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Abstract

Large Language Models demonstrate remarkable capabilities at the cost of
high compute requirements. While recent research has shown that interme-
diate layers can be removed or have their order shuffled without impacting
performance significantly, these findings have not been employed to reduce
the computational cost of inference. We investigate several potential ways
to reduce the depth of pre-trained LLMs without significantly affecting
performance. Leveraging our insights, we present a novel approach that
exploits this decoupling between layers by grouping some of them into pairs
that can be evaluated in parallel. This modification of the computational
graph—through better parallelism—results in an average improvement of
around 1.20x on the number of tokens generated per second, without re-
training nor fine-tuning, while retaining 95%-99% of the original accuracy.
Empirical evaluation demonstrates that this approach significantly improves
serving efficiency while maintaining model performance, offering a practical
improvement for large-scale LLM deployment.

1 Introduction

The exponential growth of Large Language Models (LLMs) presents significant computational
challenges for commercial deployment, with critical implications for costs, performance, and
environmental impact (Singh et al., 2025; Xu et al., 2024; Wu et al., 2022). High-traffic
LLM applications can incur monthly cloud computing costs in the millions, emphasizing the
importance of optimization.

Modern LLMs utilize deep architectures with hundreds of transformer layers (OpenAI, 2023;
et. al., 2024), featuring attention and feed-forward blocks connected by residual connections
similar to ResNets (He et al., 2015). Research has shown that network depth may be partially
redundant, allowing for layer reorganization without significant performance impact (Veit
et al., 2016). Recent studies have extended these findings to transformer architectures (Lad
et al., 2024), demonstrating resilience to layer modifications.

Our research investigates depth reduction in LLMs through various interventions including
shuffling, pruning, and merging layers. The ability to reorder blocks enables parallel
processing strategies, allowing multiple block pairs to be executed simultaneously while
maintaining acceptable performance on perplexity and In-Context Learning benchmarks. We
propose Layer Parallelism (LP), a novel method that improves inference speed with minimal
performance degradation, which can be further recovered through targeted fine-tuning.

Contributions. Our contributions can be summarized as follows:

• We explore the space of interventions on a pre-trained LLM layers, and find that some
transformations, such as contiguous parallelization, preserve model performance

• We find that we can define a parallelization transform on the computational graph of
two sequential Transformer layers, and stack this parallelization operation to several
sequential pairs of layers without loosing significant performance. Our approach can
be applied to existing Transformer models and does not require re-training.

• We exploit this parallelization of the computational graph to run the models around
1.20x faster using multiple GPUs without loosing much performance and ICL
capabilities.
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• We show that by fine-tuning a parallelized model we can recover some of the lost
performance, while retaining the previously obtained speed-up.
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Figure 1: Trade-off between perplexity
and inference time of Llama 2 7B and
Llama 3.2 3B with our novel Layer Paral-
lelism. ∆ indicates the number of consecutive
layers that we parallelize in pairs. The average
time is the wall clock time to generate 4096
tokens (with KV-Cache) on x2 A100 SXM4
80Gb. The perplexity is measured on RedPa-
jama Together Computer (2023). As shown by
the gap between the two Pareto fronts (black
arrow), applying our approach to Llama 2 7b
results in both faster generation speeds and
better performance than the vanilla Llama 3.2
3B.

The source code will be made publicly avail-
able upon publication of this paper.

2 Related work

The effective depth of Deep Networks.
Theoretically, any feed-forward network with
at least one hidden layer can model any func-
tion, given enough width (Pinkus, 1999). In
practice, it is easier to achieve high expres-
sivity by increasing the model’s depth. But
naively increasing the depth can make things
more difficult for the optimizer, since the gra-
dients now have to flow through many layers.
To alleviate this problem, ResNets (He et al.,
2015) introduced skip connections at regular
intervals to allow an easy flow of the gradient
to the first layers. Alternatively, in Incep-
tion (Szegedy et al., 2014), the researchers
investigated ways to boost computational
power by adding additional processing units
along different parallel pathways in the com-
putational network, rather than just along
a single sequential path. A unification of
both methods can be found in the Highway
Networks (Srivastava et al., 2015), where
the skip connection of the residual blocks
consists of another block of compute. Nowa-
days, residual connections are ubiquitous in
large models.

