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Abstract

As the demand for high-quality training data escalates, researchers have increasingly turned
to generative models to create synthetic data, addressing data scarcity and enabling con-
tinuous model improvement. However, reliance on self-generated data introduces a critical
question: Will this practice amplify bias in future models? While most research has focused
on overall performance, the impact on model bias, particularly subgroup bias, remains
underexplored. In this work, we investigate the effects of the generated data on image
classification tasks, with a specific focus on bias. We develop a practical simulation environ-
ment that integrates a self-consuming loop, where the generative model and classification
model are trained synergistically. Hundreds of experiments are conducted on Colorized
MNIST, CIFAR-20/100, and Hard ImageNet datasets to reveal changes in fairness metrics
across generations. In addition, we provide a conjecture to explain the bias dynamics when
training models on continuously augmented datasets across generations. Our findings con-
tribute to the ongoing debate on the implications of synthetic data for fairness in real-world

applications.

1 Introduction

As models continue to evolve and become more sophisticated, the demand for large amounts of high-quality
training data has escalated (Alzubaidi et al., [2023). Traditionally, web data has been the primary resource
for enhancing model performance (Deng et al., |2024). However, as this source becomes fully exploited, re-
searchers have begun to explore alternative methods. One promising approach is to leverage generative mod-
els to create synthetic data (Fan et all [2024; [Meng et al., 2022; |Zhou et al., |2023; [Yang et al.| [2023)), thereby
fueling continuous training cycles, as shown in fig. [Il This innovative self-sustaining pipeline effectively mit-
igates the issue of data scarcity, allowing models to improve iteratively with the help of their own generated
outputs (Chen et al., 2024} [Lu et al., |2024). Despite the apparent advantages, this strategy introduces a
crucial and complex debate: Will the reliance on self-generated data eventually lead to model degradation?

Some research has attempted to answer this ques-
tion. On the one hand, |Azizi et al. (2023) and
Zhou et al.| (2023)) use the diffusion model to gen-
erate synthetic image data to augment the training
set and observe the performance improvement in im-
age classification tasks. [Zheng et al.| (2024) analyze
the positive impact of generative data enhancement
on small-scale datasets from a theoretical perspec-
tive. [Hammoud et al| states that a carefully de-
signed generated data augmentation strategy could
be helpful to alleviate the long tail problem. On the
other hand, /Alemohammad et al.| (2024) show that
purely adding the generated data to agent train-
ing could eventually cause model degradation, with
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Figure 1: Generative models can be leveraged to gen-
erate more data to augment the training set, then help
the downstream models training.
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their quality or diversity progressively decreasing.
Singh et al.| (2024) demonstrate that the use of synthetic data could cause a large performance drop in
model robustness. The debate is still ongoing and remains unsettled.

It is important to note that although many research efforts are put into analyzing the influence of generative
data on overall model performance, few of them explore the impact of generative data on the model bias,
especially on the model’s behavior in the worst-performing subgroups. Previous work (Zhang et al.l 2024)
has identified that models often behave significantly differently across various unknown subgroups, showing
the critical role of model fairness in real-world applications. In the context of generative data, we raise a new
question in this paper: will the inclusion of generated data help alleviate the model bias problem, or could
it potentially make it worse? This question and its answer are significantly connected with other bias issues,
e.g., demographic parity (Loukas & Chung, |2023)), equalized odds (Grant, [2023)), maximum disparity (Roh
et al.l |2020)), spurious correlation (Seo et al., [2022).

Intuitively, the bias issue is probably to be amplified because generated data is increasingly leveraged in
training models across successive generations. Previous findings (Sehwag et al.| 2022} He et al.l [2024)) reveal
that generative models tend to sample data from high-density regions, leaving low-density data heavily under-
explored. This imbalanced sampling introduces a natural skew in the dataset used to augment training,
thereby exacerbating the bias present in the model. However, is this assumption accurate? To the best of
our knowledge, no research has thoroughly explored this question. This lack of exploration leaves a critical
issue unresolved, potentially creating an unknown risk in practical applications.

