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Abstract

Video question answering benefits from the
rich information available in videos, enabling
a wide range of applications. However, the
large volume of tokens generated from longer
videos presents significant challenges to mem-
ory efficiency and model performance. To al-
leviate this issue, existing works propose to
compress video inputs, but usually overlooking
the varying importance of static and dynamic
information across different queries, leading to
inefficient token usage within limited budgets.
To tackle this, we propose a novel token se-
lection strategy, EXPLORE-THEN-SELECT, that
adaptively adjust static and dynamic informa-
tion needed based on question requirements.
Our framework first explores different token al-
locations between key frames, which preserve
spatial details, and delta frames, which capture
temporal changes. Next, it employs a query-
aware attention-based metric to select the opti-
mal token combination without model updates.
Our proposed framework is plug-and-play that
can be seamlessly integrated within diverse
video-language models. Extensive experiments
show that our method achieves significant per-
formance improvements (up to 5.8%) among
various video question answering benchmarks.
The code is accessible at the anonymous link.

1 Introduction

Video Question Answering (VideoQA) has broad
applications across various fields (Mogrovejo and
Solorio, 2024; Zhang et al., 2024a). Compared to
text, videos provide more intuitive and dynamic
information, delivering richer context and details
by combining visual and temporal elements. Cur-
rent research primarily leverages powerful large
language models to build video-language mod-
els (VideoLMs) (Lin et al., 2023; Zhang et al.,
2024b), significantly enhancing Al performance
in VideoQA tasks. However, the extensive visual
information in long videos leads to a dramatic in-
crease in token counts. For instance, if one frame

Questionl: How many Spider-Men are visible in the video?

Question2: As can be seen in the video, what happens when the
black spider-man is blamed by the other spider-man?

Question3: What is the traffic situation in the city?

Figure 1: Different question types vary in their depen-
dence on static and dynamic information in videos. For
example, Question 2 relies on fine-grained dynamic
information, while Question 1 and 3 only require key
frames. The frames needed to answer the questions are
highlighted with corresponding colored boxes.

generates 196 tokens (Li et al., 2024a), a S-minute
video sampled at 1fps would produce nearly 60,000
tokens, posing significant challenges to memory re-
quirements and model capabilities.

Given the strict token limitations in practical
VideoLLM deployments, effectively representing es-
sential video information requires a careful alloca-
tion between static and dynamic content. Static in-
formation, which refers to the visual content within
individual frames, is crucial for questions like ob-
ject recognition, where spatial details dominate. In
contrast, dynamic information captures temporal
changes and motion patterns across consecutive
frames, which are essential for understanding ac-
tions or events. Figure 1 illustrates different types
of questions, which vary in their reliance on static
and dynamic information. Considering these vary-
ing dependencies, the challenge lies in optimiz-
ing the allocation of limited tokens to preserve the
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most relevant aspects of both static and dynamic
information, depending on specific question re-
quirements. Although existing studies (Shen et al.,
2024; Nie et al., 2024) have explored token com-
pression through changing frame sampling rates
or intra-frame downsampling, they fail to address
the varying dependencies on static and dynamic
information across different question types.

To achieve an effective allocation between static
and dynamic information in video token compres-
sion, we propose a novel token selection strategy,
EXPLORE-THEN-SELECT, that adaptively aligns
video tokens with textual queries under a limited
token budget. Unlike previous approaches that rely
on fixed rules, our strategy autonomously and adap-
tively combines static and dynamic content based
on the nature of the questions (e.g., action descrip-
tion, event sequence, or object recognition), ensur-
ing more precise responses to diverse queries.

Specifically, we categorize video frames into key
and delta frames. key frames are fully retained to
preserve essential spatial details, such as objects,
while delta frames are sparsely processed, keep-
ing only a subset of tokens to capture important
temporal changes. To optimize token allocation be-
tween these two types of frames, EXPLORE-THEN-
SELECT uses a two-stage process. In the explo-
ration stage, we construct a search space compris-
ing various combinations of key and delta frames,
each yielding a token subsequence of equal con-
strained length. By adjusting the proportion of key
and delta frames, we can prioritize either static de-
tails or dynamic changes based on question require-
ments. In the selection stage, we evaluate each
combination using an query-aware metric derived
from the shallow attention layers of VideoLMs.
This metric quantifies the alignment between the
query and video tokens, enabling us to select the
optimal combination to answer the question.

