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ABSTRACT

Uncertainty quantification in pre-trained transformers is critical for their reliable
deployment in risk-sensitive applications. Yet, most existing pre-trained transform-
ers do not have a principled mechanism for uncertainty propagation through their
feature transformation stack. In this work, we propose a diffusion-inspired recon-
figuration of transformers in which each feature transformation block is modeled
as a probabilistic mapping. Composing these probabilistic mappings reveals a
probability path that mimics the structure of a diffusion process, transporting data
mass from the input distribution to the pre-trained feature distribution. This proba-
bility path can then be recompiled on a diffusion process with a unified transition
model to enable principled propagation of representation uncertainty throughout
the pre-trained model’s architecture while maintaining its original predictive per-
formance. Empirical results across a variety of vision and language benchmarks
demonstrate that our method achieves superior calibration and predictive accuracy
compared to existing uncertainty-aware transformers.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has become a universal backbone in most large-
scale pre-trained or foundation models spanning numerous domains. These include language (Devlin
et al., 2019; Radford et al., 2019; Brown et al., 2020; Achiam et al., 2023; Touvron et al., 2023),
vision (Dosovitskiy et al., 2020; Touvron et al., 2021; Liu et al., 2021), speech (Baevski et al., 2020;
Hsu et al., 2021; Radford et al., 2023), and even more complex domains with multi-modal data (e.g.,
text-image) (Radford et al., 2021; Liu et al., 2023; Driess et al., 2023; Team et al., 2023).

Challenge. Despite their prevalence, existing transformer-based models lack a principled mech-
anism to assess prediction uncertainty. This often leads to incorrect predictions being assigned
high confidence (Guo et al., 2017; Mukhoti et al., 2020) which raises safety concerns in high-stake
applications (Moon et al., 2020; Zhu et al., 2023) and underscores the importance of uncertainty
quantification (UQ) in machine learning models. For example, effective UQ techniques can help
determine when to defer to human experts in scenarios where the model exhibits high representation
and/or prediction uncertainty, particularly in risk-sensitive applications (Tran et al., 2022a; Rudner
et al., 2022b; 2023). While UQ has been extensively studied in conventional low-complexity deep
neural networks, existing techniques mainly focus on imposing probabilistic priors on network
weights and approximating their posteriors via either variational inference or posterior sampling. This
quickly becomes both inaccurate and prohibitively expensive when the model complexity increases.

Emerging Paradigm. To sidestep the challenge of computing posteriors over models with exceedingly
large complexities, there are emerging approaches that aim to reparameterize the attention outputs
as (sparse) Gaussian process predictions (Liu et al., 2020; Chen & Li, 2023; Bui et al., 2025; Chen
et al., 2024c) and recast the pre-trained transformer as a probabilistic chain mapping from the data
distribution to a feature distribution. This enables principled, uncertainty-aware sampling of feature
representations by simulating the chain rather than inferring them via computing the prohibitively
expensive model posterior, thereby motivating a more scalable paradigm for UQ in large models.

Research Gap. Despite such promising advances, our empirical results show that this approach
does not provide propagate uncertainty accurately. Surprisingly, reparameterizing all attention blocks
produces worse uncertainty quantification than reparameterizing only the final block. Furthermore,
it also reduces predictive performance relative to the original pre-trained model (see Fig. 1). This
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Figure 1: Comparison of accuracy (ACC↑) and uncertainty calibration (ECE↓) across pretrained
models (ViT, Transformer), GP-reparameterized method KEP (Chen et al., 2024c) applied to either
the last attention block (KEP-last) or all attention blocks (KEP-All), and our method (DIRECTOR).

suggests that uncertainty does not propagate properly across attention blocks when they are reparame-
terized separately. Intuitively, separate reparameterization fails to account for the correlations among
feature transformations at different attention blocks that were established during pre-training. This
underscores the need for a more robust reparameterizing mechanism that explicitly incorporates such
correlations while learning the evolution of representation distributions across the attention blocks.

Solution Vision. To address this gap, we propose distilling the sequence of reparameterized attention
blocks into a unified diffusion model. Rather than treating each block as an independent reparameteri-
zation, we model the entire sequence as a continuous stochastic process over the feature embedding
space. In this view, the observed transformations of a pre-trained model are interpreted as samples
from a diffusion process governed by a single spatiotemporal transition kernel that maps the data
distribution to the final representation. This unified view allows us to capture cross-block correlations
established during pre-training while providing a principled mechanism for propagating uncertainty.

Technical Contributions. To substantiate this vision, we develop a diffusion-based framework for
unified uncertainty propagation across transformer blocks with the following technical contributions:

1. We reinterpret the step-wise feature transformations of a pre-trained transformer as transition
samples from a probabilistic path that maps the data distribution to the feature distribution. This
perspective generalizes the transformer into a diffusion model parameterized by a unified transition
kernel, which can be learned from these observed transitions. Such reconfiguration supports local
uncertainty calibration at individual attention blocks while ensuring an accurate flow of uncertainty
propagation across the entire network (see Section 2.1).

2. We design a training algorithm that distills the observed sequence of feature transformations
into a unified spatiotemporal transition kernel of a diffusion process. The learned kernel captures
the inherent correlations among feature transformations across attention blocks established during
pre-training, providing a tractable and principled procedure for uncertainty quantification in large pre-
trained models. This allows us to establish a generative paradigm for UQ, where uncertainty-aware
representation samples are drawn directly from the learned diffusion process rather than inferred via
intractable model posteriors (see Section 2.2).

3. We conduct extensive experiments on vision and language benchmarks to evaluate calibration
quality, robustness, and out-of-distribution (OOD) detection. The results show that our approach
consistently improves uncertainty quantification while preserving predictive performance over exist-
ing state-of-the-art pre-trained transformer models. Remarkably, it achieves these gains with fewer
parameters than the original model, leading to improved memory efficiency. These results demon-
strate the feasibility of post-hoc embedding probabilistic reasoning into the internal structure of large
pre-trained models for uncertainty quantification without sacrificing performance. This opens a new
direction for enhancing their reliability in safety-critical settings (see Section 3).

2 DIFFUSION-INSPIRED RECONFIGURATION OF TRANSFORMERS

Recent efforts to incorporate uncertainty into transformer-based models have uncovered a connection
between multi-head self-attention (MHSA) and Gaussian processes (GPs) which shows that the
deterministic output of a MHSA block corresponds to the posterior mean of a GP conditioned on its
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Figure 2: Restructuring a pre-trained transformer such that each block outputs a Gaussian distribution
over its intermediate features, effectively aligning its architecture with a probabilistic path.

input (Chen & Li, 2023; Bui et al., 2025; Chen et al., 2024c) (see Appendix A.2). Although this insight
offers a principled approach for uncertainty quantification at individual attention blocks, propagating
it across MHSA blocks remain challenging. The difficulty arises because GP-reparameterized MHSA
is interleaved with point-estimated components such as feed-forward networks (MLP) and layer
normalization (LN). This disrupts the flow of uncertainty propagation since the interleaved sequence
does not align with a well-defined stochastic path with a proper probabilistic transition model,
particularly along the point-estimated segments of the pre-trained model.

To enable principled uncertainty propagation in pre-trained transformers, we instead propose a struc-
tural reconfiguration that reorganizes the model into a well-defined probabilistic path. In particular,
we repartition the architecture such that each transformation block ends with an MHSA block (see
Fig. 2), whose output can be interpreted as a Gaussian distribution over intermediate features. This
restructuring instead views the aforementioned point-estimated network segments as additional
parameterization of a GP-reparameterized MHSA rather than observations of a latent probabilistic
transition (see Section 2.1). The resulting sequence of neuralized Gaussian transitions thus becomes
well-aligned with the reverse-time stochastic process of a diffusion model.

These neuralized Gaussian transitions can then be viewed as discrete observations at different time
steps of the diffusion’s reverse-time process. We can thus learn this process via distilling these
observed transition across different timesteps into a unified spatiotemporal transition kernel. This can
be achieved via adopting variational inference as inspired by score-based diffusion methods (Sohl-
Dickstein et al., 2015; Ho et al., 2020). This reveals a novel reconfiguration of pre-trained transformers
into uncertainty-aware diffusion processes that interestingly enables UQ via learning generative
models translating between raw data and predictive features (see Section 2.2).

2.1 RECONFIGURING PRE-TRAINED TRANSFORMER AS PROBABILITY PATH

Following prior work on uncertainty-aware transformers (Chen & Li, 2023; Bui et al., 2025; Chen
et al., 2024c), the output of a kernelized attention head can be interpreted as the predictive mean at
the input queries of a Gaussian process (GP) posterior conditioned on the key-value pairs. This means
kernelizing attention transforms the original MHSA mechanism into a GP-based variant that naturally
incorporates calibrated uncertainty. Each attention head thus admits a reparameterized Gaussian
process (GP) structure which induces a neuralized Gaussian transition,

F
(h)
t | Ut ∼ N

(
m̄

(h)
t (Ut), σ̄

(h)
t (Ut)

)
, (1)

where Ut is the input of the t-th MHSA block whereas m̄(h)
t (Ut), σ̄

(h)
t (Ut) are neuralized mean and

covariance functions for its h-th attention head under the reparameterization design (Appendix A.2).
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The individual output representation F
(h)
t of each attention head h of the t-th MHSA block can then

be aggregated via a linear combination Ot which preserves the (neuralized) Gaussian structure:

Rt = Ot

[
F

(1)
t ,F

(2)
t , . . . ,F

(n)
t

]
⇒ Rt | Ut ∼ N

(
m̄t(Ut), σ̄t(Ut)

)
, (2)

where m̄t(Ut) ≜ [Otm̄
(1)
t (Ut), . . . ,Otm̄

(n)
t (Ut)] and σ̄t(Ut) ≜ blkdiag[Otσ̄

(h)
t (Ut)O

⊤
t ].

