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Abstract

As synthetic data becomes increasingly common in training pipelines, an open question is
whether repeated use of generated data amplifies or mitigates bias in downstream models.
Prior work has examined bias within generative models, but the downstream classifier’s
fairness across multiple generations remains less understood. We study this phenomenon
through a multi-generation simulation in which a generative model and classifier are re-
trained iteratively on mixtures of real and synthetic data.

Across three datasets and multiple architectures, we find that synthetic data does not pro-
duce a uniform trend: bias can increase, decrease, or stabilize depending on dataset struc-
ture, generator fidelity, and the synthetic-to-real mixing ratio. In particular, high-fidelity
generators and balanced subgroup representation tend to preserve or reduce bias, while
low-fidelity or imbalanced synthetic data can amplify bias over generations.

These results highlight that the impact of synthetic data on downstream fairness is highly
context-dependent and cannot be characterized by a single monotonic effect. Our findings
provide concrete conditions under which synthetic augmentation is likely to be safe and

cases where it may gradually worsen model bias.

1 Introduction

As models continue to evolve and become more so-
phisticated, the demand for large amounts of high-
quality training data has escalated
. Traditionally, web data has been the primary
resource for enhancing model performance (Deng
. However, as this source becomes fully
exploited, researchers have begun to explore alter-
native methods. One promising approach is to lever-
age generative models to create synthetic data (Fan

et all 2024} [Meng et al. 2022} [Zhou et all [2023
ang et all 2023; [Yeung et all 2024} [Alemoham-

mad et all, [2023)), thereby fueling continuous train-
ing cycles, as shown in fig. [II This innovative self-
sustaining pipeline effectively mitigates the issue of

data scarcity, allowing models to improve iteratively
with the help of their own generated outputs (Chenl
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Figure 1: Generative models can be leveraged to gen-
erate more data to augment the training set, then help
the downstream models training.

let all [2024b} [Lu et all [2024). Despite the apparent advantages, this strategy introduces a crucial and
complex debate: Will the reliance on self-generated data eventually lead to model degradation?

Some research has attempted to answer this question. On the one hand, Azizi et al.|(2023)) and Zhou et al.|
use the diffusion model to generate synthetic image data to augment the training set and observe
the performance improvement in image classification tasks. [Zheng et al.| (2024)) analyze the positive impact
of generative data enhancement on small-scale datasets from a theoretical perspective. [Hammoud et al.|
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states that a carefully designed generated data augmentation strategy could be helpful to alleviate the long
tail problem. On the other hand, |Alemohammad et al.| (2024)) show that purely adding the generated data
to agent training could eventually cause model degradation, with their quality or diversity progressively
decreasing. |Singh et al.[ (2024]) demonstrate that the use of synthetic data could cause a large performance
drop in model robustness. The debate is still ongoing and remains unsettled.

It is important to note that although many research efforts are put into analyzing the influence of generative
data on overall model performance, few of them explore the impact of generative data on the model bias,
especially on the model’s behavior in the worst-performing subgroups. Previous work (Zhang et al.l 2024)
has identified that models often behave significantly differently across various unknown subgroups, showing
the critical role of model fairness in real-world applications. In the context of generative data, we raise a new
question in this paper: will the inclusion of generated data help alleviate the model bias problem, or could
it potentially make it worse? This question and its answer are significantly connected with other bias issues,
e.g., demographic parity (Loukas & Chung, [2023)), equalized odds (Grant, [2023)), maximum disparity (Roh
et al.l |2020)), spurious correlation (Seo et al., [2022).

Intuitively, the bias issue is probably to be amplified because generated data is increasingly leveraged in
training models across successive generations. Previous findings (Sehwag et al.l |2022} |He et al., |2024) reveal
that generative models tend to sample data from high-density regions, leaving low-density data heavily under-
explored. This imbalanced sampling introduces a natural skew in the dataset used to augment training,
thereby exacerbating the bias present in the model. However, is this assumption accurate? To the best of
our knowledge, no research has thoroughly explored this question. This lack of exploration leaves a critical
issue unresolved, potentially creating an unknown risk in practical applications.

In this work, we study the impact of generated data on the model bias through the lens of the image
classification problem, one of the most fundamental tasks of computer vision and deep learning. Our approach
differs from previous studies in two key aspects: First, we focus on the impact of generated data on the model
bias. Second, we create a more practical simulation environment by building a self-consuming loop that trains
the generative model and the image classification model synergistically. We conduct experiments on three
datasets, including colorized MNIST (Kim et al., 2019al), CIFAR-20/100 (Zhang et all 2024), and Hard
ImageNet (Moayeri et al.l 2022b]), to observe and analyze changes in various fairness metrics.

