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ABSTRACT

Temporal graph learning (TGL) is a widely-used technique in various real-world
applications, but its theoretical foundations largely remain uncharted. We fill in
this gap by studying the generalization ability of different TGL algorithms (e.g.,
GNN-based, RNN-based, and memory-based methods) under the finite-wide over-
parameterized regime. We establish the connection between the generalization
error of TGL algorithms and 1 “the number of layers/steps” in the GNN-/RNN-
based TGL methods and 2 “the feature-label alignment (FLA) score”, where
FLA can be used as a proxy for the expressive power and explains the perfor-
mance of memory-based methods. Guided by our theoretical analysis, we propose
Simplified-Temporal-Graph-Network (SToNe), which enjoys a small generaliza-
tion error, the better overall performance, and a lower model complexity. Exten-
sive experiments on real-world datasets demonstrate the effectiveness of SToNe.
This paper provides critical insights into TGL from a theoretical perspective and
paves the way for designing practical TGL algorithms in future studies.

1 INTRODUCTION

Temporal graph learning (TGL) has emerged as an important machine learning problem and is
widely used in a number of real-world applications, such as traffic prediction Yuan & Li (2021);
Zhang et al. (2021), knowledge graphs Cai et al. (2022); Leblay & Chekol (2018), and recom-
mender systems Kumar et al. (2019); Rossi et al. (2020); Xu et al. (2020a). A typical downstream
task of temporal graph learning is link prediction, which focuses on predicting future interactions
among nodes. For example in an online video recommender system, the user-video clicks can be
modeled as a temporal graph whose nodes represent users and videos, and links are associated with
timestamps indicating when users click videos. Link prediction between nodes can be used to pre-
dict if and when a user is interested in a video. Therefore, designing graph learning models that can
capture node evolutionary patterns and accurately predict future links is important.

TGL is generally more challenging than static graph learning, thereby requiring more sophisticated
algorithms to model the temporal evolutionary patterns. In recent years, many TGL algorithms Ku-
mar et al. (2019); Xu et al. (2020a); Rossi et al. (2020); Sankar et al. (2020); Wang et al. (2021c) have
been proposed that leverage memory blocks, self-attention, time-encoding function, recurrent neural
networks (RNNs), temporal walks, and message passing to better capture the meaningful structural
or temporal patterns. For instance, JODIE Kumar et al. (2019) maintains a memory block for each
node and utilizes an RNN to update the memory blocks upon the occurance of each interaction;
TGAT Xu et al. (2020a) utilizes self-attention message passing to aggregate neighbor information
on the temporal graph; TGN Rossi et al. (2020) combines memory blocks with message passing
to allow each node in the temporal graph to have a receptive field that is not limited by the num-
ber of message-passing layers; DySAT Sankar et al. (2020) uses self-attention to capture structural
information and uses RNN to capture temporal dependencies; CAW Wang et al. (2021c) captures
temporal dependencies between nodes by performing multiple temporal walks from the root node
and representing neighbors’ identities via the probability of a node appearing in the temporal walks.
GraphMixer Cong et al. (2023) combines MLP-mixer Tolstikhin et al. (2021) with 1-hop most recent
neighbor aggregation for temporal graph learning.

Although empirically powerful, the theoretical foundations of the aforementioned TGL algorithms
remain largely under-explored. A recent study Cong et al. (2023) have demonstrated that simple
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Figure 1: Relationship between the generalization error (in Theorem 1) and empirical average pre-
cision score. Generalization error (GE) and average precision (AP) have an inverse correlation, i.e.,
the larger the GE, the lower the AP. Each marker is one experiment run. The same method’s GE
changes at each run because it depends on feature-label alignment, which changes with different
weight initialization. More details on the computation of GE are deferred to Appendix I.4.

models could still exhibit superior performance compared to more complex models Kumar et al.
(2019); Xu et al. (2020a); Rossi et al. (2020); Sankar et al. (2020); Wang et al. (2021c), but rigorous
understanding of this phenomena remains elusive. Therefore, it is imperative to unravel the learning
capabilities of these methods from the theoretical perspective, which will be in turn beneficial to
design a more practically efficacious TGL algorithm in the future studies. Recently, Souza et al.
(2022); Gao & Ribeiro (2022) study the expressive power of temporal graphs by extending the 1-WL
(Weisfeiler-Lehman) test to the temporal graph. Souza et al. (2022) shows that using an injective
aggregation function in TGL models is necessary to be most expressive, and that increasing the
number of layers/steps in GNN-/RNN-based TGL methods or using memory blocks can increase
the WL-based expressive power. However, WL-based expressive power analysis may not 1 explain
why one TGL method performs better than another when neither of them uses injective aggregation
functions (e.g., mean-average aggregation), 2 explain why existing TGL methods prefer to use
shallow GNN structure (e.g., Xu et al. (2020a); Fan et al. (2021); Rossi et al. (2020) uses 1- or
2-layer in official implementation) or a small number of RNN steps (e.g., Wang et al. (2021c);
Sankar et al. (2020) use less than 4 steps in official implementation) despite the theory suggesting
deeper/larger structures, and 3 explain how well TGL algorithms generalize to the unseen data.

As an alternative, we directly study the generalization ability of different TGL algorithms. We
establish the generalization error bound of GNN-based Xu et al. (2020a); Fan et al. (2021), RNN-
based Wang et al. (2021c), and memory-based Kumar et al. (2019) TGL algorithms under the finite-
wide over-parameterized regime in Theorem 1 via deep learning theory. In particular, we show that
the generalization error bound decreases with respect to the number of training data, but increases
with respect to the number of layers/steps in the GNN-/RNN-based methods and the feature-label
alignment (FLA), where FLA is defined as the projection of labels on the inverse of empirical neural
tangent kernel y(JJ⊤)−1y, J = [vec(∇θfi(θ0))]

N
i=1 as in Definition 1. We show that the FLA

could potentially 1 serve as a proxy for the expressive power measurement, 2 explain the impact
of input data selection on model performance, and 3 explain why the memory-based methods do
not outperform GNN-/RNN-based methods, even though their generalization error is less affected
as the number of layers/steps increases. Our generalization bound demonstrates the importance of
“selecting proper input data” and “using simpler model architecture”, which have been previously
empirically observed in Cong et al. (2023), but lack theoretical understanding.

Guided by our theoretical analysis, we propose Simplified-Temporal-Graph-Network (SToNe),
which achieves compatible performance on most real-world datasets, but with less weight parame-
ters and lower computational cost. As shown in Figure 1, our proposed SToNe enjoys not only small
generalization error theoretically but also a compatible overall average precision score. Extensive
ablation studies are conducted on real-world datasets to demonstrate the effectiveness of SToNe.

Contributions. We summarize the main contributions as follows:

• (Theory) In Section 3, we analyze the generalization error of memory-based, GNN-based, and
RNN-based methods in Theorem 1. Then, in Section 3.3, we reveal the relationship between
generalization error and the number of layers/steps in the GNN-/RNN-based method and feature-
label alignment (FLA), where FLA could also be potentially used as a proxy for the expressive
power and explain the performance of the memory-based method.

• (Algorithm) In Section 4, guided by our theoretical analysis, we propose SToNe which not only
enjoys a small theoretical generalization error but also bears a better overall empirical perfor-
mance, a smaller model complexity, and a simpler architecture compared to baseline methods.
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• (Experiments) In Section 5 and Appendix B, we conduct extensive experiments and ablation
studies on real-world datasets to demonstrate the effectiveness of our proposal SToNe .

2 RELATED WORKS AND PRELIMINARIES

In this section, we briefly summarize related works and preliminaries. The more detailed discussions
on expressive power, generalization, and existing TGL algorithms are deferred to Appendix H.

Generalization and expressive power. Statistical learning theories have been used to study the
generalization of GNNs, including uniform stability Verma & Zhang (2019); Zhou & Wang (2021);
Cong et al. (2021), Rademacher complexity Garg et al. (2020); Oono & Suzuki (2020); Du et al.
(2019), PAC-Bayesian Liao et al. (2020), PAC-learning Xu et al. (2020c), and uniform conver-
gence Maskey et al. (2022). Besides, Souza et al. (2022); Gao & Ribeiro (2022) study the expressive
power of temporal graph networks via graph isomorphism test. However, the aforementioned anal-
yses are data-independent and only dependent on the number of layers or hidden dimensions, which
cannot fully explain the performance difference between different algorithms. As an alternative, we
study the generalization error of different TGL methods under the finite-wide over-parameterized
regime Xu et al. (2021a); Arora et al. (2019; 2022), which not only is model-dependent but also
could capture the data dependency via feature-label alignment (FLA) in Definition 1. Most impor-
tantly, FLA could be empirically computed, reveals the impact of input data selection on model
performance, and could be used as a proxy for the expressive power of different algorithms.
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(v1, v2) at time t1, t5

(v3, v5) at time t2

(v2, v4) at time t3, t4

(v4, v5) at time t6

Figure 2: An illustration of temporal graph data
with nodes v1, . . . , v5 and timestamps t1, . . . , t6
that indicate when two nodes interact.

Temporal graph learning. Figure 2 is an
illustration of a temporal graph, where each
node has node feature xi, each node pair
could have multiple temporal edges with dif-
ferent timestamps t and edge features eij(t).
We classify several chosen representative tem-
poral graph learning methods into memory-
based (e.g., JODIE), GNN-based (e.g., TGAT,
TGSRec), memory&GNN-based (e.g., TGN,
APAN, and PINT), RNN-based (e.g., CAW),
and GNN&RNN-based (e.g., DySAT) methods.
For example, JODIE Kumar et al. (2019) maintains a memory block for each node and updates the
memory block by an RNN upon the happening of each interaction; TGAT Xu et al. (2020a) first
constructs the temporal computation graph, then recursively computes the hidden representation of
each node using GNN; TGN Rossi et al. (2020) first uses memory blocks to capture all temporal
interactions via JODIE then applies TGAT on the latest representation of the memory blocks of each
node to capture the spatial information; CAW Wang et al. (2021c) proposes to first construct a set
of sequential temporal events via random walks, then use RNN to aggregate the information from
temporal events; DySAT Sankar et al. (2020) uses GNN to extract the spatial features and applies
RNN on the output of GNN to capture the temporal dependencies.

3 GENERALIZATION OF TEMPORAL GRAPH METHODS

Firstly, we introduce the problem setting of theoretical analysis in Section 3.1. Then, we formally
define the feature-label alignment (FLA) and derive the generalization bound in Section 3.2. Finally,
we provide discussion on the generalization bound and its connection to FLA in Section 3.3.

3.1 PROBLEM SETTING FOR THEORETICAL ANALYSIS

For theoretical analysis, let us suppose the TGL models receives a sequence of data points
(X1, y1), ..., (XN , yN ) that is the realization of some non-stationary process, where Xi and yi stand
for a single input data (e.g., a root node and its induced subgraph or random-walk path) and its
label at the i-th iteration. During training, stochastic gradient descent (SGD) first uses (X1, y1)
and the initial model f(θ0) to generate the θ1. Next, SGD uses the second example (X2, y2) and
the previously obtained model f(θ1) to generate θ2, and so on. The training process is outlined
in Algorithm 1. We aim to develop a unified theoretical framework to examine the generalization
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Algorithm 1 Using SGD for temporal graph learning

Require: Initialize θ0 from Gaussian distribution N (0, 1/m) with m as hidden dimension.
for i = 1, 2, . . . , N do

Sample an input data (Xi, yi) condition on all the previous sampled data Di−1
1

Predict the label of Xi as fi(θi−1)
Update weight parameters by θi = θi−1 − η∇θ loss(fi(θi−1), yi).

end for
Ensure: Return weight parameters by selecting θ̃ randomly from {θ0, . . . ,θN−1}.

capability of the three most fundamental types of TGL methods, including GNN-based method,
RNN-based method, and memory-based method on a node-level binary classification task. Our goal
is to upper bound the expected 0-1 error E[loss0−1

N (θ̃)|DN−1
1 ] conditioned on a sequence of sampled

data points DN−1
1 , where loss0−1

i (θ) = 1{yifi(θ) < 0} is the 0-1 loss computed by model f(θ)
on data (Xi, yi) at i-th iteration, and Di−1

1 = {(X1, y1), . . . , (Xi−1, yi−1)} is the set of all data
points sampled before the i-th iteration. Our analysis of the fundamental TGL methods can pave the
way to understand more advanced algorithms, such as GNN&RNN-based and memory&GNN-based
methods.

GNN-based method. We compute the representation of node vi at time t by applying GNN on
the temporal graph that only considers the temporal edges with timestamp before time t. The
GNN has θ = {W(ℓ)}Lℓ=1 as the parameters to optimize and α ∈ {0, 1} as a binary variable that
controls whether a residual connection is used. The final prediction on node vi is computed as
fi(θ) = W(L)h

(L−1)
i , where the hidden representation h

(L−1)
i is computed by

h
(ℓ)
i = σ

(
W(ℓ)

∑
j∈N (i)

Pijh
(ℓ−1)
j

)
+ αh

(ℓ−1)
i , h

(1)
i = σ

(
W(1)

∑
j∈N (i)

Pijxj

)
.

Here σ(·) is the activation function, Pij is the aggregation weight used for propagating information
from node vj to node vi, and N (i) is the set of all neighbors of node vi in the temporal graph.
For simplicity, we assume the neighbor aggregation weights are fixed (e.g., Pij = 1/|N (i)| for
row normalized propagation) and consider the time-encoding vector as part of the node feature vec-
tor xi. For parameter dimension, we have W(1) ∈ Rm×d, W(ℓ) ∈ Rm×m for 2 ≤ ℓ ≤ L− 1, and
W(L) ∈ R1×m, where m is the hidden dimension and d is the input feature dimension. TGAT Xu
et al. (2020a) can be thought of as GNN-based method but uses self-attention neighbor aggregation.

RNN-based method. We compute the representation of node vi at time t by applying a multi-
step RNN onto a sequence of temporal events {v1, . . . ,vL−1} that are constructed at the target
node, where each temporal event feature vℓ is pre-computed on the temporal graph. We con-
sider the time-encoding vector as part of event feature vℓ. The RNN has trainable parameters
θ = {W(1),W(2),W(3)} and α ∈ {0, 1} is a binary variable that controls whether a residual
connection is used. Then, the final prediction on node vi is computed as fi(θ) = W(3)hL−1, where
the hidden representation hL−1 is recursively compute by

hℓ = σ
(
κ
(
W(1)hℓ−1 +W(2)xℓ

))
+ αhℓ−1 ∈ Rm,

σ(·) is the activation function, h0 = 0m is an all-zero vector, and xℓ = W(0)vℓ. We normalize each
hℓ by κ = 1/

√
2 so that ∥hℓ∥22 does not grow exponentially withL. We have W(1),W(2) ∈ Rm×m,

W(3) ∈ R1×m as trainable parameters, but W(0) ∈ Rm×d is non-trainable. CAW Wang et al.
(2021c) is a special case of RNN-based method for edge classification tasks, where temporal events
are sampled by temporal walks from both the source node and the destination node of an edge.

Memory-based method. We compute the representation of node vi at time t by applying weight
parameters on the memory block si(t). Let us define θ = {W(1), . . . ,W(4)} as the parameters to
optimize. Then, the final prediction of node vi is computed by fi(θ) = W(4)si(t) and si(t) ∈ Rm

is updated whenever node vi interacts with other nodes by

si(t) = σ
(
κ
(
W(1)s+i (h

t
i) +W(2)s+j (h

t
j) +W(3)eij(t)

))
,

where σ(·) is the activation function, hti is the latest timestamp that node vi interacts with other
nodes before time t, si(0) = W(0)xi, and s+i (t) = StopGrad(si(t)) is the memory block of node
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vi at time t. We consider the time-encoding vector as part of edge feature eij(t). We normalize
si(t) by κ = 1/

√
3 so that ∥si(t)∥22 does not grow exponentially with time t. We have trainable pa-

rameters W(1),W(2) ∈ Rm×m, W(3) ∈ Rm×d, W(4) ∈ Rm and fixed parameters W(0) ∈ Rm×d.
JODIE Kumar et al. (2019) can be thought of as memory-based method but using the attention
mechanism for final prediction.

3.2 ASSUMPTIONS AND MAIN THEORETICAL RESULTS

For the purpose of rigorous analysis, we make the following standard assumptions on the feature
norms Cao & Gu (2019); Du et al. (2018), which could be satisfied via feature re-scaling.
Assumption 1. All features has ℓ2-norm bounded by 1, i.e., we assume ∥xi∥2, ∥eij(t)∥2, ∥vℓ∥ ≤ 1.

In addition, we assume that the activation functions are Lipschitz continuous in TGL methods. The
following assumption holds for common activation functions such as ReLU and LeakyReLU (which
are often used in GNNs), Sigmoid and Tanh (which are often used in RNNs).
Assumption 2. The activation function has Lipschitz constant ρ ≥ 1.

Furthermore, we make the following assumptions on the propagation matrix of GNN models, which
are previously used in Liao et al. (2020); Cong et al. (2021). In practice, we know that τ = 1 holds
for row normalized and τ =

√
maxi∈V di holds for symmetrically normalized propagation matrix.

Assumption 3. The row-wise sum is bounded by τ = maxi∈V(
∑

j∈N (i) Pij) where τ ≥ 1.

Finally, we adopt the following assumption regarding the non-stationary data generation process,
which is standard assumption in time series prediction and online learning analysis Kuznetsov &
Mohri (2015; 2016). As the data generation process transitions to a stationary state with an identical
distribution at each step, this deviation ∆ diminishes to zero.
Assumption 4. We assume the discrepancy measure that quantifies the deviation between the inter-
mediate steps (i.e., i = 1, ..., N − 1) and the final step (i.e., i = N ) data distribution as

∆ = sup
f(θ)

∣∣∣ 1
N

N∑
i=1

E
[
loss0−1

i (θi−1)|Di−1
1

]
− 1

N

N∑
i=1

E
[
loss0−1

N (θi−1)|DN−1
1

] ∣∣∣,
where the supremum is on any model, loss0−1

i (θ) = 1{yifi(θ) < 0} is 0-1 loss, and Di−1
1 =

{(X1, y1), . . . , (Xi−1, yi−1)} is the sequence of data points before the i-th iteration.

We introduce the feature-label alignment (FLA) score, which measures how well the representations
produced by different algorithms align with the ground-truth labels.
Definition 1. FLA is defined as y⊤(JJ⊤)−1y, where J = [vec(∇θfi(θ0))]

N
i=1 is the gradient of

different temporal graph algorithms computed on each individual training example and θ0 is the
untrained weight parameters initialized from a Gaussian distribution.

FLA has appeared in the convergence and generalization analysis of over-parameterized neural net-
works Arora et al. (2019). In practice, FLA quantifies the amount of perturbation we need on θ
along the direction of J = [vec(∇θfi(θ0))]

N
i=1 to minimize the logistic loss, which could be used

to capture the expressiveness of different TGL algorithms, i.e., the smaller the perturbation, the
better the expressiveness. Detailed discussion can be found in Appendix I.1. Computing FLA re-
quires O(N2|θ|) time complexity to compute JJ⊤ and O(N3) time complexity to compute matrix
inverse, where N is the number of training data and |θ| is the number of weight parameters. In
over-parameterized regime, we assume |θ| > N , and we can compute JJ⊤ on a sampled subset of
training data rather than the full training data to make sure this assumption holds.

The following theorem establishes the generalization capability of different TGL algorithms.

Theorem 1. Given any δ ∈ (0, 1/e], FLA-related constant R = O(
√

y⊤(JJ⊤)−1y), and number
of training iterationsN (one training example per iteration), there existsm⋆ = O(N2/L2) log(1/δ)
such that, if hidden dimension m ≥ m⋆ and using learning rate η = R

mC
√
2N

, with probability at
least 1− δ over the randomness of θ0 initialization, we can upper bound the expected 0-1 error by

E[loss0−1
N (θ̃) | DN−1

1 ] ≤ O
(DRC√

N

)
+O

(√ ln(1/δ)

N

)
+∆,
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where θ̃ is uniformly sampled from {θ0, . . . ,θN−1}, R = O(
√
y⊤(JJ⊤)−1y), and the constant

C and D of 1 the L-layer GNN are C = ((1 + 3ρ)τ)L−1 and D = L, 2 the L-step RNN are
C = (1 + 3ρ/

√
2)L−1 and D = L, and 3 the memory-based method are C = ρ and D = 4.

In Theorem 1, we show that the generalization error decreases as the number of training iterations
N increases, with a single data point being used for training at each iteration. On the other hand,
the generalization error increases with respect to the number of layers/steps L in GNN-/RNN-based
methods, the feature-label alignment constant R, the maximum Lipschitz constant of the activation
function ρ, and the graph convolution-related constant τ . In the following section, we delve into
more details on the effect of the number of layers/steps L and the feature-label alignment constant
R. The proofs are deferred to Appendices C, D, and E, respectively.

3.3 DISCUSSION ON THE GENERALIZATION BOUND: INSIGHTS AND LIMITATIONS

Dependency on depth and steps. The generalization error of GNN- and RNN-based methods
tends to increase as the number of layers/steps L increases. This partially explains why the hyper-
parameter selection on L is usually small for those methods. For example, GNN-based method
TGAT uses 2-layer GNN (i.e., L = 3), RNN-based method CAW selects 3-steps RNN (i.e., L = 4),
and GNN&RNN-based method DySAT uses 2-layer GNN and 3-steps RNN to achieve outstanding
performance. On the other hand, memory-based method JODIE alleviates the dependency issue
by using memory blocks and can leverage all historical interactions for prediction, which enjoys
a generalization error independent of the number of steps. However, since gradients cannot flow
through the memory blocks due to “stop gradient”, its expressive power may be lower than that
of other methods, which will be further elaborated when discussing the impact of feature-label
alignment. Memory&GNN-based methods TGN and APAN alleviate the lack of expressive power
issue by applying a single-layer GNN on top of the memory blocks.

