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ABSTRACT

We introduce environment predictive coding, a self-supervised approach to learn
environment-level representations for embodied agents. In contrast to prior work
on self-supervised learning for images, we aim to jointly encode a series of images
gathered by an agent as it moves about in 3D environments. We learn these repre-
sentations via a zone prediction task, where we intelligently mask out portions of
an agent’s trajectory and predict them from the unmasked portions, conditioned
on the agent’s camera poses. By learning such representations on a collection of
videos, we demonstrate successful transfer to multiple downstream navigation-
oriented tasks. Our experiments on the photorealistic 3D environments of Gibson
and Matterport3D show that our method outperforms the state-of-the-art on chal-
lenging tasks with only a limited budget of experience.

1 INTRODUCTION

In visual navigation tasks, an intelligent embodied agent must move around a 3D environment using
its stream of egocentric observations to sense objects and obstacles, typically without the benefit of
a pre-computed map. Significant recent progress on this problem can be attributed to the availability
of large-scale visually rich 3D datasets (Chang et al., 2017; Xia et al., 2018; Straub et al., 2019),
developments in high-quality 3D simulators (Anderson et al., 2018b; Kolve et al., 2017; Savva et al.,
2019a; Xia et al., 2020), and research on deep memory-based architectures that combine geometry
and semantics for learning representations of the 3D world (Gupta et al., 2017; Henriques & Vedaldi,
2018; Chen et al., 2019; Fang et al., 2019; Chaplot et al., 2020b;c).

Deep reinforcement learning approaches to visual navigation often suffer from sample inefficiency,
overfitting, and instability in training. Recent contributions work towards overcoming these limita-
tions for various navigation and planning tasks. The key ingredients are learning good image-level
representations (Das et al., 2018; Gordon et al., 2019; Lin et al., 2019; Sax et al., 2020), and using
modular architectures that combine high-level reasoning, planning, and low-level navigation (Gupta
et al., 2017; Chaplot et al., 2020b; Gan et al., 2019; Ramakrishnan et al., 2020a).

Prior work uses supervised image annotations (Mirowski et al., 2016; Das et al., 2018; Sax et al.,
2020) and self-supervision (Gordon et al., 2019; Lin et al., 2019) to learn good image representations
that are transferrable and improve sample efficiency for embodied tasks. While promising, such
learned image representations only encode the scene in the nearby locality. However, embodied
agents also need higher-level semantic and geometric representations of their history of observations,
grounded in 3D space, in order to reason about the larger environment around them.

Therefore, a key question remains: how should an agent moving through a visually rich 3D environ-
ment encode its series of egocentric observations? Prior navigation methods build environment-level
representations of observation sequences via memory models such as recurrent neural networks (Wi-
jmans et al., 2020), maps (Henriques & Vedaldi, 2018; Chen et al., 2019; Chaplot et al., 2020b),
episodic memory (Fang et al., 2019), and topological graphs (Savinov et al., 2018; Chaplot et al.,
2020c). However, these approaches typically use hand-coded representations such as occupancy
maps (Chen et al., 2019; Chaplot et al., 2020b; Ramakrishnan et al., 2020a; Karkus et al., 2019; Gan
et al., 2019) and semantic labels (Narasimhan et al., 2020; Chaplot et al., 2020a), or specialize them
by learning end-to-end for solving a specific task (Wijmans et al., 2020; Henriques & Vedaldi, 2018;
Parisotto & Salakhutdinov, 2018; Cheng et al., 2018; Fang et al., 2019).
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Figure 1: Environment Predictive Coding: During self-supervised learning, our model is given video walk-
throughs of various 3D environments. We mask portions out of the trajectory (dotted lines) and learn to infer
them from the unmasked parts (in red). We specifically mask out all overlapping views in a local neighborhood
to limit the content shared with the unmasked views. The resulting EPC encoder builds environment-level rep-
resentations of the seen content that are predictive of the unseen content (marked with a “?”), conditioned on the
camera poses. The agent then uses this learned encoder in multiple navigational tasks in novel environments.

In this work, we introduce environment predictive coding (EPC), a self-supervised approach to learn
flexible representations of 3D environments that are transferrable to a variety of navigation-oriented
tasks. The key idea is to learn to encode a series of egocentric observations in a 3D environment so
as to be predictive of visual content that the agent has not yet observed. For example, consider an
agent that just entered the living room in an unfamiliar house and is searching for a refrigerator. It
must be able to predict where the kitchen is and reason that it is likely to contain a refrigerator. The
proposed EPC model aims to learn representations that capture these natural statistics of real-world
environments in a self-supervised fashion, by watching videos recorded by other agents. See Fig. 1.

To this end, we devise a self-supervised zone prediction task in which the model learns environment
embeddings by watching egocentric view sequences from other agents navigating in 3D environ-
ments in pre-collected videos. Specifically, we segment each video into zones of visually and geo-
metrically connected views, while ensuring limited overlap across zones in the same video. Then, we
randomly mask out zones, and predict the masked views conditioned on both the unmasked zones’
views and the masked zones’ camera poses. Intuitively, to perform this task successfully, the model
needs to reason about the geometry and semantics of the environment to figure out what is missing.
We devise a transformer-based model to infer the masked visual features. Our general strategy can
be viewed as a context prediction task in sequential data (Devlin et al., 2018; Sun et al., 2019b; Han
et al., 2019)—but, very differently, aimed at representing high-level semantic and geometric priors
in 3D environments to aid embodied agents who act in them.

Through extensive experiments on Gibson and Matterport3D, we show that our method achieves
good improvements on multiple navigation-oriented tasks compared to state-of-the-art models and
baselines that learn image-level embeddings.

2 RELATED WORK

Self-supervised visual representation learning: Prior work leverages self-supervision to learn
image and video representations from large collections of unlabelled data. Image representations
attempt proxy tasks such as inpainting (Pathak et al., 2016) and instance discrimination (Oord et al.,
2018; Chen et al., 2020; He et al., 2020), while video representation learning leverages signals such
as temporal consistency (Wei et al., 2018; Fernando et al., 2017; Kim et al., 2019) and contrastive
predictions (Han et al., 2019; Sun et al., 2019a). The VideoBERT project (Sun et al., 2019a;b)
jointly learns video and text representations from unannotated videos via filling in masked out infor-
mation. Dense Predictive Coding (Han et al., 2019; 2020) learns video representations that capture
the slow-moving semantics in videos. Whereas these methods focus on capturing human activity for
video recognition, we aim to learn geometric and semantic cues in 3D spaces for embodied agents.
Accordingly, unlike the existing video models (Sun et al., 2019a;b; Han et al., 2019), our approach
is grounded in the 3D relationships between views.