We summarize our contributions and key findings as follows:

1. We design and implement a scalable, self-consuming simulation environment. Our method interleaves
dataset augmentation and model training across different generations.

2. We introduce data stacking and expert-guided filtering approaches to overcome data explosion and
inconsistent data quality issues.

3. We conduct extensive experiments on three popular datasets to examine and reveal the impact of
cross-generation generated data on model performance and bias.

4. We systematically analyze the factors causing diverse model bias behaviors.

2 Related work

2.1 Generative model and its application

Generative models have become a cornerstone of modern machine learning, particularly in the domain of
data augmentation and synthetic data generation (Akkem et al.,[2024). Early approaches, such as Generative
Adversarial Networks (GANs) (Goodfellow et al.l [2020), revolutionized the field by enabling the creation of
highly realistic synthetic data through a process of adversarial training between a generator and a discrim-
inator. More recently, diffusion models (Croitoru et al.l 2023)) have gained prominence due to their ability
to generate high-quality data through a denoising process, offering an alternative to traditional GAN-based
approaches. These generative models have been widely adopted in various tasks, including image synthe-
sis (Liao et al., [2020)), text generation (Li et all) 2018), and data augmentation (Antoniou et all 2017)),
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proving their efficacy in improving model performance. In this work, we leverage two generative models,
including the conditional GAN and text-to-image diffusion.

The advent of generative models has significantly expanded the possibilities for data augmentation by en-
abling the creation of entirely new data samples that mimic the distribution of the original dataset. For
instance, |Azizi et al| (2023) and Zhou et al.| (2023)) leverage diffusion models to generate synthetic images,
successfully augmenting training sets and improving classification accuracy. Similarly, |Zheng et al.| (2024)
explore the theoretical underpinnings of generative data augmentation, particularly in the context of small-
scale datasets. However, the impact of using synthetic data is not without its challenges.
highlight that indiscriminate inclusion of generated data in training can lead to model degrada-
tion, where the model’s performance deteriorates as the quality and diversity of the generated data decrease
over time. observe a related phenomenon, noting that a carefully designed strategy for data
augmentation could mitigate issues such as the long-tail problem. Further, Singh et al.| (2024) demonstrate
that the use of synthetic data can significantly undermine model robustness, leading to performance drops.

2.2 Bias in deep learning models

Many efforts have been made on the model bias. Kotek et al.|(2023) investigate the behavior of large language
models on gender bias. measure the political bias in language models. [Zhang et al.| (2024)
identify the existence of subgroup bias in image classifiers. [Hosseini et al.| (2018)) find the shape bias learning
by convolutional neural networks. [Khayatkhoei & Elgammal (2022) discover generative models can easily
learn the spatial bias from the data. Heinert et al.| (2024) and Hoénig et al.| (2024) research on texture bias
in deep learning models.

There are also many fairness metrics to help evaluate bias (Kim et al. [2019b} Lin et al. [2022). Important
fairness metrics include demographic parity (Jiang et al., 2022]), which ensures that positive classification
rates are equal across different demographic groups, and equalized odds (Romano et all,[2020)), which requires
that true positive and false positive rates are consistent across groups. Equal opportunity (Wang et al. 2023)
further emphasizes equal true positive rates, ensuring that no group is disadvantaged in correct classifications.

2.3 Relation to Prior Work on Feedback Loops and Bias Propagation

Recent studies have examined how synthetic data or model predictions can contaminate future training
distributions, producing feedback loops that amplify dataset biases. Taori et al. Taori & Hashimoto| (2023)
demonstrate that model-driven sampling can reinforce spurious correlations in the underlying dataset, re-
sulting in a positive-feedback mechanism that progressively shifts the data distribution. Hataya et al.
analyze the long-term risks of large-scale generative models, showing that synthetic data can
distort future datasets when used for uncontrolled large-scale scraping or augmentation. Chen et al.
further investigate whether deep generative models amplify bias in their own outputs, focusing
primarily on bias internal to the generator.

Our work differs from these studies in several key ways. First, rather than analyzing bias amplification
within the generator, we focus on how synthetic data affects the downstream classifier’s fairness across
multiple generations of retraining. This distinction is important because downstream classifiers may respond
to synthetic-data drift in ways that differ from the generative model itself. Second, we operationalize a multi-
generation interleaved loop in which both the classifier and generator are retrained at each cycle, whereas
prior work typically examines a single-component loop (either a generator feeding itself or a model influencing
data collection). Third, we systematically measure multiple fairness metrics—including multi-class subgroup
disparities and robustness against spurious correlations—allowing us to capture a broader spectrum of bias
behaviors than binary-sensitive-attribute studies. Finally, our framework examines how generator fidelity,
classifier capacity, and synthetic-to-real mixing ratios jointly shape the resulting bias dynamics, providing a
unified view across datasets and architectures.