This reparameterization thus reconfigures a pre-trained (point-estimate) MHSA block into prob-
abilistic transition function with a uncertainty structure which can be optimized as in previous
methods (Chen & Li, 2023; Bui et al., 2025; Chen et al., 2024c). This provides a principled handle for
uncertainty calibration. One can assess the local representation uncertainty via the (learned) predictive
variance or generate uncertainty-aware representation samples to propagate downstream. This propa-
gation is however disrupted in existing approaches as mentioned previously due to the interleaving of
MHSA with point-estimated components such as MLPs and layer normalization (LN). To elaborate,
the transformation from one intermediate representation Xt−1 to the next Xt interleaves the MHSA
mechanism with the MLP and LN mechanisms:
Xt−1 = MLP(LN(Zt)) +Zt where Zt = MHSA (LN(Xt)) + Xt , (3)
where we number transformer block in reverse such that the first transformer block is indexed with
t = T and the last is indexed with t = 0, as illustrated in the upper part of Fig. 2.

To propagate uncertainty under this partition, the point-estimated network segment MLP(LN(Zt))
can be viewed as an observed function sampled from some function prior. However, unlike the
MHSA which can be viewed as a sampled function from a learnable Gaussian process (GP) prior
as established in prior works, it remains unclear how to parameterize and learn a function prior for
MLP(LN(Zt)) without the risk of prior misspecification. Otherwise, treating it as a deterministic
transition collapses the uncertainty structure and consequently disrupts uncertainty propagation.

To sidestep this technical challenge, we propose to instead view MLP(LN(Zt)) as an additional pa-
rameterization of the neuralized Gaussian transition induced by the GP-reparameterized MHSA. This
can be achieved via a rearrangement of transformer’s computation blocks as detailed below:

Xt−1 = MHSA(LN(Zt)) + Zt where Zt =

{
MLP(LN(Xt)) +Xt, if t ̸= T

XT , otherwise
. (4)

This reconfiguration guarantees that each re-partitioned computation block terminates with an MHSA
module (see the lower part of Fig. 2). The deterministic transition MLP(LN(Zt)) now become
additional parameters of the MHSA which can be reparameterized into a neuralized Gaussian transi-
tion. Note that the skip connection does not break Gaussianity but only shifts the mean. Consequently,
this construction induces a stochastic process {Xt}Tt=0 with Gaussian transitions:

p
(
Xt−1 | Xt

)
= N

(
Xt−1 | mt(Xt), σt(Xt)

)
, (5)

where mt(Xt) = m̄t(LN(Zt)) +Zt and σt(Xt) = σ̄t(LN(Zt)) with Zt is defined in Eq. 4. These
separately parameterized Gaussian transitions across timesteps can be distilled into a unified spa-
tiotemporal Gaussian transition that defines the reverse-time process of a diffusion model as discussed
in Section 2.2. This unified parameterization enables seamless uncertainty propagation while explicitly
encoding transition correlations across steps as desired.

Remark. We note that the above reconfiguration does not alter the pre-trained computation but it does
change how the point-estimated segment MLP(LN(Zt)) is interpreted. Rather than being an observed
function drawn from an unknown prior, it is parameterized as part of a Gaussian transition. This
reveals a learnable representation medium that is more amenable to uncertainty propagation. For ease
of presentation, we also abuse the notation X/F to denote vec(X)/vec(F ).

2.2 DISTILLING TRANSFORMER-BASED PROBABILITY PATH ON DIFFUSION MODEL

Under our proposed reconfiguration in Section 2.1, the transformer induces a stochastic path {Xt}Tt=0
with Gaussian transitions (Eq. 5), which closely resembles a reverse diffusion process. This defines a
distribution over intermediate features conditioned on the original input embedding XT :

p
(
XT−1, . . . ,X0 | XT

)
=

T∏
t=1

p
(
Xt−1 | Xt

)
=

T∏
t=1

N
(
Xt−1 | mt(Xt), σt(Xt)

)
, (6)
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where the transition probability p(Xt−1 | Xt) is modeled independently at each timestep. Calibrating
uncertainty in this block-wise, decoupled structure is difficult as it does not capture transition
correlation and hence does not generalize across timesteps.

To address this limitation, we require a more parsimonious representation that characterizes the entire
sequence of transition models in a unified manner. This can be achieved by re-compiling it into a
reverse-time diffusion process with a unified spatiotemporal transition model:

qθ
(
XT−1, . . . ,X0 | XT

)
=

T∏
t=1

qθ
(
Xt−1 | Xt

)
=

T∏
t=1

N
(
Xt−1 | mθ(Xt), σθ(Xt)

)
, (7)

In particular, the entire sequence of neuralized Gaussian transitions derived from the previously
described GP-reparameterized of pre-trained transformer can be absorbed into the reverse-time
diffusion with a unified spatiotemporal transition via minimizing the following negative log-likelihood,
analogous to score matching in diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020):

L(θ) = Ep(X0|XT )

[
− log qθ

(
X0 | XT

)]
. (8)

This negative log-likelihood (NLL) loss admits the following upper-bound via variational inference:

L(θ) ≤ H
(
p(X0 | XT )

)
+

T∑
t=1

Ep(Xt|XT )

[
DKL

(
p(Xt−1|Xt) ∥ qθ(Xt−1 | Xt)

)]
, (9)

with proof deferred to Appendix A.4. Since the entropy term H
(
p(X0 | XT )

)
is independent of θ,

optimizing the bound in Eq. 9 reduces to minimizing the Kullback-Leibler (KL) divergence:

L1(θ) = E
t ∼ U(1,T )

E
Xt∼p(Xt|XT )

[
DKL

(
p(Xt−1 | Xt) ∥ qθ(Xt−1 | Xt)

)]
, (10)

where t ∼ U(1, T ) and Xt is sampled via sampling data X and simulating the corresponding output
of the (T − t)-th block of the pre-trained transformer. This loss aligns the probability path with a
diffusion-style transition kernel while enabling generalization across timesteps. To ensure that the
learned uncertainty propagation process maps from data to feature distributions which are informative
for downstream prediction, we regularize it with an additional performance loss:

L2(θ) = E
(X,y)∼D

E
X0∼qθ(X0|XT )

[
loss
(
X0,y

)]
, (11)

where X is sampled from the training dataset D and is embedded with XT = embed(X). X0 is then
sampled via iteratively simulating the current estimate of the probability path qθ(Xt−1 | Xt). The
parameterization of the unified spatiotemporal transition model can then be obtained via:

θ = argmin
θ

{
L1(θ) + L2(θ)

}
, (12)

which combines the uncertainty-aware (reconfiguration) loss with the performance-aware loss. For
implementation details of the above algorithm, please refer to Appendix A.5.

3 EXPERIMENTS

This section evaluates the efficacy of our proposed method, DIRECTOR: Diffusion-Inspired
REConfiguration of TransfORmers for Uncertainty Quantification, by reconfiguring existing
uncertainty-aware transformers into diffusion-based models and comparing their uncertainty calibra-
tion and predictive performance against those of the original versions. We describe our experiment
settings in Section 3.1 and report detailed empirical results in Section 3.2.

3.1 EXPERIMENT SETTINGS

Datasets. We evaluate DIRECTOR using datasets in computer vision (CV) and natural language pro-
cessing (NLP). In CV, we use the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009). Each
dataset contains 45,000 training, 5000 validation, and 10,000 test images. In NLP, we use the IMDB
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dataset (Maas et al., 2011), with 20,000 training, 5,000 validation, and 25,000 test samples; and the
CoLA dataset (Warstadt et al., 2019), with 6,355 training, 907 validation, and 1,816 test samples.

Baselines. We compare DIRECTOR with various uncertainty-aware baselines: Temperature Scaling
(TS) (Guo et al., 2017), Monte Carlo Dropout (MCD) (Gal & Ghahramani, 2016), Stochastic
Variational Deep Kernel Learning (SV-DKL) (Wilson et al., 2016a), Kronecker-Factored Last-
Layer Laplace Approximation (KFLLA) (Kristiadi et al., 2020), Sparse Gaussian Process Attention
(SGPA) (Chen & Li, 2023), and Kernel-Eigen Pair Sparse Variational Gaussian Processes Attention
(KEP-SVGP or KEP for brevity) (Chen et al., 2024c).

Pre-Trained Models. We conduct our uncertainty-aware reconfiguration experiments on two pre-
trained architectures which include (i) vanilla transformer-based model and (ii) uncertainty-aware
transformer KEP (Chen et al., 2024b). For each architecture, we pre-train a 7-layer vision transformer
(ViT (Dosovitskiy et al., 2020)) for experiments on CIFAR-10 and CIFAR-100, and a 5-layer
transformer (Vaswani et al., 2017) for CoLA and IMDB. We also evaluate variants of uncertainty-
aware transformer KEP (Chen et al., 2024b), where the first n − k attention blocks use standard
MHSA and the last k blocks use GP-reparameterized attention; we denote this variant as KEP-k/n.