In this work, we study the impact of generated data on the model bias through the lens of the image
classification problem, one of the most fundamental tasks of computer vision and deep learning. Our approach
differs from previous studies in two key aspects: First, we focus on the impact of generated data on the model
bias. Second, we create a more practical simulation environment by building a self-consuming loop that trains
the generative model and the image classification model synergistically. We conduct experiments on three
datasets, including colorized MNIST (Kim et al., 2019al), CIFAR-20/100 (Zhang et all 2024), and Hard
ImageNet (Moayeri et al. 2022b)), to observe and analyze changes in various fairness metrics.

We summarize our contributions and key findings as follows:

1. We design and implement a scalable, self-consuming simulation environment. Our method interleaves
dataset augmentation and model training across different generations.

2. We introduce data stacking and expert-guided filtering approaches to overcome data explosion and
inconsistent data quality issues.

3. We conduct extensive experiments on three popular datasets to examine and reveal the impact of
cross-generation generated data on model performance and bias.

4. We systematically analyze the factors causing diverse model bias behaviors.

2 Related work

2.1 Generative model and its application

Generative models have become a cornerstone of modern machine learning, particularly in the domain of
data augmentation and synthetic data generation (Akkem et al.,[2024). Early approaches, such as Generative
Adversarial Networks (GANs) (Goodfellow et al., 2020)), revolutionized the field by enabling the creation of
highly realistic synthetic data through a process of adversarial training between a generator and a discrim-
inator. More recently, diffusion models (Croitoru et al., [2023) have gained prominence due to their ability
to generate high-quality data through a denoising process, offering an alternative to traditional GAN-based
approaches. These generative models have been widely adopted in various tasks, including image synthe-
sis (Liao et all 2020]), text generation (Li et al., |2018]), and data augmentation (Antoniou et al., [2017)),
proving their efficacy in improving model performance. In this work, we leverage two generative models,
including the conditional GAN and text-to-image diffusion.
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The advent of generative models has significantly expanded the possibilities for data augmentation by en-
abling the creation of entirely new data samples that mimic the distribution of the original dataset. For
instance, |Azizi et al.| (2023)) and |Zhou et al.| (2023)) leverage diffusion models to generate synthetic images,
successfully augmenting training sets and improving classification accuracy. Similarly, [Zheng et al.| (2024)
explore the theoretical underpinnings of generative data augmentation, particularly in the context of small-
scale datasets. However, the impact of using synthetic data is not without its challenges. [Alemohammad
et al.| (2024) highlight that indiscriminate inclusion of generated data in training can lead to model degrada-
tion, where the model’s performance deteriorates as the quality and diversity of the generated data decrease
over time. [Hammoud et al.| observe a related phenomenon, noting that a carefully designed strategy for data
augmentation could mitigate issues such as the long-tail problem. Further, [Singh et al.| (2024]) demonstrate
that the use of synthetic data can significantly undermine model robustness, leading to performance drops.

2.2 Bias in deep learning models

Many efforts have been made on the model bias. Kotek et al.[(2023) investigate the behavior of large language
models on gender bias. [Liu et al.| (2022) measure the political bias in language models. [Zhang et al.| (2024)
identify the existence of subgroup bias in image classifiers. Hosseini et al.[(2018) find the shape bias learning
by convolutional neural networks. [Khayatkhoei & Elgammal| (2022) discover generative models can easily
learn the spatial bias from the data. Heinert et al.| (2024)) and [Honig et al.| (2024) research on texture bias
in deep learning models.