Dependency on feature-label alignment (FLA). Although the dependency on the number of lay-
ers/steps of GNN/RNN can partially explain the performance disparity between these methods, it is
still not clear if using “stop gradient” in the memory-based method and the selection of input data
(e.g., using recent or uniformly sampled neighbors in a temporal graph) can affect the model perfor-
mance. In the following, we take a closer look at the FLA score, which is inversely correlated to the
generalization ability of the TGL models, i.e., the smaller the FLA, the better the generalization abil-
ity. According to Figure 3, we observe that 1 JODIE (memory-based) has a relatively larger FLA
score than most of the other TGL methods. This is potentially due to “stop gradient” operation that
prevents gradients from flowing through the memory blocks and could potentially hurt the expressive
power. 2 APAN and TGN (memory&GNN-based) alleviate the expressive power degradation issue
by applying a single layer GNN on top of the memory blocks, resulting in a smaller FLA than the
pure memory-based method. 3 TGAT (GNN-based) has a relatively smaller FLA score than other
methods, which is expected since GNN has achieved outstanding performance on static graphs. 4
DySAT (GNN&RNN-based) is originally designed for snapshot graphs, so its FLA score might be
highly dependent on the selection of time-span size when converting a temporal graph to snapshot
graphs. A non-optimal choice of time-span might cause information loss, which partially explains
why DySAT’s FLA is large. Additionally, the selection of the input data also affects the FLA. We
will discuss further in the experimental section with empirical validation and detailed analysis.
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Figure 3: Comparison of FLA (y-axis) of different methods (x-axis) on real-world datasets.

4 ALGORITHM INSPIRED BY THEORETICAL INSIGHTS

Guided by our theoretical analysis, we introduce Simplified-Temporal-Graph-Network (SToNe) that
not only enjoys a small generalization error but also empirically works well. The design of SToNe is
guided by the following key insights that are presented in Section 3.3:
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• Shallow and non-recursive network. This is because the generalization error increases with
respect to the number of layers/steps in GNN-/RNN-based methods, which motivates us to con-
sider a shallow and non-recursive neural architecture to alleviate such dependency.

• Selecting proper input data instead of using memory blocks. Although memory blocks could
alleviate the dependency of generalization error on the number of layers/steps, it will also affect
the FLA and hurt the generalization ability of the models. As an alternative, we propose to
capture the important historical interactions by empirically selecting the proper input data.

To this end, we introduce the data preparation and the neural architecture in Section 4.1, then high-
light the key features of SToNe that can differentiate itself from existing methods in Section 4.2.

4.1 SIMPLIFIED TEMPORAL GRAPH NETWORK: INPUT DATA AND NEURAL ARCHITECTURE

Input data preparation. To compute the representation of node vi at time t, we first identify theK
most recent nodes that have interacted with vi prior to time t and denote them as temporal neighbors
N t

K(vi). Then, we sort all nodes inside N t
K(vi) by the descending temporal order. If a node vj

interacts with node vi multiple times, each interaction is treated as a separate temporal neighbor.
For example in Figure 2, for any time t > t6 and large enough constant K, we have N t

K(v4) =
{(v5, t6), (v2, t4), (v2, t3)} in the descending temporal order. For each temporal neighbor vj ∈
NK(vi, t), we represent its interaction with the target node vi at time t′ using a combination of edge
features eij(t′) ∈ Rde , time-encoding ψ(t − t′) ∈ Rdt , and node features xi, xj ∈ Rdn , which is
denoted as uij(t

′) = [eij(t
′) || ψ(t − t′) || xi || xj ]. Then, we define Hi(t) = {uij(t

′) | (vj , t′) ∈
N t

K(vi)} as the set of all features that represent the temporal neighbors of node vi at time t, where
all vectors in Hi(t) are ordered by the descending temporal order. For example, the interactions
between the temporal neighbors of node v4 at time t > t6 to its root node in Figure 2 are H4(t) =
{u4,5(t6),u4,2(t4),u4,2(t3)}, where u4,5(t6) = [e4,5(t6) || ψ(t − t6) || x4 || x5], u4,2(t4) =
[e4,2(t4) || ψ(t − t4) || x4 || x2], and u4,2(t3) = [e4,2(t3) || ψ(t − t3) || x4 || x2]. The time-
encoding function in SToNe is defined as ψ(t − t′) = cos((t − t′)w), where w = [α−(i−1)/β ]dt

i=1

is a fixed dt-dimensional vector and α = β =
√
dt. Notice that a similar time-encoding function is

used in other temporal graph learning methods, e.g., Kumar et al. (2019); Xu et al. (2020a); Rossi
et al. (2020); Wang et al. (2021c); Cong et al. (2023).

Encoding features via GNN. SToNe is a GNN-based method with trainable parameters θ =
{α,W(1),W(2)}, where α ∈ RK , W(1) ∈ Rdhid×din , and W(2) ∈ Rdout×dhid . Here K is the
maximum temporal neighbor size we consider, din = de +dt +2dn, and dhid, dout are the dimensions
of hidden and output representations. The representation of node vi at time t is computed by

hi(t) = W(2)LayerNorm(zi(t)), zi(t) = σ
(∑|Hi(t)|

k=1
αkW

(1)[Hi(t)]k

)
+
∑|Hi(t)|

k=1
[Hi(t)]k,

(1)
If the temporal neighbor size of node vi is less thanK, i.e., |Hi(t)| < K, we only need to update the
first |Hi(t)| entries of the vectorα. Notice that the number of parameters in SToNe is (K+dhiddin+
dhiddout), which is usually fewer than other TGL algorithms given the same hidden dimension size.
We will report the number of parameters and its computational cost in the experiment section.

Link prediction via MLP. When the downstream task is future link prediction, we predict
whether an interaction between nodes vi, vj occurs at time t by applying a 2-layer MLP model
on [hi(t) || hj(t)] ∈ R2dout . It is worth noting that the same link classifier is used in almost all the
existing temporal graph learning methods Kumar et al. (2019); Xu et al. (2020a); Rossi et al. (2020);
Wang et al. (2021c); Souza et al. (2022); Zhou et al. (2022); Cong et al. (2023), including SToNe.

4.2 COMPARISON TO EXISTING METHODS

Comparison to TGAT. GNN-based method TGAT uses 2-hop uniformly sampled neighbors and
aggregates the information using a 2-layer GAT Veličković et al. (2017). The neighbor aggrega-
tion weights in TGAT are estimated by self-attention. In contrast, SToNe uses 1-hop most recent
neighbors and directly learns the neighbor aggregation weightsα as shown in Eq. 1. Moreover, self-
attention in TGAT can be thought of as weighted average of neighbor information, while SToNe can
be thought of as sum aggregation, which can better distinguish different temporal neighbors, and it
is especially helpful when node and edge features are lacking.
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Comparison to TGN. Memory&GNN-based method TGN uses 1-hop most recent temporal neigh-
bors and applies a self-attention module to the sampled temporal neighbors’ features that are stored
inside the memory blocks. In fact, SToNe can be thought of as a special case of TGN, where we
use the features in Hi(t) instead of the memory blocks and directly learn the neighbor aggregation
weight α instead of using the self-attention aggregation as shown in Eq. 1.

Comparison to GraphMixer. SToNe could be think of as a simplified version of Cong et al. (2023)
that addresses the high computation cost associated with the MLP-mixer used for temporal aggre-
gation Tolstikhin et al. (2021). Instead of relying on the MLP-mixer, we introduce the aggregation
vector α and employ linear functions parameterized by W(1) and W(2) for aggregation. Addition-
ally, we do not explicitly model the graph structure through Cong et al. (2023)’s node-encoder. In-
stead, we implicitly capture the node features within the temporal interactions present in H(t). Our
experiments demonstrate that SToNe significantly reduces the model complexity (Table 2) while
achieving comparable performance (Figure 4 and Table 1).

Temporal graph construction. Most of the TGL methods Kumar et al. (2019); Xu et al. (2020a);
Rossi et al. (2020); Sankar et al. (2020); Wang et al. (2021c) implements temporal graphs as directed
graph data structure with information only flowing from source to destination nodes. However, we
consider the temporal graph as an bi-directed graph data structure by assuming that information also
flow from destination to source nodes for SToNe. This means that the “most recent 1-hop neigh-
bors” sampled for the two nodes on the “bi-directed” temporal graph should be similar if two nodes
are frequently connected in recent timestamps. Such similarity provides information on whether
two nodes are frequently connected in recent timestamps, which is essential for temporal graph link
prediction Cong et al. (2023). For example, let us assume nodes vi, vj interacts at time t1, t2 in the
temporal order. Then, given any timestamp t > t2 and a large enough K, the 1-hop temporal neigh-
bors on the bi-directed graph is N t

K(vi) = {(vj , t1), (vj , t2)} and N t
K(vj) = {(vi, t1), (vi, t2)},

while on directed graph is N t
K(vi) = {(vj , t1), (vj , t2)} but N t

K(vj) = ∅. Intuitively, if two nodes
are frequently connected in recent timestamps, they are also likely to be connected in the near future.
In the experiment section, we show that changing the temporal graph from bi-directed to directed
can negatively impact the feature-label alignment and model performance.

5 EXPERIMENTS

We compare SToNe with several TGL algorithms under the transductive learning setting. We
conduct experiments on 6 real-world datasets, i.e., Reddit, Wiki, MOOC, LastFM, GDELT, and
UCI. Similar to many existing works, we also use the 70%/15%/15% chronological splits for the
train/validation/test sets. We re-run the official released implementations on benchmark datasets and
repeat 6 times with different random seeds. Please refer to Appendix A for experiment setup details.

5.1 EXPERIMENT RESULTS

Comparison on average precision. We compare the average precision score with baseline methods
in Table 1. We observe that SToNe could achieve compatible or even better performance on most
datasets. In particular, the performance of SToNe outperforms most of the baselines with a large
margin on the LastFM and UCI dataset. This is potentially because these two datasets lack node/edge
features and have larger average time-gap (see dataset statistics in Table 3). Since baseline methods
rely on RNN or self-attention to process the node/edge features, they implicitly assume that the
features exists and are “smooth” at adjacent timestamps, which could generalize poorly when the
assumptions are violated. PINT addresses this issue by pre-processing the dataset and generating
its own positional encoding as the augment features, therefore it achieves better performance than
SToNe on UCI dataset. However, computing this positional encoding is time-consuming and does
not always perform well on other datasets. For example, PINT requires more than 400 hours to
compute the positional features on GDELT, which is infeasible. Additionally, the performance of
SToNe closely matches that of GraphMixer, but with significantly lower model complexity, which
will be demonstrated in Table 2. SToNe exhibits improved and more consistent performance on UCI
dataset, because SToNe is less susceptible to overfitting on small dataset.

Comparison on generalization performance. To validate the generalization performance of
SToNe, we compare the average precision score and the generalization gap in Figure 4. The general-
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Table 1: Comparison on the average precision score for link prediction. We highlight the best score
in red, the second best score in blue, and the third best in green.

Reddit Wiki MOOC LastFM GDELT UCI
JODIE 99.75± 0.02 98.94± 0.06 98.99± 0.04 79.41± 3.68 98.48± 0.01 73.93± 2.77
TGAT 99.56± 0.04 98.69± 0.10 99.28± 0.07 75.16± 0.10 96.46± 0.04 82.49± 0.67
TGSRec 95.21± 0.08 91.64± 0.12 83.62± 0.34 76.91± 0.87 97.03± 0.61 76.64± 0.54
TGN 98.83± 0.01 99.61± 0.05 99.63± 0.06 91.04± 2.18 98.33± 0.09 79.91± 1.59
APAN 99.36± 0.17 98.99± 0.14 99.02± 0.11 73.18± 7.72 98.01± 0.26 61.73± 5.96
PINT 99.03± 0.01 98.78± 0.10 87.24± 0.73 88.06± 0.71 - 96.22± 0.08
CAW-attn 98.51± 0.02 97.95± 0.03 63.07± 0.82 76.31± 0.10 95.06± 0.11 92.16± 0.19
DySAT 98.55± 0.01 96.64± 0.03 98.76± 0.11 76.28± 0.04 98.17± 0.01 80.43± 0.36
GraphMixer 99.93± 0.01 99.85± 0.01 99.91± 0.01 96.31± 0.02 98.89± 0.02 92.39± 2.15
SToNe 99.89± 0.00 99.85± 0.05 99.88± 0.04 95.74± 0.13 99.11± 0.03 94.60± 0.31

ization gap is defined as the absolute difference between the training and validation average precision
scores. Our results show that SToNe, similar to GraphMixer, consistently achieves a higher aver-
age precision score faster than other baselines, has a smaller generalization gap, and has relatively
stable performance across different epochs. This suggests that SToNe has better generalization per-
formance compared to the baselines. In particular on the UCI dataset, SToNe is less prone to overfit
and its generalization gap increases more slowly than all other baseline methods.
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Figure 4: Comparison of the average prevision of validation set and generalization gap of different
methods on real-world datasets.

Comparison on model complexity. We compare the number of parameters (including trainable
weight parameters and memory block size) and wall-clock time per epoch during the training phase
in Table 2. Our results show that SToNe has fewer parameters than all the baselines, and its computa-
tion time is also faster than most baseline methods. Note that some baselines also require significant
time for data preprocessing, which is not included in Table 2. For example, PINT takes more than
84 hours to pre-compute the positional encoding on the Reddit dataset, which is significantly longer
than its per epoch training time. In contrast, SToNe does not require computing augmented features
based on the temporal graph and therefore does not have this pre-processing time.

Table 2: Comparison of the number of parameters (×105 parameters) and wall-clock time (second)
of single epoch of training in the format “Number of parameters (Wall-clock time)”.

JODIE TGAT TGSRec TGN APAN PINT CAW DySAT GraphMixer SToNe
Reddit 11.6 (5s) 2.1 (15s) 5.1 (538s) 14.1 (8s) 12.3 (13s) 17.1 (436s) 43.3 (1,930s) 4.3 (33s) 23.3 (12s) 0.58 (8s)
Wiki 9.8 (2s) 2.1 (4s) 4.8 (157s) 12.3 (2s) 10.6 (4s) 17.9 (93s) 43.3 (282s) 4.3 (6s) 19.8 (3s) 0.58 (2s)
MOOC 7.8 (4s) 1.4 (8s) 3.9 (656s) 10.0 (5s) 8.4 (9s) 10.1 (157s) 43.3 (653s) 2.3 (16d) 15.3 (7s) 0.41 (5s)
LastFM 2.6 (11s) 1.4 (28s) 2.3 (1,810s) 4.8 (15s) 3.2 (28s) 4.9 (440s) 43.3 (1,832s) 2.3 (41s) 5.2 (21s) 0.41 (16s)

More experiment results. Due to the space limit, we defer more experiment results to Appendix B,
such as performance evaluation under different metrics (e.g., AUC, RecallK, and MRR), ablation
study on the effect of neighbor selection (e.g., recent vs randomly sampled neighbors), etc.

6 CONCLUSION

In this paper, we study the generalization ability of various TGL algorithms. We reveal the re-
lationship between the generalization error to “the number of layers/steps” and “the feature-label
alignment”. Guided by our analysis, we propose SToNe. Extensive experiments are conducted
on real-world datasets to show that SToNe enjoys a smaller generalization error, better performance,
and lower complexity. These results provide a deeper insight into TGL from a theoretical perspective
and are beneficial to design practically efficacious and simpler TGL algorithms for future studies.
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Organization. The supplementary material is organized as follows:

• In Section A, we provide an overview on the hardware and software that used in the ex-
periments, including details on the datasets, as well as the implementation of the baseline
algorithms and SToNe.

• In Section B, we present additional experimental results using different evaluation metrics
(AUC, Recall@K, and MRR), as well as ablation studies to further analyze the contribu-
tions of different components in SToNe.

• In Section C, Section D, and Section E, we provide the thorough proof on the generalization
analysis of GNN-based, RNN-based, and memory-based TGL algorithms.

• In Section H, we provide a summary of additional related works on the expressive power
and generalization of graph learning algorithms, as well as additional TGL algorithms.

• In Section I, we provide further discussions and clarifications on several important details
of this paper, e.g., details on related works and backgrounds, discussions on our theoretical
limitations, and future clarifications on experiment settings and results.

Code can be found at the following repository:

https://anonymous.4open.science/r/STGN/README.md.

A EXPERIMENT SETUP DETAILS

A.1 HARDWARE SPECIFICATION AND ENVIRONMENT

Our experiments are conducted on a single machine with an Intel i9-10850K processor, an Nvidia
RTX 3090 GPU, and 64GB of RAM. The experiments are implemented in Python 3.8 using PyTorch
1.12.1 on CUDA 11.6 and the temporal graph learning framework Zhou et al. (2022). To ensure a
fair comparison, all experiments are repeated 6 times with random seeds {0, 1, 2, 3, 4, 5}.

A.2 DETAILS ON DATASETS

We conduct experiments on the following 6 datasets, where the detailed dataset statistics are sum-
marized in Table 3. The download links for all datasets can be found in the code repository.

• Reddit dataset consists of one month of posts made by users on subreddits. The link feature
is extracted by converting the text of each post into a feature vector. Reddit dataset has been
previously used in existing works such as Kumar et al. (2019); Xu et al. (2020a); Rossi et al.
(2020); Souza et al. (2022); Wang et al. (2021c); Zhou et al. (2022).

• Wiki dataset consists of one month of edits made by edits on Wikipedia pages. The link
feature is extracted by converting the edit test into an LIWC-feature vector. Wiki dataset
has been previously used in existing works such as Kumar et al. (2019); Xu et al. (2020a);
Rossi et al. (2020); Souza et al. (2022); Wang et al. (2021c); Zhou et al. (2022).

• LastFM dataset consists of one month of who-listen-to-which song information. LastFM
dataset has been previously used in existing works such as Kumar et al. (2019); Souza et al.
(2022); Zhou et al. (2022).

• MOOC dataset consists of actions done by students on a MOOC online course. MOOC
dataset has been previously used in existing works such as Kumar et al. (2019); Souza et al.
(2022); Zhou et al. (2022).

• GDELT dataset is a temporal knowledge graph dataset that originates from the Event
Database. The Event Database records events from around the world as reported in news
articles. It has been previously used in works such as Zhou et al. (2022); Cong et al. (2023).
We follow Cong et al. (2023) to subsample 1 temporal link per 100 continuous temporal
link because the original dataset is too big to fit into CPU RAM memory for single-machine
training.
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• UCI dataset is a publicly available communication network dataset that includes email
interactions between core employees and messages sent between peer users on an online
social network platform. It has been previously used in works such as Sankar et al. (2020);
Souza et al. (2022).

Table 3: Dataset statistic.

|V| |E| Avg time-gap dim(xnode
i ) dim(xlink

ij ) Node Link Time
Reddit 10,984 672,447 4 0 172
Wiki 9,227 157,474 17 0 172
MOOC 7,144 411,749 3.6 0 0
LastFM 1,980 1,293,103 106 0 0
GDELT 8,831 1,912,909 0.1 413 186
UCI 1,900 59,835 279 0 0

A.3 DETAILS ON BASELINE IMPLEMENTATIONS

The implementations of JODIE, DySAT, TGAT, TGN, and APAN are obtained from the TGL frame-
work Zhou et al. (2022) at TGL-code1. This framework’s implementation has been found to achieve
better overall scores than the original implementations of these baselines.

The implementation of CAWs-attn is obtained from their official implementation at CAW-code2.

The implementation of TGSRec is obtained from TGSRec-code3.

The implementation of PINT is obtained from PINT-code4.

The implementation of GraphMixer is obtained from GraphMixer-code5.

We follow their instructions that are provided in the code repository for hyper-parameter selection.
We directly test with their official implementations by changing our data structure to their required
structure and use their default hyper-parameters.

A.4 DETAILS ON STONE IMPLEMENTATIONS

We implement the proposed method SToNe under the TGL framework Zhou et al. (2022) and use
the same hyper-parameters on all datasets (e.g., learning rate 0.0001, weight decay 10−6, batch size
600, hidden dimension 100) to ensure a fair comparison. The models are trained until the validation
error did not decrease for 20 epochs. One of the most important dataset-dependent hyper-parameter
is the number of temporal graph neighbors K. The selection of K can be found in our repository.

1https://github.com/amazon-research/tgl
2https://github.com/snap-stanford/CAW
3https://github.com/DyGRec/TGSRec
4https://github.com/AaltoPML/PINT
5https://github.com/CongWeilin/GraphMixer
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B MORE EXPERIMENT RESULTS

B.1 TRANSDUCTIVE LEARNING WITH AUC AS EVALUATION METRIC

AUC (Under the ROC Curve) is one of the most widely accepted evaluation metrics for link pre-
diction, which has been used in many existing works Xu et al. (2020a); Rossi et al. (2020). In
the following, we compare the AUC score of SToNe with baselines in Table 4. We observe that
SToNe performs better than the baselines on most datasets. While our performance is slightly lower
than PINT on the UCI dataset, PINT requires a significant amount of time to pre-compute the posi-
tional features as augmented features (about 3 hours for the UCI dataset) and the use of positional
encoding in PINT does not always perform well on other datasets. Besides, we do not report the
results of PINT on the GDELT dataset because it requires more than 400 hours to compute the
positional features for training. Additionally, the performance of SToNe closely matches that of
GraphMixer, but with significantly lower model complexity, which will be demonstrated in Table 2.
SToNe exhibits improved and more consistent performance compared on UCI dataset, which is at-
tributed to its small dataset size and SToNe is less susceptible to overfitting on small dataset. Please
also refer to our discussion on computational time and average precision score in Section 5.1 for
more details.

Table 4: Comparison on the AUC score for link prediction. We highlight the best score in red, the
second best score in blue, and the third best in green.