Unified Transition Model. We parameterize the unified spatiotemporal transition model in our
diffusion-based reparameterization using a single-block DiT (Peebles & Xie, 2022), with embedding
dimensions matched to those of the pre-trained models (384 for CIFAR, 256 for CoLA, and 128
for IMDB). It is configured with 12 attention heads for CIFAR-10/100, 8 for CoLA, and 4 for
IMDB which are followed by a feed-forward network incorporating adaptive LN for timestep
embedding. This is configured to contain fewer parameters than the original pre-trained backbone
to improve memory efficiency. Our transition model comprises only 2.7M parameters compared to
6.24M in ViT for vision tasks, and 2.59M compared to 3.38M in the text transformer for NLP task.

Evaluation Metrics. For in-distribution classification, we evaluate predictive performance using
accuracy (ACC) for CIFAR-10, CIFAR-100, and IMDB, and Matthew’s Correlation Coefficient
(MCC) for CoLA. Calibration is assessed with Negative Log-Likelihood (NLL × 10), Expected
Calibration Error (ECE %), and Brier Score (%). Failure prediction is measured using Area Under
the Risk-Coverage Curve (AURC %), Area Under the Receiver Operating Characteristic Curve
(AUROC %), and False Positive Rate at 95% True Positive Rate (FPR95 %).

For out-of-distribution (OOD) robustness, the same metrics are applied to the CIFAR-10-C and
CoLA-OOD datasets. OOD detection performance is quantified using AUROC % and Area Under
the Precision-Recall Curve (AUPR %). All metrics are reported as mean ± standard error over five
runs. All experiments are conducted on a single NVIDIA L40 GPU.

3.2 RESULTS AND DISCUSSION

3.2.1 IN-DISTRIBUTION CLASSIFICATION

Comparison with Pre-Trained Models. DIRECTOR demonstrates superior performance compared
to pre-trained models across nearly all tasks and metrics (Table 1). While DIRECTOR does not
outperform KEP-7/7 in ECE and NLL on CIFAR-10 or in ECE on CIFAR-100, the differences are
marginal (ECE < 2%, NLL < 0.1). Conversely, DIRECTOR achieves significantly higher accuracy
than KEP-7/7 (87.06% versus 82.68% on CIFAR-10; 60.85% versus 57.06% on CIFAR-100), a lower
Brier score, and outperforms KEP-7/7 in failure prediction tasks. These results demonstrate that
DIRECTOR not only provides better-calibrated uncertainty estimates but also enhances predictive
accuracy, underscoring the effectiveness of our propagation-based model for UQ.

Comparison with Existing Uncertainty-Aware Baselines. Beyond vanilla pre-trained models,
DIRECTOR also surpasses other uncertainty-aware approaches in both predictive performance and
uncertainty quantification across multiple tasks (Table 2). For a fair comparison, DIRECTOR and
KEP are configured with optimal settings and evaluated against standard baselines. Overall, DIREC-
TOR achieves the highest performance in 21/28 settings (across 4 datasets and 7 UQ/performance
metrics) and the second-highest in 4/28 settings, establishing a new state-of-the-art in UQ.
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Table 1: Performance comparison between pre-trained transformers and their diffusion-inspired
reconfiguration using DIRECTOR on in-distribution classification tasks. KEP-k/n denotes a pre-
trained transformer using GP-reparameterized architecture (KEP (Chen et al., 2024c)) for the last k
attention blocks and standard MHSA for the remaining blocks. Better results are shown in bold.

Dataset Method ACC/MCC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓

C
IF

A
R

-1
0

ViT 83.84±0.09 4.05±0.11 86.42±0.37 67.13±1.98 12.51±0.20 10.91±0.39 28.03±0.15
DIRECTOR 85.67±0.88 3.10±0.45 87.90±1.04 61.92±1.85 9.67±0.62 6.94±0.52 23.54±1.46

KEP-1/7 84.52±0.25 3.52±0.11 87.52±0.27 65.14±1.27 10.93±0.26 8.21±0.15 25.80±0.40
DIRECTOR 86.51±0.57 2.78±0.16 88.28±0.16 61.85±1.93 8.61±0.49 6.11±0.27 21.90±0.82

KEP-7/7 82.68±0.12 4.46±0.05 85.71±0.34 66.90±1.78 6.95±0.36 5.89±0.11 25.90±0.23
DIRECTOR 87.06±0.18 2.57±0.11 88.60±0.49 61.74±0.52 8.42±0.15 5.96±0.18 21.11±0.32

C
IF

A
R

-1
00

ViT 52.94±0.63 22.88±0.64 81.07±0.56 75.96±2.39 30.73±0.61 32.71±0.91 74.72±1.20
DIRECTOR 57.79±0.57 18.58±0.37 82.60±0.11 71.50±1.42 22.31±0.49 22.16±0.36 62.57±0.85

KEP-1/7 55.74±0.77 20.20±0.64 82.10±0.20 73.82±0.92 27.07±0.71 27.45±0.62 68.54±1.18
DIRECTOR 58.78±1.52 17.63±1.08 82.99±0.41 71.40±1.24 21.17±1.03 21.15±0.93 60.96±1.73

KEP-7/7 57.06±0.56 19.38±0.60 82.02±0.39 72.78±0.69 21.31±3.85 22.41±2.29 63.07±2.11
DIRECTOR 60.85±2.98 16.35±2.34 82.91±0.67 71.46±1.43 21.43±2.09 20.55±2.42 58.91±4.63

IM
D

B

Transformer 85.59±0.50 4.73±0.32 80.75±0.55 75.45±1.10 6.96±2.05 3.95±0.44 22.28±1.26
DIRECTOR 86.07±0.61 4.57±0.39 80.84±0.67 74.24±0.87 5.40±1.90 3.60±0.34 21.08±1.32

KEP-1/5 85.76±0.71 4.54±0.42 81.02±0.70 74.87±0.87 5.51±2.94 3.79±0.51 21.62±1.42
DIRECTOR 87.13±0.19 4.07±0.30 81.55±0.62 73.35±0.14 3.16±2.54 3.24±0.31 19.31±0.97

KEP-5/5 84.57±0.81 5.48±0.60 79.32±1.25 77.03±1.48 7.83±3.28 5.17±2.13 24.23±2.56
DIRECTOR 85.74±0.34 4.58±0.23 80.95±0.42 75.08±1.15 2.33±1.54 3.36±0.12 20.70±0.65

C
oL

A

Transformer 29.92±1.17 20.80±1.21 64.22±1.46 90.01±2.84 26.44±1.90 19.66±4.18 55.09±2.68
DIRECTOR 31.85±2.46 19.74±1.62 64.52±1.71 89.52±3.61 23.94±0.49 14.29±3.01 50.82±1.19

KEP-1/5 30.86±2.03 19.86±2.04 65.18±1.83 89.10±2.60 24.98±2.08 16.28±4.35 52.86±2.88
DIRECTOR 31.84±1.88 19.42±1.83 65.54±1.78 90.37±0.89 13.77±6.58 8.26±3.75 43.54±3.65

KEP-5/5 29.28±1.21 20.82±1.98 64.47±0.90 89.65±1.04 18.95±5.66 11.83±7.96 48.65±5.84
DIRECTOR 32.05±1.56 18.69±1.39 64.71±1.37 89.53±1.67 12.88±5.74 7.68±1.70 42.20±2.50

3.2.2 DISTRIBUTION SHIFT ROBUSTNESS

We also assess both the uncertainty quantification and predictive performance of DIRECTOR in
scenarios with distribution shifts in both image classification and linguistic acceptability tasks. For
vision, we use the CIFAR-10-C dataset, which includes 15 corruption types (e.g., noise, blur) at
5 severity levels (Hendrycks & Dietterich, 2019). For language, we use the CoLA OOD dataset,
which assesses novel linguistic structures (Warstadt et al., 2019). On CIFAR-10-C (see Table 3),
DIRECTOR achieves better performance than KEP-7/7 in all metrics. It also remains competitive
with ViT and KEP-1/7 in predictive performance while improving on calibration metrics. On CoLA
OOD (see Table 4), DIRECTOR significantly improves calibration metrics without sacrificing MCC,
except when compared to KEP-5/5 which has slightly better MCC but is weaker on UQ metrics. These
observations consistently demonstrate both the performance robustness and generalization capability
of DIRECTOR under test scenarios with distribution shifts.

3.2.3 OUT-OF-DISTRIBUTION DETECTION

Uncertainty-aware baselines can also be evaluated in terms of their abilities to distinguish between
(i) correctly classified in-distribution samples, (ii) misclassified in-distribution samples, and (iii)
out-of-distribution (OOD) samples. To assess this capability, we report the average performance with
standard deviation of DIRECTOR in a number of OOD detection scenarios (see Table5) using the
AUROC/AUPR metrics and two standard methods: (1) Maximum Softmax Probability (Hendrycks &
Gimpel, 2017) and Entropy Maximization (Chan et al., 2021). Using CIFAR-10 as the in-distribution
dataset, our evaluation on SVHN, CIFAR-100, and LSUN demonstrates that the performance of most
pre-trained transformer (using CIFAR-100 data) in most cases can be substantially improved by their
corresponding diffusion-based reconfiguration. Notably, when the diffusion-based reconfiguration of
KEP-2/7 produced by DIRECTOR outperforms all baselines as highlighted in blue.