Efficient inference of LLMs. Several
complementary approaches exist for enhanc-
ing the computational efficiency of large-
scale models, primarily through pruning and sparsity, quantization, and parallelism. Prun-
ingLeCun et al. (1989); Han et al. (2015; 2016); Frantar & Alistarh (2023) constitutes
a dimensional reduction methodology that systematically eliminates redundant parame-
ters while preserving model performance, thereby introducing architectural sparsity. This
methodology is founded on empirical evidence demonstrating that neural networks frequently
exhibit overparameterization, containing numerous weights with negligible contribution
to the output. Through sophisticated pruning strategies, the inherent sparsity support
in contemporary accelerators can be leveraged to enhance both memory utilization and
computational efficiency (Zhang et al., 2020; Wang et al., 2021). In contrast, quantization
encompasses the transformation of floating-point numerical representations (predominantly
FP32) into reduced-precision integer formats, such as INT8 or INT4 Han et al. (2016); Jacob
et al. (2018). When implemented on hardware accelerators, these lower-precision representa-
tions facilitate superior memory bandwidth utilization, addressing a primary bottleneck in
modern large-scale models Gholami et al. (2024); moreover, integer-based computations yield
enhanced processing speed and substantially improved energy efficiency Horowitz (2014).
Finally, parallelization techniques during inference, such as tensor and pipeline parallelism,
enable the distribution of computational workload across multiple devices, thereby reducing
latency and increasing throughput, although this often requires careful consideration of
communication overhead and load balancing Li et al. (2024); Narayanan et al. (2021).

Parallelism via Computational Graph Optimization. Recent research has investigated
architectural layer-level optimization strategies to enhance transformer model inference

2
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Figure 3: Changes in perplexity when applying transformations on contiguous
stretches of layers. Each one of the five heatmaps above correspond to a transformation of
a group of consecutive layer, where the row index s corresponds to the first layer of the group,
and the column index e to the last. The color coding indicates how the perplexity—estimated
on a subset of RedPajama (Together Computer, 2023)—is impacted by the corresponding
modification of the model. The perplexity for the base Llama 2 7B model is 6.2. In (a), we
shuffle—for each forward—the layers from s to e. We can see that many consecutive layers
can be shuffled with little impact on the overall perplexity. For instance, shuffling layers 15
to 25—10 layers in total—raises the perplexity only to 9.1. In (b), we prune contiguous
stretches of layers. We can see that not many blocks can be removed without starting to
significantly degrade the perplexity. In (c) we merge contiguous layers. The results with
merging are near identical to those for pruning. This reveals there is no advantage in merging
layers, most likely a results of averaging matrices not originating from the same initial values.
In (d) we run contiguous blocks in parallel. Given the success of shuffling, it makes sense
that this approach works well. Running blocks 17 to 27 raises the perplexity to 9.3. Finally,
in (e) we run pairs of consecutive layers in parallel. As a result, we can parallelize much
longer stretches of layers. For instance, we can apply this transformation from layer 4 to
29 and only increase the perplexity to 9.1. This reduces the depth of the model from 32 to
19. This result makes it possible for us to leverage this parallelism for faster inference as we
discuss in § 4.
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Figure 4: Diagram of transformations applied in § 3. Diagrams (a,b,c,d) represent
respectively shuffling, merging, pruning and parallel.

efficiency. The Staircase Transformer (Cutler et al., 2025) implements parallel layer execution
with dynamic recurrent computation based on model requirements. Similarly, the Staggering
Transformer (Cai et al., 2024) achieves layer parallelization by connecting layer lk at time
step t to both the (t− 1) output of layer lk−1 and the t output of layer lk−2. To the best of
our knowledge, no research has addressed the fusion of consecutive layers through tensor
parallelism.

3 Effective Depth

In this section, we investigate the effective depth of LLMs. By applying several transforma-
tions to a pre-trained Transformer LLM, and measuring the resulting perplexity degradation,
we reveal the loose dependencies between intermediary layers. The transformations consist

3
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of shuffling, merging, and pruning transformer layers. To avoid the combinatorial explosion
resulting from considering all the possible subsets of transformer layers, we instead apply our
transformations to all the contiguous stretch of layers. If L = {ℓ1, . . . , ℓN} are the ordered
layers, then we apply our transformations to all the sub-list {ℓi}ei=s with 1 ≤ s ≤ e ≤ N .
Previous works have shown that—at least when considering pruning—the importance of
layers is well behaved, with low importance layers close to one another (Men et al., 2024),
which justifies considering contiguous stretch of layers only.