Reddit Wiki MOOC LastFM GDELT UCI
JODIE 99.78± 0.01 99.10± 0.05 99.46± 0.07 80.48± 5.84 98.66± 0.01 76.15± 3.28
TGAT 99.59± 0.04 98.78± 0.08 99.53± 0.03 78.49± 0.09 97.21± 0.02 83.30± 0.40
TGSRec 94.74± 0.20 91.32± 0.19 80.70± 2.31 76.66± 1.54 96.72± 0.42 81.00± 0.58
TGN 98.86± 0.01 99.62± 0.05 99.77± 0.04 92.54± 2.24 98.55± 0.05 75.32± 2.34
APAN 99.50± 0.11 99.12± 0.11 99.43± 0.08 78.15± 6.99 98.39± 0.15 64.39± 7.42
PINT 99.03± 0.01 98.78± 0.10 87.24± 0.73 88.06± 0.71 - 94.22± 0.58
CAW-attn 98.30± 0.01 97.89± 0.02 63.95± 0.81 72.93± 0.54 95.13± 0.11 92.10± 0.10
DySAT 98.43± 0.01 96.87± 0.03 99.25± 0.05 73.93± 0.08 98.38± 0.01 78.70± 0.05
GraphMixer 99.94± 0.01 99.82± 0.01 99.93± 0.01 97.38± 0.02 98.89± 0.02 91.74± 2.69
SToNe 99.91± 0.00 99.85± 0.05 99.91± 0.02 97.16± 0.06 99.26± 0.02 93.14± 0.67

B.2 ABLATION STUDY ON THE EFFECT OF NEIGHBOR SELECTION

We study the effect of model input selection on feature-label alignment and average precision scores.
As shown in Figure 5, changing the default setting of “recent 1-hop neighbors” in SToNe to ei-
ther “recent 2-hop neighbors” or “random 1-hop neighbor” increases feature-label alignment score,
which has a inverse correlation to the generalization ability, and decreases average precision scores.
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Figure 5: Comparison of feature-label alignment (y-axis) and average precision score (in red text)
of different model input selection (x-axis) on real-world datasets.

B.3 DIRECTED VERSUS BI-DIRECTED GRAPH.

We study the impact of using directed/bi-directed graph data structure on the feature-label alignment
(FLA) and average precision score. As shown in Figure 6, changing from a bi-directed to a directed
graph will increase the FLA score and lead to a significant decrease in model performance. This
is because “the recent 1-hop neighbors” sampled for the two nodes on the bi-directed graph could
provide information on whether two nodes are frequently connected in the last few timestamps,
which is essential for temporal graph link prediction. However, such type of information is missing
if using directed graph as discussed in the last paragraph of Section 4.2.
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Figure 6: Compare the feature-label alignment (y-axis) and average precision (red text) with di-
rected/undirected temporal graph.

Table 5: Comparison on the Recall@1, Recall@5 and, MRR. For exch row, the best score is in red
text, second best score is in blue text, and the first best score is in green.

JODIE DySAT TGAT TGN GraphMixer SToNe

Reddit
Recall@1 0.8773± 0.0121 0.8454± 0.0007 0.8428± 0.0130 0.9294± 0.0028 0.9999± 0.0000 0.9998± 0.0001
Recall@5 0.9712± 0.0012 0.9362± 0.0006 0.9531± 0.0077 0.9823± 0.0012 1.0000± 0.0000 1.0000± 0.0000
MRR 0.8425± 0.0152 0.8153± 0.0016 0.8219± 0.0116 0.9072± 0.0040 0.9965± 0.0000 0.9958± 0.0002

Wiki
Recall@1 0.8347± 0.0051 0.7689± 0.0043 0.7139± 0.0150 0.8526± 0.0050 0.9954± 0.0002 0.9955± 0.0002
Recall@5 0.9286± 0.0033 0.8763± 0.0080 0.8915± 0.0090 0.9293± 0.0026 0.9971± 0.0002 0.9980± 0.0001
MRR 0.8145± 0.0048 0.7450± 0.0084 0.6999± 0.0128 0.8343± 0.0063 0.9875± 0.0004 0.9827± 0.0009

MOOC
Recall@1 0.8637± 0.0130 0.8337± 0.0059 0.9066± 0.0072 0.9314± 0.0175 0.9994± 0.0001 0.9994± 0.0001
Recall@5 0.9981± 0.0002 0.9981± 0.0002 0.9927± 0.0013 0.9932± 0.0009 0.9999± 0.0001 0.9999± 0.0000
MRR 0.7675± 0.0151 0.7451± 0.0058 0.8234± 0.0083 0.8602± 0.0263 0.9911± 0.0004 0.9910± 0.0006

LastFM
Recall@1 0.1684± 0.0589 0.2773± 0.0035 0.1770± 0.0041 0.2746± 0.1279 0.9940± 0.0013 0.9951± 0.0002
Recall@5 0.2982± 0.0766 0.3886± 0.0050 0.2617± 0.0043 0.4312± 0.2001 0.9997± 0.0002 1.0000± 0.0000
MRR 0.2071± 0.0536 0.2892± 0.0074 0.1998± 0.0042 0.2995± 0.1278 0.9620± 0.0015 0.9592± 0.0011

GDELT
Recall@1 0.7533± 0.0053 0.3503± 0.0138 0.0182± 0.0053 0.7595± 0.0047 0.9115± 0.0028 0.9117± 0.0027
Recall@5 0.9333± 0.0011 0.8239± 0.0068 0.0576± 0.0134 0.9318± 0.0023 0.9891± 0.0011 0.9899± 0.0009
MRR 0.7108± 0.0076 0.4146± 0.0103 0.0868± 0.0061 0.7302± 0.0044 0.8622± 0.0037 0.8627± 0.0032

UCI
Recall@1 0.5736± 0.0068 0.6039± 0.0878 0.1872± 0.0292 0.4732± 0.0434 0.7989± 0.1119 0.8995± 0.0069
Recall@5 0.7814± 0.0022 0.6682± 0.0889 0.3036± 0.0339 0.6384± 0.0396 0.8571± 0.0771 0.9435± 0.0034
MRR 0.5572± 0.0087 0.5656± 0.0816 0.2296± 0.0253 0.4799± 0.0354 0.7677± 0.1093 0.8628± 0.0087

B.4 TRANSDUCTIVE LEARNING WITH RECALL@K AND MRR AS EVALUATION METRICS

Recall@K and MRR (mean reciprocal rank) are popular evaluation metrics commonly used in the
real-world recommendation system. Higher values indicate better model performance. Our imple-
mentation of Recall@K and MRR follows the implementation in Hu et al. (2020); Cong et al. (2023):
we first sample 100 negative destination nodes for each source node of a temporal link node pair,
then our goal is to rank the positive temporal link node pairs higher than 100 negative destination
nodes. As shown in Table 5, SToNe and GraphMixer has higher Recall@K and MRR scores than
other baselines, indicating that SToNe has more confidence in the estimated categories. This might
because SToNe has better generalization ability and higher confidence in its predictions when using
the knowledge learned from the training set.

B.5 ABLATION STUDY ON THE EFFECT OF USING SELF-ATTENTION IN STONE

In this section, we explore the effect of replacing the aggregation weight α with the self-attention
aggregation Shi et al. (2020) implemented by PyTorch Geometric Fey & Lenssen (2019), we name
it as “SToNe (self-attention)”.

First of all, we compare the average precision score and AUC score of “SToNe” and “SToNe (self-
attention)” in Table 6. We observe that “SToNe” could achieve superior performance than
“SToNe (self-attention)” on all datasets. In particular, using self-attention with SToNe results in
a larger variance on LastFM and UCI datasets. This is potentially because these two datasets
lack node/edge features and have larger average time-gap (dataset statistic in Table 3). Since
“SToNe (self-attention)” is relying on self-attention to process the node/edge features, it implicitly
assumes node features exist and are “smooth” at adjacent timestamps. As a result, “SToNe (self-
attention)” could generalize poorly when the assumptions are violated.

Moreover, to validate the generalization performance, we compare the average precision score and
the generalization gap in Figure 7. The generalization gap is defined as the absolute difference be-
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Table 6: Comparison on the Average precision and AUC score for link prediction.

Reddit Wiki MOOC LastFM GDELT UCI
Average
Precision

SToNe (self-attention) 99.37± 0.01 98.99± 0.01 99.42± 0.01 91.79± 4.02 96.20± 0.02 90.24± 0.73
SToNe 99.89 ± 0.00 99.85 ± 0.05 99.88 ± 0.04 95.74 ± 0.13 97.40 ± 0.02 94.60 ± 0.31

AUC
Score

SToNe (self-attention) 99.37± 0.01 98.92± 0.02 99.58± 0.01 93.33± 4.23 95.56± 0.01 88.22± 0.98
SToNe 99.91 ± 0.00 99.85 ± 0.05 99.91 ± 0.02 97.16 ± 0.06 96.96 ± 0.01 93.14 ± 0.67

tween the training and validation average precision scores. Our results show that “SToNe” could
achieve a higher average precision score than “SToNe (self-attention)” and has a smaller gener-
alization gap. This suggests that using aggregation weight α instead of using self-attention in
SToNe could lead to better generalization performance, which is expected because self-attention
has higher model complexity and could be harder to train.
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Figure 7: Comparison of the average prevision of the validation set and the generalization gap of
different methods on real-world datasets.

B.6 CONDUCT EXPERIMENTS UNDER THE INDUCTIVE LEARNING SETTING

Please notice that the discussion in our paper is mainly focusing on transductive learning. For the
completeness, we also report some preliminary inductive learning results. Our inductive learning
setting is the same as Xu et al. (2020a). More specifically, the inductive node sets are all nodes
that does not belonging to the training set nodes, i.e., Vinductive = V \ Vtrain. In the inductive setting,
negative nodes are only selected from Vinductive. A test set link is considered as the inductive link if at
least one of its associated nodes belong to Vinductive, i.e., Einductive = {(vi, vj) | (vi ∈ Vinductive ∨ vj ∈
Vinductive)∧(vi, vj) ∈ Etest}. Inductive learning performance is evaluated only on the inductive edges.
Dataset statistics are summarized in Table 7.

Table 7: Dataset statistics for inductive learning settings.

|Vinductive| |Einductive| |Etest|
Reddit 134 4,704 100,867
Wiki 1,210 5,732 26,621
MOOC 342 8,645 61,763
UCI 391 4,876 8,976

We compare with baselines under the inductive learning setting with TGL framework for a fair
comparison. As shown in the table, the performance of our method also works well on the inductive
learning setting. Moreover, by combining with the results in Table 1, we found that changing from
transductive to inductive learning does not affect our model performance much, which is potentially
because our method has a simpler neural architecture and a stronger inductive bias for link prediction
task.

B.7 PRELIMINARY RESULTS OF NODE CLASSIFICATION

The design of SToNe is mainly focusing on the link prediction. For the completeness, we also
report some preliminary node classification results using average precision in the table bellow. For
this experiment, we use the identical network structure as the link prediction model. The evaluation
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Table 8: Inductive learning setting average precision.

Inductive average precision Reddit Wiki MOOC UCI
SToNe 99.75± 0.00 99.70± 0.05 99.81± 0.04 90.94± 0.33
TGN 98.88± 0.02 98.88± 0.06 99.72± 0.08 83.27± 2.01
JODIE 96.06± 0.03 98.59± 0.07 86.90± 0.06 59.92± 3.19
TGAT 93.28± 0.05 95.82± 0.12 95.57± 0.11 67.65± 0.73
DySAT 90.83± 0.02 96.45± 0.05 98.65± 0.19 80.48± 2.98

strategy follows the framework in Zhou et al. (2022). It is worth noting that since our paper primarily
focused on link prediction task, the performance of SToNe is not optimal. We plan to make it as an
interesting future direction and enhance model performance by introducing the inductive bias of the
node classification task.

Table 9: Node classification average precision.

SToNe GraphMixder JODIE TGAT TGN DySAT
Reddit 70.66 70.51 70.89 63.63 64.79 62.69
Wiki 85.78 83.93 80.63 85.30 87.13 85.30
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C GENERALIZATION BOUND OF GNN-BASED METHOD

Recall that we compute the representation of node vi at time t by applying GNN on the temporal
graph that only considers the temporal edges with timestamp before time t. The GNN has trainable
weight parameters θ = {W(1), . . . ,W(L)} and binary hyper-parameter α ∈ {0, 1} that controls
whether residual connection is used.

Representation computation. The final prediction on node vi is computed as
fi(θ) = W(L)h

(L−1)
i , where the hidden representation h

(L−1)
i is computed by

h
(ℓ)
i = σ

(
W(ℓ)

∑
j∈N (i)

Pijh
(ℓ−1)
j

)
+ αh

(ℓ−1)
i ∈ Rm,

h
(1)
i = σ

(
W(1)

∑
j∈N (i)

Pijxj

)
∈ Rm.

Here σ(·) is the activation function, Pij is the aggregation weight used for propagating information
from node vj to vi, and N (i) is the set of all neighbors of node vi in the temporal graph. For param-
eter dimension, we have W(1) ∈ Rm×d, W(ℓ) ∈ Rm×m for 2 ≤ ℓ ≤ L− 1, and W(L) ∈ R1×m,
where m is the hidden dimension and d is the input dimension.

Gradient computation. The gradient of weight matrix W(ℓ), ∀ℓ ∈ [L− 1] is computed by

∂fi(θ)

∂W(ℓ)
=

∑
iL−2∈N (iL−1)

∑
iL−3∈N (iL−2)

. . .
∑

iℓ∈N (iℓ+1)

PiL−1,iL−2
PiL−2,iL−3

. . . Piℓ+1,iℓ ·Gℓ(iℓ, . . . , iL−1).

Here Gℓ(iℓ, . . . , iL−1) ∈ Rm×m is defined as

Gℓ(iℓ, . . . , iL−1) =
[
W(L)

(
D

(L−1)
iL−1

W(L−1)+αIm

)
. . .
(
D

(ℓ+1)
iℓ+1

W(ℓ+1)+αIm

)
D

(ℓ)
iℓ

]⊤
(z̃

(ℓ−1)
iℓ

)⊤,

where D
(ℓ)
i,ℓ = diag(σ′(z

(ℓ)
i )) ∈ Rm×m is a diagonal matrix and z̃

(ℓ−1)
iℓ

is the aggregation of neigh-
bors’ representations

z̃
(ℓ−1)
iℓ

=
∑

iℓ−1∈N (iℓ)

Piℓ,iℓ−1
h
(ℓ−1)
iℓ−1

∈ Rm, ∀ℓ ∈ {1, 2, . . . , L− 1}.

Finally, the gradient with respect to the final layer weight matrix W(L) is computed as

∂fi(θ)

∂W(L)
= h

(L−1)
i .

Please refer to Appendix G for detailed derivation of the gradients for the weight parameters in an
L-layer GNN.

C.1 PROOF SCRATCH

In the following, we summarize the proof on the generalization bound of GNN-based method as
following:

• Firstly, we show in Lemma 1 that if two weight parameters are close to each other, then the
node representation computed on these two parameters are also close.

• Secondly, we show that if two set of weight parameters are close to each other, then the
neural network outputs computed on these weight parameters are almost linear in Lemma 2,
and the computed loss is almost convex in Lemma 3.

• Thirdly, we show in Lemma 4 that with high probability, the gradient of neural network
can be upper bounded, and this upper bound is dependent on the neural architecture.

• Thirdly, based on our previous results in Lemma 1, Lemma 3, and Lemma 4, we show in
Lemma 5 that the difference between the cumulative loss over training to the loss computed
on optimal solution could be upper bounded.

• Finally, we show in Lemma 6 that the expected 0-1 error is upper bounded. Then, by
using our definition on the neural tangent random feature and feature-label alignment, we
conclude the proof.
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C.2 USEFUL LEMMAS

For the ease of presentation, we introduce the following two definitions which will be used when
introducing our lemmas.

Definition 2 (ω-neighborhood Cao & Gu (2019)). For any θ̃ = {W̃(1), . . . ,W̃(L)}, we define its
ω-neighborhood as

B(θ, ω) = {θ̃ | ∥W̃(ℓ) −W(ℓ)∥F ≤ ω, ℓ ∈ [L]}.
Definition 3 (Neural tangent random feature Cao & Gu (2019)). Let θ0 be generated via the initial-
ization. We define the neural tangent random feature function class as

F(θ0, R) = {f(θ0) + ⟨∇θf(θ0),θ⟩ | θ ∈ B(0, Rm−1/2)},
where R > 0 measures the size of the function class and m is the hidden dimension of the neural
network.

In the following, we show that if the input weight parameters θ = {W(1), . . . ,W(L)} and θ̃ =

{W̃(1), . . . ,W̃(L)} are close, the hidden representation of graph neural networks computed on θ
and θ̃ does not change too much.

Lemma 1. Let ρ be the Lipschitz constant of the activation function and m is the hidden
dimension. Then with ω = O(1/((3ρ + 1)τ)(L−1)) and assuming θ̃ ∈ B(θ, ω), we have
∥h̃(ℓ)

i − h
(ℓ)
i ∥2 = O(1) with probability at least 1− 2ℓ exp(−m/2)− ℓ exp(−Ω(m)).

Please note that the smaller the distance ω, the closer the representation ∥h̃(ℓ)
i −h

(ℓ)
i ∥2. In particular,

according to the proof of Lemma 1, we have ∥h̃(ℓ)
i − h

(ℓ)
i ∥2 ≤ O(ϵ) by selecting ω = O(ϵ/((3ρ+

1)τ)(L−1)) for any small ϵ > 0. This conclusion will be later used in Lemma 5.

Proof of Lemma 1. When ℓ = 1, we have for any node vi ∈ V
∥h̃(1)

i − h
(1)
i ∥2 =

∥∥∥σ(W̃(1)
∑

j∈N (i)

Pijh
(0)
j

)
− σ

(
W(1)

∑
j∈N (i)

Pijh
(0)
j

)∥∥∥
2

≤
(a)

ρ∥W̃(1) −W(1)∥2
∥∥∥ ∑

j∈N (i)

Pijxj

∥∥∥
2

≤
(b)
ρω
( ∑

j∈N (i)

Pij∥xj∥2
)

≤
(c)
ρτ · ω = O(1),

where inequality (a) is due to the Lipschitz continuity of activation function, inequality (b) is due
to the ω-neighborhood definition W̃ ∈ B(W, ω), and inequality (c) is due to Assumption 1 and
Assumption 3.

Similarly, when ℓ ∈ {2, . . . , L− 1}, we have ∀i ∈ V

∥h̃(ℓ)
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j∈{i}∪N (i)

∥h(ℓ−1)
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ρτ(∥W(ℓ)∥2 + ω) + 1
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j∈{i}∪N (i)
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j − h
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where the inequality (a) and (c) are due to ∥A+B∥2 ≤ ∥A∥2 + ∥B∥2, the inequality (b) is due to
the Lipschitz continuity of activation function and W̃ ∈ B(W, ω).

By Proposition 19, we know that with probability at least 1− 2 exp(−m/2) we have ∥W(ℓ)∥2 ≤ 3
for all ℓ ∈ [L− 1].

By Lemma 21, we know that with probability at least 1− exp(−Ω(m)) we have ∥h(ℓ)
i ∥2 = Θ(1).

Then, we have with probability at least 1− 2ℓ exp(−m/2)− ℓ exp(−Ω(m)) for any i ∈ V

∥h̃(ℓ)
i − h

(ℓ)
i ∥2 ≤

(
ρτ(3 + ω) + 1

)
· max
j∈{i}∪N (i)

∥h̃(ℓ−1)
j − h

(ℓ−1)
j ∥2 + ρωτ · max

j∈{i}∪N (i)
∥h(ℓ−1)

j ∥2

≤
(
ρτ(3 + ω) + 1

)
·max
j∈V

∥h̃(ℓ−1)
j − h

(ℓ−1)
j ∥2 + ρωτ ·max

j∈V
∥h(ℓ−1)

j ∥2

=
(a)

(
ρτ(3 + ω) + 1

)
·max
j∈V

∥h̃(ℓ−1)
j − h

(ℓ−1)
j ∥2 + ρωτ ·Θ(1)

≤ ρωτ ·Θ(1) · ((3 + ω)ρτ + 1)ℓ−1 − 1

(3 + ω)ρτ
+ ρωτ · ((3 + ω)ρτ + 1)ℓ−1

≤ ((3 + ω)ρτ + 1)ℓ−1
(ρωτ ·Θ(1)

(3 + ω)ρτ
+ ρωτ

)
≤ ((3 + ω)ρτ + 1)ℓ−1 · ω ·

(
Θ(1) + ρτ

)
,

where the equality (a) is due to maxj∈V ∥h(ℓ)
j ∥2 = Θ(1).

By setting ω = 1/((3ρ+ 1)τ)L−1 we have the above equation upper bounded by O(1).

Then, in the next lemma, we show that if the initialization of two set of weight parameters θ =

{W(1), . . . ,W(L)} and θ̃ = {W̃(1), . . . ,W̃(L)} are close, the neural network output fi(θ) will be
almost linear with respect to its weight parameters.

Lemma 2. Let θ, θ̃ ∈ B(θ0, ω) with ω = O
(
1/((3ρ+1)τ)(L−1)

)
. Then, for any node vi ∈

V in the graph, with probability at least 1−2(L−1) exp(−m/2)−L exp(−Ω(m))−2/m,
we have

ϵlin := |fi(θ̃)− fi(θ)− ⟨∇fi(θ), θ̃ − θ⟩| = O(1),

where fi(θ) is the prediction on the L-hop subgraph centered on the root node vi.

Please note that the smaller the distance ω, the more the model output close to linear. In particular,
according to the proof of Lemma 2 and the proof of Lemma 1, we have ϵlin ≤ O(ϵ) by selecting
ω = O(ϵ/((3ρ+ 1)τ)(L−1)) for any small ϵ > 0. This conclusion will be later used in Lemma 5.

Proof of Lemma 2. According to the forward and backward propagation rules as we recapped at the
beginning of this section, we have
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Since the derivative of activation function is bounded, we have ∥Di,ℓ∥2 ≤ ρ and ∥D(ℓ)
i W(ℓ) +

αℓIm∥2 ≤ 3ρ+ 1.

Therefore, we know that the term (a) in the above equation could be upper bounded by ρ(3ρ +
1)L−1−ℓ.