Additional results, including deep ensembles (Lakshminarayanan et al., 2017), a large-scale ViT-B-16
(86M) experiment, and loss component ablations, are provided in Appendix A.6.
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Table 2: Comparison of average performance achieved by the diffusion-based reconfigured KEP (Chen
et al., 2024c) produced by DIRECTOR and other uncertainty-aware baselines on in-distribution
classification tasks. Blue marks the best result across all baselines for a dataset while brown denotes
the second-best. ↑ indicates that higher values are better, while ↓ indicates that lower values are better.

Dataset Method ACC/MCC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓

C
IF

A
R

-1
0

TS 83.84±0.09 3.88±0.10 86.82±0.37 65.99±1.94 9.22±0.36 6.58±0.16 25.50±0.13
MCD 84.06±0.23 8.65±0.03 86.51±0.32 66.15±0.60 9.47±0.16 8.36±0.32 25.45±0.29
KFLLA 83.84±0.10 3.91±0.11 86.71±0.45 65.44±1.58 8.18±0.80 6.09±0.40 24.98±0.59
SV-DKL 83.23±0.17 4.39±0.18 85.94±0.36 66.96±1.30 11.64±0.81 9.85±1.09 27.97±0.77
SGPA 75.59±3.63 8.41±2.37 82.65±1.71 71.78±2.73 1.92±0.55 7.11±0.95 33.98±4.57
ViT 83.84±0.09 4.05±0.11 86.42±0.37 67.13±1.98 12.51±0.20 10.91±0.39 28.03±0.15
KEP 84.52±0.25 3.52±0.11 87.52±0.27 65.14±1.27 10.93±0.26 8.21±0.15 25.80±0.40

DIRECTOR 87.06±0.18 2.57±0.11 88.60±0.49 61.74±0.52 8.42±0.15 5.96±0.18 21.11±0.32

C
IF

A
R

-1
00

TS 52.94±0.63 22.34±0.61 82.29±0.48 71.65±1.98 17.06±0.42 21.57±0.52 64.77±0.95
MCD 53.49±0.62 22.24±0.56 81.60±0.19 73.02±0.51 25.93±0.37 29.24±0.73 70.02±0.92
KFLLA 52.27±0.86 23.96±0.78 81.30±0.48 71.42±1.92 18.52±5.40 20.89±0.57 66.51±1.66
SV-DKL 51.03±0.60 24.38±0.43 81.32±0.50 73.99±1.40 25.46±0.72 28.93±0.66 71.90±0.74
SGPA 52.77±0.52 22.84±0.52 81.65±0.36 72.02±1.74 10.33±2.25 19.10±0.57 62.08±1.04
ViT 52.94±0.63 22.88±0.64 81.07±0.56 75.96±2.39 30.73±0.61 32.71±0.91 74.72±1.20
KEP 57.06±0.56 19.38±0.60 82.02±0.39 72.78±0.69 21.31±3.85 22.41±2.29 63.07±2.11

DIRECTOR 60.85±2.98 16.35±2.34 82.91±0.67 71.46±1.43 21.43±2.09 20.55±2.42 58.91±4.63

IM
D

B

TS 85.59±0.50 4.73±0.32 80.75±0.55 75.45±1.10 2.91±1.51 3.41±0.13 21.04±0.74
MCD 85.96±0.42 4.40±0.24 81.40±0.55 74.79±0.88 4.18±2.03 3.47±0.23 20.72±0.82
KFLLA 85.59±0.50 4.71±0.30 80.82±0.48 75.45±1.11 5.84±2.21 6.93±0.00 21.86±1.19
SV-DKL 85.69±0.66 5.58±0.79 78.54±2.20 75.32±0.84 8.52±1.57 4.49±0.65 23.10±1.66
SGPA 85.39±0.36 4.96±0.49 80.04±1.14 76.44±0.96 6.04±1.71 3.96±0.50 22.19±1.06
Transformer 85.59±0.50 4.73±0.32 80.75±0.55 75.45±1.10 6.96±2.05 3.95±0.44 22.28±1.26
KEP 85.76±0.71 4.54±0.42 81.02±0.70 74.87±0.87 5.51±2.94 3.79±0.51 21.62±1.42

DIRECTOR 87.13±0.19 4.07±0.30 81.55±0.62 73.35±0.14 3.16±2.54 3.24±0.31 19.31±0.97

C
oL

A

TS 29.92±1.17 20.84±1.23 64.31±1.44 89.93±2.95 23.22±2.99 11.04±1.91 51.70±3.42
MCD 30.04±1.02 20.66±1.11 64.53±1.00 89.51±1.35 24.96±1.79 17.83±3.61 53.52±2.59
KFLLA 29.89±1.14 20.82±1.26 64.22±1.46 89.87±3.24 24.36±2.25 12.16±1.49 52.80±2.85
SV-DKL 30.07±1.41 22.76±2.28 61.98±3.09 89.00±2.55 25.71±1.60 17.96±3.26 54.40±2.13
SGPA 31.53±2.05 20.44±2.60 64.34±1.95 90.79±0.87 26.22±1.51 28.65±7.23 54.08±2.44
Transformer 29.92±1.17 20.80±1.21 64.22±1.46 90.01±2.84 26.44±1.90 19.66±4.18 55.09±2.68
KEP 30.86±2.03 19.86±2.04 65.18±1.83 89.10±2.60 24.98±2.08 16.28±4.35 52.86±2.88

DIRECTOR 32.05±1.56 18.69±1.39 64.71±1.37 89.53±1.67 12.88±5.74 7.68±1.70 42.20±2.50

Table 3: Comparison on CIFAR10-C.

Method ACC ↑ ECE ↓ NLL ↓ Brier ↓
ViT 69.67±0.34 24.30±0.31 23.59±1.00 53.07±0.59
DIRECTOR 68.89±1.44 22.32±1.09 17.71±1.02 51.77±2.39

KEP-1/7 69.87±0.45 22.12±0.47 18.54±0.63 50.65±0.90
DIRECTOR 69.29±0.66 20.98±0.65 16.23±0.60 50.07±1.20

KEP-7/7 59.57±0.30 21.78±0.59 17.17±0.39 60.67±0.72
DIRECTOR 68.12±0.26 22.19±0.19 17.70±0.17 52.27±0.35

Table 4: Comparison on CoLA OOD.

Method MCC ↑ ECE ↓ NLL ↓ Brier ↓
Transformer 18.43±3.55 31.99±2.70 23.82±5.16 65.50±4.32
DIRECTOR 23.06±4.69 28.72±1.87 17.18±3.75 59.91±2.20

KEP-1/5 19.44±1.94 30.33±1.48 19.67±4.82 61.97±2.25
DIRECTOR 22.10±5.49 17.50±7.52 9.34±4.50 49.92±5.80

KEP-5/5 21.14±3.48 23.27±6.61 14.25±10.66 55.12±7.78
DIRECTOR 20.20±5.46 17.49±5.93 8.61±1.99 48.55±3.67

4 RELATED WORK

In safety-critical decision-making applications (e.g., healthcare (A. et al., 2021; Lopez et al., 2023;
Band et al., 2022)), models must recognize when their confidence is low to defer decisions to human
experts (Pietraszek, 2007; Tran et al., 2022b). However, existing transformers typically ignore
uncertainty due to point-estimate designs throughout their stack of neural transformations (Papa-
markou et al., 2024). Prior investigation in Bayesian deep learning (BDL) are often restricted to
moderate-sized DL architectures (Wang & Yeung, 2016; Mukhoti & Gal, 2018; Kendall & Gal,
2017; Gustafsson et al., 2020; Chien & Ku, 2015; Ritter et al., 2021; Tran et al., 2019; Fortuin
et al., 2022; Tran et al., 2020; Rudner et al., 2022a; Qiu et al., 2023), limiting scalability to large
networks (Papamarkou et al., 2024). To elaborate, we next discuss two main UQ paradigms:

UQ integration during training. These methods treat model parameters as random variables and
learn their posterior distributions conditioned on data. Bayesian neural networks approximate pos-
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Table 5: Comparison of average OOD detection performance in AUROC (%) and AUPR (%) (with
reported standard deviation) achieved by the tested baselines over 5 independent runs.