In summary, while prior work has shown that synthetic data can create harmful feedback loops, our contribu-
tion lies in characterizing how these loops affect downstream fairness in multi-generation training pipelines
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and in identifying the conditions under which synthetic augmentation mitigates, preserves, or amplifies
classifier bias.

3 Generate to Learn: Building a Scalable and Self-Sustaining Simulation
Environment

3.1 A Simple yet Practical Framework for Simulation

To better understand the impact of the generated data on future model training, we design and implement a
simulation environment grounded in real-world practices. The environment comprises four core components:
subgroup construction, base model initialization, dataset augmentation, and future model development.

o Subgroup Construction. Our environment is designed to study the effects of generated data on model bias,
making it essential to establish clear and practical attributes for bias evaluation. Inspired by [Zhang et al.
(2024)), we manually partition the original dataset into multiple subgroups, where subgroups within the same
class share similar semantics. The introduction of bias is controlled by adjusting these subgroup partitions.
During the training process, the models remain unaware of the subgroup partitions, which are only revealed
during the evaluation stage to assess model bias.

o Base Model Initialization. We construct and randomly initialize a base generative model g(-). This model
is then trained from scratch on the dataset D = {(z;,v;)}}_,, where = represents the sample to generate,
y is the corresponding label, and N is the number of training samples in D. The model is trained until it
converges sufficiently on D.

o Dataset Augmentation. Once the base model is initialized, we use the generative model g(-) to generate
data that approximates the distribution of the training dataset D, thereby augmenting the original dataset.
Because previous study (Zheng et al., |2024)) has shown that training exclusively on generated data can
eventually cause model failures, we adopt an alternative strategy (Azizi et all 2023; |Zhou et al.l 2023),
mixing the original data with generated data at a ratio of p%.

o Future Model Development. In addition to the base generative models, our task involves two types of
models: downstream models and subsequent generative models. The downstream model corresponds to an
image classification model optimized with cross-entropy loss. The generative model is a re-initialized version
of g(-), trained on the augmented dataset from the previous generation. Unlike previous similar work that
considers only a single generation, we incorporate generated data from multiple continuous generations,
creating a more realistic and practical scenario.

We leverage the above core components to build our simulation environment. We begin with subgroup
construction to study the model behaviors of interest. At each generation, we (re)initialize the base model
using the current dataset, which may have been augmented. This model is then used to generate additional
data for dataset augmentation. Finally, the downstream models are developed on the dataset augmented by
the current-generation generative model.

3.2 Scaling the Simulation for Real-World Practice

Two significant challenges remain in our environment, limiting its scalability for simulating real-world prac-
tices: 1) Data Explosion: As the number of generations increases, the volume of generated data grows
continuously, leading to a significantly larger training set and resulting in unbearable training time con-
sumption. 2) Inconsistent Data Quality: Due to the inherent uncertainty in the generative process, the
quality of data produced by the generative model across different generations may vary, potentially leading
to degradation in the performance of future models.

We propose two strategies to incorporate into our simulation environment to address these challenges, in-
cluding the Data Stacking and Ezpert-guided Filtering.

o Data Stacking. We maintain a first-in-first-out queue to store the generated data. Specifically, we set the
capacity of the queue to D. We continuously use the updated generative model to generate data with a
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volume of S and fill the queue until it reaches capacity, 7.e., the maximum number of generations that can
be accommodated is D/S. Once the queue is full, the oldest data will be removed to make space for newly
generated data.

o Fxpert-Guided Filtering. We introduce two expert-guided strategies to filter low-quality samples and im-
prove the quality of the training set. The first strategy involves conducting a human study to score the gener-
ated samples and removing those that are easily recognized as generated content. The second strategy lever-
ages the CLIP and our trained classification model of the last generation to score the generated samples based
on the prediction uncertainty (Gal & Ghahramanil 2016]), filtering out the bottom r% based on their scores.

New augmented data

3 3 Evaluation Expert-guided filtering é
. 3-th i
Metrics for Assessing Model Bias Generate | £
< - - - © g
It is important to evaluate model performance, - 2| |3 yeeneraﬁve 8
including bias, during the development pro- |Rawdata . [ E7 8 Model New data
. . . £ : ; with noise
cess across generations. Consider an input < .
x € X from the initial meta training dataset in Generated i pg
. . . . . A ted data;
our simulation environment, associated with a (Fli‘i;",f,"ﬁerst P
ground-truth label y € Y. Assume the dataset Queue) Classificarion model
comprises L distinct classes,so Y =1,2,..., L.

