269

in F . Obviously The total number of key tokens 270

satisfies |Tkey| = Ns ×H ×W . 271

Delta-frame Token. As illustrated in Figure 3, 272

the key frames divide the entire sampled frame se- 273

quence into Ns intervals. The frames within these 274

intervals are defined as delta frames, and the delta- 275

frame tokens Tdelta are extracted from them to cap- 276

ture the dynamic information relative to the preced- 277

ing key frames. Since the subsequence length is Lb, 278

it is evident that the number of delta-frame tokens 279

satisfies |Tdelta| = Lb − |Tkey|. These tokens are 280

uniformly distributed across each interval, meaning 281

the number of delta-frame tokens selected from the 282

i-th interval satisfy |Tdelta,i| = ⌊|Tdelta|/Ns⌋. 283

Inspired by video codec, to retain as much dy- 284

namic information as possible, we select tokens 285

from each interval that exhibit the largest differ- 286

ences compared to the corresponding tokens in the 287

preceding key frame. We first define the token 288

difference metric based on the cosine similarity 289

between two token embeddings: 290

D(fi,fj) = 1− fi · fj
∥fi∥∥fj∥

. (3) 291

This metric increases as the two embeddings 292

become more dissimilar. Then, we select |Tdelta,i| 293

tokens in the interval i that have the largest differ- 294

ences compared to the corresponding tokens in the 295

preceding key frame. We define Tdelta,i as: 296

{F j,h,w
i | Top|Tdelta,i|D(F 0,h,w

i ,F j,h,w
i ),

j ∈ [1, Ti], h ∈ [1, H], w ∈ [1,W ]},
(4) 297
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Generated Token Subsequence

… … … …

Interval 1 Interval 2

1 2 3 4 5 6

Key-frame Tokens Delta-frame Tokens

Figure 3: An example of token subsequence generation
with 6 total frames and 2 key frames.

