Proceedings of Machine Learning Research — Under Review:1-18, 2025 Full Paper — MIDL 2025 submission

LUV-Net: Multi-Pattern Lung Ultrasound Video
Classification through Pattern-Specific Attention with
Efficient Temporal Feature Extraction

Jung Hoon Lee!? CROP2292@SNU.AC.KR
Changi Kim 2 FRZ2YROOM@SNU.AC.KR
Jinwoo Lee? REALRAIN7T@SNU.AC.KR
Si Mong Yoon? DOSTARK1986@QGMAIL.COM
Kyung-Eui Lee? SYKUl@QHANMAIL.NET
Hyun-Jun Park? PARKHJSNUH@GMAIL.COM
Kwonhyung Hyung? HEROHKH@QNAVER.COM
Chang Min Park!? MORPHIUS@SNU.AC.KR

L Department of Interdisciplinary Program in Bioengineering, Seoul National University.

2 Department of Radiology, Seoul National University Hospital, Seoul National University College
of Medicine.

3 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Na-
tional University College of Medicine.

Editors: Under Review for MIDL 2025

Abstract

Lung ultrasound (LUS) has emerged as a crucial bedside imaging tool for critical care,
yet its interpretation remains challenging due to its artifact-based nature and high op-
erator dependency. While deep learning approaches offer promising solutions for LUS
pattern analysis, existing methods are limited by their focus on single-pattern recognition
or disease-specific classification, and inadequate handling of temporal dynamics in video-
based models. We propose LUV-Net (Lung Ultrasound Video Network), a novel deep
learning model for multi-label classification of LUS patterns, combining pattern-specific
attention mechanisms with temporal feature extraction. Our approach consists of two key
modules: a spatial feature extraction module utilizing independent pattern-specific atten-
tion mechanisms, and a temporal feature extraction module designed to capture sequen-
tial relationships between adjacent frames. The model was evaluated using two distinct
datasets: a development set of 341 LUS videos and a temporally separated validation set of
56 videos. Through 5-fold cross-validation, LUV-Net demonstrated superior performance
in identifying all four LUS patterns (A-lines, B-lines, consolidation, and pleural effusion)
compared to conventional video models, achieving higher AUC scores across patterns. The
model’s interpretability was validated through visualization of pattern-specific attention
regions, providing insights into its decision-making process. The code is publicly available
at https : //github.com/iamhzan2/LungU Sy ideo.

Keywords: Video Multi-label Classification, Lung Ultrasound, Pattern-Specific Attention,
Efficient Temporal Feature

1. Introduction

Point-of-care ultrasound (POCUS) has progressively proven its significance as a useful bed-
side imaging modality, crucial for the assessment of critically ill patients and facilitating both
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diagnostic and therapeutic decision-making processes (Zieleskiewicz et al., 2021; Shrestha
et al., 2018). Lung ultrasound (LUS) has been shown to have higher sensitivity for pneu-
mothorax and pleural effusion than chest radiography (CXR) (Shrestha et al., 2018; Brogi
et al., 2017), offering advantages of being non-invasive, cost-effective, and portable. There-
fore, LUS has considerable potential as an important tool in low- and middle-income coun-
tries (LMICs) (Marini et al., 2021; Shrestha et al., 2018; Buonsenso and De Rose, 2022).
However, LUS interpretation presents significant challenges due to its artifact-based nature
rather than direct lung anatomy visualization, making it highly operator-dependent. Ad-
ditionally, the lack of qualified ultrasound professionals and insufficient training programs
are significant obstacles to the application of LUS in clinical practice (Marini et al., 2021;
Nhat et al., 2023; Lim et al., 2017).

Figure 1: Example lung ultrasound frames and features: (a) A-lines, (b) B-line, (c¢) Con-
solidation, (d) Pleural effusion with consolidation

For LUS, there are several main patterns in lung ultrasound images, including A-line,
B-line, consolidation, and pleural effusion, with healthy lungs typically exhibiting only A-
lines while other patterns may emerge or coexist associated with different lung diseases(Ni
et al., 2024), as shown in the examples in Figure 1. This characteristic inherently makes
LUS pattern recognition a multi-label classification problem. However, recent research
has focused mainly on the recognition of a single pattern (B-line) (Kerdegari et al., 2021;
Arntfield et al., 2021) or, on multi-class classification for specific lung diseases(Nhat et al.,
2023; Shea et al., 2023; Howell et al., 2024; Diaz-Escobar et al., 2021; Roy et al., 2020).

LUS examination typically involves collecting video clips from multiple lung zones for
LUS pattern analysis. While deep learning methods have shown promise in automated video
analysis (Kerdegari et al., 2021; Shea et al., 2023; De Rosa et al., 2022; Barros et al., 2021),
applying video recognition techniques to LUS faces several challenges due to the funda-
mental differences between ultrasound and natural imagery. Current approaches primarily
employ CNN+LSTM networks or 3D convolution-based architectures (Tran et al., 2015,
2018) to capture spatiotemporal features in LUS sequences (Shea et al., 2023; Barros et al.,
2021; Dastider et al., 2021; Liu et al., 2024; Ebadi et al., 2021). These conventional ap-
proaches focus on learning temporal dependencies across the entire video sequence. Smith,
D. H. et al. (Smith et al., 2023) challenge this methodology, arguing that models devel-
oped for human action recognition are not optimal in some practical scenarios involving
medical ultrasound and that models assuming temporal independence demonstrate better
sample efficiency. In the specific case of LUS data, we hypothesize that a hybrid approach
considering both local temporal dependencies (relationships between a target frame and
its neighboring frames) and frame-wise features (individual spatial features extracted from
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each frame independently) might be more effective for accurate pattern recognition in LUS
video.

Contributions: We introduce the Lung Ultrasound Video Network (LUV-Net), a deep
learning model designed to address multi-pattern recognition in LUS videos by combining
pattern-specific attention with efficient temporal feature extraction. Based on prior research
(Smith et al., 2023), our method is composed of an attention-based spatial feature extraction
network designed for each LUS pattern and a temporal feature extraction network that
considers the unique characteristics of LUS videos, ensuring a comprehensive and pattern-
specific representation as shown in Figure 2. To evaluate its effectiveness, we compare
LUV-Net’s performance with conventional video models on both internal and temporally
separated test sets and further enhance interpretability by visualizing the extraction of
important frames for each LUS pattern.

2. Methods
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Figure 2: Proposed framework of the Lung Ultrasound Video Network (LUV-Net).