There are also many fairness metrics to help evaluate bias (Kim et all 2019b; [Lin et all 2022). Important
fairness metrics include demographic parity (Jiang et al. |2022)), which ensures that positive classification
rates are equal across different demographic groups, and equalized odds (Romano et al.| 2020)), which requires
that true positive and false positive rates are consistent across groups. Equal opportunity (Wang et al.l|2023))
further emphasizes equal true positive rates, ensuring that no group is disadvantaged in correct classifications.

3 Generate to Learn: Building a Scalable and Self-Sustaining Simulation
Environment

3.1 A Simple yet Practical Framework for Simulation

To better understand the impact of the generated data on future model training, we design and implement a
simulation environment grounded in real-world practices. The environment comprises four core components:
subgroup construction, base model initialization, dataset augmentation, and future model development.

o Subgroup Construction. Our environment is designed to study the effects of generated data on model bias,
making it essential to establish clear and practical attributes for bias evaluation. Inspired by [Zhang et al.
(2024), we manually partition the original dataset into multiple subgroups, where subgroups within the same
class share similar semantics. The introduction of bias is controlled by adjusting these subgroup partitions.
During the training process, the models remain unaware of the subgroup partitions, which are only revealed
during the evaluation stage to assess model bias.

o Base Model Initialization. We construct and randomly initialize a base generative model g(-). This model
is then trained from scratch on the dataset D = {(z;,v;)}},, where = represents the sample to generate,
y is the corresponding label, and N is the number of training samples in D. The model is trained until it

converges sufficiently on D.

o Dataset Augmentation. Once the base model is initialized, we use the generative model g(-) to generate
data that approximates the distribution of the training dataset D, thereby augmenting the original dataset.
Because previous study (Zheng et al., |2024)) has shown that training exclusively on generated data can
eventually cause model failures, we adopt an alternative strategy (Azizi et all 2023; |Zhou et all 2023),
mixing the original data with generated data at a ratio of p%.

o Future Model Development. In addition to the base generative models, our task involves two types of
models: downstream models and subsequent generative models. The downstream model corresponds to an
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image classification model optimized with cross-entropy loss. The generative model is a re-initialized version
of g(+), trained on the augmented dataset from the previous generation. Unlike previous similar work that
considers only a single generation, we incorporate generated data from multiple continuous generations,
creating a more realistic and practical scenario.

We leverage the above core components to build our simulation environment. We begin with subgroup
construction to study the model behaviors of interest. At each generation, we (re)initialize the base model
using the current dataset, which may have been augmented. This model is then used to generate additional
data for dataset augmentation. Finally, the downstream models are developed on the dataset augmented by
the current-generation generative model.

3.2 Scaling the Simulation for Real-World Practice

Two significant challenges remain in our environment, limiting its scalability for simulating real-world prac-
tices: 1) Data Ezplosion: As the number of generations increases, the volume of generated data grows
continuously, leading to a significantly larger training set and resulting in unbearable training time con-
sumption. 2) Inconsistent Data Quality: Due to the inherent uncertainty in the generative process, the
quality of data produced by the generative model across different generations may vary, potentially leading
to degradation in the performance of future models.

We propose two strategies to incorporate into our simulation environment to address these challenges, in-
cluding the Data Stacking and FExpert-guided Filtering.

o Data Stacking. We maintain a first-in-first-
out queue to store the generated data. Specif- New augmented data

ically, we set the capacity of the queue to D. — Expert-guided ﬁlteringgé

We continuously use the updated generative
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o Ezpert-Guided Filtering. We introduce two
expert-guided strategies to filter low-quality Figure 2:
samples and improve the quality of the train-
ing set. The first strategy involves conducting
a human study to score the generated sam-
ples and removing those that are easily recog-
nized as generated content. The second strat-
egy leverages the CLIP and our trained classification model of the last generation to score the generated
samples based on the prediction uncertainty (Gal & Ghahramani, [2016)), filtering out the bottom r% based
on their scores.

We continuously leverage new generators to
produce additional images that enhance the training pro-
cess, employing data stacking and expert-guided filtering to
maintain high quality. We highlight the trajectory of the
self-consuming loop in red.

