Under review as a conference paper at ICLR 2026

SOFLOW: SOLUTION FLOW MODELS FOR ONE-STEP
GENERATIVE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

The multi-step denoising process in diffusion and Flow Matching models causes
major efficiency issues, which motivates research on few-step generation. We
present Solution Flow Models (SoFlow), a framework for one-step generation
from scratch. By analyzing the relationship between the velocity function and
the solution function of the velocity Ordinary Differential Equation (ODE), we
propose a flow matching loss and a solution consistency loss to train our mod-
els. The flow matching loss allows our models to provide estimated velocity fields
for Classifier-Free Guidance (CFG) during training, which improves generation
performance. Notably, our consistency loss does not require the calculation of
the Jacobian-Vector Product (JVP), a common requirement in recent works that
is not well-optimized in deep learning frameworks like PyTorch. Experimental
results indicate that, when trained from scratch using the same diffusion trans-
former (DiT) architecture and with an equal number of training epochs, our mod-
els achieve better FID-50K scores compared to MeanFlow models on the Ima-
geNet 256x256 dataset.

Figure 1: Generated one-step samples on Imagenet 256 x256 dataset by our Solution Flow Models.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et all, 2013}, [Song & Ermon| [2019; [Ho et al| 2020} [Song et al.
2020) and Flow Matching models (Lipman et al.,[2022} |Liu et al.|, 2022} |Albergo & Vanden-Eijnden

2022) have emerged as foundational frameworks in generative modeling. Diffusion models operate
by systematically adding noise to data and then learning a denoising process to generate high-quality
samples. Flow Matching offers a more direct alternative, modeling the velocity fields that transport
a simple prior distribution to a complex data distribution. Despite their power and success across
various generative tasks (Esser et al.| 2024} [Ma et al., 2024} [Polyak et al.} 2024), both approaches
rely on an iterative, multi-step sampling process, which hinders their generation efficiency.

Addressing this latency is becoming a key area of research. Consistency Models 2023}
Song & Dhariwal, [Geng et al. [Lu & Song, [2024) and related techniques (Kim et al.,
2023} Wang et al.,[20244d}; [Frans et al.,[2024; [Heek et al.,[2024) have gained prominence by enabling
rapid, few-step generation. These methods learn a direct mapping from any point on a generative
trajectory to a consistent, “clean” output, bypassing the need for iterative refinement. However, this
paradigm introduces significant challenges. Consistency models trained from scratch often fail to
leverage Classifier-Free Guidance (CFG) for enhancing sample quality, and they are further hindered
by instability caused by changing optimization targets. Recent works (Peng et all, 2025} [Geng
address this instability by incorporating a flow matching loss. However, this approach
introduces a new computational bottleneck: it relies on Jacobian-Vector Product (JVP) calculations,
which are much less optimized than forward propagation in frameworks such as PyTorch.

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of solution con-
sistency loss: The plot shows a straight-
line flow matching trajectory defined by
a data-noise pair (zo,z1). Given three
time points s < [< ¢, two positions x¢
and x; + (ajxg + Bixq)(l — t) are deter-
mined on the trajectory between zy and
1 to compute the mean square error be-
tween our model fy(x¢,t, s) and the stop-
gradient target term fo- (z; + (ajzo +

Bix1)(l—1),1,s).

Data Velocity ODE Trajectories Noise

In this work, we introduce a new approach for one-step generation that avoids these limitations.
Instead of relying on iterative ODE solvers, we propose to directly learn the solution function of the
velocity ODE defined by Flow Matching. We denote this function as f(x4,t, s), which explicitly
maps a state z; at time ¢ to its evolved state x; at any other time s. To learn it with a parameterized
model fp(x¢,t, s), we first analyze the properties that can make a neural network into a valid solution
function. Based on this analysis, we formulate a training objective comprising a flow matching loss
and a solution consistency loss. The resulting model, fy(z¢,t, s), not only accommodates the flow
matching objective and CFG naturally but also eliminates the need for expensive JVP calculations
during training. Our experimental results demonstrate the effectiveness of this approach, showing
that our models achieve superior FID-50K scores compared to MeanFlow models on the ImageNet
256256 dataset, using the same diffusion transformer (DiT) architecture and training duration.

2 RELATED WORKS

Diffusion, Flow Matching and Stochastic Interpolants Diffusion models (Sohl-Dickstein et al.,
2015 [Song et al.,[2020; [Kingma et al.| |2021; Karras et al.,2022) and Flow Matching (Lipman et al.,
2022;|Liu et al.,[2022) are widely adopted generative modeling frameworks. These approaches either
progressively corrupt data with noise and train a neural network to denoise it, or learn a velocity field
that governs a transformation from the data distribution to a simple prior. They have been scaled
successfully for image generation (Rombach et al., 2022; |Saharia et al., [2022; Podell et al., 2023)
and video generation (Ho et al.l |2022; Brooks et al., 2024])) tasks. Stochastic interpolants (Albergo
& Vanden-Eijnden| 2022} |Albergo et al.| 2023) build upon these concepts by explicitly defining
stochastic trajectories between the data and prior distributions and aligning their associated velocity
fields to enable effective distributional transport.