+

FFN

LN

MHA

LN

+

+

FFN1

LN

FFN2

LN

MHA1

LN

MHA2

LN

+

(a) (b)

Figure 2: Comparing a normal trans-
former block with our layer parallel im-
plementation. In (a) we show a normal
Transformer Layer. In (b) we illustrate our
layer parallelization, where each column runs
separately on one or multiple GPUs. The resid-
uals are gathered and synchronized through
a reduce operation across all GPUs. The pre-
attention LayerNorms’ weights are copied from
the original blocks, while the post-attention
LayerNorm’s weights are averaged and shared
in both layers.

Shuffling blocks. We start by shuffling
contiguous stretches of layers, re-ordering
the layers according to random permuta-
tions. Results are shown in Fig. 3.(a). While
shuffling the early and two last layers signif-
icantly raises the perplexity, there are large
stretches of blocks which can be shuffled
with surprisingly low impact on the perplex-
ity. For instance, one can shuffle the layers
{ℓi}15≤i<25 and only have an increase in per-
plexity of 2.9. This goes against the classical
belief that models build deeply hierarchical
representations, where features in previous
layers are leveraged to build more complex
features in later layers. We interpret this
as multiple layers working at the same level
of abstraction. Using these insights, we de-
fine the effective depth of an LLM as the
shortest depth required to efficiently lever-
age existing latent representations without
a significant loss of performance. This re-
veals an important level of layer decoupling
within the model.

Running blocks in parallel. The ob-
served layer decoupling suggests that specific
transformer operations may be executed in-
dependently, providing an opportunity for
parallel computation. More precisely, let’s
consider two sequential transformer layers
ℓk and ℓk+1, each comprising attention and
FFN sub-blocks (Ak(·) and Fk(·), respec-
tively). The standard sequential output y
for these layers, given an input x, is given by:

y = x+ Ak(x)

+ Fk(x+ A1(x))

+ Ak+1(x+ Ak(x) + Fk(x+ Ak(x)))

+ Fk+1(x+ Ak(x) + Fk(x+ Ak(x)) (1)
+ Ak+1(x+ Ak(x) + Fk(x+ Ak(x)))) (SEQ)

The highlighted terms represent the first block’s contribution to the second block’s processing.
Given the observed layer independence, we can hypothesize that these terms have minimal
impact, leading to the following approximation:

ŷ = x+ Ak(x) + Fk(x+ Ak(x)) (2)
+ Ak+1(x) + Fk+1(x+ Ak+1(x)) (PAR)

This approximation enables parallel execution of blocks ℓk and ℓk+1 through divergent
computational paths. We experiment with running contiguous stretches of layers in parallel
and show our results in Fig. 3d. We observe results similar to shuffling. Unlike shuffling,
this approach allows us to potentially improve the runtime through enhanced parallelism.

4
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+

reduction

o ∈ RT×D

Figure 5: Layer Parallel implementation of self-attention. In this diagram, the stacked
layers represent different GPUs, the colors indicate the intermediate tensors of different
layers and the arrows express linear projections. In this case, the number of GPUs and the
number of parallelized layers coincides and is 2, which is the set-up that we use for all our
experiments in this work. We see how tensors for the two layers are distributed across the
two GPUs. We also notice the reduction step happening at the end, summing the outputs
from each GPUs, which differs from the regular computational graph obtained when running
layers in parallel as in equation (PAR).

We show how we can, for instance, run layers 17 to 27 in parallel, only losing 3.1 perplexity
points, while reducing the depth of the model from 32 to 23.

