
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SOFLOW: SOLUTION FLOW MODELS FOR ONE-STEP
GENERATIVE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

The multi-step denoising process in diffusion and Flow Matching models causes
major efficiency issues, which motivates research on few-step generation. We
present Solution Flow Models (SoFlow), a framework for one-step generation
from scratch. By analyzing the relationship between the velocity function and
the solution function of the velocity Ordinary Differential Equation (ODE), we
propose a flow matching loss and a solution consistency loss to train our mod-
els. The flow matching loss allows our models to provide estimated velocity fields
for Classifier-Free Guidance (CFG) during training, which improves generation
performance. Notably, our consistency loss does not require the calculation of
the Jacobian-Vector Product (JVP), a common requirement in recent works that
is not well-optimized in deep learning frameworks like PyTorch. Experimental
results indicate that, when trained from scratch using the same diffusion trans-
former (DiT) architecture and with an equal number of training epochs, our mod-
els achieve better FID-50K scores compared to MeanFlow models on the Ima-
geNet 256x256 dataset.

Figure 1: Generated one-step samples on Imagenet 256×256 dataset by our Solution Flow Models.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2020) and Flow Matching models (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden,
2022) have emerged as foundational frameworks in generative modeling. Diffusion models operate
by systematically adding noise to data and then learning a denoising process to generate high-quality
samples. Flow Matching offers a more direct alternative, modeling the velocity fields that transport
a simple prior distribution to a complex data distribution. Despite their power and success across
various generative tasks (Esser et al., 2024; Ma et al., 2024; Polyak et al., 2024), both approaches
rely on an iterative, multi-step sampling process, which hinders their generation efficiency.

Addressing this latency is becoming a key area of research. Consistency Models (Song et al., 2023;
Song & Dhariwal, 2023; Geng et al., 2024; Lu & Song, 2024) and related techniques (Kim et al.,
2023; Wang et al., 2024a; Frans et al., 2024; Heek et al., 2024) have gained prominence by enabling
rapid, few-step generation. These methods learn a direct mapping from any point on a generative
trajectory to a consistent, “clean” output, bypassing the need for iterative refinement. However, this
paradigm introduces significant challenges. Consistency models trained from scratch often fail to
leverage Classifier-Free Guidance (CFG) for enhancing sample quality, and they are further hindered
by instability caused by changing optimization targets. Recent works (Peng et al., 2025; Geng
et al., 2025) address this instability by incorporating a flow matching loss. However, this approach
introduces a new computational bottleneck: it relies on Jacobian-Vector Product (JVP) calculations,
which are much less optimized than forward propagation in frameworks such as PyTorch.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MSE

Data Noise

Target

Velocity ODE Trajectories Figure 2: Illustration of solution con-
sistency loss: The plot shows a straight-
line flow matching trajectory defined by
a data-noise pair (x0, x1). Given three
time points s < l < t, two positions xt

and xt + (α′
tx0 + β′

tx1)(l − t) are deter-
mined on the trajectory between x0 and
x1 to compute the mean square error be-
tween our model fθ(xt, t, s) and the stop-
gradient target term fθ−(xt + (α′

tx0 +
β′
tx1)(l − t), l, s).

In this work, we introduce a new approach for one-step generation that avoids these limitations.
Instead of relying on iterative ODE solvers, we propose to directly learn the solution function of the
velocity ODE defined by Flow Matching. We denote this function as f(xt, t, s), which explicitly
maps a state xt at time t to its evolved state xs at any other time s. To learn it with a parameterized
model fθ(xt, t, s), we first analyze the properties that can make a neural network into a valid solution
function. Based on this analysis, we formulate a training objective comprising a flow matching loss
and a solution consistency loss. The resulting model, fθ(xt, t, s), not only accommodates the flow
matching objective and CFG naturally but also eliminates the need for expensive JVP calculations
during training. Our experimental results demonstrate the effectiveness of this approach, showing
that our models achieve superior FID-50K scores compared to MeanFlow models on the ImageNet
256×256 dataset, using the same diffusion transformer (DiT) architecture and training duration.

2 RELATED WORKS

Diffusion, Flow Matching and Stochastic Interpolants Diffusion models (Sohl-Dickstein et al.,
2015; Song et al., 2020; Kingma et al., 2021; Karras et al., 2022) and Flow Matching (Lipman et al.,
2022; Liu et al., 2022) are widely adopted generative modeling frameworks. These approaches either
progressively corrupt data with noise and train a neural network to denoise it, or learn a velocity field
that governs a transformation from the data distribution to a simple prior. They have been scaled
successfully for image generation (Rombach et al., 2022; Saharia et al., 2022; Podell et al., 2023)
and video generation (Ho et al., 2022; Brooks et al., 2024) tasks. Stochastic interpolants (Albergo
& Vanden-Eijnden, 2022; Albergo et al., 2023) build upon these concepts by explicitly defining
stochastic trajectories between the data and prior distributions and aligning their associated velocity
fields to enable effective distributional transport.