Notably, our framework is training-free, as nei-
ther the exploration nor selection processes require
model updates. Leveraging its seamless integra-
tion with diverse VideoLMs, we demonstrate the
effectiveness of our approach on two widely recog-
nized VideoLMs across multiple benchmarks for
both long and short videos. Using our framework,
models can achieve improvements of up to 5.8%.
Our key contributions are summarized as follows:

* Building on the observation that questions rely
differently on static and dynamic video infor-
mation, we propose a novel EXPLORE-THEN-

SELECT framework to adaptively and effec-
tively select video tokens reflecting the opti-
mal balance of static and dynamic information
under limited token budgets.

* To address static and dynamic information
needs, we design an effective search space
of key-delta frame combinations. During the
selection phase, we employ a query-aware ap-
proach, leveraging an attention-based metric
to adaptively evaluate candidates and select
the optimal combination for each question.

* We conduct extensive experiments on both
long- and short-video benchmarks, demon-
strating the effectiveness of our method.
Thanks to its plug-and-play design, our ap-
proach generalizes well across different mod-
els without extra fine-tuning and enables di-
rect control over the token budget for flexible
adaptation to resource constraints.

2 Related Work

2.1 Video Language Models

Significant progress has been made in video lan-
guage model research based on LLMs. These
models can be primarily classified into two types:
general-purpose vision-language models (Team
et al., 2024; Chen et al., 2024b; OpenAl, 2024;
Yao et al., 2024; Ye et al., 2023) and specialized
video language models (Lin et al., 2023; Zhang
et al., 2024c; Li et al., 2024c; Zhang et al., 2025;
Liu et al., 2024). Among the former, LLaVA-
OneVision (Li et al., 2024a) unifies image and
video tasks, while Qwen2-VL (Wang et al., 2024)
introduces dynamic resolution support and three-
dimensional positional encoding for enhanced vi-
sual feature capture. Among specialized models,
VideoChat (Li et al., 2023b) targets deep video un-
derstanding and interaction, and LongVA (Zhang
et al., 2024b) extendeds the context length of lan-
guage models, transferring their advantages in long-
text processing to the video domain.

2.2 Visual Token Compression

Some studies (Bolya et al., 2022) focus on com-
pressing visual tokens in video encoders. For ex-
ample, RLT (Choudhury et al., 2024) effectively
reduces the number of tokens by replacing repeated
patches in videos with a single patch. Other works
(Li et al., 2024b; Qian et al., 2025; Shen et al.,
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Table 1: Feature comparison with existing methods.
“Pre-Input” refers to methods which reduce tokens be-
fore feeding them into large language models, while
“Video-Specific” denotes methods which leverage the
unique characteristics of video data.

2024; Lan et al., 2024) introduce dedicated mod-
ules for token compression, such as BLIP-2 (Li
et al., 2023a), which uses a Q-Former module with
learnable queries to generate compact semantic rep-
resentations. Additionally, inspired by KV cache
compression in long-text processing (Zhang et al.,
2023), some methods apply similar strategies to vi-
sual tokens (He et al., 2024b; Chen et al., 2024a; Fu
et al., 2024b). These methods optimize token usage
efficiency by setting thresholds based on specific
metrics to prune visual tokens.

We compare existing methods in Table 1, not-
ing that training-free approaches mainly compress
tokens within the KV cache, reducing FLOPs but
not addressing the issue of excessive token input to
the large language model. In contrast, methods that
reduce tokens in advance typically require training.
This paper introduces a novel pre-input, training-
free framework for more effective compression,
considering query-aware static and dynamic infor-
mation balancing.

3 Preliminary

In this section, we outline the common inference
pipeline of VideoL.Ms as the setup for our approach.
It consists of three key steps, including video frame
sampling, visual encoding and embedding, and
multimodal inference.

Video Frame sampling. Given an input video, N
frames are uniformly sampled to form a represen-
tation V € RVXCxHoxWo where C' = 3 denotes
the RGB channels, and H,, and W, represent the
height and width of each frame, respectively.

Visual Encoding and Embedding. The sampled
frames are decomposed into non-overlapping spa-

tiotemporal patches, which are processed by a vi-
sion encoder to extract spatiotemporal features.
These features are projected into the language
model’s token space via a linear projector, result-
ing in visual token embeddings F' € RTXH*WxD,
where 1" represents the temporal resolution, H and
W denote the spatial resolutions, and D is the to-
ken embedding dimension.