The proposed Lung Ultrasound Video Network (LUV-Net), as shown in Figure 2, consists
of four main components: frame feature extraction, temporal feature extraction, spatial
feature extraction, and a feature fusion stage.

2.1. Frame Feature Extraction

The input clip X to the model is a sequence of L frames, X = (z1,z2,...,xr). Each frame is
fed into the CNN encoder individually, embedding the features into D-dimensional vectors.
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The features for each frame are denoted as hq, ho, ..., hr, where h € RP. These frame-level
features are then used in both the temporal feature extraction and spatial feature extraction
networks.

2.2. Temporal Feature Extraction

Our temporal feature extraction module is designed to capture the dynamic relationships
between consecutive frames in LUS video sequences. This process utilizes a 1D convolution
operation to analyze temporal patterns across the video timeline. For a sequence of frame
features hi, hs, ..., hr, we apply a convolution kernel with size k that processes overlapping
windows of consecutive frames. This operation generates temporally aware features:

fremp = ConvlD(hi, ho, ..., hr) (1)

where fiemp € RLXD represents the extracted temporal features. The kernel size k deter-
mines how many adjacent frames are analyzed together, while the stride controls the step
size between windows. To obtain the final video-level temporal features, we aggregate the
temporal features using Global Average Pooling (GAP), which summarizes the temporal
information into a single feature vector:

Ftemp = GAP(ftemp) (2)

2.3. Spatial Feature Extraction

Our approach employs a pattern-specific spatial attention mechanism that builds upon the
work of (Smith et al., 2023), with a key modification to handle different LUS patterns inde-
pendently. While prior study applied attention mechanisms uniformly across all features,
we recognize that different LUS patterns (A-line, B-line, Consolidation, and Pleural effu-
sion) may require attention to different frames within the video sequence. Therefore, we
apply separate attention mechanisms for each pattern.

Each frame representation, denoted as hi, hs,...,hr, is partitioned into N, segments,
corresponding to the number of attention heads. These segments are represented as hyp,
wheret = 1,2,..., L represents the frame index and k = 1, 2, ..., N, represents the attention

head index, and each hy j, has a dimensionality of d, = D/N,. Following (Smith et al., 2023),
instead of comparing subspaces with other frames in the sequence, we compute attention
scores using learned global query vectors. The use of global query vectors arises from our
inductive prior that the recognition task involves locating key pieces of information at any
point in the sequence, with the inferred query vectors representing that key information.

The attention mechanism computes dot products between frame representations and
global query vectors: A; = hy i -qi. These scores are normalized using the softmax function
to obtain attention vectors a;j that is the attention vector derived from the normalized
scores. The video-level representation from each head is computed as: H,f = Atk - M-
For each pattern (p), we concatenate the outputs from all attention heads to obtain the
pattern-specific spatial feature representation:

four = concat([HY, HY, ..., HY ]) (3)
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Finally, we combine the pattern-specific features and project them through a linear layer
to match the temporal feature dimensionality:

. 0 1 2 3
FSP‘lt = Lmear(concat(ffpat, ffpat? ffpat? ffpat)) (4)

where superscripts p0, pl, p2, and p3 correspond to A-line, B-line, consolidation, and
pleural effusion patterns respectively. This dimension reduction ensures balanced feature
dimensionality between spatial and temporal representations, preventing bias in the final
prediction.

2.4. Feature Fusion Stage

In the Feature Fusion Stage, the temporal and spatial features are combined to create
a comprehensive video representation. This is achieved by summing the temporal feature
representation Fie,,, with the spatial feature representation Fi,q;. Subsequently, The video-
level prediction can then be computed using a fully-connected linear layer for multi-label
classification of LUS patterns.

3. Materials and Experimental Setup
3.1. Datasets

Data collection and Annotation. The LUS scans were performed using a HS60 Ultra-
sound Machine (Samsung Healthcare, Republic of Korea) with a low—medium frequency
(35 MHz) convex probe. Following the protocol recommended by the Bedside Lung
Ultrasound in Emergency (BLUE) protocol (Lichtenstein and Meziere, 2008), three lung
points—anterior, lateral, and posterior areas—were assessed by the operators, ensuring
that a minimum of six videos were acquired per patient. From January to December 2023,
we collected 370 LUS videos, each with a duration of approximately 5 seconds, from 36 pa-
tients in the ICU of Seoul National University Hospital(SNUH) for the model development
set. Videos with poor quality due to blurring or darkness, which hindered the differentia-
tion of LUS patterns, were excluded from the dataset. As a result, the final dataset used
for model training consisted of 341 LUS videos from 35 patients. Additionally, for model
validation, a temporally separated test set was collected from 11 patients in the SNUH
ICU between January and December 2024, resulting in the acquisition of 56 LUS videos.
Each video ranged from 5 to 8 seconds in duration, with a frame rate of 30 frames per
second (fps) and a resolution of 924 x 1232 pixels. Each video was independently labeled
by two clinicians with over 1 year of experience in lung ultrasound (LUS), who annotated
the regions containing LUS patterns at the frame level. In cases where there was agree-
ment between the two clinicians, their consensus label was adopted as the final label. For
disagreements, a clinician with over 8 years of experience conducted the final review and
provided the definitive label.

Preprocessing Stage. For training the model, we conducted several preprocessing steps
on the video data. First, we segmented each video into one-second clips (30 frames) with
a 20% frame overlap (6 frames) between consecutive frames. This preprocessing resulted
in 2,588 clips from 370 videos for the model development set, and 366 clips from 56 videos
for the temporally separated test set. Additionally, we downsampled all video frames to
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a uniform resolution of 256 x 256 pixels. To enhance data diversity, we implemented
augmentation techniques including random horizontal flips and controlled rotations up to
10 degrees. The augmented images were subsequently converted into tensor format for
deep learning processing. To ensure robust evaluation, we randomly selected 10% of the
total data as a held-out test set and subjected the remaining 90% to 5-fold cross-validation,
ensuring strict separation of patient data across all sets.

3.2. Implementation Details

In this study, we compared the performance of our proposed LUV-Net model with several
conventional video models, including the USVN model proposed by Smith, D. H. et al.
(Smith et al., 2023), C3D, R2Plus1D, and CNN+LSTM models. For a fair comparative
analysis, all baseline models were trained on our dataset under the same experimental
conditions. Additionally, we evaluated a frame-based method that processes frame-level
features independently and derives final video predictions by pooling across the frames.