Representation learning via auxiliary tasks for RL: Reinforcement learning approaches often
suffer from high sample complexity, sparse rewards, and unstable training. Prior work tackles these
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challenges by using auxiliary tasks for learning image representations (Mirowski et al., 2016; Gor-
don et al., 2019; Lin et al., 2019; Shen et al., 2019; Ye et al., 2020). In contrast, we encode image
sequences from embodied agents to obtain environment-level representations. Recent work also
learns state representations via future prediction and implicit models (Ha & Schmidhuber, 2018;
Eslami et al., 2018; Gregor et al., 2019; Hafner et al., 2019; Guo et al., 2020). In particular, neu-
ral rendering approaches achieve impressive reconstructions for arbitrary viewpoints (Eslami et al.,
2018; Kumar et al., 2018). However, unlike our idea, they focus on pixelwise reconstruction, and
their success has been limited to synthetically generated environments like DeepMind Lab (Beattie
et al., 2016). In contrast to any of the above, we use egocentric videos to learn predictive feature
encodings of photorealistic 3D environments to capture their naturally occurring regularities.

Scene completion: Past work in scene completion performs pixelwise reconstruction of 360 panora-
mas (Jayaraman & Grauman, 2018; Ramakrishnan et al., 2019), image inpainting (Pathak et al.,
2016), voxelwise reconstructions of 3D structures and semantics (Song et al., 2017), and image-
level extrapolation of depth and semantics (Song et al., 2018; Yang et al., 2019b). Recent work
on visual navigation extrapolates maps of room-types (Wu et al., 2019; Narasimhan et al., 2020)
and occupancy (Ramakrishnan et al., 2020a). While our approach is also motivated by anticipating
unseen elements, we learn to extrapolate in a high-dimensional feature space (rather than pixels,
voxels, or semantic categories) and in a self-supervised manner without relying on human annota-
tions. Further, the proposed model learns from egocentric video sequences captured by other agents,
without assuming access to detailed scans of the full 3D environment as in past work.

Learning image representations for navigation: Prior work exploits ImageNet pretraining (Gupta
et al., 2017; Anderson et al., 2018a; Chen et al., 2019), mined object relations (Yang et al., 2019a),
video (Chang et al., 2020), and annotated datasets from various image tasks (Sax et al., 2020; Chap-
lot et al., 2020c) to aid navigation. While these methods also consider representation learning in the
context of navigation tasks, they are limited to learning image-level functions for classification and
proximity prediction. In contrast, we learn predictive representations for sequences of observations
conditioned on the camera poses.

3 APPROACH

We propose environment predictive coding (EPC) to learn self-supervised environment-level repre-
sentations (Sec. 3.1). To demonstrate the utility of these representations, we integrate them into a
transformer-based navigation architecture and refine them for individual tasks (Sec. 3.2). As we will
show in Sec. 4, our approach leads to both better performance and better sample efficiency compared
to existing approaches.

3.1 ENVIRONMENT PREDICTIVE CODING

Our hypothesis is that it is valuable for an embodied agent to learn a predictive coding of the envi-
ronment. The agent must not just encode the individual views it observes, but also learn to leverage
the encoded information to anticipate the unseen parts of the environment. Our key idea is that the
environment embedding must be predictive of unobserved content, conditioned on the agent’s cam-
era pose. This equips an agent with the natural priors of 3D environments to quickly perform new
tasks, like finding the refrigerator or covering more area.

We propose the proxy task of zone prediction to achieve this goal (see Fig. 2). For this task, we use
a dataset of egocentric video walkthroughs collected parallely from other agents deployed in various
unseen environments (Fig. 2, top). For each video, we assume access to RGB-D, egomotion data,
and camera intrinsics. Specifically, our current implementation uses egocentric camera trajectories
from photorealistic scanned indoor environments (Gibson (Xia et al., 2018)) to sample the training
videos; we leave leveraging in-the-wild consumer video as a challenge for future work.

We do not assume that the agents who generated those training videos were acting to address a par-
ticular navigation task. In particular, their behavior need not be tied to the downstream navigation-
oriented tasks for which we test our learned representation. For example, a training video may show
agents moving about to maximize their area coverage, whereas the encoder we learn is applicable
to an array of navigation tasks (as we will demonstrate in Sec. 4). Furthermore, we assume that the
environments seen in the videos are not accessible for interactive training. In practice, this means
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Figure 2: We propose the zone prediction task for self-supervised learning of environment embeddings from
video walkthroughs generated by other agents. Each frame consists of the egocentric view and camera pose
(top left). We group the frames in video v into seen zones in cyan {Zv

s,0, · · · , Zv
s,n} and unseen zones in

yellow {Zv
u,0, · · · , Zv

u,m} (top row). The zones are generated automatically based on viewpoint overlap in 3D
space (bottom left). Given a camera pose pvu,i sampled from the unseen zone Zv

u,i, we use a transformer-based
encoder-decoder architecture that generates environment embeddings E from the seen zones, and predicts the
feature encoding f̂u,i of Zv

u,i conditioned on the pose pvu,i (bottom center). The model is trained to distinguish
the positive fv

u,i from negatives in the same video {fv
u,j}j 6=i as well from other videos {fw

k }t 6=s (bottom right).

that we can parallelly collect data from different robots deployed in a large number of environments,
without having to actually train our navigation policy on those environments. These assumptions
are much weaker than those made by prior work on imitation learning and behavioral cloning that
rely on task-specific data generated from experts (Bojarski et al., 2016; Giusti et al., 2016).

Our method works as follows. First, we automatically segment videos into “zones” which contain
frames with significant view overlaps. We then perform the self-supervised zone prediction task
on the segmented videos. Finally, we incorporate the learned environment encoder into an array of
downstream navigation-oriented tasks. We explain each step in detail next.

Zone generation At a glance, one might first consider masking arbitrary individual frames in the
training videos. However, doing so is inadequate for representation learning, since unmasked frames
having high viewpoint overlap with the masked frame can make its prediction trivial. Instead, our
approach masks zones of frames at once. We define a zone to be a set of frames in the video which
share a significant overlap in their viewpoints. We also require that the frames across multiple zones
share little to no overlap.