Multimodal Processing. The visual token em-
beddings F' are then flattened into a sequence
T, €¢ RTHWXD where the sequence length is
L =T x H xW. The sequence T, instruction em-
beddings T, and query embeddings T}, are concate-
nated into a unified input T' = [T}, T;,, T},], where
[-] denotes token concatenation. Finally, VideoLM
processes the unified input sequence 7' to generate
a textual response to the question.

4 Method
4.1 Problem Definition

Due to GPU memory and model capability con-
straints, the number of visual tokens processed dur-
ing inference is capped at L;. The fixed token
budget limits frame sampling to a reduced number
of frames, resulting in significant loss of rich visual
information, particularly in long videos.

In this work, we aim to sample more frames
to expand the amount of information we can cap-
ture, which generates an excessive number of to-
kens, leading to a sequence length L > L;. Then
we compress the tokens to meet the token budget,
enabling more effective utilization of rich visual
information within the limited length.

To meet our goal, we propose a token-efficient
framework that automatically and adaptively se-
lects a limited yet informative set of visual tokens
by leveraging the textual query’s relevance to both
static and dynamic visual information. Our method
emphasizes balancing these two types of informa-
tion, ensuring that the selected tokens maximize
their alignment with the query while maintaining
memory efficiency.

4.2 Framework Overview

We adopt an EXPLORE-THEN-SELECT framework,
as illustrated in Figure 2. In the token exploration
stage (Section 4.3), we construct a search space
of n visual token subsequences, each of length Ly,
where every visual token subsequence reflects a dis-
tinct balance of static and dynamic information. In
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Figure 2: Overview of our EXPLORE-THEN-SELECT framework for token selection. In the exploration stage, we
generate different subsequences of different combinations of key and delta-frame tokens. In the selection stage, we
evaluate their query-aware metrics based on shallow attention layers and select the optimal one for input to LLMs.

the token selection stage (Section 4.4), we identify
the optimal sequence that best aligns with the query
requirements. Details will be discussed below.

4.3 Exploration: Search Space Design

This section describes the generation of n token
subsequences, each of length L, from a token se-
quence of length L. To balance static and dynamic
information in videos based on query requirements,
we classify frames into key and delta frames. It is
worth noting that since some models employ tem-
poral reduction, here we refer to “frames” as F' and
the number of frames is 7. Based on whether the
tokens in a subsequence originate from key or delta
frames, we divide them into two subsets: key-frame
tokens 7y and delta-frame tokens 7geita-

Key-frame Token. The key-frame tokens are ex-
tracted from the key frames. Assuming N; key
frames are chosen in the video, we uniformly se-
lect them from F'. The temporal indices of these
frames are:

kT
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where the first frame is always selected as a key
frame. We preserve all tokens from these key
frames to constitute Tyey as:

{Fhv e hell,Hwel[l,W]}, @)

where F“"% ¢ RP represents the token embed-
ding at the i-th frame and spatial location (h, w)

in F'. Obviously The total number of key tokens
satisfies |Tiey| = Ng x H x W.

Delta-frame Token. As illustrated in Figure 3,
the key frames divide the entire sampled frame se-
quence into N intervals. The frames within these
intervals are defined as delta frames, and the delta-
frame tokens Tgeira are extracted from them to cap-
ture the dynamic information relative to the preced-
ing key frames. Since the subsequence length is Ly,
it is evident that the number of delta-frame tokens
satisfies |Tgela| = Lp — |Tkey|. These tokens are
uniformly distributed across each interval, meaning
the number of delta-frame tokens selected from the
i-th interval satisty |Tgeiwa,i| = | |Tdettal/Ns]-

Inspired by video codec, to retain as much dy-
namic information as possible, we select tokens
from each interval that exhibit the largest differ-
ences compared to the corresponding tokens in the
preceding key frame. We first define the token
difference metric based on the cosine similarity
between two token embeddings:

D fy)=1- i 3)

IREAIER

This metric increases as the two embeddings
become more dissimilar. Then, we select |Tqelta i
tokens in the interval ¢ that have the largest differ-
ences compared to the corresponding tokens in the
preceding key frame. We define Telta,; as:

'7h7 07h7 '7h7
{F/ w\TOPmelMD(FZ- Y A

4)
€[1,T3),h € [1, H,w € [1,W]},
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Figure 3: An example of token subsequence generation
with 6 total frames and 2 key frames.

where Fz-o’h’w denotes the token embedding at po-
sition (h, w) in the preceding key frame of current
interval ¢, and Fij h denotes the token embedding
at position (h, w) in the j-th delta frame of interval
1. T; refers to the number of delta frames in ¢-th
interval.