Besides, we know that ∥W(L)∥2 ≤
√
2 according to Lemma 20.

Finally, by plugging the results back, we can upper bound the term (b) in the above equation by
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where the last inequality holds by selecting ω = 1/((3ρ+ 1)τ)L−1.

Let us define the logistic loss as

lossi(θ) = ψ(yifi(θ)), ψ(x) = log(1 + exp(−x)).

Then, the following lemma shows that lossi(θ) is almost a convex function of θ for any vi ∈ V if
the initialization of two set of parameters are close to each other.

Lemma 3. Let θ, θ̃ ∈ B(θ0, ω) with ω = 1/((3ρ+ 1)τ)L−1 for any vi ∈ V , it holds that

lossi(θ̃) ≥ lossi(θ) + ⟨∇θlossi(θ), θ̃ − θ⟩ − ϵlin

with probability at least 1− 2(L− 1) exp(−m/2)− L exp(−Ω(m))− 2/m, where

ϵlin =
∣∣∣〈∇θfi(θ), θ̃ − θ

〉
− fi(θ̃) + fi(θ)

∣∣∣ = O(1)

according to Lemma 2.

Proof of Lemma 3. The proof follows the proof of Lemma 9 in Zhu et al. (2022).

By the convexity of ψ(·), we know that ψ(b) ≥ ψ(a) + ψ′(a)(b− a). Therefore, we have

lossi(θ̃)− lossi(θ) = ψ(yifi(θ̃))− ψ(yifi(θ))

≥ ψ′(yifi(θ))
(
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)
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(
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)
.

By using the chain rule, we have〈
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〉
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〈
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〉
.

By combining the above equations, we have
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)
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where the inequality is due to |ψ′(yifi(θ))yi| ≤ 1.

Moreover, by the gradient computation, we know that the gradient of the neural network function
can be upper bounded.

Lemma 4. For any vi ∈ V with probability at least 1 − 2(L − ℓ) exp(−m/2) −
ℓ exp(−Ω(m))− 2/m, it holds that∥∥∥∂fi(θ)

∂W(ℓ)

∥∥∥
2
,
∥∥∥∂lossi(θ)
∂W(ℓ)

∥∥∥
2
≤ Θ

(
((3ρ+ 1)τ)L−ℓ

)

Proof of Lemma 4. For ℓ = L, we have for any vi ∈ V∥∥∥ ∂fi(θ)
∂W(L)

∥∥∥
2
= ∥h(L−1)

i ∥2

≤ max
j∈V

∥h(L−1)
j ∥2 = Θ(1).
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For ℓ ∈ [L− 1], we have for any vi ∈ V∥∥∥∂fi(θ)
∂W(ℓ)

∥∥∥
2
≤

∑
iL−2∈N (iL−1)

∑
iL−3∈N (iL−2)

. . .
∑

iℓ∈N (iℓ+1)

PiL−1,iL−2
PiL−2,iL−3

. . . Piℓ+1,iℓ

∥∥∥Gℓ(iℓ, . . . , iL−1)
∥∥∥
2
.

To upper bound
∥∥∥Gℓ(iℓ, . . . , iL−1)

∥∥∥
2
, we have∥∥∥Gℓ(iℓ, . . . , iL−1)

∥∥∥
2
=
∥∥∥[W(L)

(
D

(L−1)
iL−1

W(L−1) + αL−2Im

)
. . .
(
D

(ℓ+1)
iℓ+1

W(ℓ+1) + αℓIm

)
D

(ℓ)
iℓ

]⊤
(z̃

(ℓ−1)
iℓ

)⊤
∥∥∥
2

≤
∥∥∥W(L)

∥∥∥
2

∥∥∥(D(L−1)
iL−1

W(L−1) + αL−2Im

)
. . .
(
D

(ℓ+1)
iℓ+1

W(ℓ+1) + αℓIm

)
D

(ℓ)
iℓ

∥∥∥
2

∥∥∥z̃(ℓ−1)
iℓ

∥∥∥
2

≤
√
2ρτ(3ρ+ 1)L−ℓ−1Θ(1),

where the last inequality follows the proof of Lemma 2.

By combining the above results, we have∥∥∥∂fi(θ)
∂W(ℓ)

∥∥∥
2
≤

√
2ρ((3ρ+ 1)τ)L−ℓ−1Θ(1)

≤ Θ((3ρ+ 1)τ)L−ℓ.

Moreover, the above inequality also implies∥∥∥∂lossi(θ)
∂W(ℓ)

∥∥∥
2
= |ψ′(yifi(θ)) · yi| ·

∥∥∥∂fi(θ)
∂W(ℓ)

∥∥∥
2

≤
∥∥∥∂fi(θ)
∂W(ℓ)

∥∥∥
2
,

where the last inequality is due to |ψ′(yifi(θ)) · yi| ≤ 1.

In the following, we show that the cumulative loss can be upper bounded under small changes on
the weight parameters.

Lemma 5. For any ϵ, δ, R > 0, there exists

m⋆ = O
(
((3ρ+ 1)τ)4(L−1)L2R4

4ϵ4

)
log(1/δ),

such that if m ≥ m⋆, then with probability at least 1 − δ over the randomness of θ0, for
any θ⋆ ∈ B(θ0, Rm−1/2), with η = ϵ

mL((3ρ+1)τ)2(L−1) and N = L2R2((3ρ+1)τ)2(L−1)

2ϵ2 , the
cumulative loss can be upper bounded by

1

N

N∑
i=1

lossi(θi−1) ≤
1

N

N∑
i=1

lossi(θ⋆) +O(ϵ).

Proof of Lemma 5. Let us define θ⋆ as the optimal solution that could minimize the cumulative loss
over N epochs, where at each epoch only a single data point is used as defined in Algorithm 1

θ⋆ = argmin
θ∈B(θ0,ω)

∑N

i=1
lossi(θ).

Without loss of generality, let us assume the epoch loss lossi(θi−1) is computed on the i-th node.
Then, in the following, we try to show θ0,θ1, . . . ,θN−1 ∈ B(θ0, ω), where ω = ϵ/((3ρ+1)τ)L−1

First of all, it is clear that θ0 ∈ B(θ0, ω). Then, to show θn ∈ B(θ0, ω) for any n ∈ {1, . . . , N−1},
we use our previous conclusion on the upper bound of gradient ∥∂lossi(θ)/∂W(ℓ)∥ ≤ Θ((3ρ +
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1)τ)L−ℓ in Lemma 4 and have

∥W(ℓ)
n −W

(ℓ)
0 ∥2 ≤

n∑
i=1

∥W(ℓ)
i −W

(ℓ)
i−1∥2

=

n∑
i=1

η
∥∥∥∂lossi−1(θi−1)

∂W
(ℓ)
i−1

∥∥∥
2

≤ Θ
(
ηN((3ρ+ 1)τ)L−ℓ

)
.

By plugging in the choice of η = ϵ
mL((3ρ+1)τ)2(L−1) and N = L2R2((3ρ+1)τ)2(L−1)

2ϵ2 , we have

∥W(ℓ)
n −W

(ℓ)
0 ∥2 ≤ Θ

(
ηN((3ρ+ 1)τ)L−ℓ−1

)
= Θ

( ϵ

mL((3ρ+ 1)τ)2(L−1)

L2R2((3ρ+ 1)τ)2(L−1)

2ϵ2
((3ρ+ 1)τ)L−ℓ

)
= Θ

(LR2

2mϵ
((3ρ+ 1)τ)L−ℓ

)
.

After changing norm from ℓ2-norm to Frobenius-norm, we have

∥W(ℓ)
n −W

(ℓ)
0 ∥F ≤

√
m×Θ

(LR2

2mϵ
((3ρ+ 1)τ)L−ℓ

)
, (2)

By plugging in the selection of hidden dimension m, we have

∥W(ℓ)
n −W

(ℓ)
0 ∥F ≤ ϵ

((3ρ+ 1)τ)L−1
,

which means θ0,θ1, . . . ,θN−1 ∈ B(θ0, ω) for ω = ϵ/((3ρ+ 1)τ)L−1

Then, our next step is to bound lossi(θi)− lossi(θ⋆). By Lemma 3, we know that

lossi+1(θi)− lossi+1(θ⋆) ≤
〈
∇θlossi+1(θi),θi − θ⋆

〉
+ ϵlin

=

L∑
ℓ=1

〈∂lossi+1(θi)

∂W(ℓ)
,W

(ℓ)
i −W

(ℓ)
⋆

〉
+ ϵlin

=
1

η

L∑
ℓ=1

〈
W

(ℓ)
i −W

(ℓ)
i+1,W

(ℓ)
i −W

(ℓ)
⋆

〉
+ ϵlin

≤ 1

2η

L∑
ℓ=1

(
∥W(ℓ)

i −W
(ℓ)
i+1∥

2
F + ∥W(ℓ)

i −W
(ℓ)
⋆ ∥2F − ∥W(ℓ)

i+1 −W
(ℓ)
⋆ ∥2F

)
+ ϵlin.

Then, our next step is to upper bound each term on the right hand size of inequality.

(1) According to the proof of Lemma 2, we have ϵlin ≤ O(ϵ) by selecting ω = O(ϵ/((3ρ +
1)τ)(L−1)).

(2) Recall that ∥W(ℓ)
i −W

(ℓ)
i+1∥2F could be upper bounded by

∥W(ℓ)
i −W

(ℓ)
i+1∥

2
F ≤ η2

∥∥∥∂lossi+1(θi)

∂W(ℓ)

∥∥∥2
F

≤ η2m
∥∥∥∂lossi+1(θi)

∂W(ℓ)

∥∥∥2
2

≤ Θ
(
mη2((3ρ+ 1)τ)2(L−ℓ)

)
.
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(3) By finite sum ∥W(ℓ)
i −W

(ℓ)
⋆ ∥2F − ∥W(ℓ)

i+1 −W
(ℓ)
⋆ ∥2F from i = 0 to N − 1, we have

1

N

N−1∑
i=0

(∥W(ℓ)
i −W

(ℓ)
⋆ ∥2F − ∥W(ℓ)

i+1 −W
(ℓ)
⋆ ∥2F) =

1

N
∥W(ℓ)

0 −W
(ℓ)
⋆ ∥2F − 1

N
∥W(ℓ)

N+1 −W
(ℓ)
⋆ ∥2F︸ ︷︷ ︸

≤0

≤ R2

mN
,

where the inequality is due to θ⋆ ∈ B(θ0, Rm−1/2).

Finally, by combining the results above, we have

1

N

N∑
i=1

lossi(θi−1)−
1

N

N∑
i=1

lossi(θ⋆) ≤
R2L

2mηN
+

L∑
ℓ=1

Θ
(mη

2
(3ρτ + 1)2(L−1)

)
+O(ϵ).

By selecting η = ϵ
mL((3ρ+1)τ)2(L−1) and N = L2R2((3ρ+1)τ)2(L−1)

2ϵ2 , we have

R2L

2mηN
=
R2L

2m
× mL((3ρ+ 1)τ)2(L−1)

ϵ
× 2ϵ2

L2R2(3ρτ + 1)2(L−1)
= ϵ,

L∑
ℓ=1

Θ
(mη

2
((3ρ+ 1)τ)2(L−ℓ)

)
≤ L×Θ

(
mη · ((3ρ+ 1)τ)2(L−1)

)
= Θ

(
m · ϵ

mL((3ρ+ 1)τ)2(L−1)
((3ρ+ 1)τ)2(L−1)

)
= Θ(ϵ).

Therefore, combining the results above, we have

1

N

N∑
i=1

lossi(θi−1)−
1

N

N∑
i=1

lossi(θ⋆) ≤ O(ϵ)

By plugging in the selection of ϵ = LR((3ρ+1)τ)(L−1)

√
2N

to Lemma 5, we have

Corollary 1. For any δ > 0 and R > 0, there exists m⋆ = O
(
N2/L2

)
log(1/δ), such

that if m ≥ m⋆, then with probability at least 1 − δ over the randomness of θ0, for any
θ⋆ ∈ B(θ0, Rm−1/2), with the selection of learning rate η = R

m
√
2N((3ρ+1)τ)(L−1)

, the
cumulative loss can be upper bounded by

1

N

N∑
i=1

lossi(θi−1) ≤
1

N

N∑
i=1

lossi(θ⋆) +O
(
LR((3ρ+ 1)τ)(L−1)

√
N

)
.

In the following, we present the expected 0-1 error bound of multi-layer GNN, which consists of
two terms: (1) the expected 0-1 error with the neural tangent random feature function and (2) the
standard large-deviation error term.
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Lemma 6. For any δ ∈ (0, 1/e] and R > 0, there exists m⋆ = O
(
N2/L2

)
log(1/δ), such

that if m ≥ m⋆, then with probability at least 1 − δ over the randomness of θ0, with the
selection of learning rate η = R

m
√
2N((3ρ+1)τ)(L−1)

, we have

E
[
loss0−1

N (θ̃)|DN−1
1

]
≤ 4

N
inf

f∈F(θ0,R)

N∑
i=1

ψ(yifi) +O
(LR((3ρ+ 1)τ)(L−1)

√
N

)
+O

(√ log(1/δ)

N

)
+∆,

where F(θ0, R) is the neural tangent random feature function class, θ̃ is uniformly selected
from {θ0, . . . ,θN−1}, DN−1

1 is the sequence of data points sampled before the N -th itera-
tion, and the expectation is computed on the uniform selection of weight parameters θ̃ and
the condition sampling of N -th iteration data examples.

Proof of Lemma 6. The proof is based on the proof of Theorem 3.3 in Cao & Gu (2019).

Let us recall that the 0-1 loss is defined as

loss0−1
i (θ) = 1{yifi(θ) < 0}, ∀i ∈ [N ]

Since the cross entropy loss ψ(·) satisfies 1{z ≤ 0} ≤ 4ψ(z), we have loss0−1
i (θ) ≤ 4lossi(θ).

Then, we have with probability at least 1− δ

1

N

N∑
i=1

loss0−1
i (θi−1) ≤

4

N

N∑
i=1

lossi(θ⋆) +O
(LR((3ρ+ 1)τ)(L−1)

√
N

)
≤ 4

N

N∑
i=1

ψ(yifi(θ⋆)) +O
(LR((3ρ+ 1)τ)(L−1)

√
N

)
Let us define Fi(θ0,θ

⋆) := fi(θ0) + ⟨∇θfi(θ0),θ
⋆ − θ0⟩. Since ψ(·) is 1-Lipschitz continuous,

we have

ψ(yifi(θ))− ψ(yiFi(θ0,θ
⋆)) ≤ yi

(
fi(θ)− Fi(θ0,θ

⋆)
)

= yi

(
fi(θ)− fi(θ0) + ⟨∇θfi(θ0),θ0 − θ⋆⟩

)
≤ O(1),

where the last inequality is due to Lemma 2.

By combining the results above, we have

1

N

N∑
i=1

loss0−1
i (θi−1) ≤

4

N

N∑
i=1

ψ(yiFi(θ0,θ
⋆)) +O

(LR((3ρ+ 1)τ)(L−1)

√
N

)
≤ 4

N
inf

f∈F(θ0,R)

N∑
i=1

ψ(yifi) +O
(LR((3ρ+ 1)τ)(L−1)

√
N

)
,

where the second inequality is due to the definition of neural tangent random feature

F(θ0, R) = {f(θ0) + ⟨∇θf(θ0),θ⟩ | θ ∈ B(0, Rm−1/2)}

and θ⋆ ∈ B(θ0, Rm−1/2).

By Proposition 1, we have with probability at least 1− δ,

1

N

N∑
i=1

E
[
loss0−1

i (θi−1)|Di−1
1

]
≤ 4

N
inf

f∈F(θ0,R)

N∑
i=1

ψ(yifi)+O
(LR((3ρ+ 1)τ)(L−1)

√
N

)
+O

(√ log(1/δ)

N

)
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By using Assumption 4, we have

E
[
loss0−1

N (θ)|DN−1
1

]
=

1

N

N∑
i=1

E
[
loss0−1

N (θi−1)|DN−1
1

]
≤ 4

N
inf

f∈F(θ0,R)

N∑
i=1

ψ(yifi) +O
(LR((3ρ+ 1)τ)(L−1)

√
N

)
+O

(√ log(1/δ)

N

)
+∆

where θ̃ is uniformly sampled from {θ1, . . . ,θN−1}.

C.3 PROOF OF THEOREM 2

In the following, we show that the expected error is bounded by
√

y⊤(JJ⊤)−1y and is proportional
to L((3ρ+ 1)τ)L−1/

√
N .

Theorem 2 (Multi-layer GNN-based method). For any δ ∈ (0, 1/e] and R > 0, there exists
there exists m⋆ = O

(
N2/L2

)
log(1/δ), such that if m ≥ m⋆, then with probability at least

1− δ over the randomness of θ0 with step size η = R
m

√
2N((3ρ+1)τ)(L−1)

we have

E
[
loss0−1

N (θ̃)|DN−1
1

]
≤ O

(LR((3ρ+ 1)τ)(L−1)

√
N

)
+O

(√ log(1/δ)

N

)
+∆,

whereR = O(
√
y⊤(JJ⊤)−1y), θ̃ is uniformly selected from {θ0, . . . ,θN−1}, DN−1

1 is the
sequence of data points sampled before the N -th iteration, and the expectation is computed
on the uniform selection of weight parameters θ̃ and the condition sampling ofN -th iteration
data examples.

The proof of Theorem 2 follows the proof of Corollary 3.10 in Cao & Gu (2019).

To begin with, let us recall from Lemma 6 that

E
[
loss0−1

N (θ)|DN−1
1

]
≤ 4

N
inf

f∈F(θ0,R)

N∑
i=1

ψ(yifi) +O
(LR((3ρ+ 1)τ)(L−1)

√
N

)
+O

(√
log(1/δ)

N

)
+∆.

Our goal is to show that ∃f ′ ∈ F(θ0, R) such that ψ(yif ′i) = log(1+exp(−yifi)) ≤ 1√
N
, ∀vi ∈ V ,

which implies
yif

′
i ≥ − log(exp(N−1/2)− 1), ∀vi ∈ V.

Let us define B = − log(exp(N−1/2)− 1) and B′ = maxi∈V |fi(θ0)| for notation simplicity.

By the definition of F(θ0, R), we know that ∃ θ ∈ B(θ0, Rm−1/2) such that

yif
′
i = yi

(
fi(θ0) + ⟨∇θfi(θ0),θ⟩

)
= yifi(θ0) + yi⟨∇θfi(θ0),θ⟩

≥ −B′ + yi⟨∇θfi(θ0),θ⟩ ≥ B,

where the inequality holds because

−max
i∈V

|fi(θ0)| ≤ yifi(θ0) ≤ max
i∈V

|fi(θ0)| and ⟨∇θfi(θ0),θ⟩ = yi(B +B′).

For notation simplicity, we define

ŷi = ⟨∇θfi(θ0),θ⟩,
ŷi = (B +B′)yi,

M = md+m+m2(L− 2).
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Besides, let us denote the stack of gradient is

J =


vec(∇θf1(θ0))
vec(∇θf1(θ1))

...
vec(∇θf1(θN ))

 ∈ RN×M , M = |θ|

Besides, let us define J = PΛQ⊤ as the singular value decomposition of J, where P ∈
RN×N ,Q ∈ RM×M have orthonormal columns, and Λ ∈ RN×M is the singular value matrix.

Let us define w = QΛ−1P⊤ŷ, then multiplying both sides by J we have

Jw = (PΛQ⊤)(QΛ−1P⊤)ŷ = ŷ.

Since ∥ŷ∥22 = ∥(B +B′)y∥22, we have

∥w∥22 = ∥QΛ−1P⊤ŷ∥22
= ŷ⊤PΛ−1Q⊤QΛ−1P⊤ŷ

= ŷ⊤PΛ−2P⊤ŷ

= ŷ⊤(JJ⊤)−1ŷ

= (B +B′)2 · y⊤(JJ⊤)−1y.

Let θ be the parameters reshaped from w, then we have

∥θ∥F ≤ O
(√

y⊤(JJ⊤)−1y
)
⇒ θ ∈ B

(
0,O

(√
y⊤(JJ⊤)−1y

))
,

which concludes our proof.
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D GENERALIZATION BOUND OF RNN-BASED METHOD

Recall that we compute the representation of node vi at time t by applying a multi-step RNN onto a
sequence of temporal events {v1, . . . ,vL−1} that are constructed at the target node. The temporal
event features vℓ are pre-computed on the temporal graph.

Representation computation. The RNN has trainable parameters θ = {W(1),W(2),W(3)} and
α ∈ {0, 1} is binary hyper-parameter that controls whether a residual connection is used. Then,
the final prediction on node vi is computed as fi(θ) = W(4)hL−1, where the hidden representation
hL−1 is recursively compute by

hℓ = σ
(
κ
(
W(1)hℓ−1 +W(2)xℓ

))
+ αhℓ−1 ∈ Rm.

Here σ(·) is the activation function, h0 = 0m is initialized as all-zero vector, and xℓ = W(0)vℓ.
We normalize the hidden representation by κ = 1/

√
2 so that ∥hℓ∥22 does not grow exponentially

with respect to the number of steps L. For weight parameters, we have W(1),W(2) ∈ Rm×m,
W(3) ∈ R1×m as the trainable parameters, but W(0) ∈ Rm×d is non-trainable.

Gradient computation. The gradient with respect to each weight matrix is computed by

∂fi(θ)

∂W(1)
=

L−1∑
ℓ=1

κ
[
W(3)

(
κDL−1W

(1) + αIm

)
. . .
(
κDℓ+1W

(1) + αIm

)
Dℓ

]⊤
h⊤
ℓ ∈ Rm×m

∂fi(θ)

∂W(2)
=

L−1∑
ℓ=1

κ
[
W(3)

(
κDL−1W

(1) + αIm

)
. . .
(
κDℓ+1W

(1) + αIm

)
Dℓ

]⊤
x⊤
ℓ ∈ Rm×d

∂fi(θ)

∂W(3)
= [hL−1]

⊤ ∈ R1×m

D.1 USEFUL LEMMAS

In the following, we show that if the input weights θ = {W(1),W(2),W(3)} and θ̃ =

{W̃(1),W̃(2),W̃(3)} are close, the output of RNN’s hidden representation computed with θ, θ̃
does not change too much.