where F 0,h,w
i denotes the token embedding at po-298

sition (h,w) in the preceding key frame of current299

interval i, and F j,h,w
i denotes the token embedding300

at position (h,w) in the j-th delta frame of interval301

i. Ti refers to the number of delta frames in i-th302

interval.303

Token Subsequence Generation. Then we merge304

Tkey and Tdelta according to their original order to305

obtain the Lb-long token subsequence T̂v.306

To generate n candidate token subsequences, we307

vary Ns from 1 to n. As Ns decreases, the number308

of delta-frame tokens increases, thereby preserving309

more dynamic information under the same token310

budget. Conversely, the number of key-frame to-311

kens increases, preserving more static information.312

In this way, we can generate token subsequences313

with varying proportions of static and dynamic in-314

formation to adapt to the requirements of different315

queries.316

Notably, our frame division is inspired by the317

GOP structure in video codec (Lee et al., 2006),318

where I-frames capture full scenes and P/B-frames319

encode temporal changes. Besides, similar to ad-320

justing GOP sizes, varying the proportion of key321

and delta frames allows us to control the emphasis322

on static or dynamic cues.323

4.4 Selection: Quick Evaluation324

After obtaining n token subsequences of length Lb,325

we perform an evaluation and select the optimal326

subsequence based on the chosen metric. Previ-327

ous studies have identified certain characteristics328

of visual tokens in attention mechanisms. For in-329

stance, Chen et al. (2024a) shows that most vision 330

tokens can be removed at the second layer with- 331

out significant performance loss, and Wan et al. 332

(2024) observes that vision tokens are generally 333

less attended. Based on these findings, we con- 334

sider that the attention mechanism at the second 335

layer already provides meaningful clues of token 336

importance. Besides, we hypothesize that higher 337

cumulative attention scores on visual tokens indi- 338

cate a better utilization of the visual information. 339

To enable quick evaluation, we compute the at- 340

tention score matrix S at the second layer of the 341

VideoLMs, using textual query tokens as the query 342

input, and instruction and vision tokens as the key 343

input: 344

Q = WQHq, (5) 345

346

K = WK · Concat(Hi,Hv), (6) 347

348

S = softmax
(
QK⊤
√
dk

)
, (7) 349

where Hq, Hi, and Hv denote the hidden features 350

of the textual query, instruction, and visual inputs. 351

And dk is the dimension of key vectors in the atten- 352

tion mechanism. To quantify the attention allocated 353

to visual tokens, we compute the summation of at- 354

tention scores of the visual tokens. Specifically, to 355

ensure comprehensive consideration of each text 356

query token, we first extract the maximum values 357

along the query dimension from S, yielding an at- 358

tention score vector s for each visual token. Then 359

we sum the attention scores of the visual tokens: 360

s = max
i

Sij , (8) 361

362

s =

Ni+Nv∑
j=Ni

sj , (9) 363

where Sij represents the attention score of the i-th 364

query token to the j-th visual token, Ni denotes the 365

number of instruction tokens, and Nv is the number 366

of visual tokens. Finally, from the n candidates, 367

we select the input with the highest sum of visual 368

token attention scores as the optimal input: 369

T̄v = argmax
m∈{1,2,...,n}

s(m), (10) 370

where s(m) denotes the summed attention score for 371

the m-th token subsequence. 372
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Model Settings EgoSchema VideoMME MLVU
Method Sample Budget Short Medium Long Overall

VideoChat2 - 16 - 54.4 48.3 37.0 33.2 39.5 -
LongVA - 128 - - 61.1 50.4 46.2 52.6 -
mPLUG-Owl3 - 128 - - 70.0 57.7 50.1 59.3 -
LongVU - 1fps - 67.6 - - - 60.6 65.4

Qwen2-VL-7B

Original 64 - 66.2 71.1 59.4 50.8 60.4 50.6
Retrieval 256 64 63.6 71.0 61.3 52.2 61.5 49.4
Similarity 256 64 66.6 71.4 60.6 51.8 61.3 53.0
Ours 256 64 67.8 72.4 63.1 53.2 62.9 54.4

Original 32 - 64.7 68.9 55.2 48.7 57.6 46.8
Retrieval 128 32 61.7 70.0 58.6 51.6 60.0 46.8
Similarity 128 32 65.6 70.1 58.7 51.8 60.2 47.2
Ours 128 32 66.7 71.4 61.0 51.7 61.4 52.2

LLaVA-OneVision-7B

Original 64 - 60.1 70.6 55.8 47.8 58.0 50.8
Retrieval 256 64 57.7 64.0 53.4 47.0 54.8 44.6
Similarity 256 64 59.6 71.0 57.9 50.8 59.9 48.4
Ours 256 64 60.3 71.9 58.3 51.4 60.6 51.2

Original 32 - 60.4 71.3 57.4 48.0 58.9 46.8
Retrieval 128 32 57.9 63.2 53.9 46.0 54.4 44.0
Similarity 128 32 60.2 70.8 57.1 49.7 59.2 50.2
Ours 128 32 60.5 70.2 58.0 51.6 59.9 51.0

Table 2: Results on long video benchmarks show that our method achieves significant improvements over the
baselines, particularly on the advanced Qwen2-VL, with up to a 5.8% gain on the VideoMME medium subset.