Few-step Generative Models Reducing the number of sampling steps has become an active re-
search direction, driven by the need for faster generation and better theoretical insights. Prior efforts
fall into two main streams: (i) distillation-based approaches that compress pre-trained multi-step
models into few-step generators (Salimans & Hol [2022} |Sauer et al., 2024} (Geng et al., 2023 |Luo
et al., 2023bj Yin et al.l [2024; Zhou et al.| [2024)); and (ii) from-scratch training, which learns fast
samplers without teachers, most prominently through the consistency-training family (CMs, iCT,
ECT, sCT) (Song et al.,2023; Song & Dhariwal, |2023};|Geng et al., [2024} |Lu & Song,, [2024)).

Consistency Models (CMs) collapse noised inputs directly to clean data, enabling one- or few-step
generation (Song et al.| 2023)). While first applied mainly in distillation (Luo et al., [2023a} (Geng
et al.| [2024), later works established that they can also be trained from scratch via consistency train-
ing (Song & Dhariwal, [2023)). Building on this, iCT (Song & Dhariwal, 2023)) simplifies objectives
and improves stability with robust losses and teacher-free training, while ECT (Geng et al.| 2024)
introduces a continuous-time ODE formulation that unifies CMs and diffusion. The recent sCT
framework (Lu & Song| [2024) further stabilizes continuous-time consistency training, scaling CMs
up to billion-parameter regimes.

Beyond fixed start/end settings, newer approaches extend CMs to arbitrary timestep transitions,
aligning better with continuous-time dynamics. Shortcut models (Frans et al.l [2024) condition on
noise level and step size to flexibly support both one- and few-step sampling with shared weights.
MeanFlow (Geng et al., 2025) introduces interval-averaged velocities and analyzes the relationship

Under review as a conference paper at ICLR 2026

between averaged and instantaneous velocities. IMM (Zhou et al.| 2025) matches moments across
transitions in a single-stage objective, reducing variance and avoiding multi-stage distillation. Flow-
Anchored CMs (Peng et al.| 2025) regularize shortcut learning with a flow matching anchor, im-
proving stability and generalization. On the distillation side, Align Your Flow (Sabour et al., 2025)
unifies CM and FM into continuous-time flow maps effective across arbitrary step counts, further
enhanced with autoguidance and adversarial fine-tuning. Finally, Transition Models (Wang et al.,
2025)) reformulate generation around exact finite-interval dynamics, unifying few- and many-step
regimes and achieving monotonic quality gains as step budgets increase.

3 PRELIMINARY: FLOW MATCHING

We first introduce the setting of Flow Matching. Flow Matching models learn a velocity field that
transforms a known prior distribution like standard Gaussian distribution to the data distribution.
More precisely, we denote the data distribution as p(xg), and the prior distribution as p(z1), which
is standard Gaussian distribution N (0, I) in our setting.

A general noising process is defined as x; = ayxg + Brx1, where x; € R™ ¢t € [0, 1], oy and S are
continuously differentiable functions satisfying the boundary conditions o = 1, 1 = 0, 5y = 0,
and 81 = 1. Then, the marginal velocity field associated with the noising process is defined as

'U(xtv t) = Ep(mg,xﬂmt)[a;,xo + B;xl}v (l)

which is a conditional expectation of the conditional velocity field. According to the Flow Match-
ing framework, given the marginal velocity field v(x,), new samples can be generated by first
sampling 1 ~ p(x1), and then solving the initial value problem (IVP) of the following velocity
ordinary differential equation (ODE) from¢ =1tot = 0:

dx(t)
dt

= o(X(t),t), X(1) = .)

To construct a generative model based on this principle, a straightforward approach is to approxi-
mate the marginal velocity field using a neural network vy, parameterized by 6, which is trained by
minimizing the following mean square objective:

Len(0) = By, oo (e, t) — v(ae, 1)) 3)

However, directly optimizing a neural network with this loss is impractical since the real velocity
field v(x, t) is a conditional expectation given x;. To overcome this challenge, a conditional variant
of the flow matching loss is introduced (Lipman et al.|[2022; Liu et al., 2022):
2
Lorm(0) = Etzg,21,0, [vo (e, t) — (4o + Bz || 4)
Minimizing Lcpy is equivalent to minimizing the original objective Lgyg. This loss function is
tractable since we only need to sample data-noise pairs to construct targets for the network.

4 SOLUTION FLOW MODELS

4.1 FORMULATIONS

The main purpose of this work is to investigate how can we train a neural network that can directly
solve the velocity ODE, thereby eliminating the reliance on numerical ODE solvers in Flow Match-
ing models. We study this problem under the assumption that the velocity field v(x, t) € R™, with
x¢ € R™and t € [0, 1], is continuously differentiable and globally Lipschitz continuous with respect
to x¢, i.e. ||v(xe, t) — v(z), t)||2 < L||ze — 2}||2, Vo, 2; € R™, ¢ € [0,1].