3.3 Evaluation Metrics for Assessing Model Bias

It is important to evaluate model performance, including bias, during the development process across gener-
ations. Consider an input € X from the initial meta training dataset in our simulation environment, asso-
ciated with a ground-truth label y € ). Assume the dataset comprises L distinct classes, so Y =1,2,..., L.
We hypothesize that each class is further divided into G subgroups, assuming for simplicity that each class
contains an equal number of subgroups, resulting in a total of L x G subgroups across the dataset. For
each input x, its subgroup membership is denoted by g € 1,2,...,G. The existence of such unknown sub-
groups and the varying model performance across these subgroups contribute to the presence of model bias.
In our environment, we use several criteria to evaluate model performance, including overall performance,
multi-group equality of opportunity, multi-group disparate impact, maximum disparity, and sub-population
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performance. Among these metrics, we extend the conventional equality of opportunity and disparate impact
to the content of image classification task with multiple tasks and multiple unknown attributes.

Overall Performance. We use the Fréchet inception distance (FID) (Heusel et al..|2017) and the classification
accuracy (Acc) as metrics for the evaluation of the generative model and the downstream classification model.

FID, = [|te = pgll3 + Tr(Se + £y = 2(2e5,)?), Acen = P (fu (x) = ). (1)

where p. and ¥, are the mean and variance matrix of the feature vector extracted from Inception-V3 (Szegedy
et al.,|2015) on the original clean samples, g and 3, are those from the generated samples, y, is the ground-
truth associated with the sample x, and n indicates the number of generation.

Equality of Opportunity. The equality of opportunity (Ferreira & Peragine, [2013)) measures whether every
subgroup is treated equally by the model under study. In our simulation environment, we compute the
equality of opportunity (EO) under the background of multiple groups as follows:

EO, =1— % > ||TPR], — TPR}|, (2)
(2) 1,7<Gi#j

where we denote TPRZ as the the true positive rate of i-th subgroup in the n-th generation. It can be
computed as TPR;,, = P (f,(x) =y |y = y=,9 = i), indicating the probability that the model f,, correctly
classifies an input @ from the i-th subgroup with the ground-truth label y = y,,.

Disparate Impact. Disparate impact (Feldman et al., 2015) measures whether different subgroups receive
positive outcomes at similar rates. In our simulation environment, we extend this concept to multiple groups,
defining the multi-group disparate impact (DI) as follows:

1 P(fn(x) = Yo |
DI, = 1 — ——
' (g) i’jg:;i#j P(fn(m) =Yz |

I 3)

where P(f,(x) = y. | ¢ = i) denotes the probability that the model f, assigns a positive outcome (e.g.,
Y = Y.) to an input = from the i-th subgroup.

Mazimum Disparity. Maximum disparity measures the largest difference in model performance between any
two subgroups. We compute the maximum disparity (MD) as follows:

MD, = max | TPRY, — TPRY||. (4)

Subgroup Performance. In addition to the aforementioned metrics for single-bias evaluation by pair-wise
computation, we evaluate model performance by examining the accuracy of the multiple worst-performing
subgroups. For each superclass ¢, we calculate the accuracy of its G' subgroups, denoted as Acc, 4, and sort
these accuracies in ascending order, Acc. 1) < Acce 2y < --+ < Acce (). We then compute the average
accuracy for each rank k across all superclasses:

C

-— 1

ACC(k) = 6 Z ACCC,(k), (5)
c=1

where C' is the total number of superclasses. This allows us to assess the model’s performance across the
most challenging subgroups.

Among these metrics, MEO (eq. ), DI (eq. ), and MD (eq. ) assess single-bias evaluation, and
subgroup performance evaluates (eq. ) the impact of multiple biases.