5 Experiments373

5.1 Experiment Settings374

Benchmarks. To comprehensively evaluate per-375

formance, we select benchmarks for both long and376

short videos. We use VideoMME, EgoSchema,377

and MLVU for long videos, and MSVD-QA and378

ActivityNet-QA for short videos.379

VideoMME (Fu et al., 2024a) contains 900380

videos (11 seconds to 1 hour) and 2,700 QA pairs.381

EgoSchema (Mangalam et al., 2023) includes over382

5,000 questions based on videos averaging 3 min-383

utes in length. MLVU (Zhou et al., 2024) provides384

over 500 QA pairs on videos ranging from 3 min-385

utes to 2 hours. MSVD-QA (Xu et al., 2017) in-386

cludes 1,970 short clips (10 seconds on average),387

with a test split of approximately 13,000 questions.388

ActivityNet-QA (Yu et al., 2019) provides 800389

videos and 8,000 QA pairs in the test set, aver-390

aging around 10 questions per video.391

We adopt multiple-choice accuracy as the met-392

ric for VideoMME, EgoSchema, and MLVU, and393

employ GPT-based scoring (OpenAI, 2024) for the394

open-ended MSVD-QA and ActivityNet-QA.395

Baselines. We validate our plug-and-play method396

on two representative models: Qwen2-VL (Wang397

et al., 2024), featuring dynamic resolution and mul-398

timodal rotary position embeddings, and LLaVA- 399

OneVision (Li et al., 2024a), supporting multi tasks, 400

both in their 7B versions. Results for Qwen2.5-VL 401

(Bai et al., 2025) are included in Appendix A.1. 402

As shown in Table 1, prior methods either com- 403

press only within the KV cache, leaving long input 404

sequences unaddressed, or require training models, 405

making direct comparison with our training-free 406

approach unfair. Thus we consider three baselines: 407

1) Original: uniform frame sampling within the to- 408

ken budget; 2) Retrieval: oversample frames, then 409

prune based on cosine similarity between frame 410

and query embeddings to fit the token limit; 3) Sim- 411

ilarity: oversample frames, then prune based on 412

cosine similarity between adjacent token embed- 413

dings. In practice, both “Retrieval” and “Similarity” 414

strategies are commonly adopted in compression 415

modules (Qian et al., 2025; Song et al., 2024; He 416

et al., 2024a). For reference, we also report results 417

from several training-based video understanding 418

methods (Li et al., 2023b; Zhang et al., 2024b; Ye 419

et al., 2024; Shen et al., 2024) in the first block of 420

Table 2, though they are not directly comparable 421

due to training cost differences. To further validate 422

the advantages of our method, we include a com- 423

parison with our reproduced training-free LongVU 424

in Appendix A.2. 425
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Implementation Details. All experiments are con-426

ducted on two 40GB A100 GPUs. For multiple-427

choice questions, the model generates one token428

(three for MLVU), while for open-ended questions,429

outputs are limited to 30 tokens. The prompts used430

are detailed in Appendix B. Sampling is disabled431

to ensure deterministic results.432

Note that video resolution affects the number433

of frame tokens generated by Qwen2-VL, making434

a fixed token budget yield varying frame counts435

across videos and complicating comparisons. To436

address this, we set a frame-based budget Tb, so the437

token limit is Lb = Tb×H ×W , where H ×W is438

the token count per frame. This approach stream-439

lines implementation and ensures fair comparison.440

5.2 Main Results441

Long Video Results. Table 2 shows results on442

long video benchmarks for two settings: 256-frame443

sampling with a 64-frame budget (256-64) and 128-444

frame sampling with a 32-frame budget (128-32).445

Our method outperforms baselines across all bench-446

marks and most subsets. Qwen2-VL-7B signif-447

icantly outperforms baselines by up to 4.2% on448

EgoSchema, 2.5% on VideoMME, and 5.0% on449

MLVU (256-64), and by up to 5.0%, 3.8%, and450

5.4% (128-32), with a 5.8% gain on VideoMME451

medium subset. While our method also achieves452

notable improvements on LLaVA-OneVision-7B,453

the gains are less pronounced than on Qwen2-VL,454

likely due to noise from its one-dimensional posi-455

tional encoding. The three-dimensional positional456

embedding of Qwen2-VL-7B offers more stable457

results, hilighting the importance of positional em-458

bedding design. Overall, these results demonstrate459

the effectiveness of our method, and reveal some460

model-specific behaviors and limitations.461

Short Video Results. Short-video benchmarks462

inherently contain fewer frames, simpler scenes,463

and primarily coherent motion, making them less464

affected by token length limitations. As a result,465

the trade-off between static and dynamic informa-466

tion is less pronounced, and performance gains467

tend to be smaller compared to long-video settings.468

Nonetheless, we evaluate our method’s generaliza-469

tion on short-video benchmarks by sampling 64470

frames and setting the budget to 16 for videos aver-471

aging 10 seconds. As shown in Table 3, our method472

consistently outperforms all baselines on Qwen2-473

VL-7B, achieving up to 3.8% higher accuracy and474

0.2 higher scores. On LLaVA-OneVision-7B, it475

Model Method MSVD-QA ActivityNet-QA
Acc Score Acc Score

Qwen2-VL

Original 66.0 3.59 50.3 2.82
Retrieval 64.4 3.52 48.6 2.74
Similarity 66.5 3.60 51.4 2.87
Ours 66.8 3.61 52.4 2.90

LLaVA-
OneVision

Original 54.3 3.09 52.6 2.90
Retrieval 54.8 3.12 50.1 2.77
Similarity 54.3 3.10 52.4 2.89
Ours 54.7 3.11 53.0 2.92

Table 3: Results on short video benchmarks. Although
primarily focused on long videos, our method show
stable and generalizable performance on short videos.