Contiguous 2-parallel. Instead of parallelizing long stretches of layers, we experiment
with running pairs of consecutive layers in parallel. This springs from the assumption that
local ordering matters less than global ordering, i.e. shuffling consecutive layers is less risky
than shuffling layers further apart. As an example, if we apply the proposed transformation
to layers {ℓ15, ℓ16, ℓ17, ℓ18, ℓ19}, it would result in the following process: (1) the two layers
{ℓ15, ℓ16} process the input in parallel (according to equation (PAR)), (2) the output is
forwarded to layers {ℓ17, ℓ18} which process it in parallel, finally, in (3) their joint output
is fed to layer ℓ19 which processes it on its own as any normal layer. The effect of such
transformation of the compute graph on the perplexity can be seen in Fig. 3e. Remarkably,
it is possible to run wide stretches of consecutive pairs of blocks in parallel with only a minor
degradation of perplexity. For instance, one can apply this transformation from layer 4 to
layer 29 with only a degradation of perplexity of 2.9, while reducing the model depth from
32 to 19. The success of this approach led us to also try running triplets of consecutive layers
in parallel, but we found it to perform less well.

Exploring other transformations. We also experiment with pruning (Fig. 3b) and
merging (Fig. 3c). Pruning has already been studied in several prior works (Gromov et al.,
2024; Jung et al., 2019). While reducing the depth of the model by one layer costs more
perplexity when pruning compared to running two blocks in parallel, pruning reduces the
number of parameters of the model, which directly translates into higher throughput and
memory efficiency.

4 Efficient Parallelization of Blocks

Naive block parallelization. Pure parallelization of two transformer blocks would consist in
implementing equation (PAR). To optimize our parallel implementation, we need to leverage
efficient GPU kernels by e.g. concatenating together matrices from different blocks. As an
example, let’s consider parallelizing y1 = W1x and y2 = W2x, x ∈ Rdx ,y ∈ Rdy ,W1,W2 ∈
Rdy×dx . We can concatenate W = [W1,W2] ∈ R2∗dy×dx and get [y1,y2] = Wx. However,
this would not work if, instead of a shared input x, we had two separate inputs x1 and
x2. This is precisely the situation we are in when we apply different layer norms to the
input of the two attention blocks. The Feed-Forward Networks (FFN) also have different
inputs, in addition to having different layer norms. Those considerations directed us to
modify the computational graph of the parallel processing of blocks. While we differ from
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equation (PAR), we show that our approach nonetheless—and quite surprisingly—works
well on already trained models, circumventing the need to train from scratch.

The hardware limits of parallelisms. Another difficulty we faced when parallelizing
transformer blocks is the saturation of GPU resources. LLM inference typically saturates
GPU resources due to its intensive compute and memory bandwidth requirements. When
all the GPU cores are already being utilized by one matrix multiplication, running another
matrix multiplication in parallel can be as slow as running them sequentially. This is the
case with large transformer models, as even processing a single sequence can fully utilize a
GPU’s capabilities. As such, simply attempting to run two blocks in parallel would result
in sequential execution, as the scheduler would allocate operations from both blocks to the
same job stream. To achieve true parallel execution of layers, we decided to leverage Tensor
Parallelism by distributing layer weights across multiple GPUs.

We extend the tensor parallelism scheme introduced in Megatron Shoeybi et al. (2020) to
incorporate our novel Layer Parallelism. Below, we detail our approach for each major
component of the transformer block, initially setting aside Layer Normalization considerations
and tackling the Multi-Head Attentions (MHA) and the FFN. Our approach is also illustrated
in Fig. 2. It is important to note that the resulting computational graph is not numerically
equivalent to the original architecture. This numerical discrepancy stems from the positioning
of the pre-normalization operations that precede each transformer sub-block.

Layer Parallel Multi-Head Attention. Traditional tensor parallelism in MHA distributes
attention heads evenly across GPUs, performing self-attention and output projection lo-
cally before gathering results through worker summation. Each GPU processes tensors
of dimensions Q,K, V, att ∈ RT×D

g , where T is sequence length, D is feature dimension,
and g is the number of parallel workers. The local output projection produces oi ∈ RT×D

for each worker i, with rank D
g until the gather operation restores full rank. To imple-

ment Layer Parallelism, we increase the depth of the query, key, and value weight matrices
(WQ,WK ,WV ∈ R(gn·hd)×D) and widen the output projection (WO ∈ RD×(nh·hd)), where nh

represents heads per GPU and hd is head dimensionality. The reduction operation now will
simultaneously compute the full-rank output projections and the sum of all parallel layers
(Fig. 5(b)).