According to the existence and uniqueness theorem of ODEs, these two assumptions guarantee that
given initial condition X (t) = x;, where z; € R™,¢ € [0, 1] can be arbitrarily chosen, a unique

solution X (s), s € [0,] to the velocity ODE %ﬁs) = v(X (s), s) exists. Since the initial condition
can be varied, we denote this unique solution by notation f(z¢, ¢, s). Then we immediately have two

equations by ODE’s definition, for any z; €¢ R",0 < s <t < 1:
f(xhtat) = l't,a:gf(xt,t, S) = U(f(xhta S)’ S) (5)

Under review as a conference paper at ICLR 2026

where 03 f (x4, ¢, s) € R™ is the partial derivative function of f(x, ¢, s) with respect to the third vari-
able. Since f (x4, t, s) maps an initial value z; at time ¢ to the unique solution of the velocity ODE at
time s, we denote it as the solution function in this paper. Owing to the continuous differentiability
of the velocity field v(z4, t), the solution function f (x4, ¢, s) is also continuously differentiable. To
realize one-step generation, we need to train a model fy(x¢,t, s) to approximate the ground truth
solution function f(x;, t, s), which is determined uniquely by the velocity field v(z, t).

Under the setting discussed above, the following two conditions are sufficient to ensure that
fo(ze,t,8) = f(ag,t,8) forallz, e R* 0 < s <t < 1:

fo(we,t,t) = x4, 01 fo(e, t, s)v(xe,t) + D2 fo (4,1, 5) = 0. (6)

where 01 fo(x¢,t,s) € R™*™ is the Jacobian matrix function of fp(x4,t, s) with respect to the first
variable, v(xy, t) is multiplied by it as a matrix-vector product, and ds fp(x¢, t, s) € R™ is the partial
derivative vector function of fy(x¢,t, s) with respect to the second variable.

This can be proven by expanding the following derivative for 0 < s <[<t < 1:

%(fe(f(xt,t,l%l, s)) = O1fo(f(xe,1,1),1,5) Oz f (we, t,1) +0a2fo(f(2t,t,1),1,8) = 0. (7)
——
=v(f(z¢,t,0),0)

The expression is equal to 0 due to the first condition in [Eq. 6| Thus, we know that the model
fo(xt, t, s) is indeed the true solution function f(xy,t, s) by:

fO(xtvtas) = f()(f(xtvtvt)vtvs) = fe(f(xt,t78)7878) = f(xtvtvs)v 3

where we use the property that f(z:,t,t) = fo(ze,t,t) = x¢ and fo(f(24,¢t,1),1, s) is invariant
with respect to [, allowing us to set [= ¢ and [= s to finish the proof.

4.2 LEARNING OBJECTIVES

Now we consider how to build efficient objectives for neural networks to learn the ground truth
solution operator, according to the two conditions mentioned in the previous section. To ensure the
first boundary condition of [Eq. is satisfied, we adopt the following parameterization:

folxe, t,8) = a(t, s)xe + b(t, s)Fy(as,t, 8),

where a(t, s) and b(t, s) are continuously differentiable scalar functions satisfying a(¢,t) = 1 and
b(t,t) = 0forall ¢ € [0,1], and Fy(x,t, s) denotes a raw neural network. Following the notations
in the last section, we use d1a(t, s), d2a(t, s), 01b(t, s), O2b(t, s) to denote the partial derivatives of
a(t, s) and b(t, s) with respect to the first and second variables. In our experiments, we choose two
specific parameterizations, including the Euler parameterization and the triangular parameterization:

fo(ze, t,s) = a4+ (s — t) Fp(ae, t, s),
fo(xs, t,8) = cos g(s —t)as + sin %(s — t)Fp(z4,t, 9).

Obviously, these two parameterizations satisfy the boundary condition fy(x¢,t,t) = x;. Then, we
construct two loss functions for training using[Eq. 6]

Flow Matching Loss Firstly, we consider a special situation of when ¢t = s. Recall that the
boundary condition of [Eq. 6] gives fo(z:,t,t) = a4, Va, € R™, ¢ € [0, 1], we have:

dfe(ze,1,1)

O1fo(we, t,t) = I,,0 = a

= 0o fo(xe,t,t) + O3 fo(,t,1))

=t

where I,, € R™*" is the identity matrix. Then can be simplified to v(zy,t) = O3 fo(xy,,1).
Under our parameterization mentioned above, we have

’U(It, t) = a3f9(xt7 tv t) = aQG(ta t)xt + aQb(t7t)F9(xtv t7t) + b(ta t) 83F9<xt7 ta t)
——

0

(10)

Under review as a conference paper at ICLR 2026

where the complex term containing J3 Fy(x¢,t,t) is canceled since b(¢,t) = 0 by our choice of
parameterization. Now we obtain a flow matching loss for our neural networks:

WEM (t, MSE)

LFM(Q):Et,mO,xl,xt D

|Oz2a(t, t)xy + Oob(t,t) Fo(my, t,t) — (ahwo + 521‘1)||§:| ,
(11)

where D is the data dimension, ajxg + Sjz1 is used to replace the intractable marginal velocity
field v(wt, t) = Ep(wo,a1|a0) [O{Q.xo + ﬁgml] during the training process following the standard Flow
Matching framework. In addition, this velocity term can also be provided by a teacher model in
distillation situations, but in this paper, we focus on the situation of training from scratch.