For our model architecture, we employed the ImageNet pre-trained DenseNet-161 as
the encoder, which was also used in the CNN+LSTM and frame-based method. Based
on a hyperparameter search (detailed in Table 7, Table 8, Appendix C), we optimized the
kernel size and number of attention heads for both temporal and spatial feature extraction
networks. The temporal feature extraction network incorporated a single 1D convolutional
layer with a kernel size of 13. In the spatial feature extraction network, we implemented
multiple attention heads with Na = 8. During training, we used the Adam optimizer with a
learning rate of le-6, a batch size of 4, and trained the model for up to 150 epochs. We also
implemented an early stopping mechanism with a patience value of 50 to prevent overfitting.
Optimal thresholds for balancing sensitivity and specificity were determined at the epoch
with the lowest validation loss. These thresholds were applied to both the development set
and temporally separated set for performance evaluation. All model training was conducted
using a single A100 GPU.

4. Results

The evaluation was conducted using 5-fold cross-validation on both development and tem-
porally separated sets, with an additional comparative analysis between LUV-Net and its
variant without temporal feature extraction. The main tables present the mean and stan-
dard deviation values for each metric, with bold and underlined values indicating the best
and second-best performances, respectively. The detailed results for each fold of the 5-
fold cross-validation, including P values (p <0.05) and 95% confidence intervals (CI), are
presented in Tables 4, 5, and 6 in Appendix A.

4.1. Development Dataset

Table 1 shows the 5-fold cross-validation results for the development set. Our proposed
LUV-Net demonstrates superior performance across most metrics, achieving the highest
scores in B-line (AUC: 0.834+0.014), consolidation detection (AUC: 0.853+0.019), and
overall performance (Micro AUC: 0.888+0.009, Macro AUC: 0.8944+0.009). While the
frame-based method shows competitive performance in A-line (AUC: 0.926+0.007) and
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pleural effusion detection (AUC: 0.9734+0.004), LUV-Net maintains more consistent perfor-
mance across all patterns. USVN achieves competitive results in pleural effusion (AUC:
0.93140.037) and consolidation (AUC: 0.838+0.010), but shows high variance in B-line de-
tection (0.7704+0.137). C3D, R2Plus1D and CNN+LSTM show notably lower performance,
particularly in A-line and B-line detection.

. AUC Avg

Tnput Type Model A-line B-line Consolidation | Pleural effusion Micro . Macro
Frame (Image) Frame-based 0.926+0.007 | 0.80040.033 0.831+0.018 0.973+0.004 0.88140.008 0.883+0.011
C3D 0.789+0.062 0.626+0.038 0.788+0.023 0.930£0.002 0.791£0.025 0.792+0.023
R2Plus1D 0.726+0.051 0.619+0.078 0.801£0.031 0.830£0.071 0.720+0.031 0.746+0.035
Video CNN+LSTM 0.420+0.066 0.353+0.032 0.7374+0.043 0.911+0.042 0.587+0.023 0.607+0.007
USVN 0.879+0.080 0.770+0.137 0.87940.080 0.931+0.037 0.846+0.062 0.856+0.058
LUV-Net (ours) | 0.918+0.013 | 0.83410.014 | 0.853+0.019 0.966+0.010 0.888+0.009 0.89440.009

Table 1: Results on the development set
4.2. Temporally Separated Dataset

On the temporally separated dataset (Table 2), LUV-Net maintains robust performance
with the highest AUC in A-line detection (0.835+0.057) and overall metrics (Micro: 0.858+0.023,
Macro: 0.844+0.015). While USVN achieves the highest performance in consolidation detec-
tion (0.846+0.022) and shows comparable B-line detection (0.848+0.039), LUV-Net demon-
strates superior performance in other patterns, particularly in A-line and pleural effusion
detection. C3D shows competitive performance in pleural effusion detection (0.8824+0.032),

but LUV-Net demonstrates more balanced performance across all patterns, confirming its
effectiveness in multi-label LUS pattern classification.

AUC Av,

Input Type Model A-line B-line Consolidation | Pleural effusion Micro : Macro
Frame (Image) Frame-based 0.763+0.025 | 0.89340.005 | 0.772+0.019 0.812+0.023 0.809+0.031 0.813+0.014
C3D 0.795+0.030 0.703+0.047 0.747+0.010 0.88240.032 0.848+0.025 0.784+0.025
R2Plus1D 0.659+0.056 0.634+0.010 0.684+0.027 0.868+0.011 0.734+0.030 0.713+£0.014
Video CNN+LSTM 0.366£0.092 0.491+0.047 0.756+0.042 0.754+0.084 0.602+0.069 0.593+0.029
USVN 0.795+0.024 0.8484+0.039 | 0.84610.022 0.845+0.068 0.824+0.049 0.833+0.027
LUV-Net (ours) | 0.83540.057 | 0.862+0.022 0.799+0.021 0.873+0.026 0.8584+0.023 0.844+0.015

Table 2: Results on the temporally separated set
4.3. Effectiveness of Temporal Feature Extraction

Table 3 compares the performance of LUV-Net with and without temporal feature extrac-
tion on the development set. Incorporating temporal features consistently improved perfor-
mance across all patterns, achieving higher Macro-AUC (0.894+0.009 vs 0.8854+0.011) and
Micro-AUC (0.88840.009 vs 0.880+0.014), which demonstrates the effectiveness of temporal
feature extraction in enhancing pattern recognition.

AUC Avg
A-line B-line Consolidation | Pleural effusion Micro Macro
LUV-Net (w/o temporal) | 0.910+0.017 0.826+0.019 0.8414+0.018 0.956+0.009 0.880+0.014 0.885+0.011
LUV-Net (w/ temporal) | 0.9184+0.013 | 0.83440.015 | 0.853+0.019 | 0.966+0.010 | 0.888+0.009 0.894+0.009

Table 3: Temporal feature extraction with / without on development set
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4.4. Qualitative Analysis

To further investigate the interpretability of the proposed LUV-Net model, we conducted
a qualitative analysis by visualizing the attention scores across video frames for multiple
patterns and extracting the top-k frames with the highest scores, as detailed in Appendix
B. Figure 3 shows examples from the development set, including both multi-patterns and
single-pattern clips (additional examples from the temporally separated set can be found
in Appendix B). The top-3 frames for each pattern are marked with red dots, with (A),
(B), and (C) denoting these frames. The green dashed lines represent the ground truth,
where 1 indicates presence and 0 indicates absence of the pattern. Our model identifies
critical frames and attends to the relevant regions of each pattern, both in multi-pattern
and single-pattern clips.