Why do we select these metrics? We do not choose to use the one-vs-rest (OvR) strategy (Jung et al.,
2021) for evaluating fairness metrics in our multi-class classification tasks because OvR reduces multi-class
problems to multiple binary subproblems, potentially missing the intricate biases and class interactions
inherent in genuine multi-class contexts, thus overlooking unfairness arising from these interactions (Friedler
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et all) [2019). Additionally, OvR could introduce significant data imbalance in each binary subproblem,
especially when class distributions vary greatly, which adversely affects classifier performance and distorts
fairness metrics, leading to unreliable evaluations (Brzezinski et al., |2024)). Instead, we employ fairness
metrics specifically designed for multi-class classification — MEO, DI, and MD — to assess fairness across
all classes simultaneously, preserving the integrity of the multi-class problem and providing a more accurate
evaluation (Mazijn et al.,2021). This approach ensures that our fairness assessments reflect the complexities
of multi-class classification, effectively manage potential data imbalances, and align with our objective to
enhance fairness in a comprehensive and contextually appropriate manner.

4 Experiments

4.1 Evaluation setup

Datasets. We studied three datasets: Colorized MNIST, CIFAR-20/100, and Hard ImageNet. (D) The
Colorized MNIST dataset is a modified version of the original MNIST (LeCun,|1998]), where three colors—red,
blue, and green—are added to the images. We created two versions of this dataset. In the first, the three
colors are uniformly applied across different classes. In the second, the colors are applied with uneven ratios,
introducing a bias in the color distribution. (2) The CIFAR-~20/100 dataset is derived from CIFAR-100 (Alex],
2009) by grouping every five subclasses with similar semantic meaning into one single superclass, resulting
in 20 classes. @) Hard ImageNet (Moayeri et al.,2022b)), a challenging subset of the ImageNet dataset(Deng
et al.,2009), consists of 15 classes and contains various spurious correlations that can undermine the reliability
of models trained on it.

Models. In the experiments with colorized MNIST and CIFAR-20/100, we consider five models: LeNet (Le-
Cun et al.| [1998), AlexNet (Krizhevsky et al [2012), VGG-19 (Simonyan & Zisserman, 2014)), ResNet-50 (He
et al.l 2016]), and MobileNet-V3 (Howard et al.| [2019)). For the Hard ImageNet experiment, we exclude the
smallest model, LeNet, and additionally include a larger model, DeiT-S (Touvron et al., |2021). These
models are sourced from the PyTorch library (Paszke et all [2019), with the final layer modified to fit the
specific classification tasks. We use GANs (Radford, |2015) to learn and generate the colorized MNIST and
CIFAR-20/100 datasets, while stable-diffusion-1.5 (Rombach et al., 2022)) is employed for generating the
Hard ImageNet dataset.

Metrics. We evaluate model performance across all datasets based on classification accuracy. For the
Colorized MNIST and CIFAR-20/100 datasets, which have explicit subgroups but are trained only at the
superclass level, we also assess fairness metrics, including Multi-group Equality of Opportunity (MEO),
Disparate Impact (DI), and Maximum Disparity (MD) (section . For Hard ImageNet, which contains
spurious correlations without known subgroup partitions, we measure model accuracy on images with various
ablation masks applied to the spurious objects.

Implementations. We set the number of generations to 10 or 4 in MNIST/CIFAR and Hard ImageNet,
respectively. For training all models, we use the Adam optimizer, initializing the learning rate at 1 x 1071,
with training capped at 50 epochs. Early stopping is employed to ensure full convergence and to avoid
overfitting. We provide the evaluation of different generators across generations based on the FID score
in table [I] The classification model at the O-the generation is trained on the original dataset without any
generated data. The queue has a maximum capacity of 3. For all results, We run 3 times to reduce the
experimental randomness.

4.2 Evaluation on Colorized MNIST

We begin with the Colorized MNIST dataset, using both unbiased and biased initializations. The introduc-
tion of bias refers to the uneven painting strategy applied at the outset.