Lemma 7. Let ρ be the maximum Lipschitz constant of the activation function and m is the
hidden dimension. Then with ω = O(1/(1 + 3κρ)(L−1)) and assuming θ̃ ∈ B(θ, ω), we
have ∥h̃ℓ − hℓ∥2 = O(1) with probability at least 1− 2ℓ exp(−m/2)− ℓ exp(−Ω(m)).

Please note that the smaller the distance ω, the closer the representation ∥h̃ℓ − hℓ∥2. In particular,
according to the proof of Lemma 7, we have ∥h̃ℓ − hℓ∥2 ≤ O(ϵ) by selecting ω = O(ϵ/(1 +
3κρ)(L−1)) for any small ϵ > 0. This conclusion will be later used in Lemma 11.

Proof of Lemma 7. When ℓ = 1, we have

∥h̃1 − h1∥2 =
∥∥∥σ (W̃(1)h0 + W̃(2)x1

)
− σ

(
W(1)h0 +W(2)x1

)∥∥∥
2

≤
(a)

ρ∥W̃(2) −W(2)∥2 ∥x1∥2

≤
(b)
ρω = O(1),

where the inequality (a) is due to the Lipschitz continuity of the activation function, the inequal-
ity (b) is due to ω-neighborhood definition W̃ ∈ B(W, ω), h0 = 0m is an all-zero vector and
Assumption 1.
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Similarly, when ℓ ∈ {2, . . . , L− 1}, we have

∥h̃ℓ − hℓ∥2 ≤
(a)

∥∥∥σ (κW̃(1)h̃ℓ−1 + κW̃(2)xℓ

)
− σ

(
κW(1)hℓ−1 + κW(2)xℓ

)∥∥∥
2
+ ∥h̃ℓ−1 − hℓ−1∥2

≤
(b)
ρκ∥W̃(2) −W(2)∥2 ∥xℓ∥2 + ρκ∥W(1)∥2∥h̃ℓ−1 − hℓ−1∥2

+ ρκ∥W̃(1) −W(1)∥2∥h̃ℓ−1∥2 + ∥h̃ℓ−1 − hℓ−1∥2

≤
(c)

(
1 + ρκ∥W(1)∥2

)
∥h̃ℓ−1 − hℓ−1∥2 + ρκω ∥xℓ∥2 + ρκω∥h̃ℓ−1∥2,

where the inequalities (a) and (c) are due to ∥A+B∥2 ≤ ∥A∥2 + ∥B∥2, the inequalities (b) and (c)
are due to the Lipschitz continuity of activation function and W̃ ∈ B(W, ω).

By Proposition 19, we know that with probability at least 1− 2 exp(−m/2) we have ∥W(1)∥2 ≤ 3.

Meanwhile, by using similar proof strategy of Lemma 21, we know that with probability at least
1− exp(−Ω(m)) we have ∥hℓ∥2 = Θ(1).

Then, by combining the results above, we know that with probability at least 1− 2ℓ exp(−m/2)−
ℓ exp(−Ω(m)) we have

∥h̃ℓ − hℓ∥2 ≤ (1 + 3κρ) ∥h̃ℓ−1 − hℓ−1∥2 + ρω ·Θ(1)

≤ (1 + 3κρ)
2 ∥h̃ℓ−2 − hℓ−2∥2 + ρω ·Θ(1) · (1 + (1 + 3κρ))

≤ (1 + 3κρ)ℓ−1 − 1

3κρ
· ρω ·Θ(1),

By setting ω = 1/(1 + 3κρ)L−1 we have the above equation upper bounded by O(1).

Then, in the next lemma, we show that if the initialization of two sets of weight parameters are close,
the neural network output fi(θ) is almost linear with respect to its weight parameters.

Lemma 8. Let θ, θ̃ ∈ B(θ0, ω) with ω = O
(
1/(1 + 3κρ)(L−1)

)
. Then, for any node vi ∈

V in the graph, with probability at least 1−2(L−1) exp(−m/2)−L exp(−Ω(m))−2/m,
we have

ϵlin = |fi(θ̃)− fi(θ)− ⟨∇fi(θ), θ̃ − θ⟩| = O(1),

where fi(θ) is the prediction on the sequence of sampled temporal event starting from the
node vi.

Please note that the smaller the distance ω, the more the model output close to linear. In particular,
according to the proof of Lemma 8 and proof of Lemma 7, we have ϵlin ≤ O(ϵ) by selecting
ω = O

(
ϵ/(1 + 3κρ)(L−1)

)
for any small ϵ > 0. This conclusion will be later used in Lemma 11.

Proof of Lemma 8. According to the forward and backward propagation rules as we recapped at the
beginning of this section, we have
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|fi(θ̃)− fi(θ)− ⟨∇fi(θ), θ̃ − θ⟩|

≤
∣∣∣W̃(3)(h̃L−1 − hL−1)

∣∣∣︸ ︷︷ ︸
(a)

+ κ

L−1∑
ℓ=1

∥W(3)∥2
∥∥∥(κDL−1W

(1) + αIm

)
. . .
(
κDℓ+1W

(1) + αIm

)∥∥∥
2
∥Dℓ∥2∥W̃(1) −W(1)∥2∥hℓ∥2︸ ︷︷ ︸

(b)

+ κ

L−1∑
ℓ=1

∥W(3)∥2
∥∥∥(κDL−1W

(1) + αIm

)
. . .
(
κDℓ+1W

(1) + αIm

)∥∥∥
2
∥Dℓ∥2∥W̃(1) −W(1)∥2∥xℓ∥2︸ ︷︷ ︸

(c)

.

By Lemma 7 and Lemma 20, we know that the term (a) in the above equation could be upper
bounded by

(a) ≤
√
2 · O(1)

Besides, since the derivative of activation function is bounded, we have ∥Dℓ∥2 ≤ ρ, ∀ℓ ∈ [L− 1].

Therefore, we know that ∥DℓW
(i)+αIm∥2 ≤ 3ρ+1 for any i ∈ {1, 2, 3} and we can upper bound

the term (b) in the above equation by

(b), (c) ≤
(
1 + (1 + 3κρ) + (1 + 3κρ)

2
+ . . .+ (1 + 3κρ)

L−2
)
·
√
2κρω · O(1)

=
(1 + 3κρ)L−1 − 1

3κρ
·
√
2κρω · O(1).

As a result, we have

|fi(θ̃)− fi(θ)− ⟨∇fi(θ), θ̃ − θ⟩| ≤
√
2 · O(1) + 2× (1 + 3κρ)L−1 − 1

3κρ
·
√
2κρω · O(1)

≤ O(1),

where the last inequality holds by selecting ω = 1/(1 + 3κρ)L−1.

Let us define the logistic regression objective function as

lossi(θ) = ψ(yifi(θ)), ψ(x) = log(1 + exp(−x)).

Then, the following lemma shows that lossi(θ) is almost a convex function of θ if the initialization
of two sets of parameters are close.

Lemma 9. Let θ, θ̃ ∈ B(θ0, ω) with ω = 1/(1 + 3κρ)L−1, it holds that

lossi(θ̃) ≥ lossi(θ) + ⟨∇θlossi(θ), θ̃ − θ⟩ − ϵlin

with probability at least 1− 2(L− 1) exp(−m/2)− L exp(−Ω(m))− 2/m, where

ϵlin = |fi(θ̃)− fi(θ)− ⟨∇fi(θ), θ̃ − θ⟩|

according to Lemma 8.

Proof of Lemma 9. The proof follows the proof of Lemma 3.

Moreover, by the gradient computation, we know that the gradient of the neural network function
can be upper bounded.
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Lemma 10. For any node vi ∈ V , with probability at least 1 − 2(L − ℓ) exp(−m/2) −
ℓ exp(−Ω(m))− 2/m, it holds that for ℓ = 1, 2, 3∥∥∥∥∂fi(θ)∂W(ℓ)

∥∥∥∥
2

,

∥∥∥∥∂lossi(θ)
∂W(ℓ)

∥∥∥∥
2

≤ Θ
(
(1 + 3κρ)L−1

)
.

Proof of Lemma 10. The ℓ2-norm of the gradient with respect to W(3) is upper bounded by∥∥∥∥ ∂fi(θ)∂W(3)

∥∥∥∥
2

= ∥hL−1∥2 = Θ(1).

The ℓ2-norm of the gradient with respect to W(1) is upper bounded by∥∥∥∥ ∂fi(θ)∂W(1)

∥∥∥∥
2

≤
L∑

ℓ=1

κ

∥∥∥∥(W(3)
(
κDL−1W

(1) + αIm

)
. . .
(
κDℓ+1W

(1) + αIm

)
Dℓ

)⊤
(hℓ)

⊤
∥∥∥∥
2

≤
(
1 + (1 + 3κρ) + (1 + 3κρ)

2
+ . . .+ (1 + 3κρ)

L−2
)
·
√
2κρ · O(1)

=
(1 + 3κρ)L−1 − 1

3κρ
·
√
2κρ · O(1)

= O
(
(1 + 3κρ)L−1

)
.

The ℓ2-norm of the gradient with respect to W(2) is upper bounded by∥∥∥∥ ∂fi(θ)∂W(2)

∥∥∥∥
2

≤
L∑

ℓ=1

κ

∥∥∥∥(W(3)
(
κDL−1W

(1) + αIm

)
. . .
(
κDℓ+1W

(1) + αIm

)
Dℓ

)⊤
(xℓ)

⊤
∥∥∥∥
2

≤
(
1 + (1 + 3κρ) + (1 + 3κρ)

2
+ . . .+ (1 + 3κρ)

L−2
)
·
√
2κρ · O(1)

=
(1 + 3κρ)L−1 − 1

3κρ
·
√
2κρ · O(1)

= O
(
(1 + 3κρ)L−1

)
.

Moreover, since |ψ′(yifi(θ)) · yi| ≤ 1, we have∥∥∥∥∂lossi(θ)
∂W(ℓ)

∥∥∥∥
2

= |ψ′(yifi(θ)) · yi| ·
∥∥∥∥∂fi(θ)∂W(ℓ)

∥∥∥∥
2

≤
∥∥∥∥∂fi(θ)∂W(ℓ)

∥∥∥∥
2

.

In the following, we show that the cumulative loss can be upper bounded under small changes on
the weight parameters.

Lemma 11. For any ϵ, δ, R > 0, there exists

m⋆ = O
(
(1 + 3κρ)4(L−1)L2R4

4ϵ4

)
log(1/δ),

such that if m ≥ m⋆, then with probability at least 1− δ over the randomness of θ0, for any
B(θ0, Rm−1/2), with η = ϵ

mL(1+3κρ)2(L−1) and N = L2R2(1+3κρ)2(L−1)

2ϵ2 , the cumulative
loss can be upper bounded by

1

N

N∑
i=1

lossi(θi−1) ≤
1

N

N∑
i=1

lossi(θ⋆) +O(ϵ).
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Proof of Lemma 11. Let us define θ⋆ as the optimal solution that could minimize the cumulative
loss over N epochs, where at each epoch Si(t) = {v1, . . . ,vL−1} is constructed to compute fi(θ)

θ⋆ = argmin
θ∈B(θ0,ω)

∑N

i=1
lossi(θ).

Without loss of generality, let us assume the epoch loss lossi(θ) is computed on the i-th node. Then,
in the following, we try to show θ0,θ1, . . . ,θN ∈ B(θ0, ω), where ω = 1/(1 + 3κρ)L−1.

First of all, it is clear that θ0 ∈ B(θ0, ω). Then, to show θn ∈ B(θ0, ω) for any n ∈ {1, . . . , N}, we
use our previous conclusion on the upper bound of gradient ∥∂lossi(θ)/∂W(ℓ)∥ ≤ Θ(1+3κρ)L−1

in Lemma 10, we have

∥W(ℓ)
n −W

(ℓ)
0 ∥2 ≤

n∑
i=1

∥W(ℓ)
i −W

(ℓ)
i−1∥2

=

n∑
i=1

η

∥∥∥∥∥∂lossi−1(θi−1)

∂W
(ℓ)
i−1

∥∥∥∥∥
2

≤ Θ
(
ηN(1 + 3κρ)L−1

)
.

By plugging in the choice of η = ϵ
mL(1+3κρ)2(L−1) and N = L2R2(1+3κρ)2(L−1)

2ϵ2 , we have

∥W(ℓ)
n −W

(ℓ)
0 ∥2 ≤ Θ

(
ηN(1 + 3κρ)L−ℓ−1

)
= Θ

(
ϵ

m(1 + 3κρ)2(L−1)

LR2(1 + 3κρ)2(L−1)

2ϵ2
(1 + 3κρ)L−1

)
= Θ

(
LR2

2mϵ
(1 + 3κρ)L−1

)
.

Changing norm from ℓ2-norm to Frobenius-norm, we have

∥W(ℓ)
n −W

(ℓ)
0 ∥F ≤

√
m×Θ

(
LR2

2mϵ
(1 + 3κρ)L−1

)
, (3)

By plugging in the selection of hidden dimension m, we have

where the last inequality holds if

∥W(ℓ)
n −W

(ℓ)
0 ∥F ≤ ϵ

(1 + 3κρ)L−1

which means θ1, . . . ,θN ,θ⋆ ∈ B(θ0, ω) where ω = ϵ/(1 + 3κρ)L−1.

Then, our next step is to bound lossi(θi)− lossi(θ⋆). By Lemma 3, we know that

lossi+1(θi)− lossi+1(θ⋆) ≤ ⟨∇θlossi+1(θi),θi − θ⋆⟩+ ϵlin

=

L∑
ℓ=1

〈
∂lossi+1(θi)

∂W(ℓ)
,W

(ℓ)
i −W

(ℓ)
⋆

〉
+ ϵlin

=
1

η

L∑
ℓ=1

〈
W

(ℓ)
i −W

(ℓ)
i+1,W

(ℓ)
i −W

(ℓ)
⋆

〉
+ ϵlin

≤ 1

2η

L∑
ℓ=1

(
∥W(ℓ)

i −W
(ℓ)
i+1∥

2
F + ∥W(ℓ)

i −W
(ℓ)
⋆ ∥2F − ∥W(ℓ)

i+1 −W
(ℓ)
⋆ ∥2F

)
+ ϵlin.

Then, our next step is to upper bound each term on the right hand size of inequality.

(1) According to the proof of Lemma 8, we have ϵlin ≤ O(ϵ) by selecting ω = ϵ/(1 + 3κρ)L−1.
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(2) Recall that ∥W(ℓ)
i −W

(ℓ)
i+1∥2F could be upper bounded by

∥W(ℓ)
i −W

(ℓ)
i+1∥

2
F ≤ η2

∥∥∥∥∂lossi(θi)
∂W(ℓ)

∥∥∥∥2
F

≤ η2m

∥∥∥∥∂lossi(θi)
∂W(ℓ)

∥∥∥∥2
2

≤ Θ
(
mη2(1 + 3κρ)2(L−ℓ)

)
.

(3) By finite sum ∥W(ℓ)
i −W

(ℓ)
⋆ ∥2F − ∥W(ℓ)

i+1 −W
(ℓ)
⋆ ∥2F for i = 1, . . . , N , we have

1

N

N∑
i=1

(∥W(ℓ)
i −W

(ℓ)
⋆ ∥2F − ∥W(ℓ)

i+1 −W
(ℓ)
⋆ ∥2F) =

1

N
∥W(ℓ)

0 −W
(ℓ)
⋆ ∥2F − 1

N
∥W(ℓ)

N+1 −W
(ℓ)
⋆ ∥2F︸ ︷︷ ︸

≤0

≤ R2

mN
,

where the inequality is due to θ⋆ ∈ B(θ0, Rm−1/2).

Finally, by plugging the results above, we have

1

N

N∑
i=1

lossi(θi)−
1

N

N∑
i=1

lossi(θ⋆) ≤
R2L

2mηN
+

L∑
ℓ=1

Θ
(mη

2
(1 + 3κρ)2(L−1)

)
+O(ϵ).

By selecting η = ϵ
mL(1+3κρ)2(L−1) and N = L2R2(1+3κρ)2(L−1)

2ϵ2 , we have

R2L

2mηN
=
R2L

2m
× m(1 + 3κρ)2(L−1)

ϵ
× 2ϵ2

LR2(3ρτ + 1)2(L−1)
= ϵ,

L∑
ℓ=1

Θ
(mη

2
(1 + 3κρ)2(L−ℓ)

)
≤ L×Θ

(
mη · (1 + 3κρ)2(L−1)

)
= Θ

(
m · ϵ

m(1 + 3κρ)2(L−1)
(1 + 3κρ)2(L−1)

)
= Θ(ϵ).

Therefore, we have
1

N

N∑
i=1

lossi(θi)−
1

N

N∑
i=1

lossi(θ⋆) ≤ O(ϵ).

By plugging in the selection of ϵ = LR(1+3κρ)L−1

√
2N

to Lemma 11, we have

Corollary 2. For any δ,R > 0, there exists m⋆ = O(N2/L2) log(1/δ), such that
if m ≥ m⋆, then with probability at least 1 − δ over the randomness of θ0, for any
θ⋆ ∈ B(θ0, Rm−1/2), with the selection of learning rate η = R

m
√
2N(1+3κρ)(L−1)

, the cu-
mulative loss can be upper bounded by

1

N

N∑
i=1

lossi(θi−1) ≤
1

N

N∑
i=1

lossi(θ⋆) +O
(
LR(1 + 3κρ)L−1

√
N

)
.

In the following, we present the expected 0-1 error bound of multi-step RNN, which consists of
two terms: (1) the expected 0-1 error with the neural tangent random feature function and (2) the
standard large-deviation error term.
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Lemma 12. For any δ ∈ (0, 1/e] and R > 0, there exists m⋆ = O(N2/L2) log(1/δ), such
that if m ≥ m⋆, then with probability at least 1 − δ over the randomness of θ0 with the
selection of learning rate η = R

m
√
2N(1+3κρ)(L−1)

, we have

E[ℓ0−1
N (θ̃)|DN−1

1 ]

≤ 4

N
inf

f∈F(θ0,R)

N∑
i=1

ψ(yifi) +O

(√
log(1/δ)

N

)
+O

(
LR(1 + 3κρ)(L−1)

√
N

)
+∆,

where F(θ0, R) is the neural tangent random feature function class, θ̃ is uniformly selected
from {θ0, . . . ,θN−1}, DN−1

1 is the sequence of data points sampled before the N -th itera-
tion, and the expectation is computed on the uniform selection of weight parameters θ̃ and
the condition sampling of N -th iteration data examples.

D.2 PROOF OF THEOREM 3

In the following, we show that the expected error is bounded by
√
y⊤(JJ⊤)−1y and is proportional

to L(3ρτ + 1)L−1/
√
N . Finally, to obtain the results in the form of Theorem 1, we just need to set

κ =
√
2.

Theorem 3 (Multi-steps RNN). For any δ ∈ (0, 1/e] and R > 0, there exists m⋆ =
O(N2/L2) log(1/δ), such that if m ≥ m⋆, then with probability at least 1 − δ over the
randomness of θ0 with step size η = R

m
√
2N(1+3ρ/

√
2)(L−1)

, we have

E[ℓ0−1
N (θ̃)|DN−1

1 ] ≤ O

(
LR((1 + 3ρ/

√
2))(L−1)

√
N

)
+O

(√
log(1/δ)

N

)
+∆,

whereR = O(
√
y⊤(JJ⊤)−1y), θ̃ is uniformly selected from {θ0, . . . ,θN−1}, DN−1

1 is the
sequence of data points sampled before the N -th iteration, and the expectation is computed
on the uniform selection of weight parameters θ̃ and the condition sampling ofN -th iteration
data examples.

The proof of Theorem 3 follows the proof of Theorem 2 and Lemma 12.
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E GENERALIZATION BOUND OF MEMORY-BASED METHOD

Recall that the representation of node vi at time t is computed by applying weight parameters on the
memory block si. Let us define θ = {W(1), . . . ,W(4)} as the parameters to optimize.

Representation computation. The final prediction of node vi is computed by fi(θ) = W(4)si(t)
and si(t) ∈ Rm is updated whenever node vi interacts with other nodes by

si(t) = σ
(
κ
(
W(1)s+i (h

t
i) +W(2)s+j (h

t
j) +W(3)eij(t)

))
,

where σ(·) is the activation function, hti is the latest timestamp that node vi interacts with other
nodes before time t, si(0) = W(0)xi, and s+i (t) = StopGrad(si(t)) is the memory block of node
vi at time t. We normalize hidden representation by κ = 1/

√
3 so that ∥si(t)∥22 does not grow

exponentially with time t. For weight parameters, we have W(1),W(2) ∈ Rm×m, W(3) ∈ Rm×d,
W(4) ∈ Rm as the trainable parameters, but W(0) ∈ Rm×d is non-trainable.

Gradient computation. Let us define Di(t) = diag(σ′(zi(t))) ∈ Rm×m as a diagonal matrix.
Then the gradient with respect to each weight matrix is computed by

∂f ti (θ)

∂W(1)
=
∂f ti (θ)

∂si(t)

∂si(t)

∂W(1)
= κ[s+i (hi(t))W

(4)Di(t)]
⊤ ∈ Rm×m,

∂f ti (θ)

∂W(2)
=
∂f ti (θ)

∂si(t)

∂si(t)

∂W(2)
= κ[s+j (hj(t))W

(4)Di(t)]
⊤ ∈ Rm×m,

∂f ti (θ)

∂W(3)
= κ[eij(t)W

(4)Di(t)]
⊤ ∈ Rm×d,

∂f ti (θ)

∂W(4)
= [si(t)]

⊤ ∈ Rm.

