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Abstract

Lung ultrasound (LUS) has emerged as a crucial bedside imaging tool for critical care, yet
its interpretation remains challenging due to its artifact-based nature and high operator
dependency. While deep learning approaches offer promising solutions for LUS pattern
analysis, existing methods are limited by their focus on single-pattern recognition or disease-
specific classification, and insufficient modeling of temporal relationships in LUS video data.
We propose LUV-Net (Lung Ultrasound Video Network), a novel deep learning model for
multi-label classification of LUS patterns, combining pattern-specific attention mechanisms
with temporal feature extraction. Our approach consists of two key modules: a spatial
feature extraction module utilizing independent pattern-specific attention mechanisms, and
a temporal feature extraction module designed to capture sequential relationships between
adjacent frames. The model was evaluated using two distinct datasets: a development set
of 341 LUS videos and a temporally separated validation set of 56 videos. Through 5-fold
cross-validation, LUV-Net demonstrated superior performance in identifying all four LUS
patterns (A-lines, B-lines, consolidation, and pleural effusion) compared to CNN-based
and Transformer-based video models, achieving higher AUC scores across patterns. The
model’s interpretability was validated through visualization of pattern-specific attention
regions, providing insights into its decision-making process. The code is publicly available
at https : //github.com/iamhxxn2/LungUSV ideo.

Keywords: Video Multi-label Classification, Lung Ultrasound, Pattern-Specific Attention,
Efficient Temporal Feature

© 2025 CC-BY 4.0, J.H. Lee, C.K. , J. Lee, S.M. Yoon, K.-E. Lee, H.-J. Park, K. Hyung & C.M. Park.

https://github.com/iamhxxn2/LungUS_Video
https://creativecommons.org/licenses/by/4.0/


Lee Lee Yoon Lee Park Hyung Park

1. Introduction

Point-of-care ultrasound (POCUS) has progressively proven its significance as a useful bed-
side imaging modality, crucial for the assessment of critically ill patients and facilitating both
diagnostic and therapeutic decision-making processes (Zieleskiewicz et al., 2021; Shrestha
et al., 2018). Lung ultrasound (LUS) has been shown to have higher sensitivity for pneu-
mothorax and pleural effusion than chest radiography (CXR) (Shrestha et al., 2018; Brogi
et al., 2017), offering advantages of being non-invasive, cost-effective, and portable. There-
fore, LUS has considerable potential as an important tool in low- and middle-income coun-
tries (LMICs) (Marini et al., 2021; Shrestha et al., 2018; Buonsenso and De Rose, 2022).
However, LUS interpretation presents significant challenges due to its artifact-based nature
rather than direct lung anatomy visualization, making it highly operator-dependent. Ad-
ditionally, the lack of qualified ultrasound professionals and insufficient training programs
are significant obstacles to the application of LUS in clinical practice (Marini et al., 2021;
Nhat et al., 2023; Lim et al., 2017).

Figure 1: Example lung ultrasound frames and features: (a) A-lines, (b) B-line, (c) Con-
solidation, (d) Pleural effusion with consolidation

For LUS, there are several main patterns in lung ultrasound images, including A-line,
B-line, consolidation, and pleural effusion, with healthy lungs typically exhibiting only A-
lines while other patterns may emerge or coexist associated with different lung diseases(Ni
et al., 2024), as shown in the examples in Figure 1. This characteristic inherently makes
LUS pattern recognition a multi-label classification problem. However, recent research
has focused mainly on the recognition of a single pattern (B-line) (Kerdegari et al., 2021;
Arntfield et al., 2021) or, on multi-class classification for specific lung diseases(Nhat et al.,
2023; Shea et al., 2023; Howell et al., 2024; Diaz-Escobar et al., 2021; Roy et al., 2020).

While deep learning methods have shown promise in automated video analysis (Kerde-
gari et al., 2021; Shea et al., 2023; De Rosa et al., 2022; Barros et al., 2021), applying
video recognition techniques to LUS faces several challenges due to the fundamental dif-
ferences between ultrasound and natural imagery. Current approaches primarily employ
CNN+LSTM architecture or 3D convolution-based architectures (e.g., C3D(Tran et al.,
2015), R2Plus1D(Tran et al., 2018)) to capture spatiotemporal features in LUS sequences
(Shea et al., 2023; Barros et al., 2021; Dastider et al., 2021; Liu et al., 2024; Ebadi et al.,
2021). These approaches focus on learning temporal dependencies across the entire video
sequence. Smith, D. H. et al. (Smith et al., 2023) challenge this methodology, arguing
that models developed for human action recognition are not optimal in some practical
scenarios involving medical ultrasound and that models assuming temporal independence
demonstrate better sample efficiency. In the specific case of LUS data, we hypothesize that
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a hybrid approach considering both local temporal dependencies (relationships between a
target frame and its neighboring frames) and frame-wise features might be more effective
for accurate pattern recognition in LUS video.

Contributions: We introduce the Lung Ultrasound Video Network (LUV-Net), a deep
learning model for multi-pattern recognition in LUS videos that combines pattern-specific
attention with efficient temporal feature extraction.

2. Methods

Figure 2: Proposed framework of the Lung Ultrasound Video Network (LUV-Net).

The proposed Lung Ultrasound Video Network (LUV-Net), as shown in Figure 2, consists
of four main components: frame feature extraction, temporal feature extraction, spatial
feature extraction, and a feature fusion stage.

2.1. Frame Feature Extraction

The input clipX to the model is a sequence of L frames, X = (x1, x2, . . . , xL). Each frame is
fed into the CNN encoder individually, embedding the features into D-dimensional vectors.
The features for each frame are denoted as h1, h2, . . . , hL, where h ∈ RD. These frame-level
features are then used in both the temporal feature extraction and spatial feature extraction
networks.
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2.2. Temporal Feature Extraction

Our temporal feature extraction module is designed to capture the dynamic relationships
between consecutive frames in LUS video sequences. This process utilizes a 1D convolution
operation to analyze temporal patterns across the video timeline. For a sequence of frame
features h1, h2, . . . , hL, we apply a convolution kernel with size k that processes overlapping
windows of consecutive frames. This operation generates temporally aware features:

ftemp = Conv1D(h1, h2, . . . , hL) (1)

where ftemp ∈ RL×D represents the extracted temporal features. The kernel size k deter-
mines how many adjacent frames are analyzed together, while the stride controls the step
size between windows. To obtain the final video-level temporal features, we aggregate the
temporal features using Global Average Pooling (GAP), which summarizes the temporal
information into a single feature vector:

Ftemp = GAP (ftemp) (2)

2.3. Spatial Feature Extraction

Our approach employs a pattern-specific spatial attention mechanism that builds upon the
work of (Smith et al., 2023), with a key modification to handle different LUS patterns inde-
pendently. While prior study applied attention mechanisms uniformly across all features,
we recognize that different LUS patterns may require attention to different frames within
the video sequence. Therefore, we apply separate attention mechanisms for each pattern.