Method SVHN CIFAR-100 LSUN
AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑

MCD 87.09±8.53 91.46±4.87 76.27±0.35 78.82±0.41 88.41±2.05 91.19±1.51
KFLLA 89.47±9.07 92.92±5.27 77.27±0.42 79.88±0.42 90.77±2.93 92.61±2.24
SVDKL 86.59±6.86 90.78±4.04 75.99±0.74 77.89±1.23 87.81±2.52 90.60±1.91
SGPA 61.57±5.11 74.59±3.50 73.42±1.87 75.93±1.87 67.34±9.77 76.76±5.93

ViT 87.09±8.53 91.46±4.87 76.27±0.35 78.82±0.41 88.41±2.05 91.19±1.51
DIRECTOR 83.19±10.94 88.84±6.37 78.57±0.94 81.33±0.95 83.97±7.19 88.70±4.50

KEP-1/7 75.28±19.12 81.92±13.36 77.93±0.39 80.85±0.46 85.64±4.47 88.98±3.57
DIRECTOR 90.73±4.07 93.21±2.78 79.29±0.50 82.11±0.40 89.38±3.22 92.08±2.37

KEP-2/7 88.25±4.67 91.56±3.14 77.71±0.55 80.58±0.53 88.35±3.62 91.18±2.75
DIRECTOR 92.14±5.70 94.49±3.59 79.43±0.57 82.15±0.57 91.39±2.74 93.63±1.86

KEP-7/7 77.16±1.62 84.09±1.28 76.21±0.41 78.82±0.41 77.01±3.28 82.42±2.73
DIRECTOR 79.33±20.83 85.92±13.88 79.11±0.39 81.70±0.38 86.84±4.07 90.05±3.16

teriors via MCMC or variational inference (Blundell et al., 2015; Guo et al., 2022), while deep
ensembles (Lakshminarayanan et al., 2017) approximate them non-parametrically through diverse
initializations. Evidential methods (Wilson et al., 2016b; Sensoy et al., 2018) map features to
prior parameters over the likelihood for a closed-form uncertainty estimation via conjugate priors.
Sampling-based methods offer higher fidelity by avoiding structural assumptions but incur pro-
hibitive sampling cost for large models (Wenzel et al., 2020). In contrast, variational and evidential
approaches are more scalable but less accurate due to biased approximations and restrictive parame-
terizations (Wilson et al., 2022; Chen et al., 2015). Overall, these approaches approximate or sample
from the parameter posterior, which remains highly intractable and often yields unreliable estimates.

UQ integration post-training. These methods recalibrate prediction confidence by augmenting a
trained model’s output without altering most its parameters, including data augmentation (Wang
et al., 2019), Monte Carlo dropout (Gal & Ghahramani, 2016), and input-gradient norms (Ash
et al., 2019). There are also learning-based approaches that adjust output probabilities to better
reflect correctness, such as temperature scaling (Guo et al., 2017), replacing the solution head with
probabilistic alternatives (e.g., Gaussian processes (Rasmussen & Williams, 2006), SNGPs (Liu et al.,
2020; Bradshaw et al., 2017)), or Laplace approximation that fits a local Gaussian approximation to
the weight posterior around the model’s learned parameters (Li et al., 2023). More recently, conformal
prediction (Marx et al., 2022) offers a black-box calibration method that uses a pre-trained model’s
softmax scores and test-time data to produce prediction sets with marginal coverage guarantees.

5 CONCLUSION

We introduce a diffusion-inspired reconfiguration of pre-trained transformers that enables princi-
pled uncertainty propagation across the entire feature transformation stack. Our approach builds on
the established connection between multi-head self-attention (MHSA) and Gaussian process (GP)
prediction, reparameterizing the feature transformation stack as a sequence of neuralized Gaussian
transitions. This sequence is then distilled into a diffusion process with a learnable unified spa-
tiotemporal transition model mapping between the data and feature distributions, thereby embedding
expressive uncertainty-aware structure within the original transformer while preserving its predictive
performance. We comprehensively evaluate this approach across diverse vision and language tasks,
consistently demonstrating its effectiveness. These results point toward a new direction for embed-
ding probabilistic reasoning into the internal structure of large pre-trained models, enhancing their
reliability in risk-sensitive applications and revealing a new paradigm shift to scalable UQ.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 MULTI-HEAD SELF-ATTENTION

Self-Attention. Given an input of the attention layer U ∈ RN×d, where N is the number of data
points and d is the embedding dimension, self-attention computes queries, keys, and values via
Q = UWq , K = UWk, and V = UWv , with projection matrices Wq,Wk,Wv ∈ Rd×dh , where
dh is projected dimension. The output of the self-attention is:

F = softmax

(
QK⊤
√
dh

)
V = AqkV, (13)

where attention matrix Aqk ∈ RN×N encodes the pairwise similarity between the queries and keys.

Multi-Head Self-Attention (MHSA). MHSA employs n parallel attention heads, each independently
computing a self-attention output F(h) with corresponding W

(h)
q ,W

(h)
k ,W

(h)
v ∈ Rd×dhas defined

in Eq. 13. To maintain computational efficiency, the dimensionality of each head is typically set to
dh = d/n. The outputs from all attention heads are concatenated and subsequently projected back to
the input dimension, forming MHSA’s output:

R = O
[
F(1),F(2), . . . ,F(n)

]
(14)

where O ∈ Rd×(n·dh) is a projection matrix.

A.2 SELF-ATTENTION AS GAUSSIAN PROCESS INFERENCE

Kernel Attention or K-Attention (Tsai et al., 2019) has extended the attention mechanism by
replacing cosine similarity with a general kernel function κ(·, ·) : Rd × Rd → R to compute
pairwise similarities. Specifically, the attention matrix Aqk is replaced by a kernel matrix Kqk, where
each entry is defined as [Kqk]i,j = κ(Ui,:,Uj,:). Consequently, the output of the kernel attention
mechanism is:

F = KqkV, (15)

Sparse Gaussian Process Attention (SGPA) (Chen & Li, 2023) leverages the Sparse Variational
Gaussian Process (SVGP) framework to approximate posterior variances in the attention mechanism.
For each dimension i of attention output, the posterior mean and covariance are given by:

µi = KqkV:,i , and Σi = Kqq +Kqk

(
K−1

kk [S]:,:,iK
−1
kk −K−1

kk

)
Kkq (16)

where S ∈ RN×N×dh is a set of variational covariance parameters, optimized via the SVGP evidence
lower bound. The output for each dimension i is then sampled using the reparameterization trick:

F:,i = µi +Σ
1/2
i · ϵi, ϵi ∼ N (0, I) (17)

By stacking the results across all dh output dimensions, the final output of the attention head is:

F =
[
µ1 +Σ

1/2
1 ϵ1 , · · · , µdh

+Σ
1/2
dh

ϵdh

]
∈ RN×dh (18)

Kernel-Eigen Pair Sparse Variational Gaussian Processes Attention (KEP-SVGP) (Chen et al.,
2024c). The constraint of imposing a symmetric kernel matrix Kqk in K-Attention and SGPA
(requiring Wq = Wk) can restrict the model’s representation capacity by eliminating the inherent
asymmetry of the original attention matrix Aqk. To overcome this restriction, KEP-SVGP employs
two Gaussian Processes (GPs), leveraging the symmetry of KqkK⊤

qk and K⊤
qkKqk. Each attention

output dimension is then computed by combining the contributions from the two GPs.

More specifically, building on the KSVD framework and the Primal-Attention formulation (Chen
et al., 2024a), KEP-SVGP introduces two sets of s-dimensional attention outputs to model the
left and right eigenspaces, denoted as F e

[i] := F e[:, i] and F r
[i] := F r[:, i] ∈ RN for i = 1, . . . , s,

corresponding to the primal features e(U) and r(U) in (Chen et al., 2024a), respectively. To model
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these outputs, the following SVGP priors are defined based on the induced symmetric kernels KqkK⊤
qk

and K⊤
qkKqk:(
Fe

i
ue
i

)
∼ GP

(
0,

(
KqkK⊤

qk HeΛ
2

Λ2H⊤
e Λ2

))
,

(
Fr

i
ur
i

)
∼ GP

(
0,

(
K⊤

qkKqk HrΛ
2

Λ2H⊤
r Λ2

))
, (19)

where Λ ∈ Rs×s is a diagonal matrix of the top-s singular values of Kqk, and He,Hr ∈ RN×s

contain the corresponding top-s left and right singular vectors, respectively. Using variational
distributions ue

[i],u
r
[i] ∼ N (mu,[i], Suu,[i]), closed-form posteriors q(Fc

i |U) =
∫
q(Fc

i |ui)q(ui) dui

(c ∈ {e, r}) are derived as:

q(Fe
i |U) ∼ N

(
EUΛ

−1mu,[d]︸ ︷︷ ︸
µe:=me

[i]

, EUΛ
−2Suu,[i]E

⊤
U︸ ︷︷ ︸

Σe:=Le
[i]

Le
[i]

⊤

)
,

q(Fr
i |U) ∼ N

(
RUΛ

−1mu,[d]︸ ︷︷ ︸
µr:=mr

[i]

, RUΛ
−2Suu,[i]R

⊤
U︸ ︷︷ ︸

Σr:=Lr
[i]

Lr
[i]

⊤

)
, (20)

where EU := [e(Ui), . . . , e(UN )]⊤ ∈ RN×s and RU := [r(Ui), . . . , r(UN )]⊤ ∈ RN×s are the
projection matrices w.r.t. right and left singular vectors of KSVD in (Chen et al., 2024a). The
variational parameters are mu ∈ Rs×s, Suu ∈ Rs×s×s with the components i -th defined as
mu,[i] := mu[:, i] ∈ Rs, and Suu,[i] := Suu[:, :, i] ∈ Rs×s.

The outputs of the two SVGPs are sampled via the reparameterization trick:
F e
[i] = me

[i] + Le
[i]ϵ, F r

[i] = mr
[i] + Lr

[i]ϵ, with ϵ ∼ N (0, IN ) (21)

To fuse the outputs, two schemes are proposed: Addition (F add
[i] := F e

[i] +F r
[i] ∈ RN ) and Concatena-

tion (F cat
[i] := [F e

[i];F
r
[i]] ∈ R2N ). To align with standard Transformer architecture, the s-dimensional

attention outputs are linearly projected to the target dimension dh. The final output F ∈ RN×dh is
computed as: F = FaddWadd for the addition, F = Wcat

1 FcatWcat
2 for the concatenation, where the

projection matrices are Wadd ∈ Rs×dh , Wcat
1 ∈ RN×2N and Wcat

2 ∈ Rs×dh .