Few-step Generative Models Reducing the number of sampling steps has become an active re-
search direction, driven by the need for faster generation and better theoretical insights. Prior efforts
fall into two main streams: (i) distillation-based approaches that compress pre-trained multi-step
models into few-step generators (Salimans & Ho, 2022; Sauer et al., 2024; Geng et al., 2023; Luo
et al., 2023b; Yin et al., 2024; Zhou et al., 2024); and (ii) from-scratch training, which learns fast
samplers without teachers, most prominently through the consistency-training family (CMs, iCT,
ECT, sCT) (Song et al., 2023; Song & Dhariwal, 2023; Geng et al., 2024; Lu & Song, 2024).

Consistency Models (CMs) collapse noised inputs directly to clean data, enabling one- or few-step
generation (Song et al., 2023). While first applied mainly in distillation (Luo et al., 2023a; Geng
et al., 2024), later works established that they can also be trained from scratch via consistency train-
ing (Song & Dhariwal, 2023). Building on this, iCT (Song & Dhariwal, 2023) simplifies objectives
and improves stability with robust losses and teacher-free training, while ECT (Geng et al., 2024)
introduces a continuous-time ODE formulation that unifies CMs and diffusion. The recent sCT
framework (Lu & Song, 2024) further stabilizes continuous-time consistency training, scaling CMs
up to billion-parameter regimes.

Beyond fixed start/end settings, newer approaches extend CMs to arbitrary timestep transitions,
aligning better with continuous-time dynamics. Shortcut models (Frans et al., 2024) condition on
noise level and step size to flexibly support both one- and few-step sampling with shared weights.
MeanFlow (Geng et al., 2025) introduces interval-averaged velocities and analyzes the relationship

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

between averaged and instantaneous velocities. IMM (Zhou et al., 2025) matches moments across
transitions in a single-stage objective, reducing variance and avoiding multi-stage distillation. Flow-
Anchored CMs (Peng et al., 2025) regularize shortcut learning with a flow matching anchor, im-
proving stability and generalization. On the distillation side, Align Your Flow (Sabour et al., 2025)
unifies CM and FM into continuous-time flow maps effective across arbitrary step counts, further
enhanced with autoguidance and adversarial fine-tuning. Finally, Transition Models (Wang et al.,
2025) reformulate generation around exact finite-interval dynamics, unifying few- and many-step
regimes and achieving monotonic quality gains as step budgets increase.

3 PRELIMINARY: FLOW MATCHING

We first introduce the setting of Flow Matching. Flow Matching models learn a velocity field that
transforms a known prior distribution like standard Gaussian distribution to the data distribution.
More precisely, we denote the data distribution as p(x0), and the prior distribution as p(x1), which
is standard Gaussian distribution N(0, I) in our setting.

A general noising process is defined as xt = αtx0 + βtx1, where xt ∈ Rn, t ∈ [0, 1], αt and βt are
continuously differentiable functions satisfying the boundary conditions α0 = 1, α1 = 0, β0 = 0,
and β1 = 1. Then, the marginal velocity field associated with the noising process is defined as

v(xt, t) = Ep(x0,x1|xt)[α
′
tx0 + β′

tx1], (1)

which is a conditional expectation of the conditional velocity field. According to the Flow Match-
ing framework, given the marginal velocity field v(xt, t), new samples can be generated by first
sampling x1 ∼ p(x1), and then solving the initial value problem (IVP) of the following velocity
ordinary differential equation (ODE) from t = 1 to t = 0:

dX(t)

dt
= v(X(t), t), X(1) = x1. (2)

To construct a generative model based on this principle, a straightforward approach is to approxi-
mate the marginal velocity field using a neural network vθ, parameterized by θ, which is trained by
minimizing the following mean square objective:

LFM(θ) = Et,xt ∥vθ(xt, t)− v(xt, t)∥2 . (3)

However, directly optimizing a neural network with this loss is impractical since the real velocity
field v(x, t) is a conditional expectation given xt. To overcome this challenge, a conditional variant
of the flow matching loss is introduced (Lipman et al., 2022; Liu et al., 2022):

LCFM(θ) = Et,x0,x1,xt
∥vθ(xt, t)− (α′

tx0 + β′
tx1)∥

2
. (4)

Minimizing LCFM is equivalent to minimizing the original objective LFM. This loss function is
tractable since we only need to sample data-noise pairs to construct targets for the network.

4 SOLUTION FLOW MODELS

4.1 FORMULATIONS

The main purpose of this work is to investigate how can we train a neural network that can directly
solve the velocity ODE, thereby eliminating the reliance on numerical ODE solvers in Flow Match-
ing models. We study this problem under the assumption that the velocity field v(xt, t) ∈ Rn, with
xt ∈ Rn and t ∈ [0, 1], is continuously differentiable and globally Lipschitz continuous with respect
to xt, i.e. ||v(xt, t)− v(x′

t, t)||2 ≤ L||xt − x′
t||2, ∀xt, x

′
t ∈ Rn, t ∈ [0, 1].