To generate these zones, we first cluster frames in the videos based on the amount of pairwise-
geometric overlap between views. We estimate the viewpoint overlap ψ(oi, oj) between two frames
oi, oj by measuring their intersection in 3D point clouds obtained by backprojecting depth inputs
into 3D space. See Appendix for more details. For a video of length L, we generate a distance
matrix D ∈ RL×L where Di,j = 1 − ψ(oi, oj). We then perform hierarchical agglomerative
clustering (Lukasová, 1979) to cluster the video frames into zones based on D (see Fig. 2, bottom
left). While these zones naturally tend to overlap near their edges, they typically capture disjoint sets
of content in the video. Note that the zones segment video trajectories, not floorplan maps, since we
do not assume access to the full 3D environment.

Zone prediction task Having segmented the video into zones, we next present our EPC zone
prediction task to learn environment embeddings (see Fig. 2). We randomly divide the video v into
seen zones {Zvs,i}ni=1 (cyan) and unseen zones {Zvu,i}mi=1 (yellow), where a zone Z is a tuple of

images and the corresponding camera poses Zi = {(oj , pj)}|Zi|
1 . Given the seen zones, and the

camera pose from an unseen zone pvu,i, we need to infer a feature encoding of the unseen zone Zvu,i.
To perform this task, we first extract visual features x from each RGB-D frame o in the video using
pretrained CNNs (see Sec. 3.2). These features are concatenated with the corresponding pose p and
projected using an MLPM to obtain the image-level embedding. The target features for the unseen
zone Zvu,i are obtained as follows:

fvu,i =
1

|Zvu,i|
∑

[x,p]∈Zv
u,i

M([x, p]). (1)
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The rationale behind the feature averaging is that we want to predict the high-level visual content of
the zone, while ignoring viewpoint specific variations within the zone.

We use a transformer-based encoder-decoder model to perform this task (Vaswani et al., 2017). Our
model consists of an environment encoder and a zone decoder which infers the zone features (see
Fig. 2, bottom). The environment encoder takes in the image-level embeddingsM([x, p]) from the
input zones, and performs multi-headed self-attention to generate the environment embeddings E .
The zone decoder attends to E using the average camera pose from the unseen zone pvu,i and predicts
the zone features as follows:

f̂u,i = ZoneDecoder(E , pvu,i). (2)

We transform all poses in the input zones relative to pvu,i before encoding, which provides the model
an egocentric view of the world. The environment encoder, zone decoder, and the projection function
M are jointly trained using noise-contrastive estimation (Gutmann & Hyvärinen, 2010). We use f̂u,i
as the anchor and fvu,i from Eqn. 1 as the positive. We sample negatives from other unseen zones in
the same video and from all zones in other videos. The loss for the ith unseen zone in video v is:

Lvi = −log
exp
(
sim(f̂u,i, f

v
u,i)
)

m∑
j=1

exp
(
sim(f̂u,i, fvu,j)

)
+

∑
w 6=v,k

exp
(
sim(f̂u,i, fwk )

) , (3)

where sim(q, k) = q·k
|q||k|

1
τ and τ is a temperature hyperparameter. The idea is to predict zone

representations that are closer to the ground truth, while being sufficiently different from the negative
zones. Since the unseen zones have only limited overlap with the seen zones, the model needs to
effectively reason about the geometric and semantic context in the seen zones to differentiate the
positive from the negatives. We discourage the model from simply capturing video-specific textures
and patterns by sampling negatives from within the same video.

3.2 ENVIRONMENT EMBEDDINGS FOR EMBODIED AGENTS

Having introduced our approach to learn environment embeddings in a self-supervised fashion, we
now briefly overview how these embeddings are used for agents performing navigation-oriented
tasks. To this end, we integrate our pre-trained environment encoder into the Scene Memory Trans-
former (SMT) (Fang et al., 2019). Our choice of SMT is motivated by the recent successes of
transformers in both NLP (Devlin et al., 2018) and vision (Sun et al., 2019b; Fang et al., 2019).
However, our idea is potentially applicable to other forms of memory models as well.

We briefly overview the SMT architecture (see Fig. 3, center). It consists of a scene memory that
stores visual features {xi}ti=0 and agent poses {pi}ti=0 generated from the observations seen during
an episode. The environment encoder uses self-attention on the history of observations to generate
a richer set of environment embeddings {ei}ti=1. At a given time-step t + 1, the policy decoder
attends to the environment embeddings using the inputs ot+1, which consist of the visual feature x
and agent pose p at time t+ 1. The outputs of the policy decoder are used to sample an action at+1

and estimate the value vt+1. We detail each component in the Appendix.

To incorporate our EPC environment embeddings, we modify two key components from the original
SMT model. First, and most importantly, we initialize the environment encoder with our pre-trained
EPC (see Fig. 3, left). Second, we replace the end-to-end trained image encoders with MidLevel
features that are known to be useful across a variety of embodied tasks (Sax et al., 2020) (see Fig. 3,
right). We consider two visual modalities as inputs: RGB and depth. For RGB, we extract features
from the pre-trained models in the max-coverage set proposed by Sax et al. (2020). These include
surface normals, keypoints, semantic segmentation, and 2.5D segmentation. For depth, we extract
features from pre-trained models that predict surface normals and keypoints from depth (Zamir
et al., 2020). For training the model on a navigation task, we keep the visual features frozen, and
only finetune the environment encoder, policy decoder, policy π, and value function V .

4 EXPERIMENTS

We validate our pre-trained EPC environment embeddings for zone prediction (Sec. 4.1) and mul-
tiple downstream tasks that require an embodied agent to move intelligently through an unmapped
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Figure 3: Integrating environment-level pre-training for navigation: Left: The first level of transfer occurs
for the environment-level representations. We transfer the proposed EPC environment encoder and projection
functionM that are pre-trained for zone prediction. Right: The second level of transfer occurs for the image-
level representations. We transfer a pre-trained MidLevel image encoder (Sax et al., 2020) to generate visual
features for each input in the scene memory. Center: To train the SMT on a task, we keep the visual features
frozen, and finetune the environment encoder and projection functionM with the rest of the SMT model.

environment (Sec. 4.2). We evaluate the sensitivity of self-supervised learning to noise in the video
data (Sec. 4.3), and assess noise robustness of the learned policies on downstream tasks (Sec. 4.4).