Layer Parallel Feed Forward Network. Standard tensor parallelism for single-hidden-
layer FFNs splits the first layer’s output across devices, generates partial outputs from the
second layer, and combines them through reduction. To parallelize two FFN layers, we
double the first layer’s output dimensionality and perform separate output projections for
each layer. A single reduction operation then serves the dual purpose of computing full
outputs for each layer and combining their results, as shown in Fig. 2(b). In summary,
Layer Parallelism for FFN just concatenates the up-projection weights and continues as
normal TP, allowing for multiple GPUs to be allocated per parallelized layer.

Handling Layer Normalization. Layer Normalization presents unique challenges since
these layers were trained on specific input distributions. For MHA pre-normalization, we
apply separate normalization on each device. For FFN pre-normalization, we found that
linearly interpolating the weights of both FFN pre-norms yielded better perplexity than
maintaining separate normalizations. This improvement may stem from the fact that, given
we reduce the MHA outputs over the parallelized layers, interpolation effectively combines
the expected input distributions of both layers.

5 Experiments & Results

In this section, we evaluate Layer Parallelism across three dimensions: inference speed
improvements, impact on In-Context Learning performance, and the potential to recover
model accuracy through targeted fine-tuning of parallelized layers.

Experimental protocol. For all our experiments, we use a node with two A100 SXM4
80Gb GPUs, four AMD EPYC 7742 CPUs, and 512Gb of RAM. We test for varying sequence
lengths, up to 4096 (Llama’s context window), with a batch size of 1 unless indicated

6
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Table 1: 5-shot In-Context Learning accuracies across standard benchmarks.
Effective Depth shows the minimum number of sequential operations from input to output.
Parallel Layers (PL) indicates the range of consecutive layers where pairs were processed in
with Layer Parallelism.

Eff. Depth PL MMLU PiQA Arc E. Arc C. WinoG OBQA hellaswag
Llama 2 7B

32 (Baseline) - 0.4583 0.8009 0.8106 0.5196 0.7411 0.4520 0.7821
27 (Ours) 18-28 0.4625 0.7933 0.8005 0.5094 0.7348 0.4600 0.7782
26 (Ours) 16-28 0.4588 0.7927 0.7976 0.4983 0.7340 0.4460 0.7745
25 (Ours) 14-28 0.4532 0.7851 0.7917 0.4949 0.7340 0.4440 0.7673
24 (Ours) 12-28 0.4083 0.7845 0.7841 0.4839 0.7190 0.4360 0.7578
23 (Ours) 10-28 0.3519 0.7829 0.7677 0.4488 0.6922 0.4240 0.7368

Llama 3.2 3B
28 (Baseline) - 0.5610 0.7992 0.7807 0.4872 0.7214 0.4520 0.7557

24 (Ours) 17-25 0.5508 0.7856 0.7521 0.4753 0.7167 0.4420 0.7384
23 (Ours) 15-25 0.5481 0.7748 0.7399 0.4735 0.7119 0.4200 0.7303
22 (Ours) 13-25 0.4693 0.7666 0.7264 0.4497 0.6914 0.4180 0.7193
21 (Ours) 11-25 0.3890 0.7519 0.6839 0.4061 0.6638 0.4020 0.6847
20 (Ours) 9-25 0.3107 0.7416 0.6481 0.3652 0.6227 0.3620 0.6407

10 15 20 25
End index

6

6.5

7

7.5

P
er

p
le

x
it

y

∆=2

∆=4

∆=6

∆=8

∆=10

∆=12

∆=14

∆=16

∆=18

∆=20

Baseline

(a) Llama2 7B.

10 15 20 25
End index

10

12

14

16

18

20

P
er

p
le

x
it

y

∆=2

∆=4

∆=6

∆=8

∆=10

∆=12

∆=14

∆=16

∆=18

Baseline

(b) Llama3.2 3B.

Figure 6: Perplexity when running pairs of consecutive layers in parallel. Perplexity
of Llama2 7B and Llama3.2 3B models on the test set of RedPajamaTogether Computer
(2023) when applying Layer Parallelism to ∆ consecutive layers. The parallelized interval for
each data point is [end index −∆, end index[.

otherwise. We consider two models of the Llama family: Llama2 7B, and Llama3.2 3B. We
always apply Layer Parallelism of 2 (one layer to each GPU) on the merged sequential layers
and apply Tensor Parallelism as described in (Shoeybi et al., 2020) for the rest. The baselines
are fully Tensor Parallel Llama models. For evaluation, we measure the ICL 5-shot accuracies
using the lm-eval package (Gao et al., 2024). We test the ICL accuracy of the models on
several tasks: MMLU (Hendrycks et al., 2021), PiQA (Bisk et al., 2019), ARC Easy (Arc
E.), ARC Challenge (Arc C.), Winogrande (WinoG) (Sakaguchi et al., 2021), OpenBookQA
(OBQA) (Mihaylov et al., 2018) and Hellaswag (Zellers et al., 2019). The perplexity (PPL)
of the models is always evaluated against a subset of the test set of RedPajama (Together
Computer, 2023).