Method EgoSchemaVideoMME MLVU

Orignal 64.7 57.6 46.8
Explore + Random 66.3 60.7 50.2
Explore + Select 66.7 61.4 52.2

Table 4: Ablation study of our method. Results demon-
strate the effectiveness of both stages, with each compo-
nent yielding improvements over the baseline.

achieves strong results on ActivityNet-QA and per- 476

forms comparably to the “Retrieval” baseline on 477

MSVD-QA. These results demonstrate the robust- 478

ness and generalization ability of our method even 479

under short-video scenarios. 480

5.3 Ablation Studies 481

Stage Ablation. As shown in Table 4, we conduct 482

a two-stage ablation study on our method. The 483

ablation experiments were performed on Qwen2- 484

VL-7B, sampling 128 frames with a budget of 32 485

frames. First, we validated the effectiveness of the 486

exploration stage. As indicated by the “Explore 487

+ Random” row in the table, generating multiple 488

token subsequences followed by random selection 489

results in improvement compared to the original op- 490

eration, demonstrating the rationality of our search 491

space design. Then we verify the effectiveness 492

of the selection phase. On all benchmarks, our 493

selection method achieves improvement over the 494

random selection. 495

Metric Ablation. Table 5 presents two ablation 496

studies on our metric design using Qwen2-VL-7B 497

(128-frame sampling, 32-frame budget). The first 498

block compares including or excluding the query 499

token in the construction of K in Equation (6), 500

finding only marginal differences; for simplicity, 501

we exclude the query token in our final design. The 502

second block compares max and mean operations 503

7



Question 1 - What is the result of the match? (OCR Problems)      
Key-frame : Delta-frame Token Number - 3: 1

Question 2 - What is the performance of Brazil‘s player number 9 in the match? (Action) 
Key-frame : Delta-frame Token Number - 5 : 11

…

… ……

Figure 4: In our qualitative analysis cases, our method allocates key and delta-frame tokens at a ratio of 3:1 for
Question 1 which is a OCR problem, and a ratio of 5:11 for Question 2 which pertains to action recognition.

Model Method EgoSchema VideoMME

Qwen2-VL

w/ query 66.3 61.6
w/o query 66.7 61.4

mean 66.0 60.9
max 66.7 61.4

Table 5: Ablation study on metric design. The first
block shows that including the query token in K has
negligible impact, so it is omitted. The second block
finds that the max operation in Equation (8) outperforms
the mean on both datasets.

66.5

66.6

66.7

66.8

66.9

 1/4  1/2 1

(a) EgoSchema

61.1

61.2

61.3

61.4

61.5

 1/4  1/2 1

(b) VideoMME

Figure 5: Search space size analysis. The x-axis repre-
sents the search space size. There are n subsequences
in the space, and their key frame number ranges from
{1, 2, . . . , n}. Assuming the budget frame is Nb, “1”
refers to n = Nb, “1/2” indicates n = ⌊Nb/2⌋, “1/4”
represents n = ⌊Nb/4⌋. Larger search spaces benefit
EgoSchema but hurt VideoMME and increase time cost.
A balanced setting uses half the budget size.