EXPERIMENTAL SETUP AND TASKS We perform experiments on the Habitat simulator (Savva
et al., 2019b) with Matterport3D (MP3D) (Chang et al., 2017) and Gibson (Xia et al., 2018), two
challenging and photorealistic 3D datasets with ∼ 90 and 500 scanned real-world indoor environ-
ments, respectively. Our observation space consists of 171×128 RGB-D observations and odometry
sensor readings that provide the relative agent pose p =(x, y, θ) w.r.t the agent pose at t = 0. Our
action space consists of: MOVE-FORWARD by 25cm, TURN-LEFT by 30◦, and TURN-RIGHT by 30◦.
For all methods, we assume noise-free actuation and odometry for simplicity.

We use MP3D for interactive RL training, and reserve Gibson for evaluation. We use the default
train/val/test split for MP3D (Savva et al., 2019b) for 1000-step episodes. For Gibson, which has
smaller environments, we evaluate on the 14 validation environments for 500-step episodes. Fol-
lowing prior work (Ramakrishnan et al., 2020a; Chaplot et al., 2020b), we divide results on Gibson
into small and large environments. We generate walkthroughs for self-supervised learning from 332
Gibson training environments. We train a SMT(scratch) agent to perform area-coverage on MP3D.
It explores starting from multiple locations and gathers the RGB-D and odometer readings for 500
steps per video. Note that this agent only collects data, and is not used for downstream tasks. This
results in ∼ 5000 videos, which we divide into an 80-20 train/val split.

We evaluate our approach on three standard tasks from the literature:

1. Area coverage (Chen et al., 2019; Chaplot et al., 2020b; Ramakrishnan et al., 2020b): The agent
is rewarded for maximizing the area covered (in m2) within a fixed time budget.
2. Flee (Gordon et al., 2019): The agent is rewarded for maximizing the flee distance (in m), i.e., the
geodesic distance between its starting location and the terminal location, for fixed-length episodes.
3. Object coverage (Fang et al., 2019; Ramakrishnan et al., 2020b): The agent is rewarded for
maximizing the number of categories of objects covered during exploration (see Appendix). Since
Gibson lacks extensive object annotations, we evaluate this task only on MP3D.

Together, these tasks capture different forms of geometric and semantic inference in 3D environ-
ments (e.g., area/object coverage encourage finding large open spaces/new objects, respectively).

BASELINES We compare to the following baselines:

Scratch baselines: We randomly initialize the visual encoders and policy and train them end-to-
end for each task. Images are encoded using ResNet-18. Agent pose and past actions are encoded
using FC layers. These are concatenated to obtain the features at each time step. We use three
temporal aggregation schemes. Reactive (scratch) has no memory. RNN (scratch) uses a 2-layer
LSTM as the temporal memory. SMT (scratch) uses a Scene Memory Transformer for aggregating
observations (Fang et al., 2019).
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4-2 split 2-4 split
Method w/ inputs w/o inputs w/ inputs w/o inputs

Nearest neighbors 0.033 0.591 0.011 0.295
Random masking 0.332 0.760 0.209 0.449

EPC (bilinear) 0.452 0.806 0.321 0.518
EPC (`2-norm) 0.528 0.825 0.368 0.556

Table 1: Zone prediction: Top-1 zone prediction accuracy on the validation walkthrough videos.

0.044 0.0020.954

0.1480.818 0.033

3D environment Intra-video retrieval Inter-video retrieval

?

?

Figure 4: Each row shows one zone prediction example. Left: Top-down view of the 3D environment from
which the video was sampled. The cyan viewing frusta correspond to the average pose for three input zones.
Given the images and camera poses from each input zone, and a target camera pose (green frustum), the model
predicts the corresponding zone feature (the masked green zone). Center: Given the inferred feature, we rank
three masked (unobserved) zones from within the same video, where green is the positive zone and the red are
the negatives. For each zone, we show four randomly sampled images along with the retrieval confidence. Our
method retrieves the positive with high confidence. The model correctly predicts the existence of the narrow
corridor (top row) and a kitchen counter (bottom row) given the target poses. Right: Top two retrieved zones
from other videos that are closest to the inferred feature. The features predicted by the model are general
enough to retrieve related concepts from other videos (narrow corridors and kitchens).

SMT (MidLevel): extracts image features from pre-trained encoders that solve various mid-level
perceptual tasks (Sax et al., 2020). This is an ablation of our model from Sec. 3.2 that uses the same
image features, but randomly initializes the environment encoder. This SoTA image-level encoder
is a critical baseline to show the impact of our proposed EPC environment-level encoder.
SMT (Video): Inspired by Dense Predictive Coding (Han et al., 2019), this baseline uses MidLevel
features and pre-trains the environment encoder as a video-level model using the same training
videos as our model. For pre-training, we randomly sample 25 consecutive frames as inputs and
predict the average features corresponding to the next 15 frames. We query based on the time (not
pose) and train the model using the NCE loss in Eqn. 3.
OccupancyMemory: This is similar to the SoTA Active Neural SLAM model (Chaplot et al.,
2020b) that maximizes area coverage, but using ground-truth depth to build the map (instead of
RGB) and a state-of-the-art pointnav agent (Wijmans et al., 2020) for low-level navigation (instead
of a planner). It represents the environment as a top-down occupancy map.

All models are trained in PyTorch (Paszke et al., 2019) with DD-PPO (Wijmans et al., 2020) for
15M frames with 64 parallel processes and the Adam optimizer. See Appendix.

4.1 ZONE PREDICTION PERFORMANCE

First we evaluate the EPC embedding quality in terms of zone prediction on the validation videos.
We divide each video into m seen and n unseen zones and infer the features for each unseen zone,
given its average camera pose. We rank the features from the n unseen zones based on their similarity
with the inferred feature, and measure the top-1 retrieval accuracy. We evaluate with (m = 4, n = 2)
and (m = 2, n = 4) splits. The larger the value of m, the easier the task, since more information
is available as input. We also test two simple baselines. Nearest neighbors uses the query pose
to retrieve the 50 closest frames in the input zones, and outputs their averaged features. Random
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Area coverage (m2) Flee (m) Object coverage (#obj)

Method Gibson-S Gibson-L MP3D Gibson-S Gibson-L MP3D MP3D-cat. MP3D-inst.
Reactive (scratch) 17.4± 0.2 22.8± 0.6 68.0± 1.3 1.9± 0.1 2.5± 0.3 5.1± 0.3 6.2± 0.0 19.0± 0.2

RNN (scratch) 20.6± 0.5 28.6± 0.3 79.1± 2.1 2.3± 0.2 2.8± 0.4 5.9± 0.1 6.1± 0.0 18.6± 0.2
SMT (scratch) 23.0± 0.7 32.3± 0.8 104.8± 2.3 3.3± 0.2 4.4± 0.4 6.9± 0.6 7.0± 0.1 23.2± 0.9