We hypothesize that each class is further di- Figure 2: We continuously leverage new generators to
vided into G Subgroups7 assuming for Simp]ic_ produce additional images that enhance the training pro-
ity that each class contains an equal number cess, employing data stacking and expert-guided filtering to
of subgroups, resulting in a total of L x G maintain high quality. We highlight the trajectory of the
subgroups across the dataset. For each in- self-consuming loop in red.

put x, its subgroup membership is denoted by

g €1,2,...,G. The existence of such unknown

subgroups and the varying model performance across these subgroups contribute to the presence of model
bias. In our environment, we use several criteria to evaluate model performance, including overall perfor-
mance, multi-group equality of opportunity, multi-group disparate impact, maximum disparity, and sub-
population performance. Among these metrics, we extend the conventional equality of opportunity and
disparate impact to the content of image classification task with multiple tasks and multiple unknown at-
tributes.

Overall Performance. We use the Fréchet inception distance (FID) (Heusel et al..|2017) and the classification
accuracy (Acc) as metrics for the evaluation of the generative model and the downstream classification model.

FID,, = HMC - /‘9”% + TI“(EC + 29 - 2(2029)%)7 Acc, = P (fn (,T) = ym) ’ (1)

where . and X are the mean and variance matrix of the feature vector extracted from Inception-V3 (Szegedy!
et al., 2015) on the original clean samples, p, and 3, are those from the generated samples, y, is the ground-
truth associated with the sample x, and n indicates the number of generation.

Equality of Opportunity. The equality of opportunity (Ferreira & Peragine, [2013)) measures whether every
subgroup is treated equally by the model under study. In our simulation environment, we compute the
equality of opportunity (EO) under the background of multiple groups as follows:

1 ; ,
EO, =1— @ > ||TPR}, — TPR}||, (2)
27 4,j<G,i#j
where we denote TPRiL as the the true positive rate of i-th subgroup in the n-th generation. It can be

computed as TPR!, = P (fu(z) =y | y = Yz, g = i), indicating the probability that the model f, correctly
classifies an input @ from the i-th subgroup with the ground-truth label y = y,.

Disparate Impact. Disparate impact (Feldman et al., 2015) measures whether different subgroups receive
positive outcomes at similar rates. In our simulation environment, we extend this concept to multiple groups,
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defining the multi-group disparate impact (DI) as follows:

1oL
DI, = 1 ) >

2) i,j<G,i#]

I 3)

where P(f,(x) = y. | ¢ = i) denotes the probability that the model f, assigns a positive outcome (e.g.,
Yy = y.) to an input x from the i-th subgroup.

Mazimum Disparity. Maximum disparity measures the largest difference in model performance between any
two subgroups. We compute the maximum disparity (MD) as follows:

MD,, = max | TPR, — TPR|. (4)
1,1 <G,i#]

Subgroup Performance. In addition to the aforementioned metrics for single-bias evaluation by pair-wise
computation, we evaluate model performance by examining the accuracy of the multiple worst-performing
subgroups. For each superclass ¢, we calculate the accuracy of its G subgroups, denoted as Acc. 4, and sort
these accuracies in ascending order, Acc. 1) < Acce 2y < --+ < Acce (). We then compute the average
accuracy for each rank k across all superclasses:

C

-_— 1

ACC(k) = 6 Z ACCC’(k), (5)
c=1

where C is the total number of superclasses. This allows us to assess the model’s performance across the
most challenging subgroups.

Among these metrics, MEO (eq. ), DI (eq. ), and MD (eq. ) assess single-bias evaluation, and
subgroup performance evaluates (eq. ) the impact of multiple biases.

Why do we select these metrics? We do not choose to use the one-vs-rest (OvR) strategy (Jung et al.,
2021) for evaluating fairness metrics in our multi-class classification tasks because OvR reduces multi-class
problems to multiple binary subproblems, potentially missing the intricate biases and class interactions
inherent in genuine multi-class contexts, thus overlooking unfairness arising from these interactions (Friedler,
et al) [2019). Additionally, OvR could introduce significant data imbalance in each binary subproblem,
especially when class distributions vary greatly, which adversely affects classifier performance and distorts
fairness metrics, leading to unreliable evaluations (Brzezinski et all [2024)). Instead, we employ fairness
metrics specifically designed for multi-class classification — MEQ, DI, and MD — to assess fairness across
all classes simultaneously, preserving the integrity of the multi-class problem and providing a more accurate
evaluation (Mazijn et al.,2021). This approach ensures that our fairness assessments reflect the complexities
of multi-class classification, effectively manage potential data imbalances, and align with our objective to
enhance fairness in a comprehensive and contextually appropriate manner.