for query aggregation in Equation (8), showing that504

the max operation consistently yields better results,505

thus supporting our metric choice.506

5.4 Further Analysis507

Qualitative Analysis. Figure 4 shows two ques-508

tions for the same video, which are correctly an-509

swered employing our method. Question 1, an510

OCR problem predominantly reliant on static infor-511

mation, prompts the method to allocate a key-to-512

delta-frame token ratio of 3:1. Conversely, action-513

ralated Question 2, necessitating the identification514

of a player scoring a goal, leads to the adoption of515

a key-to-delta-frame token ratio of 5:11.516

Search Space Size. We study search space size 517

impact using Qwen2-VL-7B, sampling 128 frames 518

with a 32-frame budget. Figure 5 shows perfor- 519

mance improves on EgoSchema when search space 520

matches the budget but declines on VideoMME. 521

We attribute this to excessive key frames, causing 522

sparse delta-frame token selection and deviation 523

from the training distribution, reducing effective- 524

ness. Additionaly, time cost rises with search space 525

size. To balance these, we set the search space to 526

half the budget frame number. 527

Time Overhead. The compression inevitably in- 528

curs time overhead, but our focus is on memory 529

efficiency and information retention. Our over- 530

head mainly comes from metric computation. Us- 531

ing shallow attention layers with question-length 532

queries, sequential processing of 16 candidates in 533

a 28-layer model doubles first-token latency but 534

leaves subsequent decoding unaffected, benefiting 535

open-ended questions. Parallel processing can fur- 536

ther reduce latency. On LLaVa-OneVision-7B (128- 537

frame sampling with a 32-frame budget), compared 538

to the 2.24s overhead incurred by LongVU, our ap- 539

proach costs only 0.43s without flash-attention. 540

6 Conclusion 541

Given that long videos possess tokens far exceed- 542

ing the capacity that models can process, we ad- 543

vance token compression strategies by unveiling 544

the following crucial fact: different question types 545

exhibit varying dependencies on dynamic and static 546

information. Based on this discovery, we propose 547

a novel token selection strategy for video token 548

compression. Our method splits video frames into 549

key and delta frames, and adaptively determines 550

the optimal token allocations among key and delta 551

frames guided by each specific query. Experiments 552

demonstrate the effectiveness and generalizability 553

of our method across multiple models and datasets. 554
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Limitations555

In this paper, we propose a novel token selection556

strategy for token compression in video question557

answering tasks, addressing the varying dependen-558

cies of questions on dynamic and static video in-559

formation. While the effectiveness of our method560

has been validated across multiple datasets, certain561

limitations remain. Firstly, due to differences in po-562

sitional encoding mechanisms across models, some563

encoding schemes may impact the model’s ability564

to accurately judge video length and temporally565

localize events. Nevertheless, we believe our ap-566

proach holds insight for developing compression567

modules in pre-trained and fine-tuned video models.568

Additionally, although our method incurs no addi-569

tional memory overhead (superior to pruning in the570

key-value cache), it does introduce time overhead.571

This overhead mainly stems from metric compu-572

tation. We utilize the output of a shallow (second-573

layer) attention mechanism to compute the metric,574

where only the attention map between query tokens575

and vision tokens is computed. This overhead only576

happens during the initial token inference and does577

not affect subsequent token generation. It is worth578

noting that such additional time cost is a common579

challenge for most compression methods.580
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A Additional Experiments798