Each frame representation, denoted as h1, h2, . . . , hL, is divided into Na segments for
the attention heads, resulting in sub-representations ht,k, where t and k index the frame
and attention head, respectively. Each segment ht,k ∈ Rda has dimensionality da = D/Na.
Following (Smith et al., 2023), we compute attention scores using learned global query
vectors instead of comparing features across frames. The use of global query vectors is
motivated by the inductive prior that the recognition task involves locating key pieces of
information at any point in the sequence, with the learned queries acting as pattern-specific
detectors. The attention mechanism computes dot products between frame representations
and global query vectors: λt,k = ht,k · qkp, where superscripts p0, p1, p2, and p3 correspond
to A-line, B-line, consolidation, and pleural effusion patterns respectively. These scores are
scaled by

√
dk for numerical stability and normalized across the temporal dimension using

the softmax function to obtain attention weights: apt,k = exp
(
λp
t,k/

√
dk

)
. These scores are

normalized using the softmax function to obtain attention vectors at,k that is the attention
vector derived from the normalized scores. The video-level representation from each head
is computed as the weighted sum of the frame representations: Hp

k =
∑L

t=1 a
p
t,k · ht,k. For

each pattern (p), we concatenate the outputs from all attention heads to obtain the pattern-
specific spatial feature representation:

fp
spat = concat([Hp

1 , H
p
2 , . . . ,H

p
Na

]) (3)

Finally, we combine the pattern-specific features and project them through a linear layer
to match the temporal feature dimensionality:

Fspat = Linear(concat(fp0
spat, f

p1
spat, f

p2
spat, f

p3
spat)) (4)
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2.4. Feature Fusion Stage

In the Feature Fusion Stage, the temporal and spatial features are combined to create a
comprehensive video representation. This is achieved by summing the temporal feature
representation Ftemp with the spatial feature representation Fspat. Subsequently, the video-
level prediction can then be computed using a fully connected linear layer for multi-label
classification of LUS patterns.

3. Materials and Experimental Setup

3.1. Datasets

Data Collection and Annotation. The LUS scans were performed using a HS60 Ultra-
sound Machine (Samsung Healthcare, Republic of Korea) with a low–medium frequency
(3–5 MHz) convex probe. Following the protocol recommended by the Bedside Lung
Ultrasound in Emergency (BLUE) protocol (Lichtenstein and Meziere, 2008), three lung
points—anterior, lateral, and posterior areas—were assessed by the operators, ensuring
that a minimum of six videos were acquired per patient. From January to December 2023,
we collected 370 LUS videos, each with a duration of approximately 5 seconds, from 36 pa-
tients in the ICU of Seoul National University Hospital(SNUH) for the model development
set. Videos with poor quality due to blurring or darkness, which hindered the differentia-
tion of LUS patterns, were excluded from the dataset. As a result, the final dataset used
for model training consisted of 341 LUS videos from 35 patients. Additionally, for model
validation, a temporally separated test set was collected from 11 patients in the SNUH
ICU between January and December 2024, resulting in the acquisition of 56 LUS videos.
Each video ranged from 5 to 8 seconds in duration, with a frame rate of 30 frames per
second (fps) and a resolution of 924 × 1232 pixels. In the development set, each video was
independently labeled by two clinicians with over 1 year of experience in lung ultrasound
(LUS), who annotated the regions containing LUS patterns at the frame level. In cases
where there was agreement between the two clinicians, their consensus label was adopted as
the final label. For disagreements, a clinician with over 8 years of experience conducted the
final review. For the temporally separated test set, all labeling was performed by a single
clinician with over eight years of experience in lung ultrasound.

Preprocessing Stage. For training the model, we conducted several preprocessing steps
on the video data. First, we segmented each video into one-second clips (30 frames) with
a 20% frame overlap (6 frames) between consecutive frames. This preprocessing resulted
in 2,588 clips from 370 videos for the model development set, and 366 clips from 56 videos
for the temporally separated test set. Additionally, we downsampled all video frames to
a uniform resolution of 256 × 256 pixels. To enhance data diversity, we implemented
augmentation techniques including random horizontal flips and controlled rotations up to
10 degrees. The augmented images were subsequently converted into tensor format for
deep learning processing. To ensure robust evaluation, we randomly selected 10% of the
total data as a held-out test set and subjected the remaining 90% to 5-fold cross-validation,
ensuring strict separation of patient data across all sets.
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3.2. Implementation Details

In this study, we compared the performance of our proposed LUV-Net model with CNN-
based video models (USVN (Smith et al., 2023), C3D, R2Plus1D, and CNN+LSTM) and
Transformer-based video models (MViT-B(Fan et al., 2021) and Swin-B(Liu et al., 2022)).
Additionally, we evaluated a frame-based method that processes frame-level features in-
dependently and derives final video predictions by pooling across the frames. To ensure
consistency in feature extraction, LUV-Net, USVN, and CNN+LSTM models employed
ImageNet pre-trained DenseNet-161(Huang et al., 2017) as the default image encoder. The
CNN+LSTM model utilized a single LSTM layer for sequential feature processing. Further-
more, to explore the impact of using a lighter backbone, we conducted an additional exper-
iment replacing DenseNet-161 with ResNet-50(He et al., 2016) as the encoder in LUV-Net,
analyzing its effect on model efficiency and performance. For a fair comparative analysis
with models that do not use pretrained weights (C3D, R2Plus1D, MViT-B, and Swin-B),
we also evaluated LUV-Net with a non-pretrained DenseNet-161 backbone. All baseline
models were trained on our dataset under identical experimental conditions to ensure fair
comparison.

For LUV-Net, we optimized the key hyperparameters of the temporal and spatial fea-
ture extraction networks through a systematic hyperparameter search (detailed in Table 8,
Table 9, Appendix C). Through this process, we determined that a 1D convolutional ker-
nel size of 13 achieved the best validation performance across all evaluation metrics. The
kernel size selection was based on an empirical analysis of different sizes (ranging from 1
to 29), where kernel size 13 consistently provided optimal results in both macro-AUC and
micro-AUC scores (as detailed in Table 8). This suggests that a receptive field spanning 13
consecutive frames effectively captures the local temporal dependencies in lung ultrasound
videos, balancing sensitivity and specificity in LUS pattern recognition. Similarly, for the
spatial feature extraction network, we selected 8 attention heads (Na = 8) based on an
extensive evaluation of different head configurations (ranging from 1 to 96). The results
indicated that using 8 attention heads maximized the model’s performance without intro-
ducing excessive computational overhead, as shown in Table 9. Increasing the number of
attention heads beyond this point did not yield further improvements, confirming that this
configuration effectively balances feature representation across different LUS patterns.

During training, we used the Adam optimizer(Kingma and Ba, 2014) with a learning rate
of 1e-6, a batch size of 4, and trained the model for up to 150 epochs. To prevent overfitting,
we implemented an early stopping mechanism with a patience value of 50, ensuring that
the best-performing model was selected based on validation loss. The final thresholds for
classification were determined at the epoch with the lowest validation loss, and these were
applied consistently to both the development set and the temporally separated validation
set. All training experiments were conducted using a single NVIDIA A100 GPU.