Unbiased Initialization. The results are shown in fig. [J]. Most models benefit from data augmentation using
the updated generated data across generations, and all single-bias evaluations also show slight improvements.
However, there are notable exceptions, particularly with MobileNet-V3, which experiences significant perfor-
mance variations across generations. It’s important to highlight that models differ considerably in multi-bias
evaluations. While VGG-19 and ResNet-50 show significant improvements, smaller models, including Sim-
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Table 1: Evaluation of FID across generations for different generative models trained on various datasets,
including colorized MNIST w/wo bias initialization, CIFAR-20/100, and Hard ImageNet. The 1st generative
model is trained on the original dataset without the inclusion of generative data.

Number of generations
1 2 3 4 5 6 7 8 9 10
Unbiased 111.7 108.9 1078 107.1 1045 103.6 101.0 100.5 103.6 106.3
Biased 109.4 106.0 107.03 106.4 105.3 114.2 109.0 108.6 109.1 116.5

Dataset Initialization

Colorized MNIST

CIFAR-20/100 N/A 249.3 213.6 210.6 217.7 218.8 2249 233.1 226.5 220.6 223.0
Hard ImageNet N/A 56.6  49.9 55.4 60.2 70.6 65.8 153.2 256.1 353.1 -
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(b) Subgroup performance of the model trained on the Colorized MNIST dataset with unbiased initialization.
Figure 3: Results on the models trained on the MNIST dataset with unbiased initialization.

pleNet, AlexNet, and MobileNet-V3, exhibit a noticeable decline in subgroup performance with continued
large generations.
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(b) Subgroup performance of the model trained on the Colorized MNIST dataset with biased initialization.
Figure 4: Results on the models trained on the MNIST dataset with biased initialization.
Biased Initialization. We present the results of models trained on the dataset with biased initialization
in fig. @] We observe consistent results in terms of classification accuracy and single-bias evaluation, which
presents continuously imrprovement across generations; however, there are significant differences in the multi-
bias evaluation. Specifically, VGG-19 experiences substantial performance degradation across subgroups,
despite improvements on the dataset with unbiased initialization. In contrast, AlexNet performs better on
this dataset as the number of generations increases. Compared with the results on the colorized MNIST
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with unbiased initialization, though MobileNet-V3 presents stable performance in this environment, both of
the AlexNet and VGG-19 show large variation.

Summarization & Takeaways. As reported in table [T the generative model can learn an approaching
latent representation similar to that of the real samples on the colorized MNIST datasets, which is evident
by the similar results on the FID evolution across generations. Thus, we can omit the impact of the quality
of the generated data on the downstream models here. On the MNIST dataset, models can be consistently
improved by augmenting the dataset with generated data across multiple generations. Notably, the inclusion
of additional generated data does not significantly affect the models’ single-bias performance, even with
a large number of generations. However, it can lead to substantial variations in subgroup performance,
revealing the presence of the multi-bias problem. The impact of generated data across generations varies
between different models but remains consistent within the same architecture over multiple generations.
Comparing results from unbiased and biased initializations, we observe that the presence of bias in the
original dataset does not cause the model to degrade rapidly. Both initialization types exhibit similar trends
in single- and multi-bias performance. In other words, the presence of dataset bias does not significantly
amplify model bias when the dataset is augmented with generated data across generations.

4.3 Evaluation on CIFAR-20/100
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dataset comprises more features and biases influencing the model training, which are not easily controllable.
Thus, we investigate the impact of using pre-trained weights on the model bias during the self-consuming
loop. In this experiment, we compare the performance of models initialized with pre-trained weights provided
by the PyTorch library to those trained from scratch. This comparison will help assess the effectiveness
of pre-trained weights in improving model performance and stability when applied in this iterative data
augmentation process.