Impact of layer-parallelism on PPL and ICL accuracies. We begin by exploring the
evolution of the perplexity when applying layer parallelism to stretches of layers of varying
lengths, and starting at different depths. Results in Fig. 6 show how both models—Llama2
7B and Llama3.2 3B—exhibit a common sequence ending index for which the perplexity is
minimized, which is 28 and 25 for Llama2 7B and Llama3.2 3B, respectively. Taking this
into consideration, in Table 1 we evaluate the In-Context Learning capabilities of models of
different effective depths, for which parallelized sequences end at those indices. For Llama 2
7B we observe that applying Layer Parallelism to a sequence greater than 14 layers results
in a steep loss of In-Context Learning capabilities in the more challenging benchmarks, like

7
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Figure 7: Wall clock time to complete the following inference tasks: KV Cache
pre-filling for a given sequence length, autoregressive generation up to the indicated sequence
length, and single token generation with a pre-filled KV Cache of the indicated sequence
length. The baseline is the original model with all layers making use of Tensor Parallelism.
The Parallel Layers number (∆) indicates how many layers have been merged using Layer
Parallelism (e.g. a ∆ of 4 indicates that 2 groups of 2 layers have been converted to 2
effective layers). The gains in inference speed are directly proportional to the grade of Layer
Parallelism. The 1-token generation task for Llama 3.2 3B does not saturate the GPU
compute until a sequence length of 2048. Even in this regime, Layer Parallelism benefits
from considerable speed-ups.

MMLU. Likewise, parallelizing above 10 layers of Llama 3.2 3B sees an even more rapid
decrease in performance on difficult benchmarks. The effective depth of both models at the
parallel configurations before those sudden drops in performance is 25 and 23, a reduction of
21% and 18% of their original depths, respectively.

Impact on the inference speed. We run an ablation over several configurations and
input sequence lengths on Figure 9 to test the speed on three different tasks: KV-Cache
pre-filling, autoregressive generation up to the sequence length (with KV-Cache) and 1-token
generation with a pre-filled KV-Cache of the corresponding sequence length. Our ablations
show that the speed gain is directly proportional to the reduction of the effective depth of
the model. For the effective depths of 25 (∆ = 14) in Llama 2 7B, we observe an average
speed-up of 1.29x at the largest sequence length in the 1-token generation task. Likewise, for
an effective depth of 23 (∆ = 10) in Llama 3.2 3B, we report a speed-up of 1.22x. For more
aggressive parallelism, ∆ = 18 and ∆ = 16, we report a speed-up of 1.38x and 1.35x , at the
expense of a large drop in ICL accuracy.

Fine-tuning for performance recovery. While Layer Parallelism offers significant speed
improvements, the architectural modifications can impact model performance. To address
this, we investigated whether fine-tuning could recover the original model’s capabilities.
Using Llama 3.2 3B with Layer Parallelism applied to layers 13-25 (∆ = 12), we fine-tuned
only the parallelized layers on random samples from RedPajama’s training set Together
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Computer (2023). With a batch size of 2 and a learning rate of 1e−4, we observed substantial
recovery of model performance. As shown in Table 2, fine-tuning for 8,192 steps improved
MMLU accuracy from 83.6% to 94.4% of the baseline performance, demonstrating that much
of the model’s original capability can be recovered while maintaining the speed benefits of
Layer Parallelism.

6 Limitations

Table 2: Recovery of MMLU accuracy
through fine-tuning on Llama 3.2 3B
with Layer Parallelism applied to layers
13-25. Relative MMLU shows performance
as a percentage of the baseline model’s accu-
racy. The recovered MMLU saturates after
fine-tuning for 8k steps.