Previous works (Geng et al.l [2024; |2025) have demonstrated that choosing an adaptive weighting
function is beneficial for few-step generative models. Following their approach, we choose

1
wrn (t, MSE) |02b(t, t)|(MSE + €)P (12)
as our weighting function, where |92b(t, t)| is used to balance the raw network’s gradients across
time, and MSE represents the original mean squared error. Here € is a smoothing factor to prevent
excessively small values, and p is a factor that determines how robust the loss is. For p = 0, the
objective degenerates to the mean squared error. For p > 0, this factor will penalize the data points
with large errors in a data batch to make the objective more robust.

The original Flow Matching framework samples ¢ uniformly, while more recent works (Esser et al.,
2024;|Geng et al.| |2025) suggest sampling ¢ from a logit-normal distribution. We also sample ¢ from
o (N (urMm, o5y)), Where o(+) and N represent the sigmoid function and normal distribution.

Solution Consistency Loss We now consider how to build a training target for the s < ¢ situation
using[Eq. 6] According to the Taylor’s expansion, we have an approximation equation:

fo(ze,t,s) — folxe +v(ae, t)(1 —1),1, 5)
t—1
where [€ (s, t) is close to ¢. Thus, we can adopt the following objective:

t,1, s, MSE
Lscm(0) = E wsom(t,l s)||fa<xt,t,s>—fe—(xt+(a;xowle)(l—t),hs)ui,

) t,l,s,ﬂ D
(14
where D is the data dimension, #~ means taking the stop-gradient operation to the parameters, and
(a0 + Biw1) is again used to replace the intractable v (¢, t) = Ep(q 2, |2,) [20+ Bi21] following
the common practice. The adaptive weighting is chosen as follows:
1 1

X b
(t=DIbt,9)] (G55 + P

where the first term ensures the gradient magnitude of the raw network Fy(zy,t, s) is stable, and
the second term is again used to provide a more robust loss by scaling down the coefficient for data
points with large mean square errors when p > 0. Besides, we divide the mean square error in the

adaptive term by (¢ — 1)? since its magnitude is proportional to (¢ —).

= (81f9(xt7 tv S)’U(Cﬂt, t) + 82f9(l’t, tv S)) + 0(1)7 (13)

wsom(t, 1, s, MSE) =

5)

As for the sampling method of ¢, [, s during training, we first sample ¢ and s from two logit-normal
distributions, (N (¢, 02)) and o (N (s, 0?)), respectively. Here, s is clamped to ensure s <
t — 10~*. We then determine [using the following method:

L=t+(s—t) x r(k, K), (16)

where k, K represent the current and total training steps, respectively. The function r(k, K) rep-
resents a monotonically decreasing schedule that gradually moves [towards ¢ throughout training.
To avoid numerical issues, { is clamped to ensure | < t — 10~%. This schedule decreases from an
initial value 7i,; to an end value ro,q. In our ablation studies, we test exponential, cosine, linear,
and constant schedules. For more implementation details, please refer to

The total training loss is a combination of the flow matching and solution consistency losses: L(6) =
ALpm(0) + (1 — X)Lscm(6). The parameter A controls the balance between them by determining
the fraction of a data batch dedicated to computing Ly (6), while the remaining fraction is used for
Lscm(0). We perform ablation studies to determine the optimal value of .

Under review as a conference paper at ICLR 2026

4.3 CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance (CFG) (Ho & Salimans} [2022) is a standard technique in diffusion models
for enhancing conditional generation. The models are trained with randomly dropped conditions to
mix conditional and unconditional data. During inference, CFG is applied by linearly combining
predictions from the label-conditional and unconditional models to enhance generation quality.

Unlike this approach, since our goal is to let our models directly solve the velocity ODE, we need
to train them directly with the linearly combined guided marginal velocity field, rather than train-
ing them separately on conditional and unconditional marginal velocity fields and combining their
solutions linearly. Mathematically, the label-conditional marginal velocity field is defined as:

’U(ajta t ‘ C) = Ep(a:g,mﬂxt,c) [041/5950 + 5;301]7 (17)
With classifier-free guidance, the guided marginal velocity field is given by:
Ug(xtvta C) :’LU’U(CCt,t ‘ C)+ (1 *w)l}(l‘t,t), (18)

Notably, this velocity field depends purely on the data distribution and is independent of the models.
Our goal is for the model to directly solve the velocity ODE defined by this guided field. However,
since the unconditional velocity field is not directly accessible in conditional generation settings, we
must train the network to also predict the unconditional velocity field for CFG training.