4. Results

The evaluation was conducted using 5-fold cross-validation on both development and tem-
porally separated sets, with an additional comparative analysis between LUV-Net and its
variant without temporal feature extraction. The main tables present the mean and stan-
dard deviation values for each metric, with bold and underlined values indicating the best
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and second-best performances, respectively. The detailed results for each fold of the 5-
fold cross-validation, including P values (p <0.05) and 95% confidence intervals (CI), are
presented in Tables 5, 6, and 7 in Appendix A.

4.1. Development Dataset

Table 1 shows the 5-fold cross-validation results for the development set. Our proposed
LUV-Net demonstrates superior performance across most metrics, achieving the highest
scores in B-line (AUC: 0.834±0.014), consolidation detection (AUC: 0.853±0.019), and over-
all performance (Micro: 0.888±0.009, Macro: 0.894±0.009). While the frame-based method
shows competitive performance in A-line (AUC: 0.926±0.007) and pleural effusion detection
(AUC: 0.973±0.004), LUV-Net maintains more consistent performance across all patterns.
USVN achieves competitive results in pleural effusion (AUC: 0.931±0.037) and consolida-
tion (AUC: 0.838±0.010), but shows high variance in B-line detection (0.770±0.137). C3D,
R2Plus1D and CNN+LSTM show notably lower performance, particularly in A-line and
B-line detection. Transformer-based video models, MViT-B and Swin-B, show significantly
lower performance compared to CNN-based approaches. MViT-B achieves an overall Micro
AUC of 0.619±0.055, while Swin-B obtains 0.601±0.064. For the additional baselines, LUV-
Net with ResNet-50 exhibits comparable performance across patterns, achieving a Micro
AUC of 0.808±0.030 and a Macro AUC of 0.806±0.034. Notably, despite lower performance
than its LUV-Net (DenseNet-161)†, LUV-Net (DenseNet-161) still consistently outperforms
non-pretrained baselines (C3D, R2Plus1D, MViT-B, and Swin-B), demonstrating the in-
herent effectiveness of our architectural design independent of transfer learning advantages.

Input Type Model
AUC Avg

A-line B-line Consolidation Pleural effusion Micro Macro
Frame (Image) frame-based 0.926±0.007 0.800±0.033 0.831±0.018 0.973±0.004 0.881±0.008 0.883±0.011

Video

MViT-B 0.598±0.085 0.527±0.130 0.620±0.066 0.752±0.109 0.619±0.055 0.626±0.066
Swin-B 0.582±0.095 0.574±0.130 0.604±0.077 0.714±0.100 0.601±0.064 0.620±0.074
C3D 0.789±0.062 0.626±0.038 0.788±0.023 0.930±0.002 0.791±0.025 0.792±0.023

R2Plus1D 0.726±0.051 0.619±0.078 0.801±0.031 0.830±0.071 0.720±0.031 0.746±0.035
CNN(Densenet-161)†+LSTM 0.420±0.066 0.353±0.032 0.737±0.043 0.911±0.042 0.587±0.023 0.607±0.007

USVN(Densenet-161)† 0.879±0.080 0.770±0.137 0.879±0.080 0.931±0.037 0.846±0.062 0.856±0.058
LUV-Net(Resnet-50)† 0.867±0.026 0.778±0.020 0.762±0.025 0.806±0.140 0.808±0.030 0.806±0.034

LUV-Net(Densenet-161)† 0.918±0.013 0.834±0.014 0.853±0.019 0.966±0.010 0.888±0.009 0.894±0.009
LUV-Net(Densenet-161) 0.865±0.026 0.644±0.059 0.872±0.033 0.849±0.098 0.809±0.045 0.809±0.034

Table 1: Results on the development set. † indicates ImageNet pretrained model.

4.2. Temporally Separated Dataset

On the temporally separated dataset (Table 2), LUV-Net(DenseNet-161) maintains ro-
bust performance with the highest AUC in A-line detection (0.835±0.057) and overall
metrics (Micro:0.858±0.023, Macro:0.844±0.015). While USVN achieves the highest per-
formance in consolidation detection (0.846±0.022) and shows comparable B-line detection
(0.848±0.039), LUV-Net demonstrates superior performance in other patterns, particularly
in A-line and pleural effusion detection. C3D shows competitive performance in pleural
effusion detection (0.882±0.032), but our model demonstrates more balanced performance
across all patterns, confirming its effectiveness in multi-label LUS pattern classification. For
LUV-Net(ResNet-50), performance remains competitive, with a Micro AUC of 0.836±0.017
and a Macro AUC of 0.815±0.013, though slightly lower than its DenseNet-161 counter-
part. MViT-B and Swin-B show lower performance, with Micro AUC of 0.740±0.093 and
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0.737±0.047, respectively. Similar to the development set, while the LUV-Net (DenseNet-
161) did not reach the performance of LUV-Net (DenseNet-161)†, it outperformed other
baseline models, excelling in A-line (AUC: 0.841±0.030) and pleural effusion detection
(AUC: 0.885±0.041).

Input Type Model
AUC Avg

A-line B-line Consolidation Pleural effusion Micro Macro
Frame (Image) frame-based 0.763±0.025 0.893±0.005 0.772±0.019 0.812±0.023 0.809±0.031 0.813±0.014

Video

MViT-B 0.633±0.118 0.538±0.043 0.633±0.047 0.825±0.100 0.740±0.093 0.659±0.064
Swin-B 0.642±0.104 0.546±0.044 0.632±0.083 0.751±0.096 0.737±0.047 0.645±0.071
C3D 0.795±0.030 0.703±0.047 0.747±0.010 0.882±0.032 0.848±0.025 0.784±0.025

R2Plus1D 0.659±0.056 0.634±0.010 0.684±0.027 0.868±0.011 0.734±0.030 0.713±0.014
CNN(Densenet-161)†+LSTM 0.366±0.092 0.491±0.047 0.756±0.042 0.754±0.084 0.602±0.069 0.593±0.029

USVN(Densenet-161)† 0.795±0.024 0.848±0.039 0.846±0.022 0.845±0.068 0.824±0.049 0.833±0.027
LUV-Net(Resnet-50)† 0.790±0.032 0.764±0.011 0.824±0.008 0.877±0.035 0.836±0.017 0.815±0.013

LUV-Net(Densenet-161)† 0.835±0.057 0.862±0.022 0.799±0.021 0.873±0.026 0.858±0.023 0.844±0.015
LUV-Net(Densenet-161) 0.841±0.030 0.778±0.035 0.744±0.019 0.885±0.041 0.795±0.048 0.813±0.019

Table 2: Results on the temporally separated set. † indicates ImageNet pretrained model.

4.3. Effectiveness of Temporal Feature Extraction

Table 3 compares the performance of LUV-Net(DenseNet-161) with and without temporal
feature extraction on the development set. Incorporating temporal features consistently
improved performance across all patterns, achieving higher Macro AUC (0.894±0.009 vs
0.885±0.011) and Micro AUC (0.888±0.009 vs 0.880±0.014), which demonstrates the effec-
tiveness of temporal feature extraction in enhancing pattern recognition.