SMT (MidLevel) 29.1± 0.1 47.2± 1.7 155.7± 2.0 4.2± 0.0 6.0± 0.4 10.6± 0.3 7.6± 0.1 26.8± 0.6
SMT (Video) 28.7± 0.5 50.6± 2.6 129.7± 2.8 4.1± 0.0 5.0± 0.6 10.9± 0.5 7.3± 0.1 25.4± 1.0

OccupancyMemory 29.4± 0.1 67.4± 0.9 155.6± 1.4 2.8± 0.0 7.0± 0.4 14.1± 0.6 7.8± 0.1 27.8± 0.4
Ours (EPC) 29.9± 0.3 56.4± 2.1 165.6± 2.8 4.5± 0.1 7.1± 0.4 12.8± 0.6 8.6± 0.1 34.5± 0.8

Table 2: Downstream task performance at the end of the episode. Gibson-S/L means small/large. MP3D-
cat./inst. means categories/instances. All methods are evaluated on three random seeds. See Appendix for
performance vs. time step plots.
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Figure 5: Sample efficiency on Matterport3D val split. Our environment-level pre-training leads to 2-4×
training sample efficiency when compared to SoTA image-level pre-training. See Appendix for Gibson plots.

masking uses a different proxy task to learn the environment representations, randomly masking
out 10 consecutive frames in the video and predicting their averaged feature from the rest. EPC
(bilinear) uses bilinear product similarity (Oord et al., 2018) instead of the `2-norm below Eqn. 3.
We report retrieval from only the unseen zones (w/o inputs) as well as the more challenging case
where input zones are also candidates (w/inputs).

Tab. 1 shows the results. The EPC (`2-norm) model obtains superior retrieval performance on both
settings. It retrieves the positive zones with high confidence (see Fig. 4 and Appendix). EPC’s gain
over random masking shows the value of the proposed zone generation step. Therefore, we select
this model for downstream task transfer.

4.2 DOWNSTREAM TASK PERFORMANCE

Now we transfer these features to downstream navigation tasks. Tab. 2 shows the results. On both
datasets, we observe the following ordering:

Reactive (scratch) < RNN (scratch) < SMT (scratch). (4)

This is in line with results reported by Fang et al. (2019) and verifies our implementation of SMT.
Using MidLevel features for SMT leads to significant gains in performance versus training image
encoders from scratch.

Our environment-level pre-training provides substantial improvements compared to SMT (Mi-
dLevel), particularly for larger environments. Furthermore, SMT (Video)—the video-level pre-
training strategy—often deteriorates performance compared to using only image-level pre-training.
This highlights EPC’s value in representing the underlying 3D spaces of the walkthroughs instead
of treating them simply as video frames. EPC competes closely and even slightly outperforms the
state-of-the-art OccupancyMemory on these tasks, with a significant gain on the object coverage
metrics. Thus, our model competes strongly with a task-specific representation model on the tasks
that the latter was designed for, while outperforming it significantly on other tasks.

Finally, Fig. 5 shows that EPC offers better sample efficiency than image-only pre-training: our
method reaches the best performance of SMT (MidLevel) 2-4× faster. This confirms our hypothesis:
transferring environment-level representations learned via contextual reasoning can help embodied
agents learn faster compared to the current approach of transferring image-level encoders alone.
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Area coverage (m2) Flee (m) Object coverage (#obj)

Method Gibson-S Gibson-L MP3D Gibson-S Gibson-L MP3D MP3D-cat. MP3D-inst.
SMT (MidLevel) 29.1± 0.1 47.2± 1.7 155.7± 2.0 4.2± 0.0 6.0± 0.4 10.6± 0.3 7.6± 0.1 26.8± 0.6
EPC 29.9± 0.3 56.4± 2.1 165.6± 2.8 4.5± 0.1 7.1± 0.4 12.8± 0.6 8.6± 0.1 34.5± 0.8
EPC w/ noisy depth 30.6± 0.4 58.0± 3.8 163.2± 3.8 4.8± 0.0 7.7± 0.4 13.0± 0.5 8.3± 0.0 31.8± 0.0
EPC w/ noisy depth and pose 31.2± 0.3 56.4± 1.8 149.6± 0.4 4.4± 0.0 7.7± 0.2 12.4± 0.4 7.8± 0.1 28.9± 1.1
EPC w/ simple heuristic 30.1± 0.2 59.9± 1.6 166.2± 3.1 4.6± 0.1 7.3± 0.5 12.3± 0.4 8.2± 0.1 32.5± 0.2

Table 3: Impact of noisy video data and a non-learned policy for video generation on EPC self-supervised
learning.

Area coverage (m2) Flee (m) Object cov. (#cat.)

Method NF N-D N-D,P NF N-D N-D,P NF N-D N-D,P
SMT (MidLevel) 155.7± 2.0 145.1± 2.3 134.2± 1.8 10.6± 0.3 10.6± 0.6 10.8± 0.4 7.6± 0.2 7.3± 0.1 7.3± 0.2
OccupancyMemory 155.6± 1.4 86.6± 2.2 85.2± 2.4 14.1± 0.6 10.9± 0.2 10.2± 0.3 7.8± 0.1 5.8± 0.0 5.8± 0.0
EPC 165.6± 2.8 148.4± 1.4 152.3± 2.2 12.8± 0.6 12.2± 0.1 11.4± 0.2 8.6± 0.1 8.4± 0.2 8.4± 0.2

Table 4: Comparing robustness to sensor noise on downstream tasks in Matterport3D. Note: NF denotes noise
free sensing, N-D denotes noisy depth (and noise-free pose), and N-D,P denotes noisy depth and pose. See
Appendix G for full results.

4.3 SENSITIVITY ANALYSIS OF SELF-SUPERVISED LEARNING

We analyze the sensitivity of EPC to sensory noise in the videos, and the exploration strategy used for
video data collection. Specifically, we inject noise in the depth and pose data from the videos using
existing noise models from Choi et al. (2015) and Ramakrishnan et al. (2020a). We also replace
the video walkthroughs from the area-coverage agent with an equivalent amount of data collected
by a simple heuristic used in prior work (Chen et al., 2019; Ramakrishnan et al., 2020b). It works
as follows: move forward until colliding, then turn left or right by a random amount, then continue
moving forward. We evaluate the impact of these changes on the downstream task performance.