Token Subsequence Generation. Then we merge
Tiey and Tgelra according to their original order to
obtain the Lj-long token subsequence T,

To generate n candidate token subsequences, we
vary N from 1 to n. As Ny decreases, the number
of delta-frame tokens increases, thereby preserving
more dynamic information under the same token
budget. Conversely, the number of key-frame to-
kens increases, preserving more static information.
In this way, we can generate token subsequences
with varying proportions of static and dynamic in-
formation to adapt to the requirements of different
queries.

Notably, our frame division is inspired by the
GOP structure in video codec (Lee et al., 2006),
where I-frames capture full scenes and P/B-frames
encode temporal changes. Besides, similar to ad-
justing GOP sizes, varying the proportion of key
and delta frames allows us to control the emphasis
on static or dynamic cues.

4.4 Selection: Quick Evaluation

After obtaining n token subsequences of length L,
we perform an evaluation and select the optimal
subsequence based on the chosen metric. Previ-
ous studies have identified certain characteristics
of visual tokens in attention mechanisms. For in-

stance, Chen et al. (2024a) shows that most vision
tokens can be removed at the second layer with-
out significant performance loss, and Wan et al.
(2024) observes that vision tokens are generally
less attended. Based on these findings, we con-
sider that the attention mechanism at the second
layer already provides meaningful clues of token
importance. Besides, we hypothesize that higher
cumulative attention scores on visual tokens indi-
cate a better utilization of the visual information.

To enable quick evaluation, we compute the at-
tention score matrix S at the second layer of the
VideoLMs, using textual query tokens as the query
input, and instruction and vision tokens as the key
input:

Q = WQHq7 (5)

K = Wxg - Concat(H;, H,), (6)
T

S = softmax (%) , (7

where H,, H;, and H,, denote the hidden features
of the textual query, instruction, and visual inputs.
And d;, is the dimension of key vectors in the atten-
tion mechanism. To quantify the attention allocated
to visual tokens, we compute the summation of at-
tention scores of the visual tokens. Specifically, to
ensure comprehensive consideration of each text
query token, we first extract the maximum values
along the query dimension from S, yielding an at-
tention score vector s for each visual token. Then
we sum the attention scores of the visual tokens:

8§ = IIlZaX Sij) (8)

Nz"l‘Nv

s= 3 s, ©)
J=N;

where S;;; represents the attention score of the i-th
query token to the j-th visual token, N; denotes the
number of instruction tokens, and [V, is the number
of visual tokens. Finally, from the n candidates,
we select the input with the highest sum of visual
token attention scores as the optimal input:

T, = argmax s™),
me{1,2,...,n}

(10)

where 5(™) denotes the summed attention score for
the m-th token subsequence.



Model Settings EgoSchema VideoMME MLVU
Method Sample  Budget Short Medium Long Overall
VideoChat2 - 16 - 54.4 48.3 37.0 332 39.5 -
LongVA - 128 - - 61.1 50.4 46.2 52.6 -
mPLUG-OwI13 - 128 - - 70.0 57.7 50.1 59.3 -
LongVU - 1fps - 67.6 - - - 60.6 65.4
Original 64 - 66.2 71.1 59.4 50.8 60.4 50.6
Retrieval 256 64 63.6 71.0 61.3 522 61.5 494
Similarity 256 64 66.6 71.4 60.6 51.8 61.3 53.0
Qwen2-VL-7B Ours 256 64 67.8 724 63.1 53.2 62.9 544
Original 32 - 64.7 68.9 55.2 48.7 57.6 46.8
Retrieval 128 32 61.7 70.0 58.6 51.6 60.0 46.8
Similarity 128 32 65.6 70.1 58.7 51.8 60.2 472
Ours 128 32 66.7 71.4 61.0 51.7 61.4 52.2
Original 64 - 60.1 70.6 55.8 47.8 58.0 50.8
Retrieval 256 64 57.7 64.0 534 47.0 54.8 44.6
Similarity 256 64 59.6 71.0 57.9 50.8 59.9 48.4
LLaVA-OneVision-7B Ours 256 64 60.3 71.9 58.3 514 60.6 51.2
Original 32 - 60.4 71.3 574 48.0 58.9 46.8
Retrieval 128 32 57.9 63.2 53.9 46.0 54.4 44.0
Similarity 128 32 60.2 70.8 57.1 49.7 59.2 50.2
Ours 128 32 60.5 70.2 58.0 51.6 59.9 51.0

Table 2: Results on long video benchmarks show that our method achieves significant improvements over the
baselines, particularly on the advanced Qwen2-VL, with up to a 5.8% gain on the VideoMME medium subset.