AUC Avg
A-line B-line Consolidation Pleural effusion Micro Macro

LUV-Net (w/o temporal) 0.910±0.017 0.826±0.019 0.841±0.018 0.956±0.009 0.880±0.014 0.885±0.011
LUV-Net (w/ temporal) 0.918±0.013 0.834±0.015 0.853±0.019 0.966±0.010 0.888±0.009 0.894±0.009

Table 3: Temporal feature extraction with / without on development set

Figure 3: Visualization of attention scores and corresponding top-3 frames for each pattern.
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4.4. Qualitative Analysis

To further investigate the interpretability of the proposed LUV-Net(DenseNet-161)† model,
we conducted a qualitative analysis by visualizing the attention scores across video frames
for multiple patterns and extracting the top-k frames with the highest scores, as detailed
in Appendix B. Figure 3 shows examples from the development set, including both multi-
patterns and single-pattern clips (additional examples from the temporally separated set
can be found in Appendix B). The top-3 frames for each pattern are marked with red
dots, with (A), (B), and (C) denoting these frames. The green dashed lines represent the
ground truth, where 1 indicates presence and 0 indicates absence of the pattern. Our model
identifies critical frames and attends to the relevant regions of each pattern.

4.5. Computational Efficiency Analysis

Table 4 compares model parameters, GFLOPs, and inference time per video across dif-
ferent architectures. LUV-Net (DenseNet-161) achieves the highest classification perfor-
mance but at a higher computational cost (135.99M parameters, 304.68 GFLOPs, 0.065s
per video). In contrast, LUV-Net (ResNet-50) offers a more efficient alternative (163.57
GFLOPs, 0.027s) while maintaining competitive performance. Transformer-based models
(e.g., MViT-B, Swin-B) had fewer parameters but exhibited longer inference times due to
self-attention overhead. USVN and CNN+LSTM showed similar computational loads to
LUV-Net but lower accuracy, and C3D-based models (C3D, R2Plus1D) required the highest
GFLOPs with limited efficiency gains.

Metric
Model

LUV Net(DenseNet-161) LUV Net(ResNet-50) MViT-B Swin-B USVN(DenseNet-161) C3D R2Plus1D CNN(DenseNet-161)+LSTM

Param 135.99 121.03 36.00 58.72 26.26 214.33 63.51 28.54
GFLOPs 304.68 163.57 137.91 200.65 302.74 369.14 764.45 302.81
Inference Time(s) 0.065 0.027 0.050 0.121 0.062 0.026 0.094 0.062

Table 4: Comparison of model parameters and computational cost

5. Discussion and Conclusions

We propose LUV-Net, a deep learning model for multi-label classification of LUS patterns
in ultrasound videos. Our 5-fold cross-validation demonstrates superior performance across
all four LUS patterns compared to baseline models. By integrating spatial attention mech-
anisms and temporal feature extraction, LUV-Net enhances both classification performance
and interpretability, effectively identifying when and where specific patterns appear. De-
spite their efficacy in natural video domains, CNN-based and Transformer-based baseline
models underperformed on LUS data, likely stemming from fundamental differences be-
tween natural and ultrasound videos. While models for human action recognition primarily
rely on temporal sequence modeling, the analysis of lung ultrasound (LUS) data is better
addressed by approaches that emphasize frame-level spatial features, which are more diag-
nostically informative in the context of medical ultrasound imaging. However, Limitations
of our study include the single-institution source of our dataset, potentially restricting gen-
eralizability. Additionally, our spatial and temporal modules could be further optimized for
real-time clinical applications through model compression techniques. Real-world valida-
tion through reader studies with practicing clinicians remains essential to assess LUV-Net’s
practical clinical utility.
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Appendix A. 5-Fold Cross Validation Results

A.1. Results on the development set

Fold # Input Type Model
AUC Avg

A-line B-line Consolidation Pleural effusion Micro Macro

Fold 0

Frame (Image) frame-based 0.917 (0.886-0.949) 0.837 (0.800-0.875) 0.821 (0.775-0.866) 0.979 (0.965-0.994) 0.885 0.889

Video

MViT-B 0.545 (0.474-0.616)∗ 0.615 (0.557-0.673)∗ 0.563 (0.506-0.621)∗ 0.673 (0.587-0.759)∗ 0.570 0.601
Swin-B 0.564 (0.495-0.634)∗ 0.598 (0.543-0.653)∗ 0.608 (0.553-0.663)∗ 0.719 (0.644-0.794)∗ 0.592 0.624
C3D 0.758 (0.708-0.808)∗ 0.640 (0.586-0.694)∗ 0.778 (0.733-0.822)∗ 0.931 (0.902-0.960)∗ 0.801 0.811

R2Plus1D 0.707 (0.657-0.757)∗ 0.573 (0.513-0.632)∗ 0.802 (0.749-0.854) 0.911 (0.878-0.945)∗ 0.703 0.750
CNN(Densenet-161)†+LSTM 0.368 (0.315-0.421)∗ 0.347 (0.288-0.406)∗ 0.760 (0.705-0.815)∗ 0.924 (0.891-0.957)∗ 0.602 0.601

USVN(Densenet-161)† 0.902 (0.865-0.939) 0.834 (0.796-0.872) 0.829 (0.788-0.871)∗ 0.948 (0.926-0.969)∗ 0.868 0.880
LUV-Net(Resnet-50)† 0.852 (0.0.813-0.0.890)∗ 0.772 (0.724-0.819)∗ 0.773 (0.721-0.825)∗ 0.977 (0.964-0.989) 0.853 0.845

LUV-Net(Densenet-161)† 0.900 (0.860-0.940) 0.841 (0.802-0.880) 0.851 (0.810-0.892) 0.974 (0.959-0.989) 0.880 0.893
LUV-Net(Densenet-161) 0.831 (0.789-0.873)∗ 0.669 (0.615-0.723)∗ 0.880 (0.848-0.913) 0.943 (0.909-0.977)∗ 0.842 0.833

Fold 1

Frame (Image) frame-based 0.924 (0.897-0.951)∗ 0.791 (0.747-0.832) 0.833 (0.783-0.883)∗ 0.971 (0.958-0.984) 0.875 0.880

Video

MViT-B 0.669 (0.607-0.730)∗ 0.419 (0.360-0.478)∗ 0.712 (0.662-0.761)∗ 0.834 (0.790-0.877)∗ 0.656 0.660
Swin-B 0.748 (0.698-0.798)∗ 0.499 (0.440-0.558)∗ 0.746 (0.697-0.796)∗ 0.895 (0.851-0.939)∗ 0.720 0.724
C3D 0.762 (0.712-0.811)∗ 0.564 (0.509-0.618)∗ 0.814 (0.774-0.855)∗ 0.928 (0.899-0.956) 0.775 0.769