In implementation, we randomly replace the label ¢ with an empty label ¢ with probability 0.1 in
both the flow matching loss and the solution consistency loss. For data points assigned the empty
label ¢, we compute the loss functions directly by passing ¢ to the network and evaluating according
to|Eq. 11land[Eq. 14} For data points with a non-empty label ¢, we first predict the unconditional ve-
locity field vypcona using Oza(t, t)xy + Oab(t, t) Fp(ay, t,t, ¢) as shown in We then compute
the guided loss by passing c to the network and replacing the velocity term o}xg + (1 in
and [Eq. 14 with w(ajzo + Bj21) 4 (1 — W)Vuncond, Where w is the CFG strength.

It is worth mentioning that the term w(ajxo + Bix1) + (1 — w)vuncond typically exhibits larger
variance compared to the original term o}z + /31, due to the scaling effect of w. This increased
variance adversely affects both training convergence speed and final performance. Note that the
model also learns the guided velocity field through the flow matching loss when the label c is pro-
vided. Therefore, we can predict vgyided using daa(t, t)x, + 02b(t, t) Fy(xy, t,t, ¢), and then employ

Umix = m(w(a;x() + ngl) + (1 - w)vuncond) + (1 - m)vguided (19)

to replace the original term ajxg + B;21, where 0 < m < 1 is the velocity mix ratio. Since the
majority of the variance originates from the stochastic term «jz¢ + Six1, using a small m can
effectively reduce the variance (vgyided is @ model prediction value with much lower variance.)

After introducing the flow matching and solution consistency losses and demonstrating how to apply
CFG during training, we now present the pseudo-code for our model’s guided training process to
provide a more comprehensive understanding.

Algorithm 1 Train Solution Flow Models with CFG

Input: model fy(xy,t, s, c), flow matching data ratio A, CFG strength w, velocity mix ratio m
Sample a data batch: zg, ¢ ~ pgata (2o, C)

Split data for two losses by \: (zE™, 25M) = 20, (
Sample tpw, tsem, lsom, Ssem according to [subsection 4.2]

Get zF™M oM 28CM ,5CM by standard Flow Matching framework
Compute vEM and v5¢M by with w and m

Randomly replace v" ! and USC;VI by ™ and vP“M with CFG drop rate 0.1

mix mi

Compute Ly (6) according to[Eq. 11|by replacing (ojzo + Bj1) term with vEM
Compute Lsc(6) according to[Eq. 14]by replacing (ojz¢ + Bix1) term with v5$M
Update fy via gradient descent according to L(0) = ALpn(60) + (1 — A) Lsom (0)

FM (SCM) — ¢

Under review as a conference paper at ICLR 2026

Regarding the inference process of our model, it is straightforward since fp(x¢,t,s) = a(t, s)z +
b(t, s)Fy(x+,t, s) is a neural solution function to the velocity ODE, we only need to sample 21 ~
N(0,I) and apply this operator with ¢ = 1 and s = 0 to obtain the clean data in a single step.
Furthermore, by selecting different ¢ and s, our model can also achieve multi-step sampling.

5 EXPERIMENTS

5.1 SETTINGS

We conduct our major experiments on the ImageNet 256 x256 dataset (Deng et al., [2009). SoFlow
models operate within the latent space of a pre-trained VAE Rombach et al.l [2022), which is a
common practice in recent works (Peebles & Xie}, 2023b; |Geng et al.| [2025)). The tokenizer converts
256x256 images into a 32x32x4 latent representation. We assess generation quality using the
Fréchet Inception Distance (FID) (Heusel et al., 2017)), computed over a set of 50,000 generated
samples. To evaluate computational efficiency, we report the number of function evaluations (NFE),
with a particular focus on the single-step (1-NFE) scenario. All models presented were trained
from scratch. In addition to the standard time variable ¢, our model incorporates an additional time
variable s. We provide this to the networks by feeding the positional embeddings (Vaswani et al.,
2017) of their difference, s — t. For more implementation details, please refer to

5.2 ABLATION STUDY

Table 1: Ablation studies on ImageNet 256x256 class-conditional generation. All models have
131M parameters and are trained with a batch size of 256 for 400K iterations from scratch.

Il —t FID-50K flow matching FID-50K loss weighting ~ FID-50K
schedule (1-NFE) data ratio (1-NFE) coefficient p (1-NFE)
Exponential 59.97 0% 66.55 0.0 69.11
Cosine 60.10 25% 61.53 0.5 60.59
Linear 60.64 50% 60.24 1.0 59.97
Constant 60.13 75% 59.97 1.5 64.25
(@ (b) ©
noising schedule FID-50K CFG guidance FID-50K velocity FID-50K
& parameterization (1I-NFE) strength w (1-NFE) mix ratiom (1-NFE)
Linear, Euler 12.89 1.5 35.70 0.25 12.89
Linear, Triangular 23.57 2.0 22.37 0.5 15.67
Triangular, Euler 14.26 2.5 15.68 0.75 17.18
Triangular, Triangular 19.87 3.0 12.89 1.0 19.18