Single pattern Multi patterns

Scaled Attention Scores for A-line Scaled Attention Scores for B-lines
/ = (A) (8) ©

(A) (8) ©@

-

) (8) ©@

Figure 3: Visualization of attention scores and corresponding top-3 frames for different
patterns.

5. Discussion and Conclusions

We propose LUV-Net, a deep learning model for multi-label classification of LUS patterns
in ultrasound video sequences. Our 5-fold cross-validation results show superior perfor-
mance compared to conventional video models and the USVN model across all four LUS
patterns. The model integrates spatial attention mechanisms, focusing on relevant regions
for each pattern, and temporal feature extraction to capture relationships between frames.
This enhances classification performance and interpretability by identifying when and where
specific patterns appear. However, the study has limitations: our dataset comes from a sin-
gle institution, limiting generalizability, and the DenseNet-161 encoder could be optimized
for real-time applications with lighter models. Finally, real-world validation through reader
tests with clinicians is essential to assess practical effectiveness. In conclusion, LUV-Net
represents a significant step toward automated LUS analysis, offering a robust solution for
multi-label classification adaptable to diverse clinical applications.
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Appendix A. 5-Fold Cross Validation Results

A.1. Results on the development set

Tables 4 present the detailed results of 5-fold cross validation on the development. For
each fold, we report the Area Under the Curve (AUC) scores with 95% confidence inter-
vals (CI) and statistical significance (p<0.05) compared to LUV-Net performance. On the
development dataset, LUV-Net demonstrated consistent performance across all folds, with
the highest performance observed in Fold 3 (Micro-average: 0.903, Macro-average: 0.909).
The model showed particularly stable performance in Pleural Effusion detection across all
folds, maintaining AUC scores above 0.95. While frame-based method achieved marginally
better performance in A-line detection for some folds (e.g., Fold 3: 0.934 vs 0.919), LUV-
Net consistently outperformed all baselines in B-line detection and Consolidation patterns
across most folds. Notable performance variations were observed across different folds, par-
ticularly for B-line detection, where AUC scores ranged from 0.821 to 0.855. This variation
suggests that certain lung ultrasound patterns may be more challenging to detect consis-
tently, possibly due to the inherent variability in their appearance or recording conditions.
Conventional video models (C3D and R2Plus1D) showed significant performance degrada-
tion (pj0.05) compared to LUV-Net across most folds, particularly in detecting B-lines and
Consolidation patterns. The CNN+LSTM baseline demonstrated the most unstable per-
formance, with significantly lower AUC scores across all patterns and folds, indicating the
importance of our proposed architecture for temporal feature learning.

AUC Avg
Fold ## Input Type Model A-line B-line Consolidation Pleural effusion Micto  Macro
Frame (Image) | frame-based | 0.917 (0.886-0.949) | 0.837 (0.800-0.875) | 0.821 (0.775-0.866) | 0.979 (0.965-0.994) | 0.885  0.389
C3D 0.758 (0.708-0.808)* 0.640 (0.586-0.694)* 0.778 (0.733-0.822)* 0.931 (0.902-0.960)* | 0.801  0.811
Fold 0 R2Plus1D 0.707 (0.657-0.757)* 0.573 (0.513-0.632)* 0.802 (0.749-0.854) 0.911 (0.878-0.945)* 0.703  0.750
Video CNN+LSTM 0.368 (0.315-0.421)* 0.347 (0.288-0.406)* 0.760 (0.705-0.815)* 0.924 (0.891-0.957)* 0.602  0.601
USVN 0.902 (0.865-0.939) 0.834 (0.796-0.872) 0.829 (0.788-0.871)* 0.948 (0.926-0.969)* | 0.868  0.880
LUV-Net (ours) | 0.900 (0.860-0.940) | 0.841 (0.802-0.880) | 0.851 (0.810-0.892) | 0.974 (0.959-0.980) | 0.880 0.893
Frame (Image) frame-based 0.924 (0.897-0.951)* | 0.791 (0.747-0.832) 0.833 (0.783-0.883)* | 0.971 (0.958-0.984) | 0.875  0.880
C3D 0.762 (0.712-0.811)* 0.564 (0.509-0.618)* 0.814 (0.774-0.855)* 0.928 (0.899-0.956) 0.775  0.769
Fold 1 R2Plus1D 0.653 (0.598-0.708)* 0.534 (0.479-0.590)* 0.805 (0.755-0.856)* 0.814 (0.750-0.878)* 0.686  0.703
Video CNN+LSTM 0.478 (0.421-0.536)* 0.328 (0.274-0.382)* 0.724 (0.667-0.782)* 0.936 (0.904-0.967) 0.605 0.618
USVN 0.729 (0.676-0.783)* 0.536 (0.479-0.594)* 0.848 (0.808-0.888) 0.866 (0.814-0.919)* | 0.734  0.747
LUV-Net (ours) | 0.914 (0.886-0.943) | 0.821 (0.779-0.862) | 0.860 (0.822-0.897) | 0.950 (0.927-0.972) | 0.882 0.887
Frame (Image) frame-based 0.930 (0.905-0.955) 0.747 (0.695-0.798)* 0.820 (0.774-0.866) | 0.971 (0.955-0.988) | 0.876  0.868
C3D 0.714 (0.663-0.766)* 0.648 (0.590-0.707)* 0.756 (0.708-0.805)* 0.929 (0.904-0.955)* 0.756  0.764
Fold 2 R2Plus1D 0.737 (0.692-0.782)* 0.732 (0.674-0.790)* 0.747 (0.692-0.802)* 0.828 (0.767-0.888)* 0.743  0.763
Video CNN+LSTM 0.350 (0.299-0.401)* 0.349 (0.290-0.408)* 0.779 (0.727-0.831)* 0.944 (0.917-0.970)* | 0.585  0.607
USVN 0.924 (0.896-0.951) 0.821 (0.780-0.862) 0.833 (0.792-0.874) 0.953 (0.932-0.974) 0.881 0.884
LUV-Net (ours) | 0.933 (0.908-0.958) | 0.827 (0.786-0.868) | 0.834 (0.796-0.871) | 0.963 (0.944-0.983) | 0.890 0.890
Frame (Image) frame-based 0.934 (0.910-0.958) 0.823 (0.782-0.865) 0.859 (0.818-0.899) 0.969 (0.945-0.993) 0.894  0.897
C3D 0.859 (0.822-0.896)* 0.670 (0.615-0.725)* 0.795 (0.753-0.836)* 0.930 (0.902-0.957)* 0.820 0.815
Fold 3 R2Plus1D 0.789 (0.746-0.832)* 0.676 (0.616-0.736)* 0.831 (0.786-0.876)* 0.869 (0.819-0.919)* | 0.762  0.793
Video CNN+LSTM 0.395 (0.340-0.450)* 0.332 (0.276-0.388)* 0.758 (0.703-0.813)* 0.924 (0.891-0.957)* | 0.593  0.601
USVN 0.924 (0.895-0.954) 0.849 (0.813-0.886) 0.852 (0.815-0.888)* 0.951 (0.930-0.972)* 0.884  0.895
LUV-Net (ours) | 0.919 (0.891-0.948) | 0.855 (0.817-0.893) | 0.882 (0.848-0.916) | 0.975 (0.958-0.992) | 0.903 0.909
Frame (Image) | frame based 0.924 (0.897-0.052) | 0.803 (0.757-0.848) | 0.822 (0.779-0.864) | 0.977 (0.964-0.990) | 0.877 0.882
C3D 0.853 (0.815-0.891)* 0.606 (0.549-0.663)* 0.798 (0.756-0.839)* 0.934 (0.908-0.960)* 0.805  0.799
Fold 4 R2Plus1D 0.745 (0.698-0.791)* 0.581 (0.524-0.638)* 0.819 (0.769-0.869) 0.730 (0.675-0.786)* | 0.704  0.721
Video CNN+LSTM 0.509 (0.447-0.570)* 0.409 (0.347-0.472)* 0.666 (0.605-0.726)* 0.836 (0.779-0.892)* 0.550  0.606
USVN 0.916 (0.884-0.947) 0.810 (0.767-0.853) 0.830 (0.787-0.872) 0.938 (0.913-0.963)* 0.863  0.875
LUV-Net (ours) | 0.924 (0.895-0.953) | 0.824 (0.782-0.867) | 0.837 (0.795-0.880) | 0.967 (0.949-0.985) | 0.886 0.890