5 Experiments

5.1 Experiment Settings

Benchmarks. To comprehensively evaluate per-
formance, we select benchmarks for both long and
short videos. We use VideoMME, EgoSchema,
and MLVU for long videos, and MSVD-QA and
ActivityNet-QA for short videos.

VideoMME (Fu et al., 2024a) contains 900
videos (11 seconds to 1 hour) and 2,700 QA pairs.
EgoSchema (Mangalam et al., 2023) includes over
5,000 questions based on videos averaging 3 min-
utes in length. MLVU (Zhou et al., 2024) provides
over 500 QA pairs on videos ranging from 3 min-
utes to 2 hours. MSVD-QA (Xu et al., 2017) in-
cludes 1,970 short clips (10 seconds on average),
with a test split of approximately 13,000 questions.
ActivityNet-QA (Yu et al., 2019) provides 800
videos and 8,000 QA pairs in the test set, aver-
aging around 10 questions per video.

We adopt multiple-choice accuracy as the met-
ric for VideoMME, EgoSchema, and MLVU, and
employ GPT-based scoring (OpenAl, 2024) for the
open-ended MSVD-QA and ActivityNet-QA.

Baselines. We validate our plug-and-play method
on two representative models: Qwen2-VL (Wang
et al., 2024), featuring dynamic resolution and mul-

timodal rotary position embeddings, and LLaVA-
OneVision (Li et al., 2024a), supporting multi tasks,
both in their 7B versions. Results for Qwen2.5-VL
(Bai et al., 2025) are included in Appendix A.1.

As shown in Table 1, prior methods either com-
press only within the KV cache, leaving long input
sequences unaddressed, or require training models,
making direct comparison with our training-free
approach unfair. Thus we consider three baselines:
1) Original: uniform frame sampling within the to-
ken budget; 2) Retrieval: oversample frames, then
prune based on cosine similarity between frame
and query embeddings to fit the token limit; 3) Sim-
ilarity: oversample frames, then prune based on
cosine similarity between adjacent token embed-
dings. In practice, both “Retrieval” and “Similarity”
strategies are commonly adopted in compression
modules (Qian et al., 2025; Song et al., 2024; He
et al., 2024a). For reference, we also report results
from several training-based video understanding
methods (Li et al., 2023b; Zhang et al., 2024b; Ye
et al., 2024; Shen et al., 2024) in the first block of
Table 2, though they are not directly comparable
due to training cost differences. To further validate
the advantages of our method, we include a com-
parison with our reproduced training-free LongVU
in Appendix A.2.



Implementation Details. All experiments are con-
ducted on two 40GB A100 GPUs. For multiple-
choice questions, the model generates one token
(three for MLVU), while for open-ended questions,
outputs are limited to 30 tokens. The prompts used
are detailed in Appendix B. Sampling is disabled
to ensure deterministic results.

Note that video resolution affects the number
of frame tokens generated by Qwen2-VL, making
a fixed token budget yield varying frame counts
across videos and complicating comparisons. To
address this, we set a frame-based budget T}, so the
token limitis Ly = Ty x H x W, where H x W is
the token count per frame. This approach stream-
lines implementation and ensures fair comparison.

5.2 Main Results

Long Video Results. Table 2 shows results on
long video benchmarks for two settings: 256-frame
sampling with a 64-frame budget (256-64) and 128-
frame sampling with a 32-frame budget (128-32).
Our method outperforms baselines across all bench-
marks and most subsets. Qwen2-VL-7B signif-
icantly outperforms baselines by up to 4.2% on
EgoSchema, 2.5% on VideoMME, and 5.0% on
MLVU (256-64), and by up to 5.0%, 3.8%, and
5.4% (128-32), with a 5.8% gain on VideoMME
medium subset. While our method also achieves
notable improvements on LLaVA-OneVision-7B,
the gains are less pronounced than on Qwen2-VL,
likely due to noise from its one-dimensional posi-
tional encoding. The three-dimensional positional
embedding of Qwen2-VL-7B offers more stable
results, hilighting the importance of positional em-
bedding design. Overall, these results demonstrate
the effectiveness of our method, and reveal some
model-specific behaviors and limitations.