4 Experiments
4.1 Evaluation setup

Datasets. We studied three datasets: Colorized MNIST, CIFAR-20/100, and Hard ImageNet. (D) The
Colorized MNIST dataset is a modified version of the original MNIST (LeCun,|1998]), where three colors—red,
blue, and green—are added to the images. We created two versions of this dataset. In the first, the three
colors are uniformly applied across different classes. In the second, the colors are applied with uneven ratios,
introducing a bias in the color distribution. 2) The CIFAR-20/100 dataset is derived from CIFAR-100 (Alex],
2009) by grouping every five subclasses with similar semantic meaning into one single superclass, resulting
in 20 classes. 3 Hard ImageNet (Moayeri et al., 2022b)), a challenging subset of the ImageNet dataset(Deng
et al,2009), consists of 15 classes and contains various spurious correlations that can undermine the reliability
of models trained on it.

Models. In the experiments with colorized MNIST and CIFAR-20/100, we consider five models: LeNet (Le-
Cun et al.l [1998)), AlexNet (Krizhevsky et al.|2012)), VGG-19 (Simonyan & Zisserman, 2014), ResNet-50 (He
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Table 1: Evaluation of FID across generations for different generative models trained on various datasets,
including colorized MNIST w/wo bias initialization, CIFAR-20/100, and Hard ImageNet. The 1st generative
model is trained on the original dataset without the inclusion of generative data.

Number of generations
1 2 3 4 5 6 7 8 9 10
Colorized MNIST Unbiased 111.7 1089 107.8 107.1 104.5 103.6 101.0 100.5 103.6 106.3
Biased 109.4 106.0 107.03 106.4 105.3 114.2 109.0 108.6 109.1 116.5
CIFAR-20/100 N/A 249.3 213.6 2106 217.7 218.8 224.9 233.1 226.5 220.6 223.0
Hard ImageNet N/A 56.6  49.9 55.4 60.2 70.6 65.8 153.2 256.1 353.1 -

Dataset Initialization

et al.l 2016]), and MobileNet-V3 (Howard et al.l [2019)). For the Hard ImageNet experiment, we exclude the
smallest model, LeNet, and additionally include a larger model, DeiT-S (Touvron et all [2021). These
models are sourced from the PyTorch library (Paszke et all [2019), with the final layer modified to fit the
specific classification tasks. We use GANs (Radford, |2015) to learn and generate the colorized MNIST and
CIFAR-20/100 datasets, while stable-diffusion-1.5 (Rombach et al., 2022) is employed for generating the
Hard ImageNet dataset.

Metrics. We evaluate model performance across all datasets based on classification accuracy. For the
Colorized MNIST and CIFAR-20/100 datasets, which have explicit subgroups but are trained only at the
superclass level, we also assess fairness metrics, including Multi-group Equality of Opportunity (MEO),
Disparate Impact (DI), and Maximum Disparity (MD) (section . For Hard ImageNet, which contains
spurious correlations without known subgroup partitions, we measure model accuracy on images with various
ablation masks applied to the spurious objects.

Implementations. We set the number of generations to 10 or 4 in MNIST/CIFAR and Hard ImageNet,
respectively. For training all models, we use the Adam optimizer, initializing the learning rate at 1 x 1071,
with training capped at 50 epochs. Early stopping is employed to ensure full convergence and to avoid
overfitting. We provide the evaluation of different generators across generations based on the FID score
in table The classification model at the 0-the generation is trained on the original dataset without any
generated data. The queue has a maximum capacity of 3. For all results, We run 3 times to reduce the
experimental randomness.

4.2 Evaluation on Colorized MNIST

We begin with the Colorized MNIST dataset, using both unbiased and biased initializations. The introduc-
tion of bias refers to the uneven painting strategy applied at the outset.
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(b) Subgroup performance of the model trained on the Colorized MNIST dataset with unbiased initialization.

Figure 3: Results on the models trained on the MNIST dataset with unbiased initialization.



Under review as submission to TMLR

Unbiased Initialization. The results are shown in fig. [3]. Most models benefit from data augmentation using
the updated generated data across generations, and all single-bias evaluations also show slight improvements.
However, there are notable exceptions, particularly with MobileNet-V3, which experiences significant perfor-
mance variations across generations. It’s important to highlight that models differ considerably in multi-bias
evaluations. While VGG-19 and ResNet-50 show significant improvements, smaller models, including Sim-
pleNet, AlexNet, and MobileNet-V3, exhibit a noticeable decline in subgroup performance with continued
large generations.
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(b) Subgroup performance of the model trained on the Colorized MNIST dataset with biased initialization.

Figure 4: Results on the models trained on the MNIST dataset with biased initialization.