A.3 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) transform data into noise
through a gradual forward diffusion process and then learn to reverse this transformation. The
forward process incrementally adds Gaussian noise to the data X0 over T steps:

p(Xt|Xt−1) = N (Xt;
√
1− βtXt−1, βtI), (22)

where {βt}Tt=1 controls the noise schedule. This defines a Markov chain that progressively corrupts
the data. The true reverse process p(Xt−1|Xt) is generally intractable but becomes tractable when
conditioned on X0:

p(Xt−1|Xt,X0) = N
(
Xt−1; µ̃t(Xt,X0), β̃tI

)
, (23)

where closed-form expressions for µ̃t and β̃t follow from Bayes’ rule under the forward process.
However, X0 is unknown at test time, the model instead learns a parameterized reverse process that
conditions only on (Xt, t):

qθ(Xt−1|Xt) = N (Xt−1;µθ(Xt, t),Σθ(Xt, t)), (24)
Learning proceeds by minimizing the variational bound on the negative log-likelihood of the data,
which encourages qθ(Xt−1|Xt) to match the true reverse process p(Xt−1|Xt,X0). This is typically
implemented via noise prediction (score matching), where the network predicts the injected noise ϵ
instead of µθ.

A.4 DERIVATION OF THE UPPER BOUND OF L(θ)

The negative log-likelihood L(θ) = Ep(X0|XT ) [− log qθ(X0 | XT )] is upper bounded by

L(θ) ≤ H
(
p(X0 | XT )

)
+

T∑
t=1

Ep(Xt|XT )

[
DKL

(
p(Xt−1|Xt) ∥ qθ(Xt−1 | Xt)

)]
(25)
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Proof. From the definition of L(θ), we have

L(θ) = −Ep(X0|XT ) [log qθ(X0 | XT )] (26)

= −Ep(X0|XT )

[
log

(∫
qθ(X0:T−1 | XT )dX1:T−1

)]
(27)

= −Ep(X0|XT )

[
log

(∫
p(X1:T−1 | X0,XT )

qθ(X0:T−1 | XT )

p(X1:T−1 | X0,XT )
dX1:T−1

)]
(28)

= −Ep(X0|XT )

[
log

(
Ep(X1:T−1|X0,XT )

[
qθ(X0:T−1 | XT )

p(X1:T−1 | X0,XT )
dX1:T−1

])]
(29)

≤ −Ep(X0:T−1|XT ) log

(
qθ(X0:T−1 | XT )

p(X1:T−1 | X0,XT )

)
(Jensen’s inequality) (30)

= Ep(X0:T−1|XT ) log

(
p(X1:T−1 | X0,XT )

qθ(X0:T−1 | XT )

)
= LV LB (31)

Now, we derive the LV LB as follows:

LV LB = Ep(X0:T−1|XT )

[
log

(
p(X1:T−1 | X0,XT )

qθ(X0:T−1 | XT )

)]
(32)

= Ep(X0:T−1|XT )

[
log

(
p(X0:T−1 | XT )

qθ(X0:T−1 | XT )p(X0 | XT )

)]
(33)

= Ep(X0:T−1|XT )

[
− log p(X0 | XT ) + log

(
p(X0:T−1 | XT )

qθ(X0:T−1 | XT )

)]
(34)

= Ep(X0:T−1|XT )

[
− log p(X0 | XT ) + log

(
T∏

t=1

p(Xt−1 | Xt)

qθ(Xt−1 | Xt)

)]
(35)

= Ep(X0:T−1|XT )

[
− log p(X0 | XT ) +

T∑
t=1

log

(
p(Xt−1 | Xt)

qθ(Xt−1 | Xt)

)]
(36)

= H
(
p(X0 | XT )

)
+

T∑
t=1

Ep(X0:T−1|XT )

[
log

(
p(Xt−1 | Xt)

qθ(Xt−1 | Xt)

)]
(37)

Additionally, we have:

Ep(X0:T−1|XT )

[
log

(
p(Xt−1 | Xt)

qθ(Xt−1 | Xt)

)]
(38)

=

∫
p(X0:T−1 | XT ) log

(
p(Xt−1 | Xt)

qθ(Xt−1 | Xt)

)
dX0:T−1 (39)

=

∫
p(Xt−1,Xt | XT ) log

(
p(Xt−1 | Xt)

qθ(Xt−1 | Xt)

)
dXt−1dXt (40)

=

∫
p(Xt | XT )p(Xt−1 | Xt) log

(
p(Xt−1 | Xt)

qθ(Xt−1 | Xt)

)
dXt−1dXt (41)

= Ep(Xt|XT )

[
DKL

(
p(Xt−1 | Xt) ∥ qθ(Xt−1 | Xt)

)]
(42)

A.5 PRACTICAL IMPLEMENTATION OF THE PROPOSED ALGORITHM IN EQ.12

The uncertainty-aware transition parameterization can be obtained via the objective in Eq.12:

θ = argmin
θ

{
L1(θ) + L2(θ)

}
(43)

which combines the matching loss

L1(θ) = E
(Xt,t)∼p(Xt|XT )

[
DKL

(
p(Xt−1 | Xt) ∥ qθ(Xt−1 | Xt)

)]
, (44)
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with the performance-aware loss

L2(θ) = E
(X,y)∼D

E
X0∼qθ(X0|XT )

[
loss
(
X0,y

)]
, (45)

where X is sampled from the training dataset D and is embedded with XT = embed(X). X0 is
then sampled via iteratively simulating the current estimate of the probability path qθ(Xt−1 | Xt).
In addition, the KL divergence in Eq. 44 can be reduced to the following loss,

DKL

(
p ∥ qθ

)
∝ 1

2

[
tr
[
σ−1
θ (Xt, t)σt(Xt)

]
+ log

|σθ(Xt, t)|
|σt(Xt)|

]
(46)

+
1

2

(
mθ(Xt, t)−mt(Xt)

)⊤
σ−1
θ (Xt)

(
mθ(Xt, t)−mt(Xt)

)
. (47)

However, the KL computation still presents a challenge due to the high dimensionality of the
covariance matrix σt(Xt), which complicates the evaluation of the trace and log-determinant terms.
To mitigate this, we follow the approach of KEP by approximating σt(Xt) using a Cholesky-
like factor Lt such that σt(Xt) = LtL

⊤
t . For the parameterized covariance σθ(Xt, t), we adopt

a diagonal structure, making its Cholesky-like factor simply the element-wise square root of its
diagonal. Matching these Cholesky-like factors ensures that the corresponding covariance matrices
are aligned, effectively nullifying the trace and log-determinant terms in the KL divergence and
enabling efficient optimization. Employing Cholesky-like factor and incorporating weighting terms
yields the final objective:

θ = argmin
θ

{
λmeanLmean(θ) + λCholeskyLCholesky(θ) + λNLLL2(θ)

}
, (48)

where λmean, λCholesky, and λNLL are weighting coefficients for the mean matching term, the
Cholesky-like factor alignment, and the performance-aware loss, respectively. The individual loss
components are defined as follows:

Lmean(θ) =
1

T

T∑
t=1

Ep(Xt|XT )

[
∥mθ(Xt, t)−mt(Xt)∥22

]
, (49)

LCholesky(θ) =
1

T

T∑
t=1

Ep(Xt|XT )

[∥∥∥(σθ(Xt, t)
1/2 − Chol(σt(Xt))

)∥∥∥2
2

]
, (50)

L2(θ) = E
(X,y)∼D

E
X0∼qθ(X0|XT )

[
loss
(
X0,y

)]
, (51)

where Chol(·) denotes the Cholesky-like factorization.

A.6 ADDITIONAL EXPERIMENTS

A.6.1 LARGE-SCALE EXPERIMENT

Table 6: Comparison of average performance achieved a pre-trained ViT-B-16 model (fine-tuned on
CIFAR-10 from ImageNet) and its reconfigured variant produced by DIRECTOR.

Method #params ACC/MCC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓
ViT-B-16 86M 97.880 0.141 95.624 19.340 18.021 2.564 6.843
DIRECTOR 50M 97.170 2.120 94.881 28.622 1.611 1.122 4.762

To stress test DIRECTOR, we further evaluate its scalability on a larger-scale experiment which
requires reconfiguring a pre-trained ViT-B-16 model (pre-trained on the large-scale ImageNet data and
fine-tuned on CIFAR-10 data). The reported results in Table 6 show that DIRECTOR ’s reconfigured
ViT-B-16 achieves substantially better uncertainty calibration with an ECE of 1.611 compared to
18.021 of the original ViT-B-16. DIRECTOR also maintains competitive predictive performance
(97.17% vs. 97.88%) while requiring significantly fewer parameters (50M vs. 86M). These findings
highlight the ability of DIRECTOR to deliver reliable uncertainty quantification even in large and
complex transformer architectures, pre-trained on sophisticated and large-scale data.
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Table 7: Performance comparison of Deep Ensembles for in-distribution classification on CIFAR-
10 and IMDB. KEP-k/n denotes a pre-trained transformer using GP-reparameterized architecture
(KEP (Chen et al., 2024c)) for the last k attention blocks and standard MHSA for the remaining
blocks. Bold indicates the better performance in each pairwise comparison between a baseline
ensemble (ViT, Transformer, KEP) and diffusion-based reconfigured KEP (Chen et al., 2024c)
produced by DIRECTOR ensemble.