Short Video Results. Short-video benchmarks
inherently contain fewer frames, simpler scenes,
and primarily coherent motion, making them less
affected by token length limitations. As a result,
the trade-off between static and dynamic informa-
tion is less pronounced, and performance gains
tend to be smaller compared to long-video settings.
Nonetheless, we evaluate our method’s generaliza-
tion on short-video benchmarks by sampling 64
frames and setting the budget to 16 for videos aver-
aging 10 seconds. As shown in Table 3, our method
consistently outperforms all baselines on Qwen2-
VL-7B, achieving up to 3.8% higher accuracy and
0.2 higher scores. On LLaVA-OneVision-7B, it

MSVD-QA ActivityNet-QA

Model Method Acc  Score Acc  Score
Original 66.0 359 503 282
Retrieval 644 352 486 274
Qwen2-VL g vilarity 665 360 514 2.87
Ours 66.8 361 524 290
Original 543 309 526 290
LLaVA- Retrieval 54.8 3.12 50.1 2.77
OneVision  Similarity 543  3.10 524 289
Ours 547 311 53.0 292

Table 3: Results on short video benchmarks. Although
primarily focused on long videos, our method show
stable and generalizable performance on short videos.

Method EgoSchema VideoMME MLVU
Orignal 64.7 57.6 46.8
Explore + Random 66.3 60.7 50.2
Explore + Select 66.7 614 52.2

Table 4: Ablation study of our method. Results demon-
strate the effectiveness of both stages, with each compo-
nent yielding improvements over the baseline.

achieves strong results on ActivityNet-QA and per-
forms comparably to the “Retrieval” baseline on
MSVD-QA. These results demonstrate the robust-
ness and generalization ability of our method even
under short-video scenarios.

5.3 Ablation Studies

Stage Ablation. As shown in Table 4, we conduct
a two-stage ablation study on our method. The
ablation experiments were performed on Qwen2-
VL-7B, sampling 128 frames with a budget of 32
frames. First, we validated the effectiveness of the
exploration stage. As indicated by the “Explore
+ Random” row in the table, generating multiple
token subsequences followed by random selection
results in improvement compared to the original op-
eration, demonstrating the rationality of our search
space design. Then we verify the effectiveness
of the selection phase. On all benchmarks, our
selection method achieves improvement over the
random selection.

Metric Ablation. Table 5 presents two ablation
studies on our metric design using Qwen2-VL-7B
(128-frame sampling, 32-frame budget). The first
block compares including or excluding the query
token in the construction of K in Equation (6),
finding only marginal differences; for simplicity,
we exclude the query token in our final design. The
second block compares max and mean operations
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Figure 4: In our qualitative analysis cases, our method allocates key and delta-frame tokens at a ratio of 3:1 for
Question 1 which is a OCR problem, and a ratio of 5:11 for Question 2 which pertains to action recognition.

Model Method  EgoSchema VideoMME
w/ query 66.3 61.6
Qwen2-VL w/o query 66.7 61.4
mean 66.0 60.9
max 66.7 61.4

Table 5: Ablation study on metric design. The first
block shows that including the query token in K has
negligible impact, so it is omitted. The second block
finds that the max operation in Equation (8) outperforms
the mean on both datasets.

66.9 61.5

66.8 61.4
66.7 61.3
66.6 61.2
66.5 61.1

1/4 1/2 1 1/4 1/2 1
(b) VideoMME

(a) EgoSchema

Figure 5: Search space size analysis. The x-axis repre-
sents the search space size. There are n subsequences
in the space, and their key frame number ranges from
{1,2,...,n}. Assuming the budget frame is N, “1”
refers to n = Ny, “1/2” indicates n = | N, /2], “1/4”
represents n = | N, /4]. Larger search spaces benefit
EgoSchema but hurt VidleoMME and increase time cost.
A balanced setting uses half the budget size.

for query aggregation in Equation (8), showing that
the max operation consistently yields better results,
thus supporting our metric choice.

5.4 Further Analysis

Qualitative Analysis. Figure 4 shows two ques-
tions for the same video, which are correctly an-
swered employing our method. Question 1, an
OCR problem predominantly reliant on static infor-
mation, prompts the method to allocate a key-to-
delta-frame token ratio of 3:1. Conversely, action-
ralated Question 2, necessitating the identification
of a player scoring a goal, leads to the adoption of
a key-to-delta-frame token ratio of 5:11.