According to the existence and uniqueness theorem of ODEs, these two assumptions guarantee that
given initial condition X(t) = xt, where xt ∈ Rn, t ∈ [0, 1] can be arbitrarily chosen, a unique
solution X(s), s ∈ [0, t] to the velocity ODE dX(s)

ds = v(X(s), s) exists. Since the initial condition
can be varied, we denote this unique solution by notation f(xt, t, s). Then we immediately have two
equations by ODE’s definition, for any xt ∈ Rn, 0 ≤ s ≤ t ≤ 1:

f(xt, t, t) = xt, ∂3f(xt, t, s) = v(f(xt, t, s), s) (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where ∂3f(xt, t, s) ∈ Rn is the partial derivative function of f(xt, t, s) with respect to the third vari-
able. Since f(xt, t, s) maps an initial value xt at time t to the unique solution of the velocity ODE at
time s, we denote it as the solution function in this paper. Owing to the continuous differentiability
of the velocity field v(xt, t), the solution function f(xt, t, s) is also continuously differentiable. To
realize one-step generation, we need to train a model fθ(xt, t, s) to approximate the ground truth
solution function f(xt, t, s), which is determined uniquely by the velocity field v(xt, t).

Under the setting discussed above, the following two conditions are sufficient to ensure that
fθ(xt, t, s) = f(xt, t, s) for all xt ∈ Rn, 0 ≤ s ≤ t ≤ 1:

fθ(xt, t, t) = xt, ∂1fθ(xt, t, s)v(xt, t) + ∂2fθ(xt, t, s) = 0. (6)

where ∂1fθ(xt, t, s) ∈ Rn×n is the Jacobian matrix function of fθ(xt, t, s) with respect to the first
variable, v(xt, t) is multiplied by it as a matrix-vector product, and ∂2fθ(xt, t, s) ∈ Rn is the partial
derivative vector function of fθ(xt, t, s) with respect to the second variable.

This can be proven by expanding the following derivative for 0 ≤ s ≤ l ≤ t ≤ 1:

d

dl
(fθ(f(xt, t, l), l, s)) = ∂1fθ(f(xt, t, l), l, s) ∂3f(xt, t, l)︸ ︷︷ ︸

=v(f(xt,t,l),l)

+∂2fθ(f(xt, t, l), l, s) = 0. (7)

The expression is equal to 0 due to the first condition in Eq. 6. Thus, we know that the model
fθ(xt, t, s) is indeed the true solution function f(xt, t, s) by:

fθ(xt, t, s) = fθ(f(xt, t, t), t, s) = fθ(f(xt, t, s), s, s) = f(xt, t, s), (8)

where we use the property that f(xt, t, t) = fθ(xt, t, t) = xt and fθ(f(xt, t, l), l, s) is invariant
with respect to l, allowing us to set l = t and l = s to finish the proof.

4.2 LEARNING OBJECTIVES

Now we consider how to build efficient objectives for neural networks to learn the ground truth
solution operator, according to the two conditions mentioned in the previous section. To ensure the
first boundary condition of Eq. 6 is satisfied, we adopt the following parameterization:

fθ(xt, t, s) = a(t, s)xt + b(t, s)Fθ(xt, t, s),

where a(t, s) and b(t, s) are continuously differentiable scalar functions satisfying a(t, t) = 1 and
b(t, t) = 0 for all t ∈ [0, 1], and Fθ(x, t, s) denotes a raw neural network. Following the notations
in the last section, we use ∂1a(t, s), ∂2a(t, s), ∂1b(t, s), ∂2b(t, s) to denote the partial derivatives of
a(t, s) and b(t, s) with respect to the first and second variables. In our experiments, we choose two
specific parameterizations, including the Euler parameterization and the triangular parameterization:

fθ(xt, t, s) = xt + (s− t)Fθ(xt, t, s),

fθ(xt, t, s) = cos
π

2
(s− t)xt + sin

π

2
(s− t)Fθ(xt, t, s).

Obviously, these two parameterizations satisfy the boundary condition fθ(xt, t, t) = xt. Then, we
construct two loss functions for training using Eq. 6.

Flow Matching Loss Firstly, we consider a special situation of Eq. 6 when t = s. Recall that the
boundary condition of Eq. 6 gives fθ(xt, t, t) = xt, ∀xt ∈ Rn, t ∈ [0, 1], we have:

∂1fθ(xt, t, t) = In, 0 =
dfθ(xt, l, l)

dl

∣∣∣∣
l=t

= ∂2fθ(xt, t, t) + ∂3fθ(xt, t, t) (9)

where In ∈ Rn×n is the identity matrix. Then Eq. 6 can be simplified to v(xt, t) = ∂3fθ(xt, t, t).
Under our parameterization mentioned above, we have

v(xt, t) = ∂3fθ(xt, t, t) = ∂2a(t, t)xt + ∂2b(t, t)Fθ(xt, t, t) + b(t, t)︸ ︷︷ ︸
0