Fine-tuning Steps MMLU Rel. MMLU (%)
0 (Baseline) 0.5610 100
0 (13-25 LP) 0.4693 83.6
4096 (Ours) 0.4979 88.8
8192 (Ours) 0.5295 94.4
16384 (Ours) 0.5222 93.1
32736 (Ours) 0.5266 93.8

While our approach demonstrates significant
improvements in inference efficiency, several
important limitations should be considered.

The effectiveness of our approach ex-
hibits notable variations across model
scales. Smaller models show reduced bene-
fits, likely due to their less sparse activation
patterns and more tightly coupled layer de-
pendencies. Even in successful cases, we ob-
serve a consistent, albeit small, performance
degradation compared to the baseline. This
degradation becomes more pronounced as
model depth increases, suggesting a practi-
cal upper limit to the number of layer pairs
that can be effectively parallelized.

Finetuning. While some performance loss
can be mitigated through fine-tuning, we
were unable to fully recover the baseline model’s performance levels. This suggests funda-
mental trade-offs between computational efficiency and model capability that cannot be
entirely eliminated through optimization.

Determining the ’true’ effective depth—the optimal configuration of parallel layer
pairs—remains an open challenge as there is no theoretical framework for predicting
the optimal grouping strategy. These limitations highlight important directions for future
research, particularly in developing more robust methods for determining optimal layer
groupings and investigating the interplay between our approach and other efficiency-oriented
techniques.

7 Conclusion

In this work, we presented Layer Parallelism, a novel approach that exploits independence
patterns between transformer layers to optimize LLM inference. By restructuring the com-
putational graph to enable parallel execution of consecutive layer pairs through tensor
parallelism, we achieved substantial speed improvements without model retraining. Our
method reduced the effective depth of Llama 2 7B by 21% while maintaining strong perfor-
mance, yielding up to a 1.29x improvement in inference speed for single-token generation
with long sequences. Similar benefits were observed with Llama 3.2 3B, achieving an 18%
reduction in effective depth with up to a 1.22x speed-up. Moreover, we show that we can
recover 10.8% of ICL accuracy on MMLU by fine-tuning the parallelized models using few
resources.

These results challenge the conventional view that transformer layers must process information
strictly sequentially, suggesting instead that certain layers can operate independently without
significant performance loss. From a practical standpoint, LP offers a straightforward
approach to improve inference efficiency in production environments. Future work could
focus on developing theoretical frameworks to predict optimal layer groupings, investigating
interactions with other efficiency techniques such as quantization, and understanding the
fundamental principles behind layer independence. Despite its limitations, LP represents a
practical advancement in making LLM deployment more efficient and economically viable.
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A Ablation: Memory efficiency
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Figure 8: Maxiumum memory usage (Mb) to complete the following inference tasks: KV
Cache pre-filling for a given sequence length, autoregressive generation up to the indicated
sequence length, and single token generation with a pre-filled KV Cache of the indicated
sequence length. The baseline is the original model with all layers making use of Tensor
Parallelism. The Parallel Layers number (∆) indicates how many layers have been merged
using Layer Parallelism (e.g. a ∆ of 4 indicates that 2 groups of 2 layers have been converted
to 2 effective layers).
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B Ablation: Tokens per second
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Figure 9: Tokens per second when completing the following inference tasks: KV Cache
pre-filling for a given sequence length, autoregressive generation up to the indicated sequence
length, and single token generation with a pre-filled KV Cache of the indicated sequence
length. The baseline is the original model with all layers making use of Tensor Parallelism.
The Parallel Layers number (∆) indicates how many layers have been merged using Layer
Parallelism (e.g. a ∆ of 4 indicates that 2 groups of 2 layers have been converted to 2
effective layers). The number of tokens is computed as the sum of the input tokens and the
output tokens for each forward pass.
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C Generalization to multiple GPUs
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Figure 10: Generalization of Layer Parallelism and Tensor Parallelism. In this case, the
figure shows the case for 4 GPUs and 2 layers. The stacked layers represent the tensor
parallelism, and the colors indicate the processing of different previously contiguous layers.
LP builds on top of TP by assigning the heads from consecutive layers into different GPUs.
If there are more GPUs than layers, then each layer will be accelerated using TP, and
Q,K, V and att ∈ RT× 2D

g , where D is the feature dimension and g is the total number of
GPUs.
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