The appendix provides supplementary experiments,799

results on the advanced Qwen2.5-VL model and800

comparison with training-free LongVU.801

A.1 Experiments on Qwen2.5-VL802

Qwen2.5-VL is the latest vision-language model in803

the Qwen series, officially released in 2025 Febru-804

ary. Building upon the foundation of Qwen2-VL,805

Qwen2.5-VL introduces significant enhancements806

in long-video comprehension. Notably, it incorpo-807

rates absolute time encoding, enabling the model to808

handle videos of extended durations with second-809

level event localization. To provide a more compre-810

hensive evaluation of our method, we report experi-811

mental results on the Qwen2.5-VL-7B model using812

the same experimental settings as in the main text.813

Long Video Results. Table 6 presents the long814

video benchmark results on Qwen2.5-VL-7B un-815

der different sampling and budget settings. Across816

both 256-64 and 128-32 settings, our method con-817

sistently achieves the best performance on most818

benchmarks. Specifically, under the 256-64 set-819

ting, our approach outperforms all baselines on820

EgoSchema, VideoMME, and MLVU, achieving 821

the highest accuracy of 61.6%, 65.7%, and 58.4%, 822

respectively. Notably, on VideoMME and MLVU, 823

our method yields improvements of up to 3.1% 824

and 8.4% over the baselines. Similarly, in the 128- 825

32 setting, our method continues to lead, with top 826

results on EgoSchema (60.6%), VideoMME and 827

MLVU (51.6%). These results demonstrate the ef- 828

fectiveness and robustness of our approach, and 829

further validate its strong generalization capability 830

across different models. 831

Short Video Results. Although our method 832

is primarily focused on long video understand- 833

ing, it also delivers strong results on short video 834

tasks. For instance, on Qwen2.5-VL evaluated with 835

ActivityNet-QA under the 64-frame sampling and 836

16-frame budget setting, our method achieves the 837

best performance among all baselines. As shown 838

in Table 7, it attains the highest accuracy of 54.3% 839

and a score of 3.07, outperforming the baselines by 840

up to 2.2% in accuracy and 0.11 in score. 841

A.2 Comparison with Training-free LongVU 842

To further demonstrate the advantages of our ap- 843

proach, we compare it with LongVU (Shen et al., 844

2024) by reproducing its compression method in a 845

training-free setting. Following the original paper, 846

we use DINOv2 (Oquab et al., 2023) with a 0.83 847

threshold for frame reduction and apply a ⌊2/3⌋ 848

downsampling ratio. However, we find that meet- 849

ing a precise token budget with LongVU requires 850

careful tuning of thresholds and heuristics, offering 851

only indirect control over compression. In contrast, 852

our method uses top-K selection, enabling direct 853

and accurate control of the token count. As shown 854

in Table 8, our method consistently outperforms the 855

reproduced LongVU across all models and bench- 856

marks, while providing more reliable and practical 857

token budget management. 858

B Prompt Details 859

We utilize the template provided by the model for 860

the instruction prompt part. We only introduce the 861

textual organization format in the questioning part. 862

B.1 Prompts for Multiple-Choice Questions 863

We add the sentence "Respond with only the 864

letter (A, B, C, or D) of the correct option." at the 865

beginning of the multiple-choice questions. Here 866

is an example for questions in VideoMME: 867

868
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Model Settings EgoSchema VideoMME MLVU
Method Sample Budget Short Medium Long Overall

Qwen2.5-VL-7B

Original 256 - 60.3 75.0 61.8 51.0 62.6 50.0
Retrieval 256 64 60.9 75.4 66.7 54.8 65.6 56.2
Similarity 256 64 60.8 74.0 64.7 54.3 64.3 53.6
Ours 256 64 61.6 75.8 65.2 56.1 65.7 58.4

Original 128 - 59.1 73.1 60.0 49.6 60.9 47.2
Retrieval 128 32 60.2 74.6 64.8 53.3 64.2 48.4
Similarity 128 32 60.0 73.3 60.9 51.6 61.9 47.6
Ours 128 32 60.6 74.1 63.2 53.9 63.7 51.6

Table 6: Long video benchmark results on Qwen2.5-VL-7B. Our method consistently achieves the best performance
across most benchmarks, with improvements of up to 3.1% on VideoMME and 8.4% on MLVU over the baselines,
demonstrating strong effectiveness and generalization.

Model Method ActivityNet-QA
Accuracy Score

Qwen2.5-VL

Original 52.1 2.96
Retrieval 52.7 2.98
Similarity 53.1 2.99
Ours 54.3 3.07

Table 7: Short video benchmark results on Qwen2.5-VL.
Our method achieves the highest accuracy and score,
outperforming all baselines.

Model Method EgoSchema VideoMME

Qwen2-VL
Original 66.2 60.4
LongVU 67.2 62.3
Ours 67.8 62.9

LLaVA-
OneVision

Original 60.1 58.0
LongVU 60.3 59.3
Ours 60.3 60.6

Qwen2.5-VL
Original 60.3 62.6
LongVU 61.6 64.5
Ours 61.6 65.7

Table 8: Comparison with training-free LongVU (256-
64). Our method consistently outperforms the repro-
duced LongVU across models and benchmarks, while
offering more precise control over the token count.

Respond with only the letter (A, B, C, or D) of the869

correct option.870

Which elements are depicted in the painting intro-871

duced by the video?872

A. A little girl and a red balloon.873

B. A little boy and a red balloon.874

C. A little girl and a blue balloon.875

D. An adult and a blue balloon.876

Here is an example for EgoSchema:877

878

Respond with only the letter (A, B, C, D or E) of879

the correct option. 880

Identify the recurring actions in the video and 881

briefly discuss their significance to the overall nar- 882

rative. 883

A. C constantly organizing a plastic box, suggest- 884

ing her obsession with tidiness 885

B. C and the boy taking turns throwing objects out 886

of the window, showcasing a game 887

C. C pouring water and conversing with the boy, 888

highlighting routine and communication 889

D. The boy trying to get C’s attention by throwing 890

a toy on the blanket repeatedly 891

E. C teaching the boy how to fold blankets properly 892

and arrange his toys 893

And here is an example for MLVU: 894

895

Respond with only the letter (A, B, C, D, E or F) of 896

the correct option. 897

In what setting does the video take place? 898

(A) Castle 899

(B) Forest 900

(C) Desert 901

(D) Countryside 902

(E) Ocean 903

(F) Campus 904

B.2 Prompts for Open-Ended Questions 905

We add the sentence "Answer the question 906

according to the video." at the beginning of the 907

open-ended questions. Here is an example: 908

909

Answer the question according to the video. 910

who did circles on the back tire of his motorcycle 911

in the parking lot? 912

12
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