Biased Initialization. We present the results of models trained on the dataset with biased initialization
in fig. @] We observe consistent results in terms of classification accuracy and single-bias evaluation, which
presents continuously imrprovement across generations; however, there are significant differences in the multi-
bias evaluation. Specifically, VGG-19 experiences substantial performance degradation across subgroups,
despite improvements on the dataset with unbiased initialization. In contrast, AlexNet performs better on
this dataset as the number of generations increases. Compared with the results on the colorized MNIST
with unbiased initialization, though MobileNet-V3 presents stable performance in this environment, both of
the AlexNet and VGG-19 show large variation.

Summarization & Takeaways. As reported in table [I] the generative model can learn an approaching
latent representation similar to that of the real samples on the colorized MNIST datasets, which is evident
by the similar results on the FID evolution across generations. Thus, we can omit the impact of the quality
of the generated data on the downstream models here. On the MNIST dataset, models can be consistently
improved by augmenting the dataset with generated data across multiple generations. Notably, the inclusion
of additional generated data does not significantly affect the models’ single-bias performance, even with
a large number of generations. However, it can lead to substantial variations in subgroup performance,
revealing the presence of the multi-bias problem. The impact of generated data across generations varies
between different models but remains consistent within the same architecture over multiple generations.
Comparing results from unbiased and biased initializations, we observe that the presence of bias in the
original dataset does not cause the model to degrade rapidly. Both initialization types exhibit similar trends
in single- and multi-bias performance. In other words, the presence of dataset bias does not significantly
amplify model bias when the dataset is augmented with generated data across generations.

4.3 Evaluation on CIFAR-20/100

Next, we proceed to a more challenging dataset, CIFAR-20/100. Different from MNIST, the original CIFAR
dataset comprises more features and biases influencing the model training, which are not easily controllable.
Thus, we investigate the impact of using pre-trained weights on the model bias during the self-consuming
loop. In this experiment, we compare the performance of models initialized with pre-trained weights provided
by the PyTorch library to those trained from scratch. This comparison will help assess the effectiveness
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(b) Subgroup performance of the model trained from scratch on the CIFAR-20/100 dataset.

Figure 5: Results on the models trained from scratch on the CIFAR-20/100 dataset.

of pre-trained weights in improving model performance and stability when applied in this iterative data
augmentation process.

Without Pre-trained Weights. Unlike the results on the MNIST dataset, augmenting CIFAR-20/100 with
generated data can lead to degradation, with LeNet experiencing up to a 20% drop after 10 generations. The
impact on bias metrics also varies. In the single-bias evaluation, both Equality of Opportunity and Maximum
Disparity are significantly improved across all models, while most models show similar behavior regarding
Disparate Impact. LeNet exhibits a larger bias in terms of Disparate Impact. For the multi-bias evaluation,
models perform more consistently across different subgroups compared to their average performance across
generations. Notably, although VGG-19 shows decreasing performance over generations, it performs better
in bridging the performance gap between different subgroups.
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(b) Subgroup performance evaluation of the fine-tuned model on the CIFAR-100 dataset.

Figure 6: Results on the models pre-trained on the ImageNet and fine-tuned on the CIFAR-20/100.

With Pre-trained Weights.Notably, models perform a faster performance degradation when using pre-trained
weights as the number of generations for data augmentation increases. A greater number of models exhibit
declines in classification accuracy and fairness metrics, such as Equality of Opportunity and Disparate
Impact. Interestingly, while ResNet-50 without pretraining does not show a significant performance drop in
the multi-bias evaluation, it experiences substantial degradation when pre-trained on the ImageNet dataset.
This suggests that pre-trained weights, despite their initial advantage, may exacerbate model bias and
performance issues in this iterative augmentation process.
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Figure 8: Evaluations of the impact of spurious correlation on the models pre-trained on the ImageNet and
fine-tuned on the augmented Hard-ImageNet dataset across generations.

Summarization & Takeaways. As shown in table [I} continuously training on the dataset augmented
by generated data across multiple generations leads to a slight improvement in generative performance,
as evidenced by the decreasing FID scores on the CIFAR-20/100 dataset. However, despite the improved
generative model, classification models trained with successively augmented datasets still experience a de-
cline in performance in both the original classification task and bias evaluations. When using pre-trained
weights from the ImageNet dataset, the classification models show significant improvement compared to
training from scratch. Nevertheless, it is evident that models with pre-trained weights are more susceptible
to integration bias introduced by the augmented datasets evolved over generations, further exacerbating
performance deterioration in bias evaluations.