(d) (e) (®

We conduct various ablation studies to determine the optimal hyperparameters for SoFlow mod-
els. Following the methodology of |Geng et al.| (2025)), we utilize the DiT-B/4 architecture in our
experiments, which features a “base” sized diffusion transformer with a patch size of 4. We train
our models for 400K iterations. For performance reference, the original DiT-B/4 (Peebles & Xie,
2023b) achieved an FID-50K of 68.4 with 250-NFE sampling. Meanflow (Geng et al., 2025)) reports
an FID-50K of 61.06 with 1-NFE sampling, and they claim to have reproduced SiT-B/4 (Ma et al.,
2024) with an FID-50K of 58.9 using 250-NFE sampling. The FID-50K scores mentioned here are
without classifier-free guidance (CFG). Our ablation studies are conducted in two groups: a first
group of three experiments without classifier-free guidance (CFG) and a second group of three with
CFG. [Table] presents our results, which are analyzed as follows:

Il — t Schedule We compare exponential, cosine, linear, and constant schedules in our experi-
ments (Table Ta). The similar FID-50K results show that the speed of the [— ¢ transition during
the training process has a relatively small influence on performance. We choose the exponential
schedule following previous works (Song & Dhariwall [2023}; |(Geng et al.,|[2024).

'SD-VAE: https://huggingface.co/stabilityai/sd-vae-ft-mse

https://huggingface.co/stabilityai/sd-vae-ft-mse

Under review as a conference paper at ICLR 2026

Flow Matching Data Ratio Although the solution consistency loss alone is sufficient to enable
one-step generation (corresponding to a 0% ratio in[Table Tb), experimental results show that incor-
porating a large ratio of flow matching loss is effective for improving performance.

Loss Weighting Coefficient p 'We observe that the choice of loss metric has a significant influence
on the performance of one-step generation, which aligns with previous works (Song & Dhariwal,
2023} [Geng et al.| 2024} [2025). As shown in the original mean square loss with p = 0
performs much worse than p = 0.5 or p = 1 situations.

Noising Schedule and Parameterization Our method is compatible with different flow matching
noising schedules and solution function parameterizations. As presented in [Table Id] experiments
show that the linear noising schedule z; = (1 — t)x¢ + ta; along with the Euler parameterization
fo(xe,t,8) = xp + (s — t)Fy(xy, t, s) performs best, compared to the triangular noising schedule
x; = cos(Gt)xo+sin(Ft)x, and its corresponding parameterization fj(z¢,t,s) = cos 5 (s —t)z;+
sin 5 (s — t)Fp(a,t, 5).

CFG Guidance Strength w Unlike diffusion models, our model enables CFG during the training
stage rather than the inference stage, which allows for image generation with 1 NFE. Experiments
in{Table 1e|demonstrate that CFG can also greatly improve the generation quality for our model.

Velocity Mix Ratio m Experiments show that a relatively small m is beneficial for
performance. This can be explained by the fact that the CFG guidance strength w amplifies the
randomness in the velocity term, and a smaller m can suppress this randomness by partially replacing
the velocity term with the model’s prediction of the guided velocity field.

5.3 COMPARING WITH OTHER WORKS

ImageNet 256x256

Figure 3: FID-50K performance of our
models. The plot shows the FID-50K
performance of our models with vary-
ing numbers of parameters, all trained
from scratch on the ImageNet 256x256
dataset. We applied CFG during training
and report the FID-50K scores of gener-
ated images using a 1-NFE sampling pro-
41 cess. The results consistently demonstrate
that the performance of our models im-
proves as the model size increases.

1-NFE FID-50K

40 80 120 160 200 240
Training Epochs

ImageNet 256x256 Results We begin by analyzing the 1-NFE FID-50K results of our model
across various model sizes and training durations, as shown in[Figure 3] Our model’s 1-NFE perfor-
mance gradually improves with an increase in model parameters, which is consistent with previous
observations on diffusion transformers (Peebles & Xie, [2023b} |[Ma et al., [2024)).

Next, we compare our model’s one-step generation performance against previous models, with the
results summarized in To make relatively fair comparisons, we train our model with the
same batch size and number of iterations as the Meanflow models (Geng et al., 2025). Experimental
results show that our model consistently outperforms Meanflow models across all evaluated model
sizes when trained from scratch. Specifically, for smaller models with DiT-B/2 and DiT-M/2 ar-
chitectures, our model demonstrates significant improvements, achieving FID-50K scores of 5.06
and 4.20, respectively. Our model also achieves superior FID-50K values for larger architectures,
namely DiT-L/2 and DiT-XL/2, reaching 3.72 and 3.35, respectively. Notably, our models employ
Classifier-Free Guidance (CFG) during training, which enables generation with exactly 1-NFE dur-
ing inference, similar to Meanflow models.