E.1 USEFUL LEMMAS

In the following, we first show that if the input weights are close, then given the same input data, the
output of each neuron with any activation function does not change too much. Please notice that we
do not need to consider the change of input memory blocks when using different weight parameters,
i.e., the difference between s+i (t) and s̃+i (t). This is because this lemma is used to show the linearity
of model output in the over-parameterized network after weight perturbation in Lemma 14, and it
does not affect the memory blocks due to stop gradient.

Lemma 13. Let ρ be the Lipschitz constant of the activation function and m is the hidden
dimension. Then with ω = O(1/ρ) and assuming θ̃ ∈ B(θ, ω), then we have ∥s̃i(t) −
si(t)∥2 = O(1) with probability at least 1− 6 exp(−m/2)− exp(−Ω(m)).

Please note that the smaller the distance ω, the closer the representation ∥s̃i(t)− si(t)∥2. In particu-
lar, according to the proof of Lemma 13, we have ∥s̃i(t)−si(t)∥2 ≤ O(ϵ) by selecting ω = O(ϵ/ρ)
for any small ϵ > 0. This conclusion will be later used in Lemma 17.

Proof of Lemma 13. We can upper bound ∥s̃i(t)− si(t)∥2 by

∥s̃i(t)− si(t)∥2 = ∥σ(κz̃i(t))− σ(κzi(t))∥2
≤ κρ∥z̃i(t)− zi(t)∥2
≤ κρ∥W̃(1)s+i (hi(t))−W(1)s+i (hi(t))∥2 + κρ∥W̃(2)s+j (hj(t))−W(2)s+j (hj(t))∥2
+ κρ∥W̃(3)eij(t)−W(3)eij(t)∥2

≤ κρ∥s+i (hi(t))∥2∥W̃
(1) −W(1)∥2 + κρ∥s+j (hj(t))∥2∥W̃

(2) −W(2)∥2
+ κρ ∥W̃(3) −W(3)∥2∥eij(t)∥2.
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Recall that θ̃ ∈ B(θ, ω) and our assumption that ∥eij(t)∥2 = 1, we have

∥s̃i(t)− si(t)∥2 ≤ κρω
(
∥s+i (hi(t))∥2 + ∥s+j (hj(t))∥2 + 1

)
= κρω (∥si(hi(t))∥2 + ∥sj(hj(t))∥2 + 1) ,

where the equality holds because s+i (t) = StopGrad(si(t)).

From Lemma 21, we know that ∥si(hi(t))∥2 = Θ(1), ∀i ∈ [N ]. As a result, we have

∥s̃i(t)− si(t)∥2 ≤ κρω · (2Θ(1) + 1).

Therefore, by selecting ω = 1/ρ, we have ∥s+i (t)− si(t)∥2 ≤ O(1).

Then, in the next lemma, we show that if the initialization of two sets of weight parameters are close,
the neural network output fi(θ) is almost linear with respect to its weight parameters.

Lemma 14. Let θ, θ̃ ∈ B(θ0, ω) with ω = O (1/ρ). Then, for any node vi ∈ V in the
graph, with probability at least 1− 6 exp(−m/2)− exp(−Ω(m))− 2/m we have

ϵlin = |f ti (θ̃)− f ti (θ)− ⟨∇f ti (θ), θ̃ − θ⟩| = O(1),

where f ti (θ) is the prediction on node vi at the t-th step.

Please note that the smaller the distance ω, the more the model output close to linear. In particular,
according to the proof of Lemma 14 and the proof of Lemma 13, we have ϵlin ≤ O(ϵ) by selecting
ω = O(ϵ/ρ) for any small ϵ > 0. This conclusion will be later used in Lemma 17.

Proof of Lemma 14. According to the forward and backward propagation rules as we recapped at
the beginning of this section, we have

|f ti (θ̃)− f ti (θ)− ⟨∇f ti (θ), θ̃ − θ⟩|

=
∣∣∣W̃(4)s̃i(t)−W(4)si(t)− (W̃(4) −W(4))si(t)

∣∣∣+ ∣∣∣W(4)Di(t)(W̃
(1) −W(1))s+i (hi(t))

∣∣∣
+
∣∣∣W(4)Di(t)(W̃

(2) −W(2))s+j (hj(t))
∣∣∣+ ∣∣∣W(4)Di(t)(W̃

(3) −W(3))eij(t)
∣∣∣

=
∣∣∣W̃(4)(s̃i(t)− si(t))

∣∣∣+ κ
∣∣∣W(4)Di(t)(W̃

(1) −W(1))s+i (hi(t))
∣∣∣

+ κ
∣∣∣W(4)Di(t)(W̃

(2) −W(2))s+j (hj(t))
∣∣∣+ κ

∣∣∣W(4)Di(t)(W̃
(3) −W(3))eij(t)

∣∣∣
≤

√
2∥s̃i(t)− si(t)∥2 +

√
2κ∥Di(t)∥2∥W̃(1) −W(1)∥2∥si(hi(t))∥2

+
√
2κ∥Di(t)∥2∥W̃(2) −W(2)∥2∥sj(hj(t))∥2 +

√
2κ∥Di(t)∥2∥W̃(3) −W(3)∥2∥eij(t)∥2.

Since the derivative of activation function is bounded, we have ∥Di(t)∥2 ≤ ρ and therefore

|f ti (θ̃)− f ti (θ)− ⟨∇f ti (θ), θ̃ − θ⟩| ≤
√
2∥s̃i(t)− si(t)∥2 +

√
2κρ∥W̃(1) −W(1)∥2∥si(hi(t))∥2

+
√
2κρ∥W̃(2) −W(2)∥2∥sj(hj(t))∥2 +

√
2κρ∥W̃(3) −W(3)∥2∥eij(t)∥2

=
(s)

√
2∥s̃i(t)− si(t)∥2 +

√
2κρ∥W̃(1) −W(1)∥2Θ(1)

+
√
2κρ∥W̃(2) −W(2)∥2Θ(1) +

√
2κρ∥W̃(3) −W(3)∥2,

where the equality (a) is due to ∥si(hi(t))∥2 = ∥si(hi(t))∥2 = Θ(1).

By Lemma 13 that ∥s̃i(t)− si(t)∥2 ≤ O(1), we know

|f ti (θ̃)− f ti (θ)− ⟨∇f ti (θ), θ̃ − θ⟩| ≤ O(1).
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Let us define
lossi(θ) = ψ(yifi(θ)), ψ(x) = log(1 + exp(−x)).

Then, the following lemma shows that lossi(θ) is almost a convex function of θ for any i ∈ [N ] if
the initialization of two sets of parameters are close.

Lemma 15. Let θ, θ̃ ∈ B(θ0, ω) with ω = O(1/ρ) for any i ∈ [N ], it holds that

lossi(θ̃) ≥ lossi(θ) + ⟨∇θlossi(θ), θ̃ − θ⟩ − ϵlin,

with probability at least 1− 6 exp(−m/2)− exp(−Ω(m))− 2/m where

ϵlin = |f ti (θ̃)− f ti (θ)− ⟨∇f ti (θ), θ̃ − θ⟩|

according to Lemma 14

Proof of Lemma 15. The proof is the same as the proof of Lemma 3.

Moreover, by the gradient computation, we know that the gradient of the neural network function
can be upper bounded.

Lemma 16. For any i ∈ [N ] with probability at least 1− 6 exp(−m/2)− exp(−Ω(m))−
2/m, it holds that∥∥∥∥ ∂fi(θ)∂W(k)

∥∥∥∥
2

,

∥∥∥∥∂lossi(θ)
∂W(k)

∥∥∥∥
2

≤


Θ
(√

2κρ
)

if k = 1, 2√
2κρ if k = 3

Θ (1) if k = 4

Proof of Lemma 16. Recall the definition of the gradient∥∥∥∥∂f ti (θ)∂W(1)

∥∥∥∥
2

= κ
∥∥∥s+i (hi(t))W(4)Di(t)

∥∥∥
2
≤

√
2κρ ·Θ(1),∥∥∥∥∂f ti (θ)∂W(2)

∥∥∥∥
2

= κ
∥∥∥s+j (hj(t))W(4)Di(t)

∥∥∥
2
≤

√
2κρ ·Θ(1),∥∥∥∥∂f ti (θ)∂W(3)

∥∥∥∥
2

= κ
∥∥∥eij(t)W(4)Di(t)

∥∥∥
2
≤

√
2κρ,∥∥∥∥∂f ti (θ)∂W(4)

∥∥∥∥
2

= ∥si(t)∥2 = Θ(1).

By the chain rule, we know that∥∥∥∥∂lossi(θ)
∂W(k)

∥∥∥∥
2

=

∥∥∥∥∂lossi(θ)
∂f ti (θ)

∂f ti (θ)

∂W(k)

∥∥∥∥
2

≤ |ψ′(yif
t
i (θ))|

∥∥∥∥∂f ti (θ)∂W(k)

∥∥∥∥
2

≤
∥∥∥∥∂f ti (θ)∂W(k)

∥∥∥∥
2

,

where the last inequality holds because |ψ′(yif
t
i (θ))| ≤ 1.

In the following, we show that the cumulative loss can be upper bounded under small changes on
the weight parameters.
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Lemma 17. For any ϵ, δ, R > 0, there exists

m⋆ = O
(
4ρ4R4

ϵ4

)
log(1/δ),

such that if m ≥ m⋆, then with probability at least 1− δ over the randomness of θ0, for any
θ⋆ ∈ B(θ0, Rm−1/2), with η = ϵ

4ρ2m and N = 8ρ2R2

ϵ2 , the cumulative loss can be upper
bounded by

1

N

N∑
i=1

lossi(θi−1) ≤
1

N

N∑
i=1

lossi(θ⋆) +O (ϵ) .

Proof of Lemma 17. Let us define θ⋆ as the optimal solution that could minimize the cumulative
loss over N epochs, where at each epoch only a single data point is used as defined in Algorithm 1

θ⋆ = argmin
θ∈B(θ0,ω)

∑N

i=1
lossi(θ).

Without loss of generality, let us assume the epoch loss lossi(θ) is computed on the i-th node. Then,
in the following, we try to show θ0,θ1, . . . ,θN−1 ∈ B(θ0, ω), where ω = ϵ/ρ.

First of all, it is clear that θ0 ∈ B(θ0, ω). Then, to show θn ∈ B(θ0, ω) for any n ∈ {1, . . . , N − 1}
and k ∈ {1, . . . , 4}, we use our previous conclusion on the upper bound of gradient in Lemma 16
and have

∥W(k)
N −W

(k)
0 ∥2 ≤

N∑
i=1

∥W(k)
i −W

(k)
i−1∥2

=

N∑
i=1

η

∥∥∥∥∥∂lossi−1(θi−1)

∂W
(k)
i−1

∥∥∥∥∥
2

≤


Θ
(
ηN

√
2κρ

)
if k = 1, 2

ηN
√
2κρ if k = 3,

ηN if k = 4,

≤ Θ(ηNρ).

By plugging in the choice of η = ϵ
4ρ2m and N = 8ρ2R2

ϵ2 , we have

∥W(k)
N −W

(k)
0 ∥2 ≤ 2R2

mϵ
·Θ(ρ).

Changing norm from ℓ2-norm to Frobenius-norm, we have

∥W(ℓ)
N −W

(ℓ)
0 ∥F ≤ 2R2

√
mϵ

·Θ(ρ). (4)

By plugging in the selection of hidden dimension m and the selection of κ = 1/
√
3, we have

∥W(ℓ)
N −W

(ℓ)
0 ∥F ≤ ϵ/ρ,

which means θ0, . . . ,θN−1 ∈ B(θ0, ω) for ω = ϵ/ρ.
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Then, our next step is to bound lossi(θi)− lossi(θ⋆). By Lemma 15, we know that

lossi+1(θi)− lossi+1(θ⋆) ≤ ⟨∇θlossi+1(θi),θi − θ⋆)⟩+ ϵlin

=

4∑
k=1

〈
∂lossi+1(θi)

∂W(k)
,W

(k)
i −W

(k)
⋆ )

〉
+ ϵlin

=
1

η

4∑
k=1

〈
W

(k)
i −W

(k)
i+1,W

(k)
i −W

(k)
⋆ )
〉
+ ϵlin

≤ 1

2η

4∑
k=1

(
∥W(k)

i −W
(k)
i+1∥

2
F + ∥W(k)

i −W
(k)
⋆ ∥2F − ∥W(k)

i+1 −W
(k)
⋆ ∥2F

)
+ ϵlin.

Then, our next step is to upper bound each term on the right hand size of inequality.

(1) According to the proof of Lemma 14, we have ϵlin ≤ O(ϵ) by selecting ω = O(ϵ/ρ).

(2) Recall that ∥W(k)
i −W

(k)
i+1∥2F could be upper bounded by

∥W(ℓ)
i −W

(ℓ)
i+1∥

2
F ≤ η2

∥∥∥∥∂lossi(θi)
∂W(ℓ)

∥∥∥∥2
F

≤ η2m

∥∥∥∥∂lossi(θi)
∂W(ℓ)

∥∥∥∥2
2

≤ mη2 ×Θ
(
ρ2
)
.

(3) By finite sum ∥W(ℓ)
i −W

(ℓ)
⋆ ∥2F − ∥W(ℓ)

i+1 −W
(ℓ)
⋆ ∥2F for i = 1, . . . , N , we have

1

N

N∑
i=1

(∥W(ℓ)
i −W

(ℓ)
⋆ ∥2F − ∥W(ℓ)

i+1 −W
(ℓ)
⋆ ∥2F) =

1

N
∥W(ℓ)

0 −W
(ℓ)
⋆ ∥2F − 1

N
∥W(ℓ)

N+1 −W
(ℓ)
⋆ ∥2F︸ ︷︷ ︸

≤0

≤ R2

mN
,

where the inequality is due to θ⋆ ∈ B(θ0, Rm−1/2).

Finally, by combining the results above, we have

1

N

N∑
i=1

lossi(θi−1)−
1

N

N∑
i=1

lossi(θ⋆) ≤
4R2

2mηN
+ 4Θ

(mη
2

× ρ2
)
+O(ϵ).

By selecting η = ϵ
4ρ2m and N = 8ρ2R2

ϵ2 , we have

4R2

2mηN
=

4R2

2m
× 4ρ2m

ϵ
× ϵ2

8ρ2R2
= ϵ

4Θ
(mη

2
× ρ2

)
= Θ

(
2m · ϵ

4ρ2m
· ρ2
)

and therefore
1

N

N∑
i=1

lossi(θi−1)−
1

N

N∑
i=1

lossi(θ⋆) ≤ O(ϵ)

By plugging in the selection of ϵ = 4ρR√
2N

, we have the following corollary. Please note that the

last term is O(4Rρ/
√
N) instead of O(4Rρ/

√
2N) because big-O was used in GNN’s and RNN’s

result to hide the constant
√
2 in denominator.
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Corollary 3. For any δ,R > 0, there exists m⋆ = O(N2/L2) log(1/δ), such that
if m ≥ m⋆, then with probability at least 1 − δ over the randomness of θ0, for any
θ⋆ ∈ B(θ0, Rm−1/2), with η = R

m
√
2Nρ

, the cumulative loss can be upper bounded by

1

N

N∑
i=1

lossi(θi−1) ≤
1

N

N∑
i=1

lossi(θ⋆) +O
(
4ρR√
N

)
.

In the following, we present the expected 0-1 error bound, which consists of two terms: (1) the ex-
pected 0-1 error with the neural tangent random feature function and (2) the standard large-deviation
error term.

Lemma 18. For any δ ∈ (0, 1/e] and R > 0, there exists m⋆ = O(N2/L2) log(1/δ), such
that if m ≥ m⋆, then with probability at least 1− δ over the randomness of θ0 with step size
η = R

m
√
2Nρ

Eθ̃[ℓ
0−1
N (θ̃)|DN−1

1 ] ≤ 4

N
inf

f∈F(θ0,R)

N∑
i=1

ψ(yifi) +O

(√
log(1/δ)

N

)
+O

(
4Rρ√
N

)
+∆,

where F(θ0, R) is the neural tangent random feature function class, θ̃ is uniformly selected
from {θ0, . . . ,θN−1}, DN−1

1 is the sequence of data points sampled before the N -th itera-
tion, and the expectation is computed on the uniform selection of weight parameters θ̃ and
the condition sampling of N -th iteration data examples.

Proof of Lemma 18. The proof follows the proof of Lemma 6.

E.2 PROOF OF THEOREM 4

In the following, we show that the expected error is bounded by
√
y⊤(JJ⊤)−1y and is proportional

to 4ρ/
√
N .

Theorem 4 (Memory-based TGNN). For any δ ∈ (0, 1/e] and R > 0, there exists m⋆ =
O(N2/L2) log(1/δ) such that if m ≥ m⋆, then with probability at least 1 − δ over the
randomness of θ0 with step size η = R

m
√
2Nρ

Eθ̃[ℓ
0−1
N (θ̃)|DN−1

1 ] ≤ O
(
4Rρ√
N

)
+O

(√
log(1/δ)

N

)
+∆

whereR = O(
√
y⊤(JJ⊤)−1y), θ̃ is uniformly selected from {θ0, . . . ,θN−1}, DN−1

1 is the
sequence of data points sampled before the N -th iteration, and the expectation is computed
on the uniform selection of weight parameters θ̃ and the condition sampling ofN -th iteration
data examples.

The proof of Theorem 4 follows the proof of Theorem 2.
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F USEFUL LEMMAS

Lemma 19. Let us define W(ℓ) ∈ Rm×m, ∀ℓ ∈ {2, . . . , L}, where each element of W(ℓ)

is initialized by [W(ℓ)]ij ∼ N (0, 1/m), ∀i, j ∈ [m]. Then, with probability at least 1 −
2 exp(−m/2), we have ∥W(ℓ)∥2 ≤ 3.

Proof. According to Theorem 4.4.5 of Vershynin (2018), we know that given an m × n matrix A
whose entries are independent standard normal variables, then for every t ≥ 0, with probability at
least 1 − 2 exp(−t2/2), we have λmax(A) ≤

√
m +

√
n + t. We conclude the proof by choosing

t =
√
m and n = m.

Lemma 20. The ℓ2-norm of weight parameters in the last layer W(L) is bounded by
√
2,

i.e., we have ∥W(L)∥2 ≤
√
2.

Proof. Please refer to the proof of Lemma 8 in Zhu et al. (2022).

Lemma 21. For any ℓ ∈ {0, 1, . . . , L − 1} and xi ∼ PX , then for ReLU, LeakyReLU,
Sigmoid, and Tanh, we have ∥h(ℓ)

i ∥22 = Θ(1) with probability at least 1 − ℓ exp(−Ω(m))

over {W(1), . . . ,W(ℓ)}.

Proof. The proof follows the proof the Lemma 2 in Zhu et al. (2022) by expending their results
from feed-forward network to graph neural network, which requires taking the node dependency
into consideration.

We prove ∥h(ℓ)
i ∥22 = Θ(1) by showing the following two inequalities hold simultaneously

EW(ℓ)∥h(ℓ)
i ∥22 ≥ min

i∈V
EW(ℓ)∥h(ℓ)

i ∥22 ≥ Ω(1)

EW(ℓ)∥h(ℓ)
i ∥22 ≤ max

i∈V
EW(ℓ)∥h(ℓ)

i ∥22 ≤ O(1)
(5)

which implies EW(ℓ)∥h(ℓ)
i ∥22 = Θ(1).

Then by using Bernstein’s inequality to the sum of m i.i.d. random variables in ∥h(ℓ)
i ∥22 =∑m

i=1(h
(ℓ)
ik )2, we have

1

2
EW(ℓ)

[
∥h(ℓ)

i ∥22
]
≤ ∥h(ℓ)

i ∥22 ≤ 3

2
EW(ℓ)

[
∥h(ℓ)

i ∥22
]
,

which implies ∥h(ℓ)
i ∥22 = Θ(1).

According to Assumption 1, we know that ∥hi∥22 = 1 for all i ∈ V , therefore the results hold for
ℓ = 0.

Then, we assume the result holds for ℓ− 1, i.e.,

min
i∈V

EW(ℓ)∥h(ℓ−1)
i ∥22 ≥ Ω(1), max

i∈V
EW(ℓ)∥h(ℓ−1)

i ∥22 ≤ O(1)

with probability at least 1− (ℓ− 1) exp(−Ω(m)).

Our goal is to show the result also holds for ℓ by conditioning on the event of W(1), . . . ,W(ℓ−1)

and studying the bound over W(ℓ).
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For the ease of presentation, let us denote wk as the k-th row of W(ℓ) where wk ∼ N (0, Im/m)

and h(ℓ)ik represents the j-th element of h(ℓ)
i . By the forward propagation rule of GNN, we have

EW(ℓ)

[
∥h(ℓ)

i ∥22
]
=

m∑
k=1

Ewk

[
(h

(ℓ)
ik )2

]
=

m∑
k=1

Ewk

[(
σℓ(⟨wk, z̃

(ℓ−1)
i ⟩) + αℓ−1[h

(ℓ−1)
i ]j

)2]

=

m∑
k=1

Ewk

[
σ2
ℓ (⟨wk, z̃

(ℓ−1)
i ⟩)

]
+ α2

ℓ−1∥h
(ℓ−1)
i ∥22 +

m∑
k=1

2αℓ−1Ewk

[
σℓ(⟨wk, z̃

(ℓ−1)
i ⟩) · h(ℓ−1)

ij

]
= m · E

w∼N (0, 1
m∥z̃(ℓ−1)

i ∥2
2)
[σ2

ℓ (w)] + α2
ℓ−1∥h

(ℓ−1)
i ∥22 + 2αℓ−1Ew∼N (0, 1

m∥z̃(ℓ−1)
i ∥2

2)
[σℓ(w)]

(
m∑

k=1

h
(ℓ−1)
ik

)
.