4.4 Evaluation on Hard ImageNet

We also conduct experiments on Hard Imagenet (Moayeri et al., [2022a)), a dataset gathered from ImageNet
with very strong spurious cues. The dataset contains 15 classes, and in each class, there is a strong cor-
relation between the image background and the objects. This may lead the model to rely on background
information rather than the actual objects for classification. Compared to the pre-defined color bias in Col-
orized MNIST and existing subgroup biases in the CIFAR-20/100 dataset, the unknown spurious correlation
bias in this dataset is more challenging and difficult to fully identify, making it harder to mitigate during
model development.

To study the impact of cross-generational data on this model bias, we

made a modification to our proposed simulation framework. First, we o Mo x Wbk m Vo1 & teheso 4 ours
fine-tuned the Stable Diffusion model using Low-Rank Adaptation rather | —e— >
than training from scratch to achieve a good balance between efficiency
and generation quality on our task. Then we use 5 generations of mixed — °* "‘!
datasets to fine-tune our classifiers. Subsequently, while lacking explicit
signal for single and multiple bias attributes, ablation studies are con-
ducted on each classifier, following the approach described in Moayeri
et al| (2022a)). Specifically, we performed three types of ablation: (1)  o» ]
the object pixels were replaced with a uniform value of 0.5, neutraliz- | 1 ?
ing the object’s appearance; (2) the entire bounding box surrounding the Generation
object was replaced with gray, removing shape-related information, and
(3) the bounding box was replaced with a neighboring region of the im-
age, substituting the object with local context. The performance drop
caused by masking the image can indicate the model’s reliance on spuri-
ous correlations. A significant performance drop suggests that the model’s
predictions rely more on the core object, indicating less influence from spurious correlations.

Accuracy

0.80

Figure 7: Subgroup accuracy of
models fine-tuned on the aug-
mented dataset across genera-
tions.

We report the changes in classification accuracy across generations in fig. [J] and the impact on learned
spurious correlations in fig. [§] Over time, we observe that generated data can degrade model performance,
as evidenced by the negative correlation between performance and the number of generations. However,
for smaller models, performance sees a notable improvement during the first two generations, after which it
stabilizes or becomes slightly better than the initial generation. Regarding bias evaluation, all models show
a tendency to rely less on spurious correlations, indicating a shift toward focusing more on the core object
for classification.
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5 Why Models Exhibit Diverse Behaviors Across Generations

The varied behaviors observed across different datasets and models can be attributed to several factors,
including the datasets, models, and data quality across generations. These factors interact with each other
in complex ways, influencing the dynamics of bias across generations.

Dataset Characteristics. Different datasets exhibit unique features such as image complexity, class diversity,
and inherent biases. Let Sp represent the inherent bias in the dataset. For simpler datasets like Colorized
MNIST, generative models can learn accurate representations more easily, resulting in generated data that
closely matches the original data distribution. This closeness can be quantified by a high data quality factor
q: ~ 1 at generation t. The generated data with minimized bias helps the model continuously improve its
classification performance and reduce bias.

Model Architecture Sensitivity. Different model architectures have varying capacities to learn from augmented
data and mitigate bias. Let ~,s represent the model’s capacity to mitigate bias, which is a function of the
model’s architecture M. Larger models with higher capacity (e.g., VGG-19, ResNet-50) have higher vy,
enabling them to handle biases in the data better. Conversely, smaller models (e.g., LeNet, AlexNet) have
lower s and are more susceptible to biases in the training data, leading to greater performance variability
across generations.

Ezxposure of Bias. Datasets contain various biases, both known and unknown, explicit or difficult to detect.
The exposure of bias can be represented by a bias amplification factor §, which accounts for the complexity
and ingrained biases within the dataset. As biases become more difficult to identify—progressing from color
bias to subgroup bias and spurious correlations—we observe greater fluctuations in model performance. The
bias in the model at generation ¢ + 1, denoted Br(rf:;e)l, can be influenced by the bias in the data and the
model’s capacity to mitigate it.

Unbalanced Generation. As identified in previous studies (Sehwag et al.l 2022} [Lee et al., |2021)), gener-
ative models typically generate data from high-density regions of the data distribution, potentially over-
representing certain classes or features. This tendency can be represented by an unbalanced generation
factor u; at generation ¢, which contributes to the bias in the generated data. The quality of data genera-
tion is crucial; lower-quality data can degrade the overall representation quality, which may mitigate biased
performance in downstream models by introducing noise.

Combining these factors, we have a conjecture about modeling the bias dynamics across generations using a
recursive relationship. Let the bias in the model at generation ¢ 4+ 1 be expressed as:

Bl = (1= 7ar) (1+ 60 + (1 — 4:) + duur) Bl g (6)
Then, the overall bias amplification factor A; at the generation ¢ can be denoted as A; = (1 —

vm) (1 +90p +00(1 — ¢:) + dyue). Depending on the values of s, ¢4, us, and the constants dp, dg, and dy,
the bias amplification factor A; can be greater or less than 1. If A; > 1, the bias increases across generations;
if Ay < 1, the bias decreases.