R2Plus1D 0.653 (0.598-0.708)∗ 0.534 (0.479-0.590)∗ 0.805 (0.755-0.856)∗ 0.814 (0.750-0.878)∗ 0.686 0.703
CNN(Densenet-161)†+LSTM 0.478 (0.421-0.536)∗ 0.328 (0.274-0.382)∗ 0.724 (0.667-0.782)∗ 0.936 (0.904-0.967) 0.605 0.618

USVN(Densenet-161)† 0.729 (0.676-0.783)∗ 0.536 (0.479-0.594)∗ 0.848 (0.808-0.888) 0.866 (0.814-0.919)∗ 0.734 0.747
LUV-Net(Resnet-50)† 0.827 (0.782-0.872)∗ 0.756 (0.710-0.802)∗ 0.775 (0.728-0.821)∗ 0.636 (0.523-0.749)∗ 0.784 0.755

LUV-Net(Densenet-161)† 0.914 (0.886-0.943) 0.821 (0.779-0.862) 0.860 (0.822-0.897) 0.950 (0.927-0.972) 0.882 0.887
LUV-Net(Densenet-161) 0.877 (0.843-0.912)∗ 0.696 (0.642-0.750)∗ 0.892 (0.861-0.923) 0.871 (0.834-0.909)∗ 0.826 0.836

Fold 2

Frame (Image) frame-based 0.930 (0.905-0.955) 0.747 (0.695-0.798)∗ 0.820 (0.774-0.866) 0.971 (0.955-0.988) 0.876 0.868

Video

MViT-B 0.506 (0.438-0.573)∗ 0.682 (0.630-0.734)∗ 0.560 (0.502-0.618)∗ 0.632 (0.542-0.722)∗ 0.611 0.597
Swin-B 0.573 (0.505-0.642)∗ 0.695 (0.644-0.747)∗ 0.536 (0.476-0.595)∗ 0.643 (0.552-0.734)∗ 0.564 0.614
C3D 0.714 (0.663-0.766)∗ 0.648 (0.590-0.707)∗ 0.756 (0.708-0.805)∗ 0.929 (0.904-0.955)∗ 0.756 0.764

R2Plus1D 0.737 (0.692-0.782)∗ 0.732 (0.674-0.790)∗ 0.747 (0.692-0.802)∗ 0.828 (0.767-0.888)∗ 0.743 0.763
CNN(Densenet-161)†+LSTM 0.350 (0.299-0.401)∗ 0.349 (0.290-0.408)∗ 0.779 (0.727-0.831)∗ 0.944 (0.917-0.970)∗ 0.585 0.607

USVN(Densenet-161)† 0.924 (0.896-0.951) 0.821 (0.780-0.862) 0.833 (0.792-0.874) 0.953 (0.932-0.974) 0.881 0.884
LUV-Net(Resnet-50)† 0.886 (0.851-0.921)∗ 0.785 (0.738-0.833) 0.725 (0.673-0.777)∗ 0.966 (0.945-0.986) 0.819 0.842

LUV-Net(Densenet-161)† 0.933 (0.908-0.958) 0.827 (0.786-0.868) 0.834 (0.796-0.871) 0.963 (0.944-0.983) 0.890 0.890
LUV-Net(Densenet-161) 0.838 (0.796-0.880)∗ 0.551 (0.490-0.612)∗ 0.881 (0.847-0.914)∗ 0.743 (0.667-0.818)∗ 0.725 0.755

Fold 3

Frame (Image) frame-based 0.934 (0.910-0.958) 0.823 (0.782-0.865) 0.859 (0.818-0.899) 0.969 (0.945-0.993) 0.894 0.897

Video

MViT-B 0.728 (0.673-0.782)∗ 0.587 (0.522-0.652)∗ 0.690 (0.641-0.739)∗ 0.923 (0.897-0.950)∗ 0.704 0.733
Swin-B 0.570 (0.501-0.639)∗ 0.712 (0.659-0.765)∗ 0.593 (0.538-0.649)∗ 0.710 (0.632-0.787)∗ 0.599 0.648
C3D 0.859 (0.822-0.896)∗ 0.670 (0.615-0.725)∗ 0.795 (0.753-0.836)∗ 0.930 (0.902-0.957)∗ 0.820 0.815

R2Plus1D 0.789 (0.746-0.832)∗ 0.676 (0.616-0.736)∗ 0.831 (0.786-0.876)∗ 0.869 (0.819-0.919)∗ 0.762 0.793
CNN(Densenet-161)†+LSTM 0.395 (0.340-0.450)∗ 0.332 (0.276-0.388)∗ 0.758 (0.703-0.813)∗ 0.924 (0.891-0.957)∗ 0.593 0.601

USVN(Densenet-161)† 0.924 (0.895-0.954) 0.849 (0.813-0.886) 0.852 (0.815-0.888)∗ 0.951 (0.930-0.972)∗ 0.884 0.895
LUV-Net(Resnet-50)† 0.900 (0.870-0.931) 0.813 (0.771-0.856)∗ 0.794 (0.746-0.843)∗ 0.707 (0.607-0.806)∗ 0.817 0.806

LUV-Net(Densenet-161)† 0.919 (0.891-0.948) 0.855 (0.817-0.893) 0.882 (0.848-0.916) 0.975 (0.958-0.992) 0.903 0.909
LUV-Net(Densenet-161) 0.881 (0.844-0.918) 0.704 (0.650-0.757)∗ 0.807 (0.764-0.851)∗ 0.960 (0.942-0.978)∗ 0.848 0.840

Fold 4

Frame (Image) frame-based 0.924 (0.897-0.952) 0.803 (0.757-0.848) 0.822 (0.779-0.864) 0.977 (0.964-0.990) 0.877 0.882

Video

MViT-B 0.542 (0.472-0.611)∗ 0.333 (0.279-0.386)∗ 0.577 (0.520-0.634)∗ 0.697 (0.624-0.770)∗ 0.554 0.539
Swin-B 0.453 (0.388-0.518)∗ 0.364 (0.310-0.419)∗ 0.537 (0.477-0.598)∗ 0.604 (0.506-0.703)∗ 0.530 0.492
C3D 0.853 (0.815-0.891)∗ 0.606 (0.549-0.663)∗ 0.798 (0.756-0.839)∗ 0.934 (0.908-0.960)∗ 0.805 0.799

R2Plus1D 0.745 (0.698-0.791)∗ 0.581 (0.524-0.638)∗ 0.819 (0.769-0.869) 0.730 (0.675-0.786)∗ 0.704 0.721
CNN(Densenet-161)†+LSTM 0.509 (0.447-0.570)∗ 0.409 (0.347-0.472)∗ 0.666 (0.605-0.726)∗ 0.836 (0.779-0.892)∗ 0.550 0.606

USVN(Densenet-161)† 0.916 (0.884-0.947) 0.810 (0.767-0.853) 0.830 (0.787-0.872) 0.938 (0.913-0.963)∗ 0.863 0.875
LUV-Net(Resnet-50)† 0.870 (0.834-0.907)∗ 0.766 (0.716-0.816)∗ 0.744 (0.691-0.797)∗ 0.742 (0.655-0.830)∗ 0.768 0.783