Search Space Size. We study search space size
impact using Qwen2-VL-7B, sampling 128 frames
with a 32-frame budget. Figure 5 shows perfor-
mance improves on EgoSchema when search space
matches the budget but declines on VideoMME.
We attribute this to excessive key frames, causing
sparse delta-frame token selection and deviation
from the training distribution, reducing effective-
ness. Additionaly, time cost rises with search space
size. To balance these, we set the search space to
half the budget frame number.

Time Overhead. The compression inevitably in-
curs time overhead, but our focus is on memory
efficiency and information retention. Our over-
head mainly comes from metric computation. Us-
ing shallow attention layers with question-length
queries, sequential processing of 16 candidates in
a 28-layer model doubles first-token latency but
leaves subsequent decoding unaffected, benefiting
open-ended questions. Parallel processing can fur-
ther reduce latency. On LLaVa-OneVision-7B (128-
frame sampling with a 32-frame budget), compared
to the 2.24s overhead incurred by LongVU, our ap-
proach costs only 0.43s without flash-attention.

6 Conclusion

Given that long videos possess tokens far exceed-
ing the capacity that models can process, we ad-
vance token compression strategies by unveiling
the following crucial fact: different question types
exhibit varying dependencies on dynamic and static
information. Based on this discovery, we propose
a novel token selection strategy for video token
compression. Our method splits video frames into
key and delta frames, and adaptively determines
the optimal token allocations among key and delta
frames guided by each specific query. Experiments
demonstrate the effectiveness and generalizability
of our method across multiple models and datasets.



Limitations

In this paper, we propose a novel token selection
strategy for token compression in video question
answering tasks, addressing the varying dependen-
cies of questions on dynamic and static video in-
formation. While the effectiveness of our method
has been validated across multiple datasets, certain
limitations remain. Firstly, due to differences in po-
sitional encoding mechanisms across models, some
encoding schemes may impact the model’s ability
to accurately judge video length and temporally
localize events. Nevertheless, we believe our ap-
proach holds insight for developing compression
modules in pre-trained and fine-tuned video models.
Additionally, although our method incurs no addi-
tional memory overhead (superior to pruning in the
key-value cache), it does introduce time overhead.
This overhead mainly stems from metric compu-
tation. We utilize the output of a shallow (second-
layer) attention mechanism to compute the metric,
where only the attention map between query tokens
and vision tokens is computed. This overhead only
happens during the initial token inference and does
not affect subsequent token generation. It is worth
noting that such additional time cost is a common
challenge for most compression methods.
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A Additional Experiments

The appendix provides supplementary experiments,
results on the advanced Qwen2.5-VL model and
comparison with training-free LongVU.

A.1 Experiments on Qwen2.5-VL

Qwen2.5-VL is the latest vision-language model in
the Qwen series, officially released in 2025 Febru-
ary. Building upon the foundation of Qwen2-VL,
Qwen2.5-VL introduces significant enhancements
in long-video comprehension. Notably, it incorpo-
rates absolute time encoding, enabling the model to
handle videos of extended durations with second-
level event localization. To provide a more compre-
hensive evaluation of our method, we report experi-
mental results on the Qwen2.5-VL-7B model using
the same experimental settings as in the main text.

Long Video Results. Table 6 presents the long
video benchmark results on Qwen2.5-VL-7B un-
der different sampling and budget settings. Across
both 256-64 and 128-32 settings, our method con-
sistently achieves the best performance on most
benchmarks. Specifically, under the 256-64 set-
ting, our approach outperforms all baselines on

11

EgoSchema, VideoMME, and MLVU, achieving
the highest accuracy of 61.6%, 65.7%, and 58.4%,
respectively. Notably, on VideoMME and MLVU,
our method yields improvements of up to 3.1%
and 8.4% over the baselines. Similarly, in the 128-
32 setting, our method continues to lead, with top
results on EgoSchema (60.6%), VideoMME and
MLVU (51.6%). These results demonstrate the ef-
fectiveness and robustness of our approach, and
further validate its strong generalization capability
across different models.

Short Video Results. Although our method
is primarily focused on long video understand-
ing, it also delivers strong results on short video
tasks. For instance, on Qwen2.5-VL evaluated with
ActivityNet-QA under the 64-frame sampling and
16-frame budget setting, our method achieves the
best performance among all baselines. As shown
in Table 7, it attains the highest accuracy of 54.3%
and a score of 3.07, outperforming the baselines by
up to 2.2% in accuracy and 0.11 in score.