By Lemma 22, we know that if σℓ−1(·) is ReLU, LeakyReLU, Sigmoid, or Tanh, we have

m · E
w∼N (0, 1

m∥z̃(ℓ−1)
i ∥2

2)
[σ2

ℓ (w)] = m×Θ

(
1

m
∥z̃(ℓ−1)

i ∥22
)

= Θ
(
∥z̃(ℓ−1)

i ∥22
)
,

which implies

max
i∈V

m · E
w∼N (0, 1

m∥z̃(ℓ−1)
i ∥2

2)
[σ2

ℓ (w)] ≤ max
i∈V

O(τ · ∥h(ℓ−1)
i ∥22),

min
i∈V

m · E
w∼N (0, 1

m∥z̃(ℓ−1)
i ∥2

2)
[σ2

ℓ (w)] ≥ min
i∈V

Ω(τ ′ · ∥h(ℓ−1)
i ∥22).

If σℓ−1(·) is ReLU or LeakyReLU,

0 ≤ E
w∼N (0, 1

m∥z̃(ℓ−1)
i ∥2

2)
[σℓ(w)] ≤ E

w∼N (0, 1
m∥z̃(ℓ−1)

i ∥2
2)
[ReLU(w)]

=
2

5
√
m
∥z̃(ℓ−1)

i ∥2.

Besides, according to the relationship between ℓ1 norm and ℓ2 norm, we have

−
√
m∥h(ℓ−1)

i ∥2 ≤

(
m∑

k=1

h
(ℓ−1)
ik

)
≤

√
m∥h(ℓ−1)

i ∥2.

Therefore, we know that

−2

5
∥h(ℓ−1)

i ∥2∥z̃(ℓ−1)
i ∥2 ≤ E

w∼N (0, 1
m∥z̃(ℓ−1)

i ∥2
2)
[σℓ(w)]

(
m∑

k=1

h
(ℓ−1)
ik

)

≤ 2

5
∥h(ℓ−1)

i ∥2∥z̃(ℓ−1)
i ∥2,

which implies

max
i∈V

E
w∼N (0, 1

m∥z̃(ℓ−1)
i ∥2

2)
[σℓ(w)]

(
m∑

k=1

h
(ℓ−1)
ik

)
≤ 2τ

5
max
i∈V

∥h(ℓ−1)
i ∥22,

min
i∈V

E
w∼N (0, 1

m∥z̃(ℓ−1)
i ∥2

2)
[σℓ(w)]

(
m∑

k=1

h
(ℓ−1)
ik

)
≥ −2τ

5
min
i∈V

∥h(ℓ−1)
i ∥22.

By plugging the results inside, we have

max
i∈V

EW(ℓ)

[
∥h(ℓ)

i ∥22
]
≤ O

(
τ ·max

j∈V
∥h(ℓ−1)

j ∥22
)
+

(
1 +

4τ

5
αℓ−1

)
max
i∈V

∥h(ℓ−1)
i ∥22 ≤ O(1),

min
i∈V

EW(ℓ)

[
∥h(ℓ)

i ∥22
]
≥ Ω

(
τ ′ ·min

j∈V
∥h(ℓ−1)

j ∥22
)
+

(
1− 4τ

5
αℓ−1

)
min
i∈V

∥h(ℓ−1)
i ∥22 ≥ Ω(1),
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which implies EW(ℓ)

[
∥h(ℓ)

i ∥22
]
= Θ(1) if σℓ−1(·) is ReLU or LeakyReLU.

If σℓ−1 is Sigmoid or Tanh, we have

E
w∼N (0, 1

m∥z̃(ℓ−1)
i ∥2

2)
[σℓ(w)] = 0.

By plugging the results inside, we have

max
i∈V

EW(ℓ)

[
∥h(ℓ)

i ∥22
]
≤ O

(
τ ·max

j∈V
∥h(ℓ−1)

j ∥22
)
+max

i∈V
∥h(ℓ−1)

i ∥22 ≤ O(1),

min
i∈V

EW(ℓ)

[
∥h(ℓ)

i ∥22
]
≥ O

(
τ ′ ·min

j∈V
∥h(ℓ−1)

j ∥22
)
+min

i∈V
∥h(ℓ−1)

i ∥22 ≥ Ω(1),

which implies EW(ℓ)

[
∥h(ℓ)

i ∥22
]
= Θ(1) if σℓ−1(·) is Sigmoid or Tanh.

Lemma 22. Let us denote Im as a identity matrix of size m×m.

A(1) = G(1) = XX⊤,

A(2) = G(2) = 2Ew∼N (0,Id)[σ1(
√
Ã(1)w)σ1(

√
Ã(1)w)⊤], Ã(1) = P

√
A(1)(P

√
A(1))⊤,

G(ℓ) = 2Ew∼N (0,Im)[σℓ−1(
√
Ã(ℓ−1)w)σℓ−1(

√
Ã(ℓ−1)w)⊤], Ã(ℓ−1) = P

√
A(ℓ−1)(P

√
A(ℓ−1))⊤,

A(ℓ) = G(ℓ) + αℓ−1 ·A(ℓ−1).

We know that G(ℓ)
ii = Θ(Ã

(ℓ−1)
ii ), where G(ℓ)

ii is the i-th row and i-th column of G(ℓ) and
Ã

(ℓ−1)
ii is the i-th row and i-th column of Ã(ℓ−1).

Proof. ReLU. When σℓ−1 is ReLU, we have

G
(ℓ)
ii = E

w∼N (0,Ã
(ℓ−1)
ii )

[σℓ−1(w)
2]

=

∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)
max(0, x)2dx

=

∫ ∞

0

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)
x2dx

= Ã
(ℓ−1)
ii .

LeakyReLU. When σℓ−1 is LeakyReLU, we have

G
(ℓ)
ii = E

w∼N (0,Ã
(ℓ−1)
ii )

[σℓ−1(w)
2]

=

∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)
max(ηx, x)2dx

=

∫ ∞

0

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)
x2dx+

∫ 0

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)
η2x2dx

= (1 + η2)Ã
(ℓ−1)
ii .
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Sigmoid. When σℓ−1 is Sigmoid, we can upper bound G(ℓ)
ii by

G
(ℓ)
ii = E

w∼N (0,Ã
(ℓ−1)
ii )

[σℓ−1(w)
2]

=

∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)
Sigmoid(x)2dx

≤
∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)(
1

4
− exp(−x2/4)

)
dx

=
1

2
− 1

2

√
1 + Ã

(ℓ−1)
ii /2

≤ Ã
(ℓ−1)
ii /8

and lower bound G(ℓ)
ii by

G
(ℓ)
ii = E

w∼N (0,Ã
(ℓ−1)
ii )

[σℓ−1(w)
2]

=

∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)
Sigmoid(x)2dx

≥
∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)(
1

4
− exp(−x2/8)

)
dx

=
1

2
− 1

2

√
1 + Ã

(ℓ−1)
ii /4

≥ 1− (1 +Gmax/4)
−1/2

2Gmax
Ã

(ℓ−1)
ii .

Tanh. When σℓ−1 is Tanh, we can upper bound G(ℓ)
ii by

G
(ℓ)
ii = E

w∼N (0,Ã
(ℓ−1)
ii )

[σℓ−1(w)
2]

=

∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)
Tanh(x)2dx

≤
∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)(
1− exp(−x2)

)
dx

= 2− 2√
1 + 2Ã

(ℓ−1)
ii

≤ 2Ã
(ℓ−1)
ii

47



Under review as a conference paper at ICLR 2024

and lower bound G(ℓ)
ii by

G
(ℓ)
ii = E

w∼N (0,Ã
(ℓ−1)
ii )

[σℓ−1(w)
2]

=

∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)
Tanh(x)2dx

≥
∫ ∞

−∞

2√
2πÃ

(ℓ−1)
ii

exp

(
− x2

2Ã
(ℓ−1)
ii

)(
1− exp(−x2/2)

)
dx

= 2− 2√
1 + Ã

(ℓ−1)
ii

≥ 2(1− (1 +Gmax)
−1/2)

Gmax
Ã

(ℓ−1)
ii .

Proposition 1. Let h0, ..., hn−1 be the ensemble of hypothesis generated by an arbitrary online al-
gorithm working with a loss satisfying ℓ ∈ [0, 1]. Let us define Xt−1

1 = {(x1, x1), ..., (xt−1, yt−1)}
a sequence of samples from 1-st to (t− 1)-th iteration. Then, for any δ ∈ (0, 1], we have

P

(
1

n

n∑
t=1

E
[
ℓ(ht−1(xt), yt)|Xt−1

1

]
− 1

n

n∑
t=1

ℓ(ht−1(xt), yt) ≥
√

2

n
ln

1

δ

)
≤ δ,

where the expectation is computed on random sample (xt, yt) condition on the previous sequence
Xt−1

1 = {(x1, x1), ..., (xt−1, yt−1)}

Proof. This proof extends the Proposition 1 of Cesa-Bianchi et al. (2004) from i.i.d. data to time-
series data. Our definition on time-series data follows Kuznetsov & Mohri (2016).

For each t = 1, . . . , n set

Vt−1 = E
[
ℓ(ht−1(xt), yt)|Xt−1

1

]
− ℓ(ht−1(xt), yt).

We have Vt−1 ∈ [−1, 1] since loss ℓ ∈ [0, 1].

By taking expectation condition on the previous sequence Xt−1
1 = {(x1, x1), ..., (xt−1, yt−1)}, we

have
E[Vt−1|Xt−1

1 ] = E
[
ℓ(ht−1(xt), yt)|Xt−1

1

]
− E

[
ℓ(ht−1(xt), yt)|Xt−1

1

]
= 0

Finally, we conclude our proof by using Hoeffding-Azuma inequality to a sequence of dependent
random variables {Vt−1}nt=1:

P

(
1

n

n∑
t=1

Vt−1 − E

[
1

n

n∑
t=1

Vt−1

∣∣∣ Xt−1
1

]
≥
√

2

n
ln

1

δ

)
≤ δ.
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G GRADIENT COMPUTATION

Let us denote iℓ as the i-th node at the ℓ-th layer. By the definition of the forward propagation rule,
we have i = iL−1 = iL. For notation simplicity, let us define

z̃
(ℓ−1)
iℓ

=
∑

iℓ−1∈N (iℓ)

Piℓ,iℓ−1
h
(ℓ−1)
iℓ−1

, ∀ℓ ∈ [L− 1]

and Di,ℓ = diag(σ′
ℓ(z

(ℓ)
i )) ∈ Rdℓ×dℓ is a diagonal matrix.

When ℓ = L, we know that the gradient with respect to W(L) is computed as

∂fiL(θ)

∂W(L)
= h

(L−1)
iL

∈ R1×dL−1 . (6)

When ℓ = L− 1, by the chain rule, we know the gradient with respect to W(L−1) is computed as

∂fiL(θ)

∂W(L−1)
=
∂fiL(θ)

∂h
(L−1)
iL

∂h
(L−1)
iL

∂W(L−1)

= [W(L)D
(L−1)
iL−1

]⊤z̃
(L−2)
iL−1

∈ RdL−1×dL−2 .

When ℓ = L− 2, by the chain rule, we know the gradient with respect to W(L−2) is computed as

∂fiL(θ)

∂W(L−2)
=
∂fiL(θ)

∂h
(L−1)
iL−1

∑
iL−2∈N (iL−1)

∂h
(L−1)
iL−1

∂h
(L−2)
iL−2

∂h
(L−2)
iL−2

∂W(L−2)

=
(a)

∑
iL−2∈N (iL−1)

PiL−1,iL−2

[
W(L)

(
D

(L−1)
iL−1

W(L−1) + αL−2Im

)
D

(L−2)
iL−2

]⊤
z̃
(L−3)
iL−2

∈ RdL−2×dL−3 ,

where the equality (a) holds because i = iL−1 = iL by definition.

When ℓ = L− 3, by the chain rule, we know the gradient with respect to W(L−3) is computed as

∂fiL(θ)

∂W(L−3)
=
∂fiL(θ)

∂h
(L−1)
iL−1

∑
iL−2∈N (iL−1)

∂h
(L−1)
iL−1

∂h
(L−2)
iL−2

∑
iL−2∈N (iL−1)

∂h
(L−2)
iL−2

∂h
(L−3)
iL−3

∂h
(L−3)
iL−3

∂W(L−3)

=
∑

iL−2∈N (iL−1)

PiL−1,iL−2

∑
iL−3∈N (iL−2)

PiL−2,iL−3

[
W(L)

(
D

(L−1)
iL−1

W(L−1) + αL−2Im

)(
D

(L−2)
iL−2

W(L−2) + αL−3Im

)
D

(L−3)
iL−3

]⊤
z̃
(L−4)
iL−3

∈ RdL−3×dL−4 .

For notation simplicity, let us define

Gℓ(iℓ, iℓ+1, . . . , iL−1)

=
[
W(L)

(
D

(L−1)
iL−1

W(L−1) + αL−2Im

)
. . .
(
D

(ℓ+1)
iℓ+1

W(ℓ+1) + αℓIm

)
D

(ℓ)
iℓ

∈ R1×dℓ

]⊤
z̃
(ℓ−1)
iℓ

∈ Rdℓ×dℓ−1 .

By recursion, we know that for ℓ = 1, . . . , L− 2, the gradient with respect to W(ℓ) is computed by

∂fi(θ)

∂W(ℓ)
=

∑
iL−2∈N (iL−1)

∑
iL−3∈N (iL−2)

. . .
∑

iℓ∈N (iℓ+1)

PiL−1,iL−2
PiL−2,iL−3

. . . Piℓ+1,iℓG
ℓ(iℓ, iℓ+1, . . . , iL−1).
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H DETAILS ON RELATED WORKS

H.1 TEMPORAL GRAPH LEARNING

Figure 2 is an illustration of temporal graph, where each node has node feature xi, each node pair
could have multiple temporal edges with different timestamps t and edge features eij(t). We classify
the existing temporal graph learning methods into memory-based (e.g., JODIE), GNN-based (e.g.,
TGAT, TGSRec), memory&GNN-based (e.g., TGN, APAN, and PINT), RNN-based (e.g., CAW),
and GNN&RNN-based (e.g., DySAT) methods. We briefly introduce the most representative method
for each category and defer more TGL methods to Appendix H.4.

Memory-based method. JODIE Kumar et al. (2019) maintains a memory block for each node and
updates the memory block by an RNN upon the happening of each interaction. Let us denote si(t)
as the memory of node vi at time t, denote hti as the timestamp that node vi latest interacts with
other nodes before time t. When node vi interacts with other node at time t, JODIE updates the
memory-block of node vi by

si(t) = RNN
(
s+i (h

t
i), (s

+
j (h

t
j), eij(t))

)
,

where s+i (t) = StopGrad(si(t)) is applying stop gradient on si(t) and the stop gradient is required
to reduce the computational cost. Finally, si(t) will be used for the downstream tasks. Maintaining
the memory block allows each node to have access to the full historical interaction information of
its temporal graph neighbors. However, the performance might be sub-optimal since RNN cannot
update the memory blocks due to the stop gradient operation.

GNN-based method. TGAT Xu et al. (2020a) first constructs the temporal computation graph,
where all the paths that from the root node to the leaf nodes in the computation graph respect the
temporal order. Then, TGAT recursively computes the hidden representation of each node by

h
(ℓ)
i (ti) = AGGℓ

({
(h

(ℓ−1)
j (tj), eij(tj)) | j ∈ N (i, ti)

})
,

where h
(0)
i = xi is the node feature and TGAT uses self-attention for aggregation. Finally, the

final representation h
(L)
i (t) = MLP(h(L−1)

i (t)) will be used for downstream tasks. TGSRec Fan
et al. (2021) proposes to advance self-attention by collaborative attention, such that self-attention can
simultaneously capture collaborative signals from both users and items, as well as consider temporal
dynamics inside the sequential pattern.

Memory&GNN-based method. TGN Rossi et al. (2020) is a combination of memory- and GNN-
based methods. TGN first uses memory blocks to capture all temporal interactions (similarly to
JODIE) then applies GNN on the latest representation of the memory blocks of each node to capture
the spatial information (similarly to TGAT). Different from pure GNN-based methods, TGN uses
h
(0)
i (ti) = si(ti) instead. APAN Wang et al. (2021b) flips the order of GNN and memory blocks in

TGN by first computing the node representations for both nodes that are involved in an interaction,
then using these node representations to update the memory blocks with RNN modules. PINT Souza
et al. (2022) uses an injective aggregation and pre-computed positional encoding to improve the
expressive power of TGN.

RNN-based method. CAW Wang et al. (2021c) proposes to first construct a set of sequential tem-
poral events as Si(t) = {v1, . . . ,vL−1}, where each temporal event is generated by initiating a
number of temporal walks on the temporal graph starting at node vi at time t. Then, the frequency
of the node that appears in the temporal walks is used as the representation of each event vℓ. Finally,
RNN is used to aggregate all temporal events by

hℓ = RNN(hℓ−1,vℓ), ∀ℓ ∈ [L− 1],h0 = 0.

To this end, the final representation hL = MLP(hL−1) is used for downstream tasks.

GNN&RNN-based method. DySAT Sankar et al. (2020) first pre-processes the temporal graph into
multiple snapshot graphs by splitting all timestamps into multiple time slots and merging all edges
in each time slot. After that, DySAT applies GNN on each snapshot graph independently to extract
the spatial features and applies RNN on the output of GNN to extract spatial features at different
timestamps to capture the temporal dependencies of snapshot graphs.
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H.2 EXPRESSIVE POWER OF TGL ALGORITHMS

Souza et al. (2022); Gao & Ribeiro (2022) study the expressive power of temporal graph neural
networks through the lens of Weisfeiler-Lehman isomorphism test (1-WL test):

• Souza et al. (2022) show that 1 using injective aggregation in temporal graph neural net-
works is essentially important to achieve the same expressive power as applying 1-WL test
on temporal graph and 2 memory blocks augmented TGL algorithms (e.g., JODIE Kumar
et al. (2019) and TGN Rossi et al. (2020)) are strictly more powerful than the TGL algo-
rithms that solely relying on local message passing (e.g., TGAT Xu et al. (2020a)), unless
the number of message passing steps is large enough.

• Gao & Ribeiro (2022) cast existing temporal graph methods into time-and-graph (i.e., GNN
and RNN are intertwined to represent the temporal evolution of node attributes in the graph)
and time-then-graph (i.e., first use RNN then use GNN). They show that time-then-graph
representations have an expressivity advantage over time-and-graph representations.

On the other hand, Gao et al. (2023); Bouritsas et al. (2022); Li et al. (2020); Srinivasan & Ribeiro
(2019); Wang et al. (2022); Abboud et al. (2020) also study the expressive power via isomorphism
test on static graph, which is not the main focus of this paper.

H.3 GENERALIZATION ANALYSIS ON GRAPH REPRESENTATION LEARNING

In recent years, a large number of papers are working on the generalization of GCNs using different
measurements. In particular, existing works aims at providing an upper bound on the difference
between training error and evaluation error.

• Uniform stability considers how the perturbation of training examples would affect the
output of an algorithm. Verma & Zhang (2019) analyze the uniform stability of the single-
layer GCN model and derives a generalization bound that depends on the largest absolute
eigenvalue of its graph convolution filter and the number of training iterations. Zhou &
Wang (2021) generalize Verma & Zhang (2019) to 2-layer GCN. Cong et al. (2021) study
the generalization ability of multiple GNN structures via transductive uniform stability.
They show that the generalization gap of GCN depends on the node degree and it increases
exponentially with the number of layers and the number of training iterations.

• Rademacher complexity considers how the perturbation of weight parameters would affect
the output of an algorithm. Garg et al. (2020) consider a special case of GCN structure
where all layers are sharing the same weight matrix. They show that the generalization
error grows proportional to the maximum node degree, the number of layers, and the hidden
feature dimension. Oono & Suzuki (2020) study the transductive Rademacher complexity
of multi-scale GNN (e.g., jumping knowledge network Xu et al. (2018)) trained with a
gradient boosting algorithm. Du et al. (2019) study the Rademacher complexity under
an over-parameterized regime using the Neural Tangent Kernel (NTK) of an infinite-wide
single-layer GNN.

• PAC-Bayesian considers how the perturbation of weight parameters would affect the output
of an algorithm. Liao et al. (2020) show that the maximum node degree and spectral norm
of the weights govern the generalization bounds. In practice, the PAC-Bayesian bound
in Liao et al. (2020) has a tighter dependency on the maximum node degree and the maxi-
mum hidden dimension than the Rademacher complexity bound in Garg et al. (2020).

• Xu et al. (2020c) derive a PAC-learning sample complexity bound that decreases with better
alignment.

• Maskey et al. (2022) study uniform convergence generalization on the random graph.
• Kuznetsov & Mohri (2015; 2016) study the generalization of non-stationary time series,

but they did not take the neural architecture design into consideration.

Most of the aforementioned generalization measurements are data-label independent and only de-
pendent on architecture of a model (e.g., number of layers and hidden dimension), which cannot
fully explain why one method is better than another.
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In this paper, we study the generalization error of multiple temporal graph learning algorithms under
the over-parameterized regime, but without the infinite-wide assumption. Our analysis establishes a
strong connection between the upper bound of evaluation error and feature-label alignment (FLA).
FLA has been previously appeared in the generalization analysis of over-parameterized neural net-
works in Arora et al. (2019); Du et al. (2019); Cao & Gu (2019), which could reflect how well the
representation of different algorithms aligned with its ground truth labels. We extend the general-
ization analysis to multi-layer GNN, multi-steps RNN, and memory-based temporal graph learning
methods, as well as propose to use the FLA as a proxy of expressive power.

H.4 MORE TEMPORAL GRAPH LEARNING ALGORITHMS

In the following, we review more existing temporal graph learning algorithms:

• MeTA Wang et al. (2021d) proposes data augmentation to overcome the over-fitting issue
in temporal graph learning. More specifically, they generate a few graphs with different
data augmentation magnitudes and perform the message passing between these graphs to
provide adaptively augmented inputs for every predictions.