Under review as a conference paper at ICLR 2026

method epochs params NFE FID|
Generative Adversarial Networks

BigGAN (Brock et al.,[2018) - 112M 1 6.95
StyleGAN-XL (Sauer et al.| [2022) - 166M 1 2.30
GigaGAN (Kang et al.|[2023) - 569M 1x2 3.45
Masked and Autoregressive Models

Mask-GIT (Chang et al., [2022) 555 227TM 8 6.18
MagViT-v2 (Yu et al.|[2023) 1080 307M 64 1.78
LlamaGen-XL (Sun et al., [2024) 300 775M 576 2.62
VAR (Tian et al.,[2024) 350 2.0B 10 1.80
MAR (Li et al.|[2024) 800 943M 64 1.55
RandAR-XL (Pang et al.,[2025) 300 775M 256 2.22
Multi-step Diffusion Models

LDM-4-G (Rombach et al.,2022) 170 395M 2502 3.60
MDTv2 (Gao et al.[[2023) 700 676M 250x2 1.63
DiT-XL (Peebles & Xie, [2023a) 1400 675M 250%x2 2.27
SiT-XL (Ma et al.[[2024) 1400 675M 250x2 2.06
FlowDCN-XL (Wang et al., 2024b) 400 675M 250%2 2.00
SiT-REPA-XL (Yu et al.| [2024) 800 675M 250x2 1.42

Few-step Consistency Models

iCT-XLf (Song & Dhariwall |2023)) - 675M 1x2 20.30
Shortcut-XL (Frans et al., [2024) 250 675M 1x2 10.60
IMM-XL (Zhou et al.,[2025) 3840 675M 1x2 7.77
MeanFlow-B (Geng et al.,2025) 240 131M 1 6.17
MeanFlow-M (Geng et al.,|[2025) 240 308M 1 5.01
MeanFlow-L (Geng et al.} 2025) 240 459M 1 3.84
MeanFlow-XL (Geng et al.| [2025) 240 675M 1 3.43
SoFlow-B 240 131M 1 5.06
SoFlow-M 240 308M 1 4.20
SoFlow-L 240 459M 1 3.72
SoFlow-XL 240 675M 1 3.35

Table 2: FID-50K results for class-conditional generation on ImageNet-256 x256. x2 denotes
an NFE of 2 per sampling step incurred by CFG. T Results as reported in (Zhou et al., 2025).

CIFAR-10 Results In Table|3| we report uncondi-
tional generation results on th CIFAR-10 dataset, method NFE _FID
where performance is measured by the FID-50K iCT (Song & Dhariwal,2023) 1 2.83
metric with 1-NFE sampling. For our model, we ECT (Geng et al., [2024) 1 3.60
adopt the U-Net architecture (Ronneberger et al. sCT (Lu & Song, |2024) 1297
2015) developed from (Song et al., 2020), align- mﬁ;ﬁiﬁ‘;gﬁl”;ﬁs)2025) % ;32
ing with prior works. Our method is applied di- SoFlow gctay 1 290
rectly to the pixel space, with a resolution of 32x32. i

For more implementation details, please refer to[Ap-| Table 3: FID-50K results for unconditional

Al h hi iti for- .
Our method achieves competitive perfor generation on CIFAR-10.
mance compared to prior approaches on this dataset.

6 CONCLUSION

We have presented SoFlow, a simple yet effective framework for one-step generative modeling.
Our approach directly learns the solution function of the velocity ODE, enabling single-step sam-
pling without iterative solvers. By leveraging a bi-time formulation and a hybrid training objective
combining a flow matching and a solution consistency loss, SoFlow naturally support CFG during
training and avoid JVP that are not well-optimized on deep learning frameworks like PyTorch. Our
method demonstrates competitive performance on class-conditioned Imagenet 256 X256 generation
task, outperforming Meanflow models when trained from scratch under the same settings.

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. 2024.
URL https://openai. com/research/video-generation-models-as-world-simulators, 3:1, 2024.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. 2009.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Mdtv2: Masked diffusion trans-
former is a strong image synthesizer. arXiv preprint arXiv:2303.14389, 2023.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep equi-
librium models. Advances in Neural Information Processing Systems, 36:41914-41931, 2023.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. arXiv preprint arXiv:2406.14548, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. arXiv
preprint arXiv:2403.06807, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633—
8646, 2022.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10124—10134, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565-26577,
2022.

10

Under review as a conference paper at ICLR 2026

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696-21707, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424-56445, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
arXiv preprint arXiv:2410.11081, 2024.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023a.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36:76525-76546, 2023b.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pp. 23—40. Springer, 2024.

Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and
Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 45-55, 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. 2023a.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023b.

Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, and Feng Wu. Flow-anchored
consistency models. arXiv preprint arXiv:2507.03738, 2025.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

A Polyak, A Zohar, A Brown, A Tjandra, A Sinha, A Lee, A Vyas, B Shi, CY Ma, CY Chuang, et al.
Movie gen: A cast of media foundation models, 2025. URL https://arxiv. org/abs/2410.13720,
pp- 51, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234-241. Springer, 2015.