Thus, the interplay between dataset characteristics, model architecture sensitivity, exposure of bias, and
unbalanced generation may determine the bias dynamics across generations. To establish a self-sustaining
model development loop with positive feedback, it is essential to have a clearer understanding of dataset
bias (0p), utilize larger models with higher capacity (vas), and employ high-quality generative models with
improved sampling mechanisms to increase ¢; and reduce u;.

6 Conclusion

Several models, like Stable Diffusion (Rombach et al., [2022)), LLaMA (Touvron et al., |2023), LLaVA (Liu
et all [2024), and Nemotron (Adler et al., [2024), involve self-consumption loops. Notably, Nemotron is
trained with over 98% synthetic data. While synthetic data can improve training, it may also introduce
risks, particularly related to model biases. This has led us to investigate how generated data affects model

11



Under review as submission to TMLR

performance and bias, especially as self-consumption loops increase. Our experiments on Colorized MNIST,
CIFAR-20/100, and Hard ImageNet datasets show that bias changes depend on factors like dataset type,
model architecture, and generative model performance. Additionally, models are more sensitive to multiple
biases than to a single one.

7 Limitations, Ethics, and Broader Impact

This work analyzes how synthetic data influences downstream fairness across multiple generations of training.
The study relies on controlled datasets with simplified or constructed subgroup structures, which enable
precise measurement of bias dynamics but do not fully reflect real-world demographic attributes. The
generative and classifier architectures evaluated represent a subset of available model families, and different
choices may exhibit distinct behaviors under self-consuming loops. Our simulation framework assumes
synchronized retraining of generator and classifier, which captures one interpretable feedback regime but
does not exhaust the variety of update patterns found in practical systems.

The ethical motivation of this work is to understand how synthetic data may amplify or mitigate bias as
it propagates through iterative training pipelines. Although the experiments do not involve personal or
sensitive attributes, the mechanisms uncovered here are relevant to fairness risks that arise when synthetic
augmentation becomes part of large-scale data ecosystems. Misuse or unmonitored deployment of such
pipelines could reinforce systematic biases if contamination effects are poorly understood.

By characterizing when generational contamination is likely to stabilize, worsen, or improve downstream
fairness, this work provides insights that may support safer design of synthetic-data pipelines, more informed
dataset curation practices, and improved governance tools for long-horizon training workflows. The analysis
does not prescribe normative fairness criteria but aims to supply empirical principles that help develop more
robust and accountable machine learning systems.
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Figure 9: Classification accuracy of models fine-tuned on the augmented ImageNet across generations.

A More results on the ImageNet

We conduct additional experiments on the ImageNet dataset Breeds, which is organized by subclasses as
defined by WordNet. Each superclass consists of four subclasses. Following the same settings used for Hard-
ImageNet, we utilize Stable Diffusion 1.5 to learn the dataset’s distribution and augment it with generated
data across multiple generations. In each generation, we train AlexNet, MobileNet-V3, VGG-19, ResNet-50,
and DeiT-Small. The results are shown in fig. [7}

We observe a consistent phenomenon with the results on Hard-ImageNet. Compared to the best-performing
subgroup, the generated data has a greater impact on the worst-performing subgroups, as indicated by a
steeper slope across different generations.

B Examples of generated images across generations

As shown in fig. [I0] fig. [[1] and fig. [[2] each row represents a generation of images, with the generation
number increasing sequentially from top to bottom. We can find that on MNIST and CIFAR-20/100 dataset,
the quality of generated data doesn’t change a lot, while it decreases significantly for the Hard ImageNet
dataset.

C Details on the expert-guided filtering

First, we manually review the generated samples and discard images with low quality.

Second, we calculate the CLIP score for each image, where the paired text is the class name. Images are
then grouped into bins based on their CLIP scores, with each bin representing a +10% range of CLIP scores.
This results in 10 bins.

Then, we randomly sample 10 images from each bin and evaluate the quality of each bin. Based on this
evaluation, we determine the maximum ratio of the CLIP score range (denoted as %) to retain for training.

o For MNIST, we find that retaining the top 90% of images (r = 10%) is optimal.
o For CIFAR-20/100, retaining the top 70% of images (r = 30%) works best.
o For the ImageNet dataset, retaining the top 40% of images (r = 60%) yields the best results.
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Figure 10: Color-MNIST

Figure 12: Hard ImageNet
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