• TCL Wang et al. (2021a) proposes to first use a transformer to separately extract the tempo-
ral neighborhood representations associated with the two interaction nodes, then utilizes a
co-attentional transformer to model inter-dependencies at a semantic level. To boost model
performance, contrastive learning is used to maximize the mutual information between the
predictive representations of two future interaction nodes.

• TNS Wang et al. (2021e) proposes a temporal-aware neighbor sampling strategy that can
provide an adaptive receptive neighborhood for each node at any time.

• LSTSR Chi et al. (2022) proposes Long Short-Term Preference Modeling for Continuous-
Time Sequential Recommendation to capture the evolution of short-term preference under
dynamic graph.

• DyRep Trivedi et al. (2019) uses RNNs to propagate messages in interactions to update
node representations.

• DynAERNN Goyal et al. (2018) uses a fully connected layer to first encode the network
representation, then pass the encoded features to the RNN, and use the fully connected
network to decode the future network structure.

• VRGNN Hajiramezanali et al. (2019) generalizes variational graph auto-encoder to tem-
poral graphs, which makes priors dependent on historical dynamics and captures these
dynamics using RNN.

• EvolveGCN Pareja et al. (2020) uses RNN to estimate GCN parameters for future snap-
shots.

• DDGCL Tian et al. (2021) proposes a debiased GAN-type contrastive loss as the learning
objective to correct the sampling bias that occurred in the negative sample construction
process of temporal graph learning.

I FURTHER DISCUSSIONS AND CLARIFICATIONS ON IMPORTANT DETAILS

I.1 DISCUSSION ON CONSIDERING FEATURE-LABEL ALIGNMENT AS A PROXY OF
EXPRESSIVENESS

In the following, we provide a high-level intuition on why we treat feature-label alignment as a
proxy of expressiveness. Let us consider loss function as logistic loss and our objective function as

L(θ) =
N∑
i=1

ψ(yifi(θ)), ψ(x) = log(1 + exp(−x)).

Since ψ(x) is a monotonically decreasing function, minimizing L(θ) can be achieved by finding θ
that maximizing L′(θ) =

∑N
i=1 yifi(θ).
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By Taylor expanding the network function with respect to the weights around its initialization θ0,
we have

fi(θ0 +∆θ) ≈ fi(θ0) + ⟨∇θfi(θ0),∆θ⟩,
which implies

L′(θ0 +∆θ) =

N∑
i=1

yifi(θ0 +∆θ) ≈
N∑
i=1

yifi(θ0) +

N∑
i=1

yi⟨∇θfi(θ0),∆θ⟩.

The above equation tells us that we can minimize L′(θ0 +∆θ) by looking for the perturbation ∆θ

on the weight parameters that maximize the second term
∑N

i=1 yi⟨∇θfi(θ0),∆θ⟩. In other words,
we are looking for ∆θ ∈ R|θ| such that

J∆θ = Cy, where J = [vec(∇θfi(θ0))]
N
i=1 ∈ RN×|θ| and C > 0. (7)

The larger the constant C, the smaller the logistic loss. Here we just think of it as a constant that is
the same for all methods.

Finally, let us define the singular value decomposition of J as J = PΛQ⊤ where P ∈ RN×N ,Q ∈
R|θ|×|θ| are orthonormal matrices that each column vectors are singular vectors, Λ ∈ RN×|θ| is
the singular value matrix. In the over-parameterized regime, we assume |θ| ≫ N and the smallest
singular value of (JJ⊤)−1 is always positive Nguyen (2021).

Then, the connection between ∥∆θ∥22 and feature-label alignment is derived by

∥∆θ∥22 = C2∥(QΛ−1P⊤)y∥22
= C2y⊤(QΛ−1P⊤)⊤(QΛ−1P⊤)y

= C2y⊤(PΛ−1Q⊤QΛ−1P⊤)y

= C2y⊤(JJ⊤)−1y,

which means ∥∆θ∥2 = O(
√

y⊤(JJ⊤)−1y). One can also refer to the proof the Theorem 2 for
more details.

It is natural to think a model is expressive if only small perturbations on the random initialized
weight parameters are required to achieve low error.

Besides, feature-label alignment is closely related to both the convergence and the generalization
ability of neural networks Du et al. (2018); Arora et al. (2019). For example:

• Connection to convergence analysis. Du et al. (2018) show that when training over-
parameterized neural networks with square loss ℓ(θ) =

∑N
i=1(yi − fi(θ))

2, the square
loss at the k-th iteration ℓ(θk) can be upper bounded by

ℓ(θk) ≤
(
1− ηλmin(K

∞)

4

)k

ℓ(θ0),

where η is the learning rate, λmin(K
∞) is the smallest eigenvalue of K∞, and K∞ is the

neural tangent kernel of an infinite-wide two-layer ReLU network, i.e., we have K∞ =
JJ⊤ as |θ| → ∞. From this equation, we know that the larger the λmin(K

∞), the faster
the convergence speed. Interestingly, λmin(K

∞) is in fact closely related to the feature-
alignment term because

y⊤(K−1)y ≤ ∥y∥22
λmin(K)

⇐ 1

λmin(K)
= λmax(K

−1) = max
y∈RN

y⊤(K−1)y

∥y∥22
.

That is to say, the smaller the feature-label alignment score, the larger the λmin(K
∞), and

potentially the faster the convergence.
• Connection to generalization. Besides, Arora et al. (2019) show that for any 1-Lipschitz

loss function the generalization error of the two-layer infinite-wide ReLU network found
by gradient descent is bounded by the feature-label alignment term√

y⊤(K∞)−1y

N
,
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where K∞ is the neural tangent kernel of infinite-wide two-layer ReLU network, similar
to the convergence analysis we discussed previously in Du et al. (2018). Our results in
Theorem 1 are similar to their results. However, our results hold for multi-layer neural
network with different activation functions (e.g., ReLU, LeakyReLU, Sigmoid, and Tanh)
without the infinite-wide assumption.

I.2 COMPARISON BETWEEN THE CLASSICAL STATISTICAL LEARNING THEORY TO THE
GENERALIZATION ANALYSIS USED IN THIS PAPER

Classical statistical learning theories (e.g., Rademacher complexity, uniform stability, and PAC-
Bayesian that are reviewed in Appendix H.3) are closely related to the Lipschitz continuity and
smoothness constants of a neural network. As a result, the generalization error usually increases
proportionally to the number of layers and hidden dimension size. Classical statistical learning
theories 1 cannot capture the details of the network, 2 ignore the relationship between multiple
layers, and 3 could have a vague bound when studying deep neural networks with a large number
of parameters. For example, the Rademacher complexity analysis in Garg et al. (2020) shows that
the generalization error can be upper bounded by

O

(
mDmax{L,

√
dL}√

N

)
,

wherem is the hidden dimension,D = maxi |N (vi)| is the maximum number of neighbors, L is the
number of layers, and N is the number of training data. The bound becomes vague when the hidden
dimension size m is large. This is because it is well known that deep neural networks work well
in practice and have large m, while the theory is suggesting the opposite. To solve such an issue,
over-parameterized regime generalization analysis (e.g., NTK-based or mean-field-based analysis)
has been proposed to show that deep learning models have good generalization in theory, e.g., Arora
et al. (2019); Du et al. (2019); Cao & Gu (2019). Our analysis is under the over-parameterized
regime and requires the hidden dimension size m large enough in theory. However, in practice, our
experiment results show that the generalization bound is still meaningful even though m is not that
big (e.g., we are using m = 100 for all methods).

I.3 DISCUSSION ON THE VARIATION OF FEATURE-LABEL ALIGNMENT (FLA) SCORE IN
FIGURE 3

This is because the FLA is computed by y⊤(JJ⊤)−1y, where J = [vec(∇θfi(θ0))]
N
i=1 and θ0 is

the weight parameters at initialization. At each run, the initialization might be slightly different due
to different random seeds, therefore FLA is also different at each run. The generalization error in
Figure 1 changes at each run for the same reason since the generalization error is dependent on the
FLA score. Besides, we would like to notice that FLA mathematically converges to a constant value
as the hidden dimension size goes to infinity. In other words, given an over-parameterized model,
the FLA score that computed with different random seed is almost identical.

I.4 DETAILS ON THE COMPUTATION OF GENERALIZATION ERRORS IN FIGURE 1

The computation of the generalization error follows Theorem 1 which is dominated by the first term
O(DRC/

√
N). Here the feature-label alignment related term R is empirically computed and the

number of training data N is identical to all methods. Therefore, in the following, we will explicitly
provide discussion on how DC is computed. Recall from Theorem 1 that 1 L − 1 equals to the
number of layers/steps in GNN/RNN, 2 CGNN = ((1 + 3ρ)τ)L−1, DGNN = L for L-layer GNN,
3 CRNN = (1+3ρ/

√
2)L−1, DRNN = L for L-step RNN, and 4 Cmemory = ρ and Dmemory = 4 for

memory-based method. Therefore, we adopt the following settings

• Since TGAT Xu et al. (2020a) is using 2-layer self-attention for aggregation and using
ReLU activation, we set τ = 1, ρ = 1, DGNN = LGNN = 3.

• Since TGN and APAN are using 1-layer self-attention for aggregation and using ReLU
activation, we set τ = 1, ρ = 1, DGNN = LGNN = 2, Dmemory = 4. We first compute the
generalization error for GNN and memory-based method respectively, then multiply the
generalization error of GNN and memory-based method together.
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• Since JODIE Kumar et al. (2019) is memory-based method and using Tanh activation, we
set ρ = 1, Dmemory = 4.

• Since DySAT Sankar et al. (2020) is using 2-layer self-attention and 3-step RNN with both
ReLU and Tanh as activation function, we set τ = 1, ρ = 1, DGNN = LGNN = 3, DRNN =
LRNN = 4. We first compute the generalization error for GNN and RNN respectively, then
multiply the generalization error of GNN and RNN together.

• Since SToNe is using 1-layer aggregation and ReLU activation, we set τ = 1, ρ = 1,
DGNN = LGNN = 2.

Moreover, to alleviate the computation burden and make sure the over-parameterization assumption
holds, we compute feature-label alignment on the last 5, 000 data points in the training set instead of
all the training data. In practice, it takes less than 5 seconds to compute the feature-label alignment
for each method on our GPU.

Furthermore, we do not calculate the generalization error of pure RNN-based methods (e.g.,
CAW Wang et al. (2021c)) due to the following reasons:

• Computing the generalization error requires computing the feature-label alignment (FLA)
score, which is non-trivial for CAW Wang et al. (2021c) because their implementation is
complicated (e.g., performing temporal walks and computing augmented node features)
and adapting their method to our framework is challenging.

• We have already compared the generalization error to that of DySAT Sankar et al. (2020),
which combines both RNN and memory-based methods.

Moreover, we did not consider layer normalization in theoretical analysis because it is data depen-
dent and changes during training. We simply assume data is zero-mean with standard deviation as
one.

Finally, the generalization error of GraphMixer Cong et al. (2023) is not calculated due to the non-
trivial nature of deriving it for the over-parameterized MLP-mixer Tolstikhin et al. (2021). This
challenge persists because the gradient dynamics of attention mechanisms, such as the token mixer in
MLP-mixer and self-attention in GAT Veličković et al. (2017), are not well understood and requires
assumptions on infinite input data Hron et al. (2020). Consequently, the lack of comprehensive
understanding in this area hinders the establishment of a comparable generalization error bound for
GraphMixer, similar to the one found in Theorem 1 for other methods.

I.5 DISCUSSION ON USING GENERALIZATION ERROR AS THE SOLE MEASUREMENT OF TGL
METHODS’ EFFECTIVENESS

We want to make it clear that using the generalization error as the sole measure to determine the
effectiveness of different TGL methods is not advisable. This is because there can be discrepancies
between the theoretical analysis bounds and the real-world experiment results, due to factors such
as

• Assumptions not always holding in practice. For instance, the theory suggests using SGD
with a mini-batch size of 1, but in actuality, using a larger mini-batch size such as 600,
leads to a more stable gradient, faster convergence, and improved overall performance.

• Differences in neural architecture used in analysis and experiments. For example, existing
methods are using layer-normalization and self-attention, however, these were not taken
into consideration as the theoretical analysis of these functions is still under-explored open
problems.

Instead, we believe that the theoretical analysis in this paper can provide valuable insights for de-
signing practical TGL algorithms in future studies.

I.6 DISCUSSION ON THE RELATIONSHIP BETWEEN EXPRESSIVENESS AND GENERALIZATION
ABILITY

It is worth noting that we cannot assume that a high level of expressive power automatically leads
to good generalization ability, or vice versa. This can be seen in Theorem 1, where the expressive
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power is measured by feature-label alignment (FLA) and generalization ability is determined by
both FLA and the number of layers/steps. An algorithm with high expressive power and small
FLA could still have poor generalization ability if it has a large number of layers/steps. The same
principle applies to other expressive power analyzing methods, e.g., expressiveness analysis via 1-
WL test in Souza et al. (2022). According to the 1-WL test, the maximum expressive power can
be achieved through the use of injective aggregation functions, such as using hash functions or one-
hot node identity vectors. However, these methods could harm generalization ability because hash
functions are untrainable and the use of one-hot node identity vectors can lead to overfitting.

I.7 DISCUSSION ON USING DIRECTION VS UNDIRECTED GRAPH IN EXPERIMENTS

It is worth noting that ”directed” and ”undirected” graph are just different data structures to represent
the same raw data, switching from data structures to another will not introduce new information on
data. Our method performs better on undirected graph structure because ”applying our sampling
strategy to undirected graph” could tell us how frequent two nodes interact, which is important in
our algorithm design.

Moreover, we note that changing the ”directed” to ”undirected” graph for baseline methods has little
impact on their performance. To demonstrate this, we have conducted an additional ablation study by
comparing the baselines’ average precision with different input data structure. The results reported
on the left side of the arrow represent their original directed graph input setting, while the results
reported on the right side of the arrow represent the use of an undirected graph. As shown in the
table, utilizing undirected graph does not affect the baselines’ performance because the information
on “how frequent two nodes interact” could be learned from the data through their algorithm design.

Average precision Reddit Wiki MOOC LastFM
JODIE 99.75→99.44 98.94→98.90 98.99→98.38 79.41→79.91
TGAT 99.56→99.71 98.69→98.35 99.28→98.41 75.16→74.69
TGN 98.83→99.74 99.61→99.58 99.63→99.43 91.04→91.06
DySAT 98.55→98.53 96.64→96.62 98.76→98.70 76.28→76.23

I.8 COMPARISON TO EXISTING WORK GRAPHMIXER CONG ET AL. (2023)

Our paper has a similar observation with Cong et al. (2023) that a simpler neural architecture could
achieve state-of-the-art performance by carefully selecting the input data structure and utilizing in-
ductive bias for neural network design. Comparing to Cong et al. (2023), our paper has the following
further contributions:

• Our paper provides the theoretical support for their empirical observations, i.e., input data
selection is important and simpler model performs well;

• Our paper designs the first unified theoretical analysis framework that can capture both
the impact of “neural architecture” and “input data selection” to analyze different TGL
methods;

• Our paper proposes an algorithm has a simpler neural architecture but similar or even better
performance.

I.9 DISCUSSION ON THE THEORETICAL ANALYZED CAW TO ITS IN PRACTICE
IMPLEMENTATION

In this paper, we first classify existing TGL algorithms into GNN-based, RNN-based, and memory-
based methods, then explicitly analysis the generalization ability of each category in an unified
theoretical analysis framework using a ”node-level task. CAW belongs to the RNN-based cate-
gory because CAW samples “temporal events” using random walks and aggregate information via
RNN. However, there are small discrepancies between the algorithm formation of RNN-based TGL
method and the CAW algorithm itself. This is because CAW is originally designed for ”edge-level
task”, where edge features are computed through ”random walk paths” sampled from two nodes
on both sides of the edge. To apply it to “node-level” theoretical analysis, it is natural to imagine
that the target node features are computed on the ”random walk path” sampled at that target node.
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Since we are unable to incorporate all the implementation details into our mathematical analysis,
we may need to make some adjustments/simplification for theoretical analysis as long as they could
still capture the main spirits of the original algorithm, i.e., sample temporal events via random walks
and aggregate information via RNN. Moreover, please note that the changes we made to our anal-
ysis are considered small in terms of generalization analysis, as transitioning from “node-level” to
“edge-level” analysis will not impact our conclusion regarding generalization bound. For example
to extend the results of the CAW to its original ”edge-level task” setting, we simply need to treat
each temporal event vℓ as the combination of the ℓ-th link feature from two distinct random paths.
In this paper, we chose the ”node-level analysis” for the sake of clarity in presentation.

I.10 DISCUSSION ON THE “STRONG CORRATION” BETWEEN “GENERALIZATION BOUND”
AND “AVERAGE PRECISION” IN FIGURE 1

It is worth noting that the generalization bound is a ”worst-case upper bound” that describes the
theoretical limit, and there is often a gap between this upper bound and the actual generalization
performance. Therefore, we are not expecting such a strong correlation exists. Although without
”strong negative correlation”, as shown in Figure 1, we can still clearly observe there exists a nega-
tive correlation between the generalization error bound and the average precision score. Therefore,
we believe that the theoretical analysis in this paper can provide valuable insights for designing prac-
tical TGL algorithms in future studies. On the other hand, tightening the theoretical upper bound is
actively studied in the theoretical machine learning field. To the best of our knowledge, our paper
is the first to analyze the generalization ability of a number of TGL models under a unified theo-
retical framework. Compared to existing generalization analyses in statistical learning theory, our
generalization bound is data-label dependent and directly captures the difference between training
and evaluation error.

I.11 DISCUSSION ON THE AGGREGATION WEIGHT

In SToNe, the aggregation weight α ∈ RK is a trainable vector, whereas in TGN with sum-
aggregation, the aggregation weights are fixed and are equal to 1. By using a learnable aggregation
weight α, SToNe is able to adaptively learn the importance of temporal neighbors. In contrast, as
shown in the table below, replacing it with a fixed vector, the performance slightly decreases.

Reddit Wiki MOOC LastFM GDELT UCI
SToNe (trainable α) 99.89± 0.00 99.85± 0.05 99.88± 0.04 95.74± 0.13 99.11± 0.03 94.60± 0.31
SToNe (fixed α) 99.82± 0.00 99.79± 0.05 99.55± 0.05 95.56± 0.13 99.02± 0.04 83.35± 0.32

I.12 DISCUSSION ON THE EXPRESSIVE POWER OF STONE

Expressive power with depth. According to the theoritical results on WL-based expressive power
analysis, deeper GNN may have more expressive power than a shallow GNN due to its larger re-
ceptive field. However, it is worth noting that we may also improve the expressiveness by using
different input data selection schema and neural architectures, and achieve a good model perfor-
mance without a deep GNN structure. For example, as shown in Figure 5, using more hops will
hurt performance but also lead to higher computation complexity in SToNe. Similar observation has
been made in a recent concurrent work Cong et al. (2023). Previous works Xu et al. (2020b; 2021b)
also emphasize the importance of input data and neural architecture on model performance.

Expressive power with permutation-invariance. Moreover, we would like to note that SToNe as-
signing different elements in Hi(t) with same timestamps to different αk could break permutation-
invariance, and potentially results in a lower expressive power from the WL-based expressive power
perspective. However, as demonstrated in our paper, replacing it with permutation-invariance func-
tions (e.g., self-attention) could slightly degraded the performance. Therefore, an interesting future
direction could be designing a new aggregation strategy that both enjoys the expressiveness brought
by permutation-invariance and the simplicity of our model design.
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I.13 DISCUSSION ON THE GENERALIZATION BOUND OF STONE

In this paper, we only derive the generalization bounds for GNN-based , RNN-based, and memory-
based TGL methods, but did not explicitly derive the generalization bound for SToNe. However,
it is worth noting that SToNe (without layer normalization) could be think of as 1-hop GNN-based
method using 1-layer sum-aggregation and ReLU activation, therefore we set activation function
Lipschitz constant ρ = 1, and DGNN = LGNN = 2.

Comparing to the original generalization bound for GNN-based method, we note that τ is a notation
originally used for GNN’s average-aggregation in Assumption 3. Here we reuse this notation for
SToNe because a similar assumption for the sum aggregation could be made for SToNe by setting
τ as a large number that satisfy the condition τ ≥

∑K
i=1 αi. In practice, the τ is not arbitrary

large because each αi,∀i ∈ {1, . . . ,K} is sampled from uniform distribution U(−
√

3/K,
√

3/K)
according to the PyTorch Doc, and the model is trained with ℓ2-regularization on weight parameters.
For the completeness, we empirically compute the

∑K
i=1 αi value before and after training:

Reddit Wiki MOOC LastFM
Before training 0.21± 0.67 0.39± 0.52 −0.30± 0.52 0.05± 0.52
After training 0.13± 0.27 0.10± 0.24 −0.02± 0.41 −0.10± 0.50

Another approach that fulfills the aforementioned assumption is to consider α1 = . . . = αK = 1/K
as non-trainable parameters after initialization. By adopting this assumption, SToNe can be con-
sidered as a 1-hop GNN-based TGL algorithm with row-normalized neighbor aggregation, adher-
ing to Assumption 3. To provide a comprehensive analysis, we also present the performance of
SToNe when utilizing non-trainable α. Based on the outcomes, we observe that assuming non-
trainable aggregation weights yields comparable results across most datasets, thereby indicating the
mildness of this assumption.

Reddit Wiki MOOC LastFM GDELT UCI
SToNe (trainable α) 99.89± 0.00 99.85± 0.05 99.88± 0.04 95.74± 0.13 99.11± 0.03 94.60± 0.31
SToNe (fixed α) 99.82± 0.00 99.79± 0.05 99.55± 0.05 95.56± 0.13 99.02± 0.04 83.35± 0.32

Moreover, we would like to highlight that τ is only used to empirically evaluate our generalization
bound in Figure 1, therefore it is fair to set τ = 1 when comparing with the empirical generalization
bounds of other methods in Figure 1, based on the empirical computed numbers in table. Notice that
whether we select τ = 1 or not does not affect our results in Theorem 1 since we treat τ as a random
variable in the upper bound.
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