Table 4: Development set results, * indicates that the P-value is less than 0.05.
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A.2. Results on the temporally separated validation set

Table 5 presents the performance of the proposed LUV-Net and five baseline models—USVN,
C3D, R2Plus1D, CNN+LSTM, and frame-based method on the temporally separated vali-
dation set, using 5-fold cross-validation on temporally separated validation sets. LUV-Net
maintained robust performance while showing some interesting patterns across different
folds. Notably, the model demonstrated strong performance in detecting A-lines with AUC
scores ranging from 0.771 to 0.895, achieving the highest score in Fold 3. This performance
was particularly meaningful given the temporal gap between training and validation data.
B-line detection showed consistently high performance across all folds (AUC: 0.835-0.890),
though the frame-based method occasionally outperformed LUV-Net in this pattern (e.g.,
Fold 0: 0.899 vs 0.847, Fold 2: 0.898 vs 0.862). However, USVN showed competitive per-
formance in detecting Consolidation patterns, achieving the highest AUC scores in several
folds (Fold 0: 0.842, Fold 1: 0.844, Fold 4: 0.865). Conventional video models (C3D and
R2Plus1D) showed statistically significant performance degradation (pj0.05) in most cases,
particularly in B-line and Consolidation detection. The CNN+LSTM baseline consistently
underperformed, with AUC scores significantly lower than LUV-Net across all patterns and
folds. Interestingly, while some performance metrics showed higher variance compared to
the development dataset, LUV-Net maintained relatively stable micro and macro averages
across folds (micro: 0.825-0.882, macro: 0.826-0.861).