LUV-Net(Densenet-161)† 0.924 (0.895-0.953) 0.824 (0.782-0.867) 0.837 (0.795-0.880) 0.967 (0.949-0.985) 0.886 0.890
LUV-Net(Densenet-161) 0.897 (0.863-0.931) 0.601 (0.544-0.659)∗ 0.898 (0.869-0.927)∗ 0.726 (0.651-0.801)∗ 0.805 0.783

Table 5: Development set results, ∗ indicates that the P-value is less than 0.05, and †

indicates ImageNet pretrained model.
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A.2. Results on the temporally separated validation set

Fold # Input Type Model
AUC Avg

A-line B-line Consolidation Pleural effusion Micro Macro

Fold 0

Frame (Image) frame-based 0.763 (0.683-0.788)∗ 0.899 (0.867-0.930)∗ 0.773 (0.717-0.829) 0.793 (0.656-0.931)∗ 0.807 0.801

Video

MViT-B 0.592 (0.523-0.662)∗ 0.612 (0.557-0.668)∗ 0.606 (0.541-0.671)∗ 0.699 (0.594-0.804)∗ 0.690 0.629
Swin-B 0.674 (0.611-0.736) 0.579 (0.521-0.636) 0.698 (0.634-0.762) 0.737 (0.639-0.836) 0.715 0.674
C3D 0.796 (0.739-0.852) 0.735 (0.683-0.787)∗ 0.745 (0.670-0.820) 0.868 (0.793-0.942) 0.865 0.788

R2Plus1D 0.680 (0.604-0.756)∗ 0.626 (0.571-0.682)∗ 0.716 (0.647-0.786)∗ 0.854 (0.761-0.947) 0.706 0.721
CNN(Densenet-161)†+LSTM 0.374 (0.295-0.452)∗ 0.470 (0.413-0.527)∗ 0.795 (0.742-0.848) 0.781 (0.666-0.895)∗ 0.550 0.606

USVN(Densenet-161)† 0.803 (0.759-0.847) 0.874 (0.838-0.910)∗ 0.842 (0.801-0.883)∗ 0.775 (0.633-0.917)∗ 0.837 0.825
LUV-Net(Resnet-50)† 0.741 (0.691-0.792)∗ 0.776 (0.730-0.821)∗ 0.808 (0.759-0.857) 0.832 (0.750-0.913)∗ 0.810 0.791

LUV-Net(Densenet-161)† 0.819 (0.775-0.863) 0.847 (0.809-0.885) 0.778 (0.723-0.833) 0.877 (0.803-0.930) 0.882 0.832
LUV-Net(Densenet-161) 0.848 (0.803-0.893) 0.760 (0.713-0.808)∗ 0.777 (0.713-0.840) 0.863 (0.780-0.946) 0.793 0.814

Fold 1

Frame (Image) frame-based 0.790 (0.744-0.836)∗ 0.889 (0.857-0.921)∗ 0.751 (0.687-0.815)∗ 0.851 (0.752-0.950) 0.824 0.821

Video

MViT-B 0.747 (0.686-0.810)∗ 0.560 (0.504-0.617)∗ 0.697 (0.632-0.762)∗ 0.930 (0.882-0.978) 0.844 0.735
Swin-B 0.715 (0.656-0.775)∗ 0.582 (0.525-0.638)∗ 0.735 (0.668-0.802)∗ 0.925 (0.879-0.971) 0.827 0.741
C3D 0.785 (0.726-0.844)∗ 0.688 (0.636-0.740)∗ 0.749 (0.677-0.821) 0.877 (0.802-0.953) 0.853 0.777

R2Plus1D 0.575 (0.496-0.655)∗ 0.638 (0.584-0.693)∗ 0.664 (0.591-0.736)∗ 0.875 (0.802-0.947) 0.710 0.690
CNN(Densenet-161)†+LSTM 0.328 (0.255-0.401)∗ 0.464 (0.407-0.521)∗ 0.759 (0.699-0.820) 0.832 (0.734-0.929)∗ 0.577 0.597

USVN(Densenet-161)† 0.774 (0.686-0.803)∗ 0.772 (0.726-0.818)∗ 0.844 (0.803-0.885) 0.838 (0.749-0.926)∗ 0.760 0.801
LUV-Net(Resnet-50)† 0.767 (0.713-0.821)∗ 0.744 (0.670-0.792)∗ 0.828 (0.779-0.878) 0.911 (0.865-0.957) 0.845 0.814

LUV-Net(Densenet-161)† 0.893 (0.856-0.929) 0.835 (0.794-0.875) 0.802 (0.746-0.859) 0.907 (0.839-0.975) 0.825 0.861
LUV-Net(Densenet-161) 0.845 (0.796-0.893)∗ 0.782 (0.737-0.827)∗ 0.724 (0.651-0.797)∗ 0.884 (0.809-0.959) 0.768 0.810

Fold 2

Frame (Image) frame-based 0.775 (0.728-0.822) 0.898 (0.867-0.930)∗ 0.796 (0.740-0.853) 0.805 (0.682-0.928)∗ 0.837 0.838

Video

MViT-B 0.478 (0.400-0.556)∗ 0.510 (0.453-0.567)∗ 0.572 (0.505-0.640)∗ 0.733 (0.658-0.809)∗ 0.755 0.576
Swin-B 0.704 (0.647-0.761) 0.548 (0.490-0.606) 0.550 (0.479-0.620) 0.654 (0.550-0.759) 0.697 0.616
C3D 0.761 (0.695-0.828) 0.617 (0.562-0.672)∗ 0.733 (0.662-0.803) 0.835 (0.741-0.930)∗ 0.809 0.739

R2Plus1D 0.718 (0.642-0.795) 0.638 (0.581-0.695)∗ 0.656 (0.583-0.730)∗ 0.875 (0.807-0.943) 0.723 0.724
CNN(Densenet-161)†+LSTM 0.229 (0.170-0.288)∗ 0.562 (0.505-0.619)∗ 0.794 (0.742-0.846) 0.822 (0.722-0.923)∗ 0.771 0.603

USVN(Densenet-161)† 0.783 (0.739-0.826) 0.835 (0.794-0.876)∗ 0.806 (0.752-0.861) 0.874 (0.788-0.959) 0.802 0.826
LUV-Net(Resnet-50)† 0.799 (0.751-0.847) 0.760 (0.713-0.807)∗ 0.829 (0.781-0.877)∗ 0.909 (0.859-0.958) 0.828 0.826

LUV-Net(Densenet-161)† 0.771 (0.725-0.818) 0.862 (0.825-0.899) 0.781 (0.728-0.834) 0.884 (0.807-0.961) 0.848 0.826
LUV-Net(Densenet-161) 0.800 (0.749-0.850) 0.835 (0.794-0.875) 0.727 (0.654-0.799)∗ 0.930 (0.886-0.974)∗ 0.727 0.824