See Tab. 3. Our approach EPC is reasonably robust to changes in the video data during SSL training.
The performance remains stable when noise is injected into depth inputs. While it starts to decline
on MP3D when we further inject noise into pose inputs, EPC still generally outperforms the random
initialization of environment-encoder in SMT (MidLevel). Note that we do not employ any noise-
correction mechanism, which could better limit this decline (Chaplot et al., 2020b; Ramakrishnan
et al., 2020a). Finally, the performance is not significantly impacted when we use video data from a
simple exploration heuristic, showing that EPC does not require a strong exploration policy for the
agent that generates the self-supervised training videos, nor does it require a tight similarity between
the tasks demonstrated in the videos and the downstream tasks.

4.4 ROBUSTNESS OF LEARNED POLICIES TO SENSOR NOISE

In previous experiments, we assumed the availability of ground-truth depth and pose sensors for
downstream tasks. Now, we relax these assumptions and re-evaluate all methods by injecting noise
in the depth and pose sensors for downstream tasks (same noise models as Sec. 4.3), without any
noise-correction. This is a common evaluation protocol for assessing noise robustness (Chen et al.,
2019; Ramakrishnan et al., 2020b). We compare the top three methods on MP3D in Tab. 4 and
provide the complete set of results in Appendix G. As expected, the performance declines slightly as
we add noise to more sensors (depth, then pose). However, most learned approaches are reasonably
stable. EPC outperforms all methods when all noise sources are added. OccupancyMemory declines
rapidly in the absence of noise-correction due to accumulated errors in the map.

5 CONCLUSIONS

We introduced Environment Predictive Coding, a self-supervised approach to learn environment-
level representations for embodied agents. By training on video walkthroughs generated by other
agents, our model learns to infer missing content through a zone-prediction task. When transferred to
multiple downstream embodied agent tasks, the resulting embeddings lead to better performance and
sample-efficiency compared to the current practice of transferring only image-level representations.
In future work, we plan to extend our idea for goal-driven tasks like PointNav and ObjectNav.
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Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016. URL
http://arxiv.org/abs/1612.03801.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Angel Chang, Angela Dai, Tom Funkhouser, Matthias Nießner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor environments. In
Proceedings of the International Conference on 3D Vision (3DV), 2017. MatterPort3D dataset
license available at: http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf.

Matthew Chang, Arjun Gupta, and Saurabh Gupta. Semantic visual navigation by watching youtube
videos. arXiv preprint arXiv:2006.10034, 2020.

Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and Ruslan Salakhutdinov. Object goal
navigation using goal-oriented semantic exploration. arXiv preprint arXiv:2007.00643, 2020a.

Devendra Singh Chaplot, Saurabh Gupta, Dhiraj Gandhi, Abhinav Gupta, and Ruslan Salakhutdinov.
Learning to explore using active neural mapping. 8th International Conference on Learning
Representations, ICLR 2020, 2020b.

Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh Gupta. Neural topo-
logical slam for visual navigation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12875–12884, 2020c.

Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for navigation. In 7th
International Conference on Learning Representations, ICLR 2019, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

Ricson Cheng, Ziyan Wang, and Katerina Fragkiadaki. Geometry-aware recurrent neural networks
for active visual recognition. In Advances in Neural Information Processing Systems, pp. 5081–
5091, 2018.

Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust reconstruction of indoor scenes. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5556–
5565, 2015.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embod-
ied question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 2054–2063, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos, Marta Gar-
nelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor, et al. Neural scene
representation and rendering. Science, 360(6394):1204–1210, 2018.

10

http://arxiv.org/abs/1612.03801
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf


Under review as a conference paper at ICLR 2021

Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese. Scene memory transformer for
embodied agents in long-horizon tasks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 538–547, 2019.

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould. Self-supervised video rep-
resentation learning with odd-one-out networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 3636–3645, 2017.

Chuang Gan, Yiwei Zhang, Jiajun Wu, Boqing Gong, and Joshua B Tenenbaum. Look, listen, and
act: Towards audio-visual embodied navigation. arXiv preprint arXiv:1912.11684, 2019.
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Appendix

A ZONE GENERATION

As discussed in the main paper, we generate zones by first clustering frames in the video based on
their geometric overlap. Here, we provide details on how this overlap is estimated. First, we project
pixels in the image to 3D point-clouds using the camera intrinsics and the agent pose. Let Di, pi be
the depth map and agent pose for frame i in the video. The agent’s pose in frame i can be expressed
as pi = (Ri, ti), with Ri, ti representing the agent’s camera rotation and translation in the world
coordinates. Let K ∈ R3×3 be the intrinsic camera matrix, which is assumed to be provided for
each video. We then project each pixel xij in the depth map Di to the 3D point cloud as follows:

wij =

[
Ri ti
0 1

]
K−1xij , ∀j ∈ {1, ..., Si} (5)

where Si is the total number of pixels in Di. By doing this operation for each pixel, we can obtain
the point-cloud Wi corresponding to the depth map Di. To compute the geometric overlap between
two frames i and j, we estimate the overlap in their point-clouds Wi and Wj . Specifically, for each
point wi ∈ Wi, we retrieve the nearest neighbor from wj ∈ Wj and check whether the pairwise
distance in 3D space is within a threshold τ : ||wi − wj ||2 < τ . If this condition is satisfied, then
a match exists for wi. Then, we define the overlap fraction ψ(Di, Dj) the fraction of points in Wi

which have a match in Wj . This overlap fraction is computed pairwise between all frames in the
video, and hierarchical agglomerative clustering is performed using this similarity measure.

B TASK DETAILS

For the object coverage task, to determine if an object is covered, we check if it is within 3m of the
agent, present in the agent’s field of view, and if it is not occluded (Ramakrishnan et al., 2020b). We
use a shaped reward function:

Rt = Ot −Ot−1 + 0.02(Ct − Ct−1), (6)

where Ot, Ct are the number of object categories and 2D grid-cells visited by time t (similar to
Fang et al. (2019)).

C SCENE MEMORY TRANSFORMER

We provide more details about individual components of the Scene Memory Transformer Fang et al.
(2019). As discussed in the main paper, the SMT model consists of a scene memory for storing the
visual features {xi}ti=0 and agent poses {pi}ti=0 seen during an episode. The environment encoder
uses self-attention on the scene memory to generate a richer set of environment embeddings {ei}ti=1.
The policy decoder attends to the environment embeddings using the inputs ot+1, which consist of
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the visual feature x, and agent pose p at time t + 1. The outputs of the policy decoder are used to
sample an action at+1 and estimate the value vt+1. Next, we discuss the details of the individual
components.