AUC Avg
Fold 7 | Iuput Type Model A-line B-line Consolidation Pleural effusion Micro  Macro
Frame (Image) | framebased | 0.763 (0.083-0.738)° | 0.899 (0.867-0.930)" | 0.773 (0.717-0.829) | 0.793 (0.656-0.931)* | 0.807  0.801
C3D 0.796 (0.739-0.852) 0.735 (0.683-0.787)* 0.745 (0.670-0.820) 0.868 (0.793-0.942) 0.865  0.788
Fold 0 R2Plus1D 0.680 (0.604-0.756)* 0.626 (0.571-0.682)* 0.716 (0.647-0.786)* 0.854 (0.761-0.947) 0.706  0.721
Video CNN+LSTM 0.374 (0.295-0.452)* 0.470 (0.413-0.527)* 0.795 (0.742-0.848) 0.781 (0.666-0.895)* 0.550  0.606
USVN 0.803 (0.759-0.847) 0.874 (0.838-0.910)* 0.842 (0.801-0.883)* 0.775 (0.633-0.917)* 0.837  0.825
LUV-Net (ours) | 0.819 (0.775-0.863) | 0.847 (0.809-0.885) 0.778 (0.723-0.833) | 0.877 (0.803-0.930) | 0.882 0.832
Frame (Image) | framebased | 0.790 (0.744-0.836)° | 0.889 (0.857-0.921)* | 0.751 (0.687-0.815)" | 0.851 (0.752.0.950) | 0.824  0.821
C3D 0.785 (0.726-0.844)* 0.688 (0.636-0.740)* 0.749 (0.677-0.821) 0.877 (0.802-0.953) 0.853 0.777
Fold 1 R2Plus1D 0.575 (0.496-0.655)* 0.638 (0.584-0.693)* 0.664 (0.591-0.736)* 0.875 (0.802-0.947) 0.710  0.690
Video CNN+LSTM 0.328 (0.255-0.401)* 0.464 (0.407-0.521)* 0.759 (0.699-0.820) 0.832 (0.734-0.929)* | 0.577  0.597
USVN 0.774 (0.686-0.803)* 0.772 (0.726-0.818)* 0.844 (0.803-0.885) 0.838 (0.749-0.926)* 0.760  0.801
LUV-Net (ours) | 0.893 (0.856-0.929) 0.835 (0.794-0.875) 0.802 (0.746-0.859) 0.907 (0.839-0.975) | 0.825 0.861
Frame (Image) frame-based 0.775 (0.728-0.822) | 0.898 (0.867-0.930)* 0.796 (0.740-0.853) 0.805 (0.682-0.928)* 0.837 0.838
C3D 0.761 (0.695-0.828) 0.617 (0.562-0.672)* 0.733 (0.662-0.803) 0.835 (0.741-0.930)* | 0.809  0.739
Fold 2 R2Plus1D 0.718 (0.642-0.795) 0.638 (0.581-0.695)* 0.656 (0.583-0.730)* 0.875 (0.807-0.943) 0.723  0.724
Video CNN+LSTM 0.229 (0.170-0.288)* 0.562 (0.505-0.619)* 0.794 (0.742-0.846) 0.822 (0.722-0.923)* 0.771  0.603
USVN 0.783 (0.739-0.826) 0.835 (0.794-0.876)* 0.806 (0.752-0.861) 0.874 (0.788-0.959) 0.802  0.826
LUV-Net (ours) | 0.771 (0.725-0.818) | 0.862 (0.825-0.899) 0.781 (0.728-0.834) | 0.884 (0.807-0.961) | 0.848 0.826
Frame (Image) frame-based 0.748 (0.719-0.818)* 0.890 (0.865-0.927)* 0.763 (0.759-0.868) 0.799 (0.628-0.921)* 0.763  0.801
C3D 0.805 (0.746-0.864)* 0.741 (0.688-0.795)* 0.762 (0.692-0.833)* 0.905 (0.846-0.964)* | 0.841  0.805
Fold 3 R2Plus1D 0.647 (0.566-0.728)* 0.645 (0.591-0.700)* 0.711 (0.644-0.777)* 0.858 (0.722-0.944) 0.786  0.717
Video CNN+LSTM 0.444 (0.364-0.523)* 0.519 (0.462-0.577) 0.737 (0.677-0.797)* 0.754 (0.648-0.859)* | 0.543  0.615
USVN 0.804 (0.759-0.849)* 0.865 (0.828-0.901) 0.874 (0.834-0.915)* 0.806 (0.684-0.927) 0.849  0.839
LUV-Net (ours) | 0.895 (0.860-0.930) | 0.878 (0.844-0.912) 0.825 (0.733-0.877) 0.829 (0.727-0.932) 0.874 0.858
Frame (Image) frame-based 0.739 (0.687-0.790)* 0.888 (0.845-0.922) 0.775 (0.711-0.838) 0.814 (0.691-0.938)* 0.813  0.805
C3D 0.828 (0.778-0.878) 0.732 (0.679-0.784)* 0.745 (0.672-0.818)* 0.927 (0.880-0.974)* | 0.870  0.810
Fold 4 R2Plus1D 0.673 (0.584-0.751)* 0.621 (0.565-0.677)* 0.674 (0.601-0.747)* 0.880 (0.805-0.956) 0.745  0.714
Video CNN+LSTM 0.453 (0.380-0.527)* 0.442 (0.385-0.500)* 0.693 (0.633-0.752)* 0.580 (0.456-0.704)* 0.571  0.544
USVN 0.809 (0.766-0.853) | 0.893 (0.860-0.926) | 0.865 (0.824-0.905)* | 0.930 (0.880-0.979)* | 0.874 0.875
LUV-Net (ours) | 0.798 (0.752-0.843) | 0.890 (0.857-0.923) 0.811 (0.755-0.868) 0.870 (0.786-0.954) | 0.850  0.844

Table 5: Temporally separated set results, * indicates that the P-value is less than 0.05
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A.3. Results of temporal feature extraction study on development dataset

To validate the effectiveness of our temporal feature extraction module, we conducted an
ablation study by comparing LUVM with its variant without temporal feature extraction
(LUVM w/o temporal) across all five folds on the development dataset. Table 6 presents
the detailed results of this comparison. The results demonstrate that the temporal feature
extraction module generally contributes to improved performance, though the magnitude
of improvement varies across different patterns. For A-line detection, both variants showed
comparable performance, with LUVM showing slight improvements in Folds 0-2 (e.g., Fold
2: 0.933 vs 0.910) but marginally lower performance in Folds 3-4. This suggests that A-
line patterns may be less dependent on temporal information for accurate detection. More
notable improvements were observed in B-line detection, particularly in Folds 0 and 2,
where LUVM achieved AUC scores of 0.841 and 0.827 compared to 0.827 and 0.797 for
the non-temporal variant, respectively. The temporal feature extraction seemed particu-
larly beneficial for Consolidation pattern detection, with consistent improvements across
most folds and statistical significance observed in Fold 3 (0.882 vs 0.857, pj0.05). Pleural
Effusion detection showed interesting results, with the temporal feature extraction module
contributing to statistically significant improvements in several folds (Folds 0 and 3). This
suggests that temporal information plays a crucial role in accurately identifying this partic-
ular pattern. In terms of overall performance metrics, LUVM consistently achieved higher
or comparable micro and macro averages across all folds compared to its non-temporal vari-
ant. The most substantial improvements were observed in Fold 2, where both Micro (0.890
vs 0.867) and Macro (0.890 vs 0.873) averages showed clear advantages of temporal fea-
ture extraction. These results validate the effectiveness of our temporal feature extraction
module in capturing dynamic pattern characteristics while maintaining robust performance
across different data splits.

] AUC Avg

Fold 7 Model A-line B-line Consolidation Pleural effusion Micro Macro
Fold 0 LUV-Net (w/o temporal) | 0.894 (0.855-0.934) 0.827 (0.786-0.869) 0.832 (0.793-0.871) 0.955 (0.935-0.975)* | 0.867  0.879
LUV-Net (w/ temporal) | 0.900 (0.860-0.940) | 0.841 (0.802-0.880) | 0.851 (0.810-0.892) | 0.974 (0.959-0.989) | 0.880 0.893

Fold 1 LUV-Net (w/o temporal) | 0.891 (0.849-0.933)* 0.819 (0.776-0.863) | 0.863 (0.827-0.900) | 0.944 (0.923-0.966) | 0.883 0.881
LUV-Net (w/ temporal) | 0.914 (0.886-0.943) | 0.821 (0.779-0.862) | 0.860 (0.822-0.897) | 0.950 (0.927-0.972) | 0.882 0.887

Fold 2 LUV-Net (w/o temporal) | 0.910 (0.875-0.944)* 0.797 (0.753-0.842)* 0.817 (0.774-0.860) 0.961 (0.940-0.981) 0.867  0.873
LUV-Net (w/ temporal) | 0.933 (0.908-0.958) | 0.827 (0.786-0.868) | 0.834 (0.796-0.871) | 0.963 (0.944-0.983) | 0.890 0.890