Fold 3

Frame (Image) frame-based 0.748 (0.719-0.818)∗ 0.890 (0.865-0.927)∗ 0.763 (0.759-0.868) 0.799 (0.628-0.921)∗ 0.763 0.801

Video

MViT-B 0.790 (0.734-0.846)∗ 0.516 (0.458-0.573)∗ 0.679 (0.607-0.751)∗ 0.945 (0.907-0.982)∗ 0.822 0.734
Swin-B 0.681 (0.619-0.744)∗ 0.557 (0.499-0.616)∗ 0.657 (0.589-0.725)∗ 0.765 (0.680-0.850)∗ 0.711 0.667
C3D 0.805 (0.746-0.864)∗ 0.741 (0.688-0.795)∗ 0.762 (0.692-0.833)∗ 0.905 (0.846-0.964)∗ 0.841 0.805

R2Plus1D 0.647 (0.566-0.728)∗ 0.645 (0.591-0.700)∗ 0.711 (0.644-0.777)∗ 0.858 (0.722-0.944) 0.786 0.717
CNN(Densenet-161)†+LSTM 0.444 (0.364-0.523)∗ 0.519 (0.462-0.577) 0.737 (0.677-0.797)∗ 0.754 (0.648-0.859)∗ 0.543 0.615

USVN(Densenet-161)† 0.804 (0.759-0.849)∗ 0.865 (0.828-0.901) 0.874 (0.834-0.915)∗ 0.806 (0.684-0.927) 0.849 0.839
LUV-Net(Resnet-50)† 0.809 (0.762-0.856)∗ 0.768 (0.721-0.815)∗ 0.825 (0.779-0.871) 0.895 (0.833-0.956)∗ 0.835 0.826

LUV-Net(Densenet-161)† 0.895 (0.860-0.930) 0.878 (0.844-0.912) 0.825 (0.733-0.877) 0.829 (0.727-0.932) 0.874 0.858
LUV-Net(Densenet-161) 0.820 (0.766-0.874)∗ 0.727 (0.676-0.778)∗ 0.748 (0.679-0.817)∗ 0.822 (0.712-0.933) 0.819 0.781

Fold 4

Frame (Image) frame-based 0.739 (0.687-0.790)∗ 0.888 (0.845-0.922) 0.775 (0.711-0.838) 0.814 (0.691-0.938)∗ 0.813 0.805

Video

MViT-B 0.558 (0.482-0.634)∗ 0.492 (0.434-0.550)∗ 0.610 (0.546-0.673)∗ 0.820 (0.753-0.887)∗ 0.588 0.622
Swin-B 0.437 (0.363-0.511)∗ 0.462 (0.405-0.520)∗ 0.520 (0.448-0.592)∗ 0.675 (0.582-0.768)∗ 0.734 0.526
C3D 0.828 (0.778-0.878) 0.732 (0.679-0.784)∗ 0.745 (0.672-0.818)∗ 0.927 (0.880-0.974)∗ 0.870 0.810

R2Plus1D 0.673 (0.584-0.751)∗ 0.621 (0.565-0.677)∗ 0.674 (0.601-0.747)∗ 0.880 (0.805-0.956) 0.745 0.714
CNN(Densenet-161)†+LSTM 0.453 (0.380-0.527)∗ 0.442 (0.385-0.500)∗ 0.693 (0.633-0.752)∗ 0.580 (0.456-0.704)∗ 0.571 0.544

USVN(Densenet-161)† 0.809 (0.766-0.853) 0.893 (0.860-0.926) 0.865 (0.824-0.905)∗ 0.930 (0.880-0.979)∗ 0.874 0.875
LUV-Net(Resnet-50)† 0.833 (0.788-0.878) 0.773 (0.727-0.820)∗ 0.831 (0.783-0.878) 0.838 (0.748-0.928) 0.861 0.820

LUV-Net(Densenet-161)† 0.798 (0.752-0.843) 0.890 (0.857-0.923) 0.811 (0.755-0.868) 0.870 (0.786-0.954) 0.859 0.844
LUV-Net(Densenet-161) 0.890 (0.848-0.931)∗ 0.786 (0.741-0.830)∗ 0.742 (0.671-0.813)∗ 0.927 (0.882-0.973)∗ 0.870 0.838

Table 6: Temporally separated set results. ∗ indicates that the P-value is less than 0.05,
and † indicates ImageNet pretrained model.

14



LUV-Net

A.3. Results of temporal feature extraction study on development dataset

To validate the effectiveness of our temporal feature extraction module, we conducted an
ablation study by comparing LUVM with its variant without temporal feature extraction
(LUVM w/o temporal) across all five folds on the development dataset. Table 7 presents
the detailed results of this comparison. The results demonstrate that the temporal feature
extraction module generally contributes to improved performance, though the magnitude
of improvement varies across different patterns. For A-line detection, both variants showed
comparable performance, with LUVM showing slight improvements in Folds 0-2 (e.g., Fold
2: 0.933 vs 0.910) but marginally lower performance in Folds 3-4. This suggests that A-
line patterns may be less dependent on temporal information for accurate detection. More
notable improvements were observed in B-line detection, particularly in Folds 0 and 2,
where LUVM achieved AUC scores of 0.841 and 0.827 compared to 0.827 and 0.797 for
the non-temporal variant, respectively. The temporal feature extraction seemed particu-
larly beneficial for Consolidation pattern detection, with consistent improvements across
most folds and statistical significance observed in Fold 3 (0.882 vs 0.857, p¡0.05). Pleural
Effusion detection showed interesting results, with the temporal feature extraction module
contributing to statistically significant improvements in several folds (Folds 0 and 3). This
suggests that temporal information plays a crucial role in accurately identifying this partic-
ular pattern. In terms of overall performance metrics, LUVM consistently achieved higher
or comparable micro and macro averages across all folds compared to its non-temporal vari-
ant. The most substantial improvements were observed in Fold 2, where both Micro (0.890
vs 0.867) and Macro (0.890 vs 0.873) averages showed clear advantages of temporal fea-
ture extraction. These results validate the effectiveness of our temporal feature extraction
module in capturing dynamic pattern characteristics while maintaining robust performance
across different data splits.