A.2 Comparison with Training-free LongVU

To further demonstrate the advantages of our ap-
proach, we compare it with LongVU (Shen et al.,
2024) by reproducing its compression method in a
training-free setting. Following the original paper,
we use DINOv2 (Oquab et al., 2023) with a 0.83
threshold for frame reduction and apply a [2/3]
downsampling ratio. However, we find that meet-
ing a precise token budget with LongVU requires
careful tuning of thresholds and heuristics, offering
only indirect control over compression. In contrast,
our method uses top-K selection, enabling direct
and accurate control of the token count. As shown
in Table 8, our method consistently outperforms the
reproduced LongVU across all models and bench-
marks, while providing more reliable and practical
token budget management.

B Prompt Details

We utilize the template provided by the model for
the instruction prompt part. We only introduce the
textual organization format in the questioning part.

B.1 Prompts for Multiple-Choice Questions

We add the sentence "Respond with only the
letter (A, B, C, or D) of the correct option." at the
beginning of the multiple-choice questions. Here
is an example for questions in VideoMME:
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Model Settings EgoSchema VideoMME MLVU
Method Sample  Budget Short Medium Long Overall
Original 256 - 60.3 75.0 61.8 51.0 62.6 50.0
Retrieval 256 64 60.9 754 66.7 54.8 65.6 56.2
Similarity 256 64 60.8 74.0 64.7 54.3 64.3 53.6

Qwen2.5-VL-7B Ours 256 64 61.6 75.8 65.2 56.1 65.7 58.4
Original 128 - 59.1 73.1 60.0 49.6 60.9 47.2
Retrieval 128 32 60.2 74.6 64.8 533 64.2 48.4
Similarity 128 32 60.0 73.3 60.9 51.6 61.9 47.6
Ours 128 32 60.6 74.1 63.2 53.9 63.7 51.6

Table 6: Long video benchmark results on Qwen2.5-VL-7B. Our method consistently achieves the best performance
across most benchmarks, with improvements of up to 3.1% on VideoMME and 8.4% on MLVU over the baselines,

demonstrating strong effectiveness and generalization.

ActivityNet-QA

Model Method Accuracy Score
Original 52.1 2.96
Retrieval 52.7 2.98
Qwen2:3-VL g ilarity 53.1 2.99
Ours 54.3 3.07

Table 7: Short video benchmark results on Qwen2.5-VL.
Our method achieves the highest accuracy and score,
outperforming all baselines.

the correct option.

Identify the recurring actions in the video and
briefly discuss their significance to the overall nar-
rative.

A. C constantly organizing a plastic box, suggest-
ing her obsession with tidiness

B. C and the boy taking turns throwing objects out
of the window, showcasing a game

C. C pouring water and conversing with the boy,
highlighting routine and communication

Model Method EgoSchema VideoMME D. The boy trying to get C’s attention by throwing
Original 66.2 604 a toy on th.e blanket repeatedly
Qwen2-VL  LongVU 67.2 62.3 E. C teaching the boy how to fold blankets properly
Ours 67.8 62.9 and arrange his toys
LLaVA- Original 60.1 58.0 .
OneVision  -oneVU 60.3 59.3 And here is an example for MLVU:
Ours 60.3 60.6
Original 60.3 62.6 Respond with only the letter (A, B, C, D, E or F) of
Qwen2.5-VL  LongVU 61.6 64.5 ' .
i i e the correct option.

Table 8: Comparison with training-free LongVU (256-
64). Our method consistently outperforms the repro-
duced LongVU across models and benchmarks, while
offering more precise control over the token count.

Respond with only the letter (A, B, C, or D) of the
correct option.

Which elements are depicted in the painting intro-
duced by the video?

A. A little girl and a red balloon.

B. A little boy and a red balloon.

C. A little girl and a blue balloon.

D. An adult and a blue balloon.

Here is an example for EgoSchema:

Respond with only the letter (A, B, C, D or E) of

In what setting does the video take place?
(A) Castle

(B) Forest

(C) Desert

(D) Countryside

(E) Ocean

(F) Campus

B.2 Prompts for Open-Ended Questions

We add the sentence "Answer the question
according to the video." at the beginning of the
open-ended questions. Here is an example:

Answer the question according to the video.
who did circles on the back tire of his motorcycle
in the parking lot?
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