Dataset Method ACC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓

C
IF

A
R

-1
0

ViT 87.21 2.52 88.84 58.41 2.70 5.14 19.01
DIRECTOR 88.82 1.91 90.09 52.77 1.72 3.69 16.38
KEP-1/7 87.48 2.33 89.43 56.39 2.30 4.46 18.29
DIRECTOR 89.32 1.78 90.12 54.31 1.67 3.50 15.76
KEP-2/7 87.09 2.41 89.48 54.07 2.71 4.48 18.69
DIRECTOR 89.20 1.79 90.33 51.85 1.86 3.52 15.73
KEP-7/7 83.97 3.77 86.90 62.38 3.58 5.04 23.20
DIRECTOR 89.73 1.70 90.17 54.72 1.62 3.49 15.27

IM
D

B

Transformer 87.31 3.55 82.92 71.45 2.36 3.04 18.44
DIRECTOR 87.45 3.56 82.83 70.68 1.97 3.00 18.25
KEP-1/5 87.44 3.63 82.34 72.21 1.56 3.01 18.39
DIRECTOR 87.85 3.44 83.20 71.10 1.25 2.89 17.62
KEP-2/5 87.77 3.51 82.44 73.14 2.85 3.04 18.18
DIRECTOR 87.88 3.43 82.96 72.29 1.24 2.91 17.70
KEP-5/5 86.49 4.16 81.54 74.07 2.63 3.28 19.72
DIRECTOR 87.66 3.43 82.95 72.13 2.07 2.95 18.05

A.6.2 DEEP ENSEMBLES RESULTS

We further evaluate the performance of Deep Ensembles (Lakshminarayanan et al., 2017), a simple yet
effective method for uncertainty estimation, when combined with pretrained models and DIRECTOR,
as reported in Table 7. The results show that DIRECTOR consistently outperforms pretrained models
across both CIFAR-10 and IMDB. On CIFAR-10, DIRECTOR achieves notable improvements
in predictive accuracy (up to +5.8% over KEP-7/7), while also delivering stronger uncertainty
calibration (lower ECE and NLL) and robustness (AURC, AUROC, Brier score). On IMDB, although
the baseline Transformer ensemble already achieves strong results, DIRECTOR further improves
calibration (ECE, NLL, Brier) and robustness metrics, with the exception of AURC and AUROC
where the Transformer baseline performs slightly better. Overall, these findings demonstrate that
DIRECTOR works effectively to ensemble settings, providing consistent benefits across architectures,
datasets, and evaluation metrics.

A.6.3 IN-DISTRIBUTION CLASSIFICATION

We consolidate the experimental results from Table 1 and Table 2, and further include additional
findings based on our alignment with KEP-2/7 (vision) and KEP-2/5 (language) configurations,
presented in Table 8. DIRECTOR demonstrates state-of-the-art performance across nearly all
scenarios, achieving the highest score in 23 out of 28 settings and ranking second in another 23 out
of 28. These results highlight the substantial advantage of DIRECTOR over existing baselines, in
terms of both predictive accuracy and uncertainty quantification.
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Table 8: Performance comparison for in-distribution classification across four tasks. KEP-k/n denotes
a pre-trained transformer using GP-reparameterized architecture (KEP (Chen et al., 2024c)) for the
last k attention blocks and standard MHSA for the remaining blocks. Bold indicates the better
performance in each pairwise comparison between a pre-trained model (ViT, Transformer, KEP) and
diffusion-based reconfigured KEP (Chen et al., 2024c) produced by DIRECTOR . Blue marks the
best result across all baselines for a dataset, and brown denotes the second-best.

Dataset Method ACC/MCC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓

C
IF

A
R

-1
0

TS 83.84±0.09 3.88±0.10 86.82±0.37 65.99±1.94 9.22±0.36 6.58±0.16 25.50±0.13
MCD 84.06±0.23 8.65±0.03 86.51±0.32 66.15±0.60 9.47±0.16 8.36±0.32 25.45±0.29
KFLLA 83.84±0.10 3.91±0.11 86.71±0.45 65.44±1.58 8.18±0.80 6.09±0.40 24.98±0.59
SV-DKL 83.23±0.17 4.39±0.18 85.94±0.36 66.96±1.30 11.64±0.81 9.85±1.09 27.97±0.77
SGPA 75.59±3.63 8.41±2.37 82.65±1.71 71.78±2.73 1.92±0.55 7.11±0.95 33.98±4.57

ViT 83.84±0.09 4.05±0.11 86.42±0.37 67.13±1.98 12.51±0.20 10.91±0.39 28.03±0.15
DIRECTOR 85.67±0.88 3.10±0.45 87.90±1.04 61.92±1.85 9.67±0.62 6.94±0.52 23.54±1.46

KEP-1/7 84.52±0.25 3.52±0.11 87.52±0.27 65.14±1.27 10.93±0.26 8.21±0.15 25.80±0.40
DIRECTOR 86.51±0.57 2.78±0.16 88.28±0.16 61.85±1.93 8.61±0.49 6.11±0.27 21.90±0.82

KEP-2/7 84.32±0.75 3.65±0.22 87.17±0.35 65.30±1.35 11.11±0.46 8.43±0.26 26.20±1.08
DIRECTOR 86.62±0.18 2.70±0.07 88.52±0.36 60.70±2.31 8.54±0.14 5.96±0.14 21.59±0.25

KEP-7/7 82.68±0.12 4.46±0.05 85.71±0.34 66.90±1.78 6.95±0.36 5.89±0.11 25.90±0.23
DIRECTOR 87.06±0.18 2.57±0.11 88.60±0.49 61.74±0.52 8.42±0.15 5.96±0.18 21.11±0.32

C
IF

A
R

-1
00

TS 52.94±0.63 22.34±0.61 82.29±0.48 71.65±1.98 17.06±0.42 21.57±0.52 64.77±0.95
MCD 53.49±0.62 22.24±0.56 81.60±0.19 73.02±0.51 25.93±0.37 29.24±0.73 70.02±0.92
KFLLA 52.27±0.86 23.96±0.78 81.30±0.48 71.42±1.92 18.52±5.40 20.89±0.57 66.51±1.66
SV-DKL 51.03±0.60 24.38±0.43 81.32±0.50 73.99±1.40 25.46±0.72 28.93±0.66 71.90±0.74
SGPA 52.77±0.52 22.84±0.52 81.65±0.36 72.02±1.74 10.33±2.25 19.10±0.57 62.08±1.04

ViT 52.94±0.63 22.88±0.64 81.07±0.56 75.96±2.39 30.73±0.61 32.71±0.91 74.72±1.20
DIRECTOR 57.79±0.57 18.58±0.37 82.60±0.11 71.50±1.42 22.31±0.49 22.16±0.36 62.57±0.85

KEP-1/7 55.74±0.77 20.20±0.64 82.10±0.20 73.82±0.92 27.07±0.71 27.45±0.62 68.54±1.18
DIRECTOR 58.78±1.52 17.63±1.08 82.99±0.41 71.40±1.24 21.17±1.03 21.15±0.93 60.96±1.73

KEP-2/7 55.82±1.12 20.14±0.94 82.16±0.32 73.34±1.05 27.37±0.55 27.74±0.51 68.65±1.42
DIRECTOR 59.45±1.06 17.10±0.80 83.27±0.33 69.94±1.33 21.44±0.86 20.85±0.49 60.15±1.16

KEP-7/7 57.06±0.56 19.38±0.60 82.02±0.39 72.78±0.69 21.31±3.85 22.41±2.29 63.07±2.11
DIRECTOR 60.85±2.98 16.35±2.34 82.91±0.67 71.46±1.43 21.43±2.09 20.55±2.42 58.91±4.63

IM
D

B

TS 85.59±0.50 4.73±0.32 80.75±0.55 75.45±1.10 2.91±1.51 3.41±0.13 21.04±0.74
MCD 85.96±0.42 4.40±0.24 81.40±0.55 74.79±0.88 4.18±2.03 3.47±0.23 20.72±0.82
KFLLA 85.59±0.50 4.71±0.30 80.82±0.48 75.45±1.11 5.84±2.21 6.93±0.00 21.86±1.19
SV-DKL 85.69±0.66 5.58±0.79 78.54±2.20 75.32±0.84 8.52±1.57 4.49±0.65 23.10±1.66
SGPA 85.39±0.36 4.96±0.49 80.04±1.14 76.44±0.96 6.04±1.71 3.96±0.50 22.19±1.06

Transformer 85.59±0.50 4.73±0.32 80.75±0.55 75.45±1.10 6.96±2.05 3.95±0.44 22.28±1.26
DIRECTOR 86.07±0.61 4.57±0.39 80.84±0.67 74.24±0.87 5.40±1.90 3.60±0.34 21.08±1.32

KEP-1/5 85.76±0.71 4.54±0.42 81.02±0.70 74.87±0.87 5.51±2.94 3.79±0.51 21.62±1.42
DIRECTOR 87.13±0.19 4.07±0.30 81.55±0.62 73.35±0.14 3.16±2.54 3.24±0.31 19.31±0.97