Fold # Model
AUC Avg

A-line B-line Consolidation Pleural effusion Micro Macro

Fold 0
LUV-Net (w/o temporal) 0.894 (0.855-0.934) 0.827 (0.786-0.869) 0.832 (0.793-0.871) 0.955 (0.935-0.975)∗ 0.867 0.879
LUV-Net (w/ temporal) 0.900 (0.860-0.940) 0.841 (0.802-0.880) 0.851 (0.810-0.892) 0.974 (0.959-0.989) 0.880 0.893

Fold 1
LUV-Net (w/o temporal) 0.891 (0.849-0.933)∗ 0.819 (0.776-0.863) 0.863 (0.827-0.900) 0.944 (0.923-0.966) 0.883 0.881
LUV-Net (w/ temporal) 0.914 (0.886-0.943) 0.821 (0.779-0.862) 0.860 (0.822-0.897) 0.950 (0.927-0.972) 0.882 0.887

Fold 2
LUV-Net (w/o temporal) 0.910 (0.875-0.944)∗ 0.797 (0.753-0.842)∗ 0.817 (0.774-0.860) 0.961 (0.940-0.981) 0.867 0.873
LUV-Net (w/ temporal) 0.933 (0.908-0.958) 0.827 (0.786-0.868) 0.834 (0.796-0.871) 0.963 (0.944-0.983) 0.890 0.890

Fold 3
LUV-Net (w/o temporal) 0.927 (0.898-0.955) 0.845 (0.805-0.885) 0.857 (0.816-0.897)∗ 0.968 (0.952-0.985)∗ 0.901 0.901
LUV-Net (w/ temporal) 0.919 (0.891-0.948) 0.855 (0.817-0.893) 0.882 (0.848-0.916) 0.975 (0.958-0.992) 0.903 0.909

Fold 4
LUV-Net (w/o temporal) 0.927 (0.896-0.957) 0.840 (0.798-0.883) 0.838 (0.797-0.879 0.952 (0.932-0.971)∗ 0.884 0.891
LUV-Net (w/ temporal) 0.924 (0.895-0.953) 0.824 (0.782-0.867) 0.837 (0.795-0.880) 0.967 (0.949-0.985) 0.886 0.890

Table 7: 5-fold cross validation results of temporal feature extraction study, ∗ indicates that
the P-value is less than 0.05

Appendix B. Qualitative Analysis

To further investigate the interpretability of the proposed LUV-Net model, we performed
qualitative analysis by visualizing the attention scores across video frames for multiple labels
and highlighting the most informative frames. The attention mechanism incorporated in
our model provides a pathway to understand which frames contribute the most to the
classification of each pattern. This section presents the results of this analysis, supported
by both visual plots and mathematical expressions.
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The proposed model applies a pattern-specific attention mechanism, where each LUS
pattern p ∈ {p0, p1, p2, p3} corresponds to A-line, B-line, consolidation, and pleural effu-
sion. For each pattern p, a set of query vectors {qpk}

Na
k=1 is learned independently for its

corresponding attention heads. The attention score for frame t and head k is computed as
the dot product between the frame-level representation ht,k and the query vector qpk:

λp
t,k = ht,k · qpk (5)

These scores are scaled by
√
dk and normalized across the temporal dimension using the

softmax function to produce attention weights:

apt,k =
exp

(
λp
t,k/

√
dk

)
∑L

t′=1 exp
(
λp
t′,k/

√
dk

) (6)

To visualize the attention distribution across frames for each pattern, we aggregate the
attention weights from all Na heads:

α̂p
t =

Na∑
k=1

apt,k (7)

To ensure comparability of attention scores across different videos, we apply Min-Max
normalization to the aggregated attention scores:

αp,norm
t =

α̂p
t −mint′(α̂

p
t′)

maxt′(α̂
p
t′)−mint′(α̂

p
t′)

(8)

αp,norm
t ∈ [0, 1] represents the normalized importance of frame t for pattern p. This normal-

ized score allows for frame-level visualization of model attention, where the most relevant
frames for each pattern are highlighted based on their contribution to the corresponding
prediction.

Appendix C. Ablation study

To evaluate the effectiveness of our proposed LUV-Net model and understand the impact
of various architectural choices, we conducted extensive ablation studies. We aimed to
identify the optimal parameters for both the temporal feature extraction network and the
spatial feature extraction network. Specifically, we experimented with the kernel size of
the temporal feature extraction network and the number of attention heads in the spatial
feature extraction network.

C.1. Effect of Kernel size of temporal feature extraction network

The analysis of different 1D kernel size (ranging from 1 to 29) on the development set
revealed interesting patterns in model performance (Table 8). The results reveal that a
kernel size of 13 achieves optimal overall performance. Specifically, with kernel size 13,
we observe strong performance across all evaluation metrics: 0.900 for A-line detection,
0.853 for B-line detection, 0.882 for Consolidation detection, and 0.975 for Pleural effusion
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Figure 4: Visualization of attention scores and corresponding top-3 frames for each patterns
on temporally separated set.

detection. The macro and micro averages at kernel size 13 are 0.908 and 0.902 respectively,
indicating balanced performance across all classes. Based on these findings, we selected
a kernel size of 13 as the most effective configuration for the temporal feature extraction
network.

Kernel size
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

AUC

A-line 0.918 0.928 0.912 0.909 0.906 0.909 0.917 0.900 0.912 0.909 0.901 0.926 0.918 0.922 0.922
B-line 0.827 0.857 0.855 0.847 0.826 0.785 0.853 0.823 0.811 0.806 0.816 0.820 0.801 0.818 0.816

Consolidation 0.862 0.856 0.861 0.846 0.876 0.870 0.882 0.880 0.884 0.884 0.860 0.897 0.892 0.885 0.881
Pleural effusion 0.965 0.969 0.965 0.963 0.977 0.971 0.975 0.975 0.972 0.968 0.973 0.972 0.975 0.965 0.964

Avg
Micro 0.891 0.902 0.886 0.888 0.894 0.889 0.902 0.893 0.890 0.890 0.874 0.907 0.902 0.888 0.888
Macro 0.894 0.904 0.899 0.893 0.898 0.885 0.908 0.896 0.896 0.893 0.889 0.905 0.898 0.899 0.897

Table 8: Development set Kernel size

C.2. Effect of number of attention heads of spatial feature extraction network

To investigate the optimal number of attention heads in our spatial feature extraction
network, we conducted experiments varying the number of attention heads from 1 to 96.
Table 9 presents the performance evaluation across different metrics for each attention head
configuration. Our experimental results indicate that the number of attention heads has a
relatively stable impact on model performance. When examining the results, we observe
that using 8 attention heads achieves optimal performance across most metrics. With 8
attention heads, the model demonstrates strong results with AUC scores of 0.917 for A-
line detection, 0.855 for B-line detection, 0.882 for Consolidation detection, and 0.975 for
Pleural effusion detection. Furthermore, both micro and macro averages achieved the best
overall performance (Micro: 0.903, Macro: 0.909) with 8 attention heads. Interestingly,
increasing the number of attention heads beyond 8 does not yield significant performance
improvements. Similarly, using fewer attention heads (1, 2, 4) shows marginally lower
performance across most metrics.
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Attn head num
1 2 4 8 16 32 96

AUC

A-line 0.914 0.919 0.918 0.919 0.917 0.917 0.915
B-line 0.852 0.854 0.851 0.855 0.852 0.853 0.850

Consolidation 0.881 0.882 0.880 0.882 0.880 0.882 0.881
Pleural effusion 0.974 0.975 0.973 0.975 0.975 0.975 0.976

Avg
Micro 0.901 0.902 0.897 0.903 0.901 0.902 0.901
Macro 0.907 0.909 0.907 0.909 0.907 0.908 0.907

Table 9: Development set Number of Attn head
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