Without Pre-trained Weights. Unlike the results on the MNIST dataset, augmenting CIFAR-20/100 with
generated data can lead to degradation, with LeNet experiencing up to a 20% drop after 10 generations. The
impact on bias metrics also varies. In the single-bias evaluation, both Equality of Opportunity and Maximum
Disparity are significantly improved across all models, while most models show similar behavior regarding
Disparate Impact. LeNet exhibits a larger bias in terms of Disparate Impact. For the multi-bias evaluation,
models perform more consistently across different subgroups compared to their average performance across
generations. Notably, although VGG-19 shows decreasing performance over generations, it performs better
in bridging the performance gap between different subgroups.
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With Pre-trained Weights.Notably, models perform a faster performance degradation when using pre-trained
weights as the number of generations for data augmentation increases. A greater number of models exhibit
declines in classification accuracy and fairness metrics, such as Equality of Opportunity and Disparate
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(a) Overall performance evaluation of the fine-tuned model on the CIFAR-100.
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(b) Subgroup performance evaluation of the fine-tuned model on the CIFAR-100 dataset.

Figure 6: Results on the models pre-trained on the ImageNet and fine-tuned on the CIFAR-~20/100.

Impact. Interestingly, while ResNet-50 without pretraining does not show a significant performance drop in
the multi-bias evaluation, it experiences substantial degradation when pre-trained on the ImageNet dataset.
This suggests that pre-trained weights, despite their initial advantage, may exacerbate model bias and
performance issues in this iterative augmentation process.

Summarization & Takeaways. As shown in table [I} continuously training on the dataset augmented
by generated data across multiple generations leads to a slight improvement in generative performance,
as evidenced by the decreasing FID scores on the CIFAR-20/100 dataset. However, despite the improved
generative model, classification models trained with successively augmented datasets still experience a de-
cline in performance in both the original classification task and bias evaluations. When using pre-trained
weights from the ImageNet dataset, the classification models show significant improvement compared to
training from scratch. Nevertheless, it is evident that models with pre-trained weights are more susceptible
to integration bias introduced by the augmented datasets evolved over generations, further exacerbating
performance deterioration in bias evaluations.

4.4 Evaluation on Hard ImageNet

We also conduct experiments on Hard Imagenet (Moayeri et al., [2022a)), a dataset gathered from ImageNet
with very strong spurious cues. The dataset contains 15 classes, and in each class, there is a strong cor-
relation between the image background and the objects. This may lead the model to rely on background
information rather than the actual objects for classification. Compared to the pre-defined color bias in Col-
orized MNIST and existing subgroup biases in the CIFAR-20/100 dataset, the unknown spurious correlation
bias in this dataset is more challenging and difficult to fully identify, making it harder to mitigate during
model development.

To study the impact of cross-generational data on this model bias, we made a modification to our pro-
posed simulation framework. First, we fine-tuned the Stable Diffusion model using Low-Rank Adapta-
tion rather than training from scratch to achieve a good balance between efficiency and generation qual-
ity on our task. Then we use 5 generations of mixed datasets to fine-tune our classifiers. Subsequently,
while lacking explicit signal for single and multiple bias attributes, ablation studies are conducted on each
classifier, following the approach described in Moayeri et al. (2022a)). Specifically, we performed three
types of ablation: (1) the object pixels were replaced with a uniform value of 0.5, neutralizing the ob-
ject’s appearance; (2) the entire bounding box surrounding the object was replaced with gray, remov-
ing shape-related information, and (3) the bounding box was replaced with a neighboring region of the
image, substituting the object with local context. The performance drop caused by masking the image
can indicate the model’s reliance on spurious correlations. A significant performance drop suggests that
the model’s predictions rely more on the core object, indicating less influence from spurious correlations.

9
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Figure 8: Evaluations of the impact of spurious correlation on the models pre-trained on the ImageNet and
fine-tuned on the augmented Hard-ImageNet dataset across generations.
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5 Why mented dataset across genera-
tions.