∂3Fθ(xt, t, t). (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where the complex term containing ∂3Fθ(xt, t, t) is canceled since b(t, t) = 0 by our choice of
parameterization. Now we obtain a flow matching loss for our neural networks:

LFM(θ)=Et,x0,x1,xt

[
wFM(t,MSE)

D
∥∂2a(t, t)xt + ∂2b(t, t)Fθ(xt, t, t)− (α′

tx0 + β′
tx1)∥

2
2

]
,

(11)
where D is the data dimension, α′

tx0 + β′
tx1 is used to replace the intractable marginal velocity

field v(xt, t) = Ep(x0,x1|xt)[α
′
tx0 + β′

tx1] during the training process following the standard Flow
Matching framework. In addition, this velocity term can also be provided by a teacher model in
distillation situations, but in this paper, we focus on the situation of training from scratch.

Previous works (Geng et al., 2024; 2025) have demonstrated that choosing an adaptive weighting
function is beneficial for few-step generative models. Following their approach, we choose

wFM(t,MSE) =
1

|∂2b(t, t)|(MSE + ϵ)p
(12)

as our weighting function, where |∂2b(t, t)| is used to balance the raw network’s gradients across
time, and MSE represents the original mean squared error. Here ϵ is a smoothing factor to prevent
excessively small values, and p is a factor that determines how robust the loss is. For p = 0, the
objective degenerates to the mean squared error. For p > 0, this factor will penalize the data points
with large errors in a data batch to make the objective more robust.

The original Flow Matching framework samples t uniformly, while more recent works (Esser et al.,
2024; Geng et al., 2025) suggest sampling t from a logit-normal distribution. We also sample t from
σ(N (µFM, σ2

FM)), where σ(·) and N represent the sigmoid function and normal distribution.

Solution Consistency Loss We now consider how to build a training target for the s < t situation
using Eq. 6. According to the Taylor’s expansion, we have an approximation equation:
fθ(xt, t, s)− fθ(xt + v(xt, t)(l − t), l, s)

t− l
= (∂1fθ(xt, t, s)v(xt, t)+∂2fθ(xt, t, s))+ o(1), (13)

where l ∈ (s, t) is close to t. Thus, we can adopt the following objective:

LSCM(θ) = E
t,l,s,

x0,x1,xt

[
wSCM(t, l, s,MSE)

D

∥∥fθ(xt, t, s)− fθ−
(
xt + (α′

tx0 + β′
tx1)(l − t), l, s

)∥∥2
2

]
,

(14)
where D is the data dimension, θ− means taking the stop-gradient operation to the parameters, and
(α′

tx0+β′
tx1) is again used to replace the intractable v(xt, t) = Ep(x0,x1|xt)[α

′
tx0+β′

tx1] following
the common practice. The adaptive weighting is chosen as follows:

wSCM(t, l, s,MSE) =
1

(t− l)|b(t, s)|
× 1

(MSE
(t−l)2 + ϵ)p

, (15)

where the first term ensures the gradient magnitude of the raw network Fθ(xt, t, s) is stable, and
the second term is again used to provide a more robust loss by scaling down the coefficient for data
points with large mean square errors when p > 0. Besides, we divide the mean square error in the
adaptive term by (t− l)2 since its magnitude is proportional to (t− l)2.

As for the sampling method of t, l, s during training, we first sample t and s from two logit-normal
distributions, σ(N (µt, σ

2
t)) and σ(N (µs, σ

2
s)), respectively. Here, s is clamped to ensure s <

t− 10−4. We then determine l using the following method:
l = t+ (s− t)× r(k,K), (16)

where k,K represent the current and total training steps, respectively. The function r(k,K) rep-
resents a monotonically decreasing schedule that gradually moves l towards t throughout training.
To avoid numerical issues, l is clamped to ensure l < t − 10−4. This schedule decreases from an
initial value rinit to an end value rend. In our ablation studies, we test exponential, cosine, linear,
and constant schedules. For more implementation details, please refer to Appendix A.

The total training loss is a combination of the flow matching and solution consistency losses: L(θ) =
λLFM(θ) + (1 − λ)LSCM(θ). The parameter λ controls the balance between them by determining
the fraction of a data batch dedicated to computing LFM(θ), while the remaining fraction is used for
LSCM(θ). We perform ablation studies to determine the optimal value of λ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) is a standard technique in diffusion models
for enhancing conditional generation. The models are trained with randomly dropped conditions to
mix conditional and unconditional data. During inference, CFG is applied by linearly combining
predictions from the label-conditional and unconditional models to enhance generation quality.

Unlike this approach, since our goal is to let our models directly solve the velocity ODE, we need
to train them directly with the linearly combined guided marginal velocity field, rather than train-
ing them separately on conditional and unconditional marginal velocity fields and combining their
solutions linearly. Mathematically, the label-conditional marginal velocity field is defined as:

v(xt, t | c) = Ep(x0,x1|xt,c)[α
′
tx0 + β′

tx1], (17)

With classifier-free guidance, the guided marginal velocity field is given by:

vg(xt, t, c) = wv(xt, t | c) + (1− w)v(xt, t), (18)

Notably, this velocity field depends purely on the data distribution and is independent of the models.
Our goal is for the model to directly solve the velocity ODE defined by this guided field. However,
since the unconditional velocity field is not directly accessible in conditional generation settings, we
must train the network to also predict the unconditional velocity field for CFG training.