Fold 3 LUV-Net (w/o temporal) | 0.927 (0.898-0.955) | 0.845 (0.805-0.885) 0.857 (0.816-0.897)* 0.968 (0.952-0.985)* | 0.901  0.901
LUV-Net (w/ temporal) 0.919 (0.891-0.948) | 0.855 (0.817-0.893) | 0.882 (0.848-0.916) | 0.975 (0.958-0.992) | 0.903 0.909

Fold 4 LUV-Net (w/o temporal) | 0.927 (0.896-0.957) | 0.840 (0.798-0.883) | 0.838 (0.797-0.879 | 0.952 (0.932-0.971)* | 0.884 0.891
LUV-Net (w/ temporal) 0.924 (0.895-0.953) 0.824 (0.782-0.867) 0.837 (0.795-0.880) | 0.967 (0.949-0.985) | 0.886 0.890

Table 6: Temporal feature extraction study results, * indicates that the P-value is less than

0.05

Appendix B. Qualitative Analysis

To further investigate the interpretability of the proposed LUV-Net model, we performed
qualitative analysis by visualizing the attention scores across video frames for multiple labels
and highlighting the most informative frames. The attention mechanism incorporated in
our model provides a pathway to understand which frames contribute the most to the
classification of each pattern. This section presents the results of this analysis, supported
by both visual plots and mathematical expressions.
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The proposed model employs a shared attention mechanism where each label y; €
{y1,y2,...,yc} (for C' = 4, corresponding to ‘A-line’, ‘B-lines’, ‘Consolidation’, and ‘Pleu-
ral effusion’) is represented with its own set of attention query vectors q;. Specifically, the

attention for the i-th label is computed as follows: «; = softmax (}\}%" ), where: H € REX4:
represents the encoded feature matrix obtained from the encoder, with L denoting the
number of frames and d the number of features per frame. The learnable attention query
vector for the i-th label, q; € R"*% is split into h attention heads, where each head has a
dimensionality of dy = %. The resulting attention scores, o; € RE*" provide frame-level
contributions for the i-th label. A scaling factor, \/d}, is applied to stabilize the computed
attention scores.

After computing the attention weights {a?}thl for each head h, where H is the total
number of attention heads, the frame-wise attention scores are aggregated and normalized.

First, we compute the raw attention sum for each frame ¢ as:

Then, to ensure comparability across different sequences, we apply Min-Max normaliza-
tion to scale the attention scores to the [0,1] range:

horm Qi — mln](dj) (6)
' max;(&;) — min(d;)

2O represents the normalized attention score for frame 7, indicating its relative

contribution to the predicted label y;. This normalization ensures that the most attended
frame has a score of 1 and the least attended frame has a score of 0, while preserving the
relative importance of each frame in the sequence.

where o
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Figure 4: Visualization of attention scores and corresponding top-3 frames for different
patterns on temporally separated set.
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Appendix C. Ablation study

To evaluate the effectiveness of our proposed LUV-Net model and understand the impact of
various architectural choices, we conducted extensive ablation studies focusing on four key
aspects. First, we aimed to identify the optimal parameters for both the temporal feature
extraction network and the spatial feature extraction network. Specifically, we experimented
with the kernel size of the temporal feature extraction network and the number of attention
heads in the spatial feature extraction network. Second, we investigated the effect of the
input clip length on the model’s performance. By varying the length of the input clips, we
investigate the effect of various LUS video lengths on the model performance to classify
LUS patterns accurately.

C.1. Effect of Kernel size of temporal feature extraction network

The analysis of different 1D kernel size (ranging from 1 to 29) on the development set
revealed interesting patterns in model performance (Table 7). The results reveal that a
kernel size of 13 achieves optimal overall performance. Specifically, with kernel size 13,
we observe strong performance across all evaluation metrics: 0.900 for A-line detection,
0.853 for B-line detection, 0.882 for Consolidation detection, and 0.975 for Pleural effusion
detection. The macro and micro averages at kernel size 13 are 0.908 and 0.902 respectively,
indicating balanced performance across all classes. Based on these findings, we selected
a kernel size of 13 as the most effective configuration for the temporal feature extraction
network.

Kernel size

1 3 5 7 9 i 13 15 17 19 21 23 25 29
A-line 0918 0.928 0912 0909 0906 0909 0917 0.900 0912 0.909 0901 0926 0.918 0.922
AUC B-line 0.827 0.857 0.855 0.847 0.826 0.785 0.853 0.823 0.811 0.806 0.816 0.820 0.801 0.816
Consolidation | 0.862 0.856 0.861 0.846 0.876 0.870 0.882 0.880 0.884 0.884 0.860 0.897 0.892 0.881
Pleural effusion | 0.965 0.969 0.965 0.963 0.977 0.971 0.975 0.975 0972 0.968 0.973 0972 0.975 0.964
Ave Micro 0.891 0.902 0.8%6 0.888 0.894 0.889 0.902 0.893 0.890 0.890 0.874 0907 0.902 0.888
Macro 0.894 0.904 0.899 0.893 0.898 0.885 0.908 0.896 0.896 0.893 0.889 0.905 0.898 0.897

Table 7: Development set Kernel size

C.2. Effect of number of attention heads of spatial feature extraction network

To investigate the optimal number of attention heads in our spatial feature extraction
network, we conducted experiments varying the number of attention heads from 1 to 96.
Table 8 presents the performance evaluation across different metrics for each attention head
configuration. Our experimental results indicate that the number of attention heads has a
relatively stable impact on model performance. When examining the results, we observe
that using 8 attention heads achieves optimal performance across most metrics. With 8
attention heads, the model demonstrates strong results with AUC scores of 0.917 for A-
line detection, 0.855 for B-line detection, 0.882 for Consolidation detection, and 0.975 for
Pleural effusion detection. Furthermore, both micro and macro averages achieved the best
overall performance (Micro: 0.903, Macro: 0.909) with 8 attention heads. Interestingly,
increasing the number of attention heads beyond 8 does not yield significant performance
improvements. Similarly, using fewer attention heads (1, 2, 4) shows marginally lower
performance across most metrics.