SCENE MEMORY It stores the visual features derived from the input images and the agent poses at
each time-step. Motivated by the ideas from Sax et al. (2020), we use mid-level features derived from
various pre-trained CNNs for each input modality. In this work, we consider two input modalities:
RGB, and depth. For RGB inputs, we extract features from the pre-trained models in the max-
coverage set proposed in Sax et al. (2020). These include surface normals, keypoints, semantic
segmentation, and 2.5D segmentation. For depth inputs, we extract features from pre-trained models
that predict surface normals and keypoints from depth (Zamir et al., 2020). For simplicity, we
assume that the ground-truth pose is available to the agent in the form of (xt, yt, zt, θt) at each
time-step, where θt is the agent heading. While this can be relaxed by following ideas from state-of-
the-art approaches to Neural SLAM (Chaplot et al., 2020b; Ramakrishnan et al., 2020a), we reserve
this for future work as it is orthogonal to our primary contributions.

ATTENTION MECHANISM Following the notations from Vaswani et al. (2017), we define the
attention mechanism used in the environment encoder and policy decoder. Given two inputs X ∈
Rn1×dx and Y ∈ Rn2×dy , the attention mechanism attends to Y using X as follows:

Attn(X,Y ) = softmax
(
QXK

T
Y√

dk

)
VY (7)

where QX ∈ Rn1×dk ,KY ∈ Rn2×dk , VY ∈ Rn2×dv are the queries, keys, and values computed
from X and Y as follows: QX = XW q , KY = YW k, and VY = YW v . W q,W k,W v are learned
weight matrices. The multi-headed version of Attn generates multiple sets of queries, keys, and
values to obtain the attended context C ∈ Rn1×dv .

MHAttn(X,Y ) = FC([Attnh(X,Y )]Hh=1). (8)

We use the transformer implementation from PyTorch (Paszke et al., 2019). Here, the multi-headed
attention block builds on top of MHAttn by using residual connections, LayerNorm (LN) and fully
connected (FC) layers to further encode the inputs.

MHAttnBlock(X,Y ) = LN(MLP(H) +H) (9)

where H = LN(MHAttn(X,Y ) + X), and MLP has 2 FC layers with ReLU activations. The
environment encoder performs self-attention between the features stored in the scene memory to
obtain the environment encoding E.

E = EnvironmentEncoder(M) = MHAttnBlock(M,M). (10)

The policy decoder attends to the environment encodings E using the current observation xt, pt.

PolicyDecoder([xt, pt], E) = MHAttnBlock(FC([xt, pt]), E) (11)

We transform the pose vectors {pi}ni=1 from the scene memory relative to the current agent pose pt
as this allows the agent to maintain an egocentric view of past inputs Fang et al. (2019).
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D HYPERPARAMETERS

We detail the list of hyperparameter choices for different tasks and models in Tab. 5. For the random
masking baseline in Tab. 1, we tried masking out 10, 20 and 50 frames and picked 10 frames based
on the zone prediction performance. For SMT (Video), we choose 25 frames as inputs and 15 frames
as output based on Dense Predictive Coding Han et al. (2019).

RL Optimization

Optimizer Adam
Learning rate 0.00025 - 0.001
# parallel actors 64
PPO mini-batches 2
PPO epochs 2
PPO clip param 0.2
Value loss coefficient 0.5
Entropy coefficient 0.01
Advantage estimation GAE
Normalized advantage? Yes
Training episode length 1000
GRU history length 128
# training steps (in millions) 15

RNN hyperparameters

Hidden size 128
RNN type LSTM
Num recurrent layers 2

SMT hyperparameters

Hidden size 128
Scene memory length 500
# attention heads 8
# encoder layers 1
# decoder layers 1

Occupancy memory hyperparameters

Action space range 48m× 48m
# global action sampling interval 25

Reward scaling factors for different tasks
Task Reward scale

Area coverage 0.3
Flee 1.0
Object coverage 1.0

Self-supervised learning optimization

Optimizer Adam
Learning rate 0.0001
Video batch size 20
Temperature (τ ) 0.1

Table 5: Hyperparameters for training our RL and self-supervised learning models.

E DOWNSTREAM TASK PERFORMANCE VS. EPISODE TIME

We show the downstream task performance as a function of time in Fig. 6. We evaluate each model
with 3 different random seeds and report the mean and the 95% confidence interval in the plots.
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Figure 6: We highlight the downstream task performance as a function of episode time on both Matterport3D
and Gibson.
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Figure 7: Sample efficiency on Gibson val split. Our environment-level pre-training leads to 2-4× training
sample efficiency when compared to SoTA image-level pre-training.

F SAMPLE EFFICIENCY CURVES ON GIBSON

We plot the Gibson validation performance as a function of training experience in Fig. 7. EPC
achieves better sample efficiency through environment-level pre-training when compared to the
image-level pre-training baseline SMT (MidLevel).

G COMPLETE ANALYSIS OF NOISE ROBUSTNESS IN DOWNSTREAM TASKS

In Tab. 4 from the main paper, we compared the noise robustness of top three approaches on MP3D.
Here, we present the complete set of results for all methods on Gibson and MP3D in Tab. 6.

H EXPLORING SPATIAL CONTEXT FOR SELF-SUPERVISION IN EPC

Originally, our EPC proposal previews context from large parts of the video (spanning several zones)
to fill in the content for a missing zone (termed “EPC-global”). However, we can also leverage local
spatial context spanning a limited set of frames. The SMT (Video) baseline exploits local temporal
context which spanned 25 + 15 frames to derive self-supervision. Now, we consider a local variant
of EPC that performs spatial reasoning within a similar context, i.e., it takes 25 frames + their poses
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Matterport3D
Area coverage (m2) Flee (m) Object cov. (#cat.)