In implementation, we randomly replace the label c with an empty label ϕ with probability 0.1 in
both the flow matching loss and the solution consistency loss. For data points assigned the empty
label ϕ, we compute the loss functions directly by passing ϕ to the network and evaluating according
to Eq. 11 and Eq. 14. For data points with a non-empty label c, we first predict the unconditional ve-
locity field vuncond using ∂2a(t, t)xt + ∂2b(t, t)Fθ(xt, t, t, ϕ) as shown in Eq. 10. We then compute
the guided loss by passing c to the network and replacing the velocity term α′

tx0 + β′
tx1 in Eq. 11

and Eq. 14 with w(α′
tx0 + β′

tx1) + (1− w)vuncond, where w is the CFG strength.

It is worth mentioning that the term w(α′
tx0 + β′

tx1) + (1 − w)vuncond typically exhibits larger
variance compared to the original term α′

tx0 + β′
tx1, due to the scaling effect of w. This increased

variance adversely affects both training convergence speed and final performance. Note that the
model also learns the guided velocity field through the flow matching loss when the label c is pro-
vided. Therefore, we can predict vguided using ∂2a(t, t)xt+∂2b(t, t)Fθ(xt, t, t, c), and then employ

vmix = m(w(α′
tx0 + β′

tx1) + (1− w)vuncond) + (1−m)vguided (19)

to replace the original term α′
tx0 + β′

tx1, where 0 < m ≤ 1 is the velocity mix ratio. Since the
majority of the variance originates from the stochastic term α′

tx0 + β′
tx1, using a small m can

effectively reduce the variance (vguided is a model prediction value with much lower variance.)

After introducing the flow matching and solution consistency losses and demonstrating how to apply
CFG during training, we now present the pseudo-code for our model’s guided training process to
provide a more comprehensive understanding.

Algorithm 1 Train Solution Flow Models with CFG

Input: model fθ(xt, t, s, c), flow matching data ratio λ, CFG strength w, velocity mix ratio m

Sample a data batch: x0, c ∼ pdata(x0, c)

Split data for two losses by λ: (xFM
0 , xSCM

0) = x0, (c
FM, cSCM) = c

Sample tFM, tSCM, lSCM, sSCM according to subsection 4.2
Get xFM

t , vFMt , xSCM
t , vSCM

t by standard Flow Matching framework
Compute vFMmix and vSCM

mix by Eq. 19 with w and m

Randomly replace vFMmix and vSCM
mix by vFMt and vSCM

t with CFG drop rate 0.1

Compute LFM(θ) according to Eq. 11 by replacing (α′
tx0 + β′

tx1) term with vFMmix

Compute LSCM(θ) according to Eq. 14 by replacing (α′
tx0 + β′

tx1) term with vSCM
mix

Update fθ via gradient descent according to L(θ) = λLFM(θ) + (1− λ)LSCM(θ)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Regarding the inference process of our model, it is straightforward since fθ(xt, t, s) = a(t, s)xt +
b(t, s)Fθ(xt, t, s) is a neural solution function to the velocity ODE, we only need to sample x1 ∼
N (0, I) and apply this operator with t = 1 and s = 0 to obtain the clean data in a single step.
Furthermore, by selecting different t and s, our model can also achieve multi-step sampling.

5 EXPERIMENTS

5.1 SETTINGS

We conduct our major experiments on the ImageNet 256×256 dataset (Deng et al., 2009). SoFlow
models operate within the latent space of a pre-trained VAE 1(Rombach et al., 2022), which is a
common practice in recent works (Peebles & Xie, 2023b; Geng et al., 2025). The tokenizer converts
256×256 images into a 32×32×4 latent representation. We assess generation quality using the
Fréchet Inception Distance (FID) (Heusel et al., 2017), computed over a set of 50,000 generated
samples. To evaluate computational efficiency, we report the number of function evaluations (NFE),
with a particular focus on the single-step (1-NFE) scenario. All models presented were trained
from scratch. In addition to the standard time variable t, our model incorporates an additional time
variable s. We provide this to the networks by feeding the positional embeddings (Vaswani et al.,
2017) of their difference, s− t. For more implementation details, please refer to Appendix A.