16



LUV-NET

Attn head num

1 2 4 8 16 32 96
A-line 0.914 | 0.919 | 0.918 | 0.919 | 0.917 | 0.917 | 0.915
AUC B-line 0.852 | 0.854 | 0.851 | 0.855 | 0.852 | 0.853 | 0.850
Consolidation | 0.881 | 0.882 | 0.880 | 0.882 | 0.880 | 0.882 | 0.881
Pleural effusion | 0.974 | 0.975 | 0.973 | 0.975 | 0.975 | 0.975 | 0.976
Avg Micro 0.901 | 0.902 | 0.897 | 0.903 | 0.901 | 0.902 | 0.901
Macro 0.907 | 0.909 | 0.907 | 0.909 | 0.907 | 0.908 | 0.907

Table 8: Development set Number of Attn head

C.3. Performance comparison across number of frames

We conducted extensive experiments to analyze the model’s performance using different
numbers of input frames (40, 50, 60, and 70 frames) to determine the optimal temporal
window for lung ultrasound pattern recognition. As shown in Table 9, our proposed LUV-
Net consistently outperformed all baseline models (USVN, C3D, R2PluslD, frame-based
method, and CNN+LSTM) across different frame settings. Specifically, with 60 frames
as input, LUV-Net achieved its best overall performance with a micro average of 0.908
and macro average of 0.905. At this setting, LUV-Net demonstrated robust performance
across all pathology detection tasks, achieving AUC scores of 0.939 for A-line detection,
0.828 for B-line detection, 0.881 for Consolidation detection, and 0.963 for Pleural effusion
detection. This suggests that 60 frames provide an optimal temporal window for capturing
the dynamic characteristics of lung ultrasound patterns. When comparing across different
frame settings, we observed that using fewer frames (40 frames) resulted in slightly decreased
performance, particularly in detecting B-lines (AUC 0.829) and Consolidation (AUC 0.867).
Conversely, increasing the frame count to 70 frames did not yield significant improvements
and showed marginal performance degradation in some metrics (micro average decreasing
from 0.908 to 0.883). Notably, the performance gap between LUV-Net and baseline models
was particularly pronounced in challenging cases such as B-line detection, where LUV-Net
consistently maintained superior performance across all frame settings.
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, AUC Avg
Number of frames Input Type Model A-line B-line Consolidation Pleural effusion Micro Macro
C3D 0.805 (0.755-0.855)* 0.615 (0.549-0.680)* 0.790 (0.739-0.841)* 0.931 (0.898-0.963)* 0.789  0.788
R2Plus1D 0.683 (0.626-0.739)* 0.732 (0.668-0.795)* 0.824 (0.771-0.876) 0.706 (0.619-0.794)* 0.679  0.738
40 frames Video CNN-+LSTM 0.311 (0.254-0.369)* | 0.375 (0.303-0.448)* | 0.747 (0.683-0.811)* 0.927 (0.875-0.978) | 0.597  0.593
’ USVN 0.905 (0.865-0.944)* 0.833 (0.789-0.878) | 0.874 (0.832-0.916) | 0.918 (0.865-0.971)* | 0.862 0.884
LUV-Net (ours) | 0.934 (0.906-0.962) 0.829 (0.780-0.878) 0.867 (0.825-0.909) 0.974 (0.957-0.990) | 0.898 0.902
Frame (Image) frame-based 0.924 (0.892-0.956) 0.833 (0.785-0.880) 0.847 (0.802-0.892) 0.950 (0.913-0.988) 0.881  0.890
C3D 0.781 (0.722-0.839)* 0.578 (0.506-0.651)* 0.763 (0.706-0.821)* 0.923 (0.888-0.958)* 0.768  0.764
R2Plus1D 0.712 (0.650-0.774)* | 0.722 (0.653-0.791)* 0.806 (0.751-0.861) 0.623 (0.510-0.736)* | 0.667  0.719
50 frames Video CNN+LSTM 0.335 (0.266-0.404)* | 0.367 (0.287-0.447)* | 0.676 (0.607-0.744)* | 0.908 (0.858-0.959)* | 0.583  0.574
i USVN 0.920 (0.877-0.962) 0.822 (0.771-0.873) 0.864 (0.819-0.910) 0.935 (0.895-0.975) 0.872  0.887
LUV-Net (ours) | 0.937 (0.903-0.970) 0.814 (0.758-0.870) 0.854 (0.808-0.900) 0.958 (0.933-0.984) | 0.894 0.893
Frame (Image) | frame-based 0.922 (0.888-0.957) | 0.841 (0.791-0.891) | 0.863 (0.818-0.909) | 0.954 (0.014-0.993) | 0.880 0.897
C3D 0.862 (0.815-0.909)* | 0.649 (0.578-0.719)* | 0.800 (0.747-0.852)* 0.940 (0.909-0.971) | 0.823  0.815
R2Plus1D 0.692 (0.627-0.758)* | 0.698 (0.628-0.768)* | 0.717 (0.648-0.785)* | 0.639 (0.522-0.756)* | 0.646  0.689
60 frames Video CNN-+LSTM 0.367 (0.298-0.436)* 0.397 (0.314-0.479)* 0.754 (0.683-0.825)* 0.875 (0.820-0.929)* 0.594  0.599
USVN 0.912 (0.870-0.954)* 0.812 (0.753-0.870) 0.885 (0.845-0.925) 0.955 (0.925-0.986) 0.890  0.893
LUV-Net (ours) | 0.939 (0.910-0.968) | 0.828 (0.773-0.883) | 0.881 (0.839-0.923) | 0.963 (0.936-0.990) | 0.908 0.905
Frame (Image) frame-based 0.923 (0.889-0.956) 0.848 (0.798-0.899) 0.857 (0.810-0.904) 0.956 (0.921-0.991) | 0.887  0.897
C3D 0.737 (0.663-0.811)* | 0.664 (0.583-0.745)* | 0.776 (0.712-0.839)* | 0.931 (0.894-0.968)* | 0.776  0.780
R2Plus1D 0.670 (0.589-0.752)* 0.649 (0.567-0.730)* 0.671 (0.594-0.748)* 0.444 (0.311-0.577)* 0.618  0.612
70 frames Video CNN+LSTM 0.316 (0.239-0.392)* 0.411 (0.320-0.501)* 0.693 (0.613-0.774)* 0.840 (0.768-0.911)* 0.573  0.567
i USVN 0.905 (0.854-0.955) | 0.821 (0.763-0.878) | 0.868 (0.819-0.918) | 0.956 (0.927-0.985) | 0.879  0.889
LUV-Net (ours) | 0.939 (0.907-0.970) | 0.812 (0.744-0.880) 0.850 (0.793-0.907) | 0.971 (0.952-0.990) | 0.883 0.896
Frame (Image) frame-based 0.920 (0.879-0.961) 0.818 (0.754-0.881) 0.865 (0.814-0.916) 0.959 (0.923-0.994) 0.882  0.892

Table 9: Performance Comparison Across
is less than 0.05

Number of frames, * indicates that the P-value
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