11

Under review as a conference paper at ICLR 2026

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your flow: Scaling continuous-time
flow map distillation. arXiv preprint arXiv:2506.14603, 2025.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479-36494, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pp. 1-10, 2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In European Conference on Computer Vision, pp. 87-103. Springer, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256-2265. pmir, 2015.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839-84865, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Fu-Yun Wang, Zhengyang Geng, and Hongsheng Li. Stable consistency tuning: Understanding and
improving consistency models. arXiv preprint arXiv:2410.18958, 2024a.

Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, and Limin Wang. Explor-
ing dcn-like architecture for fast image generation with arbitrary resolution. Advances in Neural
Information Processing Systems, 37:87959—-87977, 2024b.

Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, and
Lei Bai. Transition models: Rethinking the generative learning objective. arXiv preprint
arXiv:2509.04394, 2025.

Tianwei Yin, Micha€l Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613-6623, 2024.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion—
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023.

12

Under review as a conference paper at ICLR 2026

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. arXiv preprint arXiv:2410.06940, 2024.

Lingi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. arXiv preprint
arXiv:2503.07565, 2025.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024.

13

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

We first provide a detailed description of the different scheduling strategies used to determine the
intermediate time variable ! during training. Recall that [is computed from ¢ and s as follow:

l=t+(s—1t)xrk K),
where k, K represent the current and total training steps, and the function r(k, K) is a monotonically

decreasing function that controls the progression of [from an initial value near ¢ towards ¢ itself as
training advances. Below we specify the four schedules compared in our ablation studies:

Exponential schedule:
k

K
T'(k,K) = Tinit X (Tend>)

Tinit

Cosine schedule:

1 k
7(k, K) = Tend + (Tinit — Tend) X 3 (1 4+ cos (71'. K)) ,

Linear schedule: k

r(k, K) = Tinit + (Fend — Tinit) X e
Constant schedule:

r(k, K) = Tend.

In all cases, [is clamped to satisfy [< ¢ — 10~ to ensure numerical stability, s is also clamped to
satisfy s < t — 10~* at the same time. The initial value 7i,;; and end value reyq are hyperparameters
controlling the starting and final relative position between [and t.

We now detail the training configurations for our model on two benchmark datasets. All experiments
are run on NVIDIA H100 GPUs.

ImageNet 256 <256 We employ the Adam optimizer (Kingma & Bal 2014) with a constant learn-
ing rate of 1 x 10~* and betas set to (0.9,0.99), without learning rate decay or weight decay.
Following standard practice, we evaluate model performance using Exponential Moving Average
(EMA) with a decay rate of 0.9999. For time sampling, the logit-normal distribution parameters are
setas: urpm = —0.2,0rm = 1.0; puy = 0.2,04 = 0.8; us = —0.2,0, = 0.8. The flow matching
data ratio is 75% and the adaptive loss weight coefficient p = 1.0. The schedule parameters are
Tinit = 1—10 and reng = ﬁ. We use a linear noising schedule with Euler parameterization. The
CFG strength w and velocity mix ratio m are set to 3.0 and 0.25, respectively. Following common
practice, we linearly decay the CFG strength to O gradually for high-noise areas, where ¢ > 0.8.
Finally, architectural details are provided in

Table 4: Architectural configurations on ImageNet 256 <256.

architectures B/4 B/2 M/2 L2 XL/2
parameters (M) 131 131 308 459 676
FLOPs (G) 5.6 23.1 54.0 119.0 119.0
depth 12 12 16 24 28
hidden dimension 768 768 1024 1024 1152
attention heads 12 12 16 16 16
patch size 4x4 2x2 2x2 2x2 2x2
training epochs 80 240 240 240 240

CIFAR-10 Training uses a batch size of 1024 for 800K iterations, consistent with MeanFlow. We
adopt RAdam (Liu et al., |2019) with a learning rate of 1 x 104, following (Song & Dhariwal, |2023;
Geng et al.,|2024). Time sampling parameters are: upn = —0.4, 0pm = 1.7; g = —0.6, 0, = 1.5;
s = —4.0,05 = 1.5. The flow matching data ratio is 25% with p = 0.5. Schedule parameters are
set to smaller values than ImageNet: ri,;; = % and 7enq = 4. Linear noising schedule and Euler

Her: 2500
parameterization are used.

14

Under review as a conference paper at ICLR 2026

B MORE VISUAL SAMPLES

Figure 4: We show curated samples from class-conditioned generation by the DiT-XL/2 model with
1-NFE on the ImageNet 256 X256 dataset.

[,j- -11- Pras -F'*

Figure 5: We show uncurated samples from unconditional generation by the UNet model with 1-
NFE on the CIFAR-10 dataset.

C LARGE LANGUAGE MODEL USAGE

We only adopt large language models to polish the writing.

15

	Introduction
	Related Works
	Preliminary: Flow Matching
	Solution Flow Models
	Formulations
	Learning Objectives
	Classifier-Free Guidance

	Experiments
	Settings
	Ablation Study
	Comparing with Other Works

	Conclusion
	Implementation Details
	More Visual Samples
	large language model usage