5.2 ABLATION STUDY

Table 1: Ablation studies on ImageNet 256×256 class-conditional generation. All models have
131M parameters and are trained with a batch size of 256 for 400K iterations from scratch.

l → t
schedule

FID-50K
(1-NFE)

Exponential 59.97
Cosine 60.10
Linear 60.64

Constant 60.13
(a)

flow matching
data ratio

FID-50K
(1-NFE)

0% 66.55
25% 61.53
50% 60.24
75% 59.97

(b)

loss weighting
coefficient p

FID-50K
(1-NFE)

0.0 69.11
0.5 60.59
1.0 59.97
1.5 64.25

(c)

noising schedule
& parameterization

FID-50K
(1-NFE)

Linear, Euler 12.89
Linear, Triangular 23.57
Triangular, Euler 14.26

Triangular, Triangular 19.87
(d)

CFG guidance
strength w

FID-50K
(1-NFE)

1.5 35.70
2.0 22.37
2.5 15.68
3.0 12.89

(e)

velocity
mix ratio m

FID-50K
(1-NFE)

0.25 12.89
0.5 15.67

0.75 17.18
1.0 19.18

(f)

We conduct various ablation studies to determine the optimal hyperparameters for SoFlow mod-
els. Following the methodology of Geng et al. (2025), we utilize the DiT-B/4 architecture in our
experiments, which features a “base” sized diffusion transformer with a patch size of 4. We train
our models for 400K iterations. For performance reference, the original DiT-B/4 (Peebles & Xie,
2023b) achieved an FID-50K of 68.4 with 250-NFE sampling. Meanflow (Geng et al., 2025) reports
an FID-50K of 61.06 with 1-NFE sampling, and they claim to have reproduced SiT-B/4 (Ma et al.,
2024) with an FID-50K of 58.9 using 250-NFE sampling. The FID-50K scores mentioned here are
without classifier-free guidance (CFG). Our ablation studies are conducted in two groups: a first
group of three experiments without classifier-free guidance (CFG) and a second group of three with
CFG. Table 1 presents our results, which are analyzed as follows:

l → t Schedule We compare exponential, cosine, linear, and constant schedules in our experi-
ments (Table 1a). The similar FID-50K results show that the speed of the l → t transition during
the training process has a relatively small influence on performance. We choose the exponential
schedule following previous works (Song & Dhariwal, 2023; Geng et al., 2024).

1SD-VAE: https://huggingface.co/stabilityai/sd-vae-ft-mse

7

https://huggingface.co/stabilityai/sd-vae-ft-mse

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Flow Matching Data Ratio Although the solution consistency loss alone is sufficient to enable
one-step generation (corresponding to a 0% ratio in Table 1b), experimental results show that incor-
porating a large ratio of flow matching loss is effective for improving performance.

Loss Weighting Coefficient p We observe that the choice of loss metric has a significant influence
on the performance of one-step generation, which aligns with previous works (Song & Dhariwal,
2023; Geng et al., 2024; 2025). As shown in Table 1c, the original mean square loss with p = 0
performs much worse than p = 0.5 or p = 1 situations.

Noising Schedule and Parameterization Our method is compatible with different flow matching
noising schedules and solution function parameterizations. As presented in Table 1d, experiments
show that the linear noising schedule xt = (1 − t)x0 + tx1 along with the Euler parameterization
fθ(xt, t, s) = xt + (s − t)Fθ(xt, t, s) performs best, compared to the triangular noising schedule
xt = cos(π2 t)x0+sin(π2 t)x1 and its corresponding parameterization fθ(xt, t, s) = cos π

2 (s−t)xt+
sin π

2 (s− t)Fθ(xt, t, s).

CFG Guidance Strength w Unlike diffusion models, our model enables CFG during the training
stage rather than the inference stage, which allows for image generation with 1 NFE. Experiments
in Table 1e demonstrate that CFG can also greatly improve the generation quality for our model.

Velocity Mix Ratio m Experiments (Table 1f) show that a relatively small m is beneficial for
performance. This can be explained by the fact that the CFG guidance strength w amplifies the
randomness in the velocity term, and a smaller m can suppress this randomness by partially replacing
the velocity term with the model’s prediction of the guided velocity field.

5.3 COMPARING WITH OTHER WORKS

Figure 3: FID-50K performance of our
models. The plot shows the FID-50K
performance of our models with vary-
ing numbers of parameters, all trained
from scratch on the ImageNet 256×256
dataset. We applied CFG during training
and report the FID-50K scores of gener-
ated images using a 1-NFE sampling pro-
cess. The results consistently demonstrate
that the performance of our models im-
proves as the model size increases.

ImageNet 256×256 Results We begin by analyzing the 1-NFE FID-50K results of our model
across various model sizes and training durations, as shown in Figure 3. Our model’s 1-NFE perfor-
mance gradually improves with an increase in model parameters, which is consistent with previous
observations on diffusion transformers (Peebles & Xie, 2023b; Ma et al., 2024).