Models Exhibit Diverse Behaviors Across Generations

The varied behaviors observed across different datasets and models can

be attributed to several factors, including the datasets, models, and data

quality across generations. These factors interact with each other in complex ways, influencing the dynamics
of bias across generations.

Dataset Characteristics. Different datasets exhibit unique features such as image complexity, class diversity,
and inherent biases. Let Sp represent the inherent bias in the dataset. For simpler datasets like Colorized
MNIST, generative models can learn accurate representations more easily, resulting in generated data that
closely matches the original data distribution. This closeness can be quantified by a high data quality factor
q: ~ 1 at generation t. The generated data with minimized bias helps the model continuously improve its
classification performance and reduce bias.

Model Architecture Sensitivity. Different model architectures have varying capacities to learn from augmented
data and mitigate bias. Let ya; represent the model’s capacity to mitigate bias, which is a function of the
model’s architecture M. Larger models with higher capacity (e.g., VGG-19, ResNet-50) have higher vy,
enabling them to handle biases in the data better. Conversely, smaller models (e.g., LeNet, AlexNet) have
lower s and are more susceptible to biases in the training data, leading to greater performance variability
across generations.

Ezxposure of Bias. Datasets contain various biases, both known and unknown, explicit or difficult to detect.
The exposure of bias can be represented by a bias amplification factor §, which accounts for the complexity
and ingrained biases within the dataset. As biases become more difficult to identify—progressing from color
bias to subgroup bias and spurious correlations—we observe greater fluctuations in model performance. The
(t+1) " can be influenced by the bias in the data and the

model’

bias in the model at generation t + 1, denoted B
model’s capacity to mitigate it.

Unbalanced Generation. As identified in previous studies (Sehwag et al.l 2022} [Lee et al., |2021)), gener-
ative models typically generate data from high-density regions of the data distribution, potentially over-
representing certain classes or features. This tendency can be represented by an unbalanced generation
factor u; at generation ¢, which contributes to the bias in the generated data. The quality of data genera-

10
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tion is crucial; lower-quality data can degrade the overall representation quality, which may mitigate biased
performance in downstream models by introducing noise.

Combining these factors, we have a conjecture about modeling the bias dynamics across generations using a
recursive relationship. Let the bias in the model at generation ¢ 4+ 1 be expressed as:

BUt = (1= ar) (14 0p + 6g(1 — gr) + dpus) Bl g1 (6)
Then, the overall bias amplification factor A; at the generation ¢ can be denoted as A; = (1 —

vm) (1 +0p +00(1 — ¢;) + dyue). Depending on the values of yar, ¢4, us, and the constants dp, dg, and dy,
the bias amplification factor A; can be greater or less than 1. If A; > 1, the bias increases across generations;
if A; < 1, the bias decreases.

Thus, the interplay between dataset characteristics, model architecture sensitivity, exposure of bias, and
unbalanced generation may determine the bias dynamics across generations. To establish a self-sustaining
model development loop with positive feedback, it is essential to have a clearer understanding of dataset
bias (0p), utilize larger models with higher capacity (yas), and employ high-quality generative models with
improved sampling mechanisms to increase ¢; and reduce u;.

6 Conclusion

Several models, like Stable Diffusion (Rombach et al., 2022), LLaMA (Touvron et al. 2023), LLaVA (Liu
et al 2024), and Nemotron (Adler et al., [2024), involve self-consumption loops. Notably, Nemotron is
trained with over 98% synthetic data. While synthetic data can improve training, it may also introduce
risks, particularly related to model biases. This has led us to investigate how generated data affects model
performance and bias, especially as self-consumption loops increase. Our experiments on Colorized MNIST,
CIFAR-20/100, and Hard ImageNet datasets show that bias changes depend on factors like dataset type,
model architecture, and generative model performance. Additionally, models are more sensitive to multiple
biases than to a single one.
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