Method NF N-D N-D,P NF N-D N-D,P NF N-D N-D,P
Reactive (scratch) 68.0± 1.3 65.8± 1.4 65.7± 1.5 5.1± 0.3 5.3± 0.2 5.3± 0.2 6.2± 0.0 6.0± 0.0 6.0± 0.0
RNN (scratch) 79.0± 2.0 74.0± 0.8 73.4± 1.3 5.9± 0.0 5.9± 0.3 6.0± 0.2 6.0± 0.0 5.9± 0.0 5.9± 0.0
SMT (scratch) 104.8± 2.2 101.6± 0.9 99.2± 2.9 6.9± 0.6 6.6± 0.2 7.4± 0.2 7.0± 0.2 6.8± 0.1 6.7± 0.1
SMT (MidLevel) 155.7± 2.0 145.1± 2.3 134.2± 1.8 10.6± 0.3 10.6± 0.6 10.8± 0.4 7.6± 0.2 7.3± 0.1 7.3± 0.2
SMT (Video) 129.7± 2.8 118.8± 1.6 118.4± 1.9 10.9± 0.4 9.9± 0.0 9.2± 0.4 7.3± 0.2 7.2± 0.0 7.2± 0.1
OccupancyMemory 155.6± 1.4 86.6± 2.2 85.2± 2.4 14.1± 0.6 10.9± 0.2 10.2± 0.3 7.8± 0.1 5.8± 0.0 5.8± 0.0
EPC 165.6± 2.8 148.4± 1.4 152.3± 2.2 12.8± 0.6 12.2± 0.1 11.4± 0.2 8.6± 0.1 8.4± 0.2 8.4± 0.2

Gibson-S
Area coverage (m2) Flee (m) Object cov. (#cat.)

Method NF N-D N-D,P NF N-D N-D,P NF N-D N-D,P
Reactive (scratch) 17.4± 0.2 17.8± 0.4 17.8± 0.4 1.9± 0.1 1.8± 0.1 1.8± 0.1 - - -
RNN (scratch) 20.6± 0.4 21.5± 0.3 21.6± 0.2 2.3± 0.2 2.2± 0.2 2.2± 0.2 - - -
SMT (scratch) 23.0± 0.7 23.5± 0.4 23.4± 0.4 3.3± 0.2 3.3± 0.0 2.8± 0.1 - - -
SMT (MidLevel) 29.1± 0.1 30.8± 0.4 30.8± 0.6 4.2± 0.0 4.1± 0.0 3.4± 0.0 - - -
SMT (Video) 28.7± 0.5 30.0± 0.4 30.2± 0.6 4.1± 0.0 3.6± 0.1 3.4± 0.2 - - -
OccupancyMemory 29.4± 0.0 30.8± 0.3 30.6± 0.2 2.8± 0.0 3.1± 0.0 3.0± 0.2 - - -
EPC 29.9± 0.3 31.8± 0.1 31.6± 0.2 4.5± 0.1 4.2± 0.2 4.2± 0.2 - - -

Gibson-L
Area coverage (m2) Flee (m) Object cov. (#cat.)

Method NF N-D N-D,P NF N-D N-D,P NF N-D N-D,P
Reactive (scratch) 22.8± 0.6 22.4± 0.2 22.4± 0.2 2.5± 0.3 2.6± 0.4 2.6± 0.4 - - -
RNN (scratch) 28.6± 0.3 27.9± 2.4 28.2± 2.5 2.8± 0.4 2.7± 0.4 2.8± 0.4 - - -
SMT (scratch) 32.3± 0.8 33.4± 1.2 32.6± 1.9 4.4± 0.4 4.6± 0.2 4.4± 0.1 - - -
SMT (MidLevel) 47.2± 1.6 49.2± 0.4 46.8± 2.8 6.0± 0.4 5.4± 0.4 5.1± 0.6 - - -
SMT (Video) 50.6± 2.6 50.4± 1.4 47.5± 1.7 5.0± 0.6 5.2± 0.4 4.4± 0.4 - - -
OccupancyMemory 67.4± 0.9 56.8± 0.8 56.9± 0.8 7.0± 0.4 6.9± 0.4 6.9± 0.3 - - -
EPC 56.4± 2.1 55.8± 0.6 55.0± 0.8 7.1± 0.4 7.0± 0.6 7.4± 0.6 - - -

Table 6: Comparing robustness to sensor noise on downstream tasks in Gibson and Matterport3D. Note: NF
denotes noise free sensing, N-D denotes noisy depth (and noise-free pose), and N-D,P denotes noisy depth and
pose.

Area coverage (m2) Flee (m) Object coverage (#obj)

Method Gibson-S Gibson-L MP3D Gibson-S Gibson-L MP3D MP3D-cat. MP3D-inst.
SMT (Video) 28.7± 0.5 50.6± 2.6 129.7± 2.8 4.1± 0.0 5.0± 0.6 10.9± 0.4 7.3± 0.2 25.4± 1.0
EPC-local 30.9± 0.2 58.0± 0.4 165.0± 2.0 4.7± 0.1 7.8± 0.2 12.9± 0.9 8.2± 0.0 32.6± 0.6
EPC-global 30.0± 0.3 56.4± 2.1 165.6± 2.8 4.5± 0.1 7.1± 0.4 12.8± 0.6 8.6± 0.1 34.5± 0.8

EPC-local + S. 31.0± 0.2 61.2± 1.6 167.9± 2.1 4.1± 0.2 7.5± 0.4 12.6± 0.2 8.4± 0.1 32.9± 0.4
EPC-global + S 31.5± 0.1 62.2± 1.0 172.4± 0.6 4.4± 0.0 8.0± 0.4 12.6± 0.2 8.9± 0.1 36.4± 1.0

EPC aug. + S 31.8± 0.2 68.0± 1.6 179.8± 1.4 4.4± 0.2 7.4± 0.2 13.2± 0.3 9.0± 0.0 37.3± 0.0

Table 7: Exploring spatial context for self-supervision in EPC

as inputs, and predicts the average feature for the next 15 frames conditioned on the pose. We term
this as “EPC-local”. We compare the two EPC variants with SMT (Video) in Tab. 7.

As expected, both EPC variants outperform SMT (Video) by a large margin, validating the main hy-
pothesis in EPC that spatial reasoning during self-supervision is critical. However, at a first glance,
it appears that EPC-global only offers limited advantage over EPC-local. Our analysis reveals that
EPC-global is bottlenecked by the averaging of zone features during self-supervison (Eqn. 1). Each
zone typically contains anywhere from 5 - 305 frames (mean of 48 frames), and averaging them
reduces the self-supervision available per video. To test this hypothesis, we make a simple change
where we replace feature averaging with sampling, i.e., we sample a random frame from the masked
zone as the prediction target in Eqn. 1. The performance of this new “sampling-based” zone rep-
resentation is shown in Tab. 7 (denoted as “+ S”). As expected, removing the feature averaging
improves both the EPC variants. We see larger improvements in EPC-global since a lot more frames
were averaged over in this case (i.e., more information lost). As we noted, these two variants capture
two types of contextual cues: local and global which could be complementary. To test this, we now
combine the two losses during SSL training (EPC aug. + S). This model generally outperforms the
individual methods, confirming our intuition that we can derive complementary cues from local and
global context.
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