Next, we compare our model’s one-step generation performance against previous models, with the
results summarized in Table 2. To make relatively fair comparisons, we train our model with the
same batch size and number of iterations as the Meanflow models (Geng et al., 2025). Experimental
results show that our model consistently outperforms Meanflow models across all evaluated model
sizes when trained from scratch. Specifically, for smaller models with DiT-B/2 and DiT-M/2 ar-
chitectures, our model demonstrates significant improvements, achieving FID-50K scores of 5.06
and 4.20, respectively. Our model also achieves superior FID-50K values for larger architectures,
namely DiT-L/2 and DiT-XL/2, reaching 3.72 and 3.35, respectively. Notably, our models employ
Classifier-Free Guidance (CFG) during training, which enables generation with exactly 1-NFE dur-
ing inference, similar to Meanflow models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

method epochs params NFE FID↓
Generative Adversarial Networks
BigGAN (Brock et al., 2018) - 112M 1 6.95
StyleGAN-XL (Sauer et al., 2022) - 166M 1 2.30
GigaGAN (Kang et al., 2023) - 569M 1×2 3.45

Masked and Autoregressive Models
Mask-GIT (Chang et al., 2022) 555 227M 8 6.18
MagViT-v2 (Yu et al., 2023) 1080 307M 64 1.78
LlamaGen-XL (Sun et al., 2024) 300 775M 576 2.62
VAR (Tian et al., 2024) 350 2.0B 10 1.80
MAR (Li et al., 2024) 800 943M 64 1.55
RandAR-XL (Pang et al., 2025) 300 775M 256 2.22

Multi-step Diffusion Models
LDM-4-G (Rombach et al., 2022) 170 395M 250×2 3.60
MDTv2 (Gao et al., 2023) 700 676M 250×2 1.63
DiT-XL (Peebles & Xie, 2023a) 1400 675M 250×2 2.27
SiT-XL (Ma et al., 2024) 1400 675M 250×2 2.06
FlowDCN-XL (Wang et al., 2024b) 400 675M 250×2 2.00
SiT-REPA-XL (Yu et al., 2024) 800 675M 250×2 1.42

Few-step Consistency Models
iCT-XL† (Song & Dhariwal, 2023) - 675M 1×2 20.30
Shortcut-XL (Frans et al., 2024) 250 675M 1×2 10.60
IMM-XL (Zhou et al., 2025) 3840 675M 1×2 7.77
MeanFlow-B (Geng et al., 2025) 240 131M 1 6.17
MeanFlow-M (Geng et al., 2025) 240 308M 1 5.01
MeanFlow-L (Geng et al., 2025) 240 459M 1 3.84
MeanFlow-XL (Geng et al., 2025) 240 675M 1 3.43
SoFlow-B 240 131M 1 5.06
SoFlow-M 240 308M 1 4.20
SoFlow-L 240 459M 1 3.72
SoFlow-XL 240 675M 1 3.35

Table 2: FID-50K results for class-conditional generation on ImageNet-256×256. ×2 denotes
an NFE of 2 per sampling step incurred by CFG. † Results as reported in (Zhou et al., 2025).

method NFE FID

iCT (Song & Dhariwal, 2023) 1 2.83
ECT (Geng et al., 2024) 1 3.60
sCT (Lu & Song, 2024) 1 2.97
IMM (Zhou et al., 2025) 1 3.20
MeanFlow (Geng et al., 2025) 1 2.92
SoFlow 1 2.90

Table 3: FID-50K results for unconditional
generation on CIFAR-10.

CIFAR-10 Results In Table 3, we report uncondi-
tional generation results on the CIFAR-10 dataset,
where performance is measured by the FID-50K
metric with 1-NFE sampling. For our model, we
adopt the U-Net architecture (Ronneberger et al.,
2015) developed from (Song et al., 2020), align-
ing with prior works. Our method is applied di-
rectly to the pixel space, with a resolution of 32×32.
For more implementation details, please refer to Ap-
pendix A. Our method achieves competitive perfor-
mance compared to prior approaches on this dataset.

6 CONCLUSION

We have presented SoFlow, a simple yet effective framework for one-step generative modeling.
Our approach directly learns the solution function of the velocity ODE, enabling single-step sam-
pling without iterative solvers. By leveraging a bi-time formulation and a hybrid training objective
combining a flow matching and a solution consistency loss, SoFlow naturally support CFG during
training and avoid JVP that are not well-optimized on deep learning frameworks like PyTorch. Our
method demonstrates competitive performance on class-conditioned Imagenet 256×256 generation
task, outperforming Meanflow models when trained from scratch under the same settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. 2024.
URL https://openai. com/research/video-generation-models-as-world-simulators, 3:1, 2024.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. 2009.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Mdtv2: Masked diffusion trans-
former is a strong image synthesizer. arXiv preprint arXiv:2303.14389, 2023.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep equi-
librium models. Advances in Neural Information Processing Systems, 36:41914–41931, 2023.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. arXiv preprint arXiv:2406.14548, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. arXiv
preprint arXiv:2403.06807, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–
8646, 2022.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10124–10134, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424–56445, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
arXiv preprint arXiv:2410.11081, 2024.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023a.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36:76525–76546, 2023b.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pp. 23–40. Springer, 2024.

Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and
Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 45–55, 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. 2023a.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023b.

Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, and Feng Wu. Flow-anchored
consistency models. arXiv preprint arXiv:2507.03738, 2025.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

A Polyak, A Zohar, A Brown, A Tjandra, A Sinha, A Lee, A Vyas, B Shi, CY Ma, CY Chuang, et al.
Movie gen: A cast of media foundation models, 2025. URL https://arxiv. org/abs/2410.13720,
pp. 51, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your flow: Scaling continuous-time
flow map distillation. arXiv preprint arXiv:2506.14603, 2025.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pp. 1–10, 2022.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In European Conference on Computer Vision, pp. 87–103. Springer, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839–84865, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Fu-Yun Wang, Zhengyang Geng, and Hongsheng Li. Stable consistency tuning: Understanding and
improving consistency models. arXiv preprint arXiv:2410.18958, 2024a.

Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, and Limin Wang. Explor-
ing dcn-like architecture for fast image generation with arbitrary resolution. Advances in Neural
Information Processing Systems, 37:87959–87977, 2024b.

Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, and
Lei Bai. Transition models: Rethinking the generative learning objective. arXiv preprint
arXiv:2509.04394, 2025.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613–6623, 2024.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. arXiv preprint arXiv:2410.06940, 2024.

Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. arXiv preprint
arXiv:2503.07565, 2025.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

We first provide a detailed description of the different scheduling strategies used to determine the
intermediate time variable l during training. Recall that l is computed from t and s as follow:

l = t+ (s− t)× r(k,K),

where k,K represent the current and total training steps, and the function r(k,K) is a monotonically
decreasing function that controls the progression of l from an initial value near t towards t itself as
training advances. Below we specify the four schedules compared in our ablation studies:

Exponential schedule:

r(k,K) = rinit ×
(
rend

rinit

) k
K

,

Cosine schedule:

r(k,K) = rend + (rinit − rend)×
1

2

(
1 + cos

(
π · k

K

))
,

Linear schedule:
r(k,K) = rinit + (rend − rinit)×

k

K
,

Constant schedule:
r(k,K) = rend.

In all cases, l is clamped to satisfy l < t − 10−4 to ensure numerical stability, s is also clamped to
satisfy s < t− 10−4 at the same time. The initial value rinit and end value rend are hyperparameters
controlling the starting and final relative position between l and t.

We now detail the training configurations for our model on two benchmark datasets. All experiments
are run on NVIDIA H100 GPUs.

ImageNet 256×256 We employ the Adam optimizer (Kingma & Ba, 2014) with a constant learn-
ing rate of 1 × 10−4 and betas set to (0.9, 0.99), without learning rate decay or weight decay.
Following standard practice, we evaluate model performance using Exponential Moving Average
(EMA) with a decay rate of 0.9999. For time sampling, the logit-normal distribution parameters are
set as: µFM = −0.2, σFM = 1.0; µt = 0.2, σt = 0.8; µs = −0.2, σs = 0.8. The flow matching
data ratio is 75% and the adaptive loss weight coefficient p = 1.0. The schedule parameters are
rinit = 1

10 and rend = 1
320 . We use a linear noising schedule with Euler parameterization. The

CFG strength w and velocity mix ratio m are set to 3.0 and 0.25, respectively. Following common
practice, we linearly decay the CFG strength to 0 gradually for high-noise areas, where t > 0.8.
Finally, architectural details are provided in Table 4.

Table 4: Architectural configurations on ImageNet 256×256.

architectures B/4 B/2 M/2 L/2 XL/2

parameters (M) 131 131 308 459 676
FLOPs (G) 5.6 23.1 54.0 119.0 119.0
depth 12 12 16 24 28
hidden dimension 768 768 1024 1024 1152
attention heads 12 12 16 16 16
patch size 4×4 2×2 2×2 2×2 2× 2

training epochs 80 240 240 240 240

CIFAR-10 Training uses a batch size of 1024 for 800K iterations, consistent with MeanFlow. We
adopt RAdam (Liu et al., 2019) with a learning rate of 1×10−4, following (Song & Dhariwal, 2023;
Geng et al., 2024). Time sampling parameters are: µFM = −0.4, σFM = 1.7; µt = −0.6, σt = 1.5;
µs = −4.0, σs = 1.5. The flow matching data ratio is 25% with p = 0.5. Schedule parameters are
set to smaller values than ImageNet: rinit = 1

50 and rend = 1
2500 . Linear noising schedule and Euler

parameterization are used.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B MORE VISUAL SAMPLES

Figure 4: We show curated samples from class-conditioned generation by the DiT-XL/2 model with
1-NFE on the ImageNet 256×256 dataset.

Figure 5: We show uncurated samples from unconditional generation by the UNet model with 1-
NFE on the CIFAR-10 dataset.

C LARGE LANGUAGE MODEL USAGE

We only adopt large language models to polish the writing.

15

	Introduction
	Related Works
	Preliminary: Flow Matching
	Solution Flow Models
	Formulations
	Learning Objectives
	Classifier-Free Guidance

	Experiments
	Settings
	Ablation Study
	Comparing with Other Works

	Conclusion
	Implementation Details
	More Visual Samples
	large language model usage