KEP-2/5 86.52±0.72 4.18±0.37 81.54±0.54 73.82±1.68 5.72±1.20 3.58±0.29 20.51±1.16
DIRECTOR 86.95±0.19 4.05±0.30 81.64±0.85 73.46±1.34 3.46±1.40 3.23±0.13 19.42±0.49

KEP-5/5 84.57±0.81 5.48±0.60 79.32±1.25 77.03±1.48 7.83±3.28 5.17±2.13 24.23±2.56
DIRECTOR 85.74±0.34 4.58±0.23 80.95±0.42 75.08±1.15 2.33±1.54 3.36±0.12 20.70±0.65

C
oL

A

TS 29.92±1.17 20.84±1.23 64.31±1.44 89.93±2.95 23.22±2.99 11.04±1.91 51.70±3.42
MCD 30.04±1.02 20.66±1.11 64.53±1.00 89.51±1.35 24.96±1.79 17.83±3.61 53.52±2.59
KFLLA 29.89±1.14 20.82±1.26 64.22±1.46 89.87±3.24 24.36±2.25 12.16±1.49 52.80±2.85
SV-DKL 30.07±1.41 22.76±2.28 61.98±3.09 89.00±2.55 25.71±1.60 17.96±3.26 54.40±2.13
SGPA 31.53±2.05 20.44±2.60 64.34±1.95 90.79±0.87 26.22±1.51 28.65±7.23 54.08±2.44

Transformer 29.92±1.17 20.80±1.21 64.22±1.46 90.01±2.84 26.44±1.90 19.66±4.18 55.09±2.68
DIRECTOR 31.85±2.46 19.74±1.62 64.52±1.71 89.52±3.61 23.94±0.49 14.29±3.01 50.82±1.19

KEP-1/5 30.86±2.03 19.86±2.04 65.18±1.83 89.10±2.60 24.98±2.08 16.28±4.35 52.86±2.88
DIRECTOR 31.84±1.88 19.42±1.83 65.54±1.78 90.37±0.89 13.77±6.58 8.26±3.75 43.54±3.65

KEP-2/5 30.73±2.29 20.36±1.40 64.03±1.21 90.23±1.86 21.78±6.62 15.52±7.74 50.14±5.92
DIRECTOR 33.03±1.36 19.06±3.05 64.78±2.31 89.79±2.65 11.45±4.78 6.72±0.98 41.64±3.58

KEP-5/5 29.28±1.21 20.82±1.98 64.47±0.90 89.65±1.04 18.95±5.66 11.83±7.96 48.65±5.84
DIRECTOR 32.05±1.56 18.69±1.39 64.71±1.37 89.53±1.67 12.88±5.74 7.68±1.70 42.20±2.50
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Figure 3: Calibration comparison of pre-trained models with their corresponding diffusion-based
reconfigured produced by DIRECTOR on CIFAR-10-C over 5 severity levels of corruption. The
notation S-k represents the severity level k. DIRECTOR achieves competitive accuracy and
outperforms pre-trained models in most calibration metrics.

Table 9: Performance comparison on CIFAR-10-C, with 15 corruptions across five severity levels
over five trials.

Method ACC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓
MCD 69.73±0.36 14.46±0.22 79.11±0.11 76.96±0.20 19.58±0.23 18.48±0.67 48.70±0.47
KFLLA 69.64±0.43 14.46±0.41 79.27±0.23 76.34±0.33 17.46±1.18 12.75±0.80 47.18±1.06
SVDKL 68.88±0.36 15.43±0.56 78.56±0.50 77.22±0.55 22.67±1.18 21.02±2.57 52.29±1.35
SGPA 57.73±1.25 24.82±1.23 74.81±0.65 80.92±0.54 12.47±2.11 13.60±0.48 57.91±1.39

ViT 69.67±0.34 14.66±0.27 78.92±0.16 77.74±0.28 24.30±0.31 23.59±1.00 53.07±0.59
DIRECTOR 68.89±1.44 15.31±1.30 79.17±0.86 77.10±1.00 22.32±1.09 17.71±1.02 51.77±2.39

KEP-1/7 69.87±0.45 14.30±0.50 79.49±0.38 76.95±0.43 22.12±0.47 18.54±0.63 50.65±0.90
DIRECTOR 69.29±0.66 15.00±0.69 79.69±0.27 76.38±0.40 20.98±0.65 16.23±0.60 50.07±1.20

KEP-2/7 68.63±0.75 15.46±0.66 78.90±0.37 77.57±0.42 23.18±0.63 19.72±0.76 52.82±1.30
DIRECTOR 69.41±0.55 14.95±0.60 79.73±0.42 76.29±0.73 20.71±0.63 15.94±0.44 49.71±1.10

KEP-7/7 59.57±0.30 23.77±0.40 75.56±0.30 80.47±0.27 21.78±0.59 17.17±0.39 60.67±0.72
DIRECTOR 68.12±0.26 16.45±0.28 79.08±0.22 76.73±0.29 22.19±0.19 17.70±0.17 52.27±0.35

A.6.4 DISTRIBUTION SHIFT ROBUSTNESS

Additional experiments evaluating the distributional robustness of DIRECTOR are presented in
Tables 9,10, and Figure3. These results include evaluations of DIRECTOR aligned with KEP-2/5
and KEP-2/7 configurations. Notably, the TS baseline is excluded from these comparisons, as it is
specifically tailored for in-distribution tasks.

Figure 3 illustrates a calibration comparison between pre-trained models (ViT, KEP) and DIREC-
TOR on the CIFAR-10-C dataset, across five corruption severity levels averaged over 15 corruption
types. DIRECTOR demonstrates competitive, and in many cases superior, predictive accuracy,
particularly when aligned with KEP-7/7. In terms of uncertainty quantification, DIRECTOR exhibits
significantly improved calibration, achieving lower values in ECE, NLL, and Brier score compared to
pre-trained baselines.

Table 9 summarizes performance averaged over the 15 corruptions and five severity levels on CIFAR-
10-C. While maintaining competitive predictive accuracy with ViT and KEP, DIRECTOR substan-
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Table 10: Performance comparison on CoLA OOD over five trials.

Method MCC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓
MC Dropout 18.54±4.14 25.85±1.03 63.31±2.18 90.17±2.95 32.02±2.56 23.84±5.19 65.50±4.46
KFLLA 18.43±3.55 25.89±0.99 63.31±1.65 90.50±3.25 29.94±2.86 14.64±1.87 62.72±4.37
SVDKL 19.32±3.57 27.58±2.51 60.65±1.41 89.97±2.67 30.97±3.10 21.23±3.67 64.07±4.62
SGPA 19.34±6.23 27.48±2.55 61.68±2.29 90.14±2.30 31.15±1.66 35.18±8.59 63.62±3.65

Transformer 18.43±3.55 25.85±1.00 63.38±1.69 90.39±3.27 31.99±2.70 23.82±5.16 65.50±4.32
DIRECTOR 23.06±4.69 25.61±2.30 61.32±3.21 88.23±3.89 28.72±1.87 17.18±3.75 59.91±2.20

KEP-1/5 19.44±1.94 25.21±1.53 63.65±3.19 87.35±2.43 30.33±1.48 19.67±4.82 61.97±2.25
DIRECTOR 22.10±5.49 24.91±1.80 62.23±2.98 91.55±3.19 17.50±7.52 9.34±4.50 49.92±5.80

KEP-2/5 20.38±5.22 24.39±2.05 63.60±1.71 90.75±2.62 26.04±7.51 17.94±9.12 57.77±8.04
DIRECTOR 20.11±2.48 23.23±2.36 63.62±0.91 89.81±1.37 15.67±5.90 7.64±1.45 48.23±5.01

KEP-5/5 21.14±3.48 24.06±2.27 63.33±1.36 90.46±2.20 23.27±6.61 14.25±10.66 55.12±7.78
DIRECTOR 20.20±5.46 21.97±1.72 65.12±1.63 90.17±3.89 17.49±5.93 8.61±1.99 48.55±3.67

Table 11: Ablation on loss weighting on CoLA when diffusion-based reconfiguring KEP-5/5 with
DIRECTOR. We report mean ± std across 5 seeds. The configuration (λmean, λChol, λNLL) =
(0.5, 0.2, 0.3) (gray) is chosen as it balances predictive performance (MCC) with uncertainty calibra-
tion. This setting is applied consistently for all diffusion-based reconfigured KEP (Chen et al., 2024c)
produced by DIRECTOR .

Method λmean λChol λNLL MCC ↑ ECE ↓ NLL ↓
Transformers – – – 29.92±1.17 26.44±1.90 19.66 ± 4.18

DIRECTOR

0.9 0.05 0.05 29.98±3.45 5.96±4.60 5.86±0.49
0.6 0.1 0.3 33.18±1.53 18.36±2.29 10.09±2.38
0.5 0.3 0.2 32.26±2.87 15.27±9.06 9.51±2.70
0.5 0.25 0.25 32.96±1.85 12.27±8.57 8.23±2.71
0.5 0.2 0.3 31.81±2.30 12.65±6.04 7.69±1.70
0.3 0.2 0.5 31.86±2.79 18.64±8.43 13.77±7.32
0.3 0.1 0.6 30.21±2.32 16.50±8.60 10.74±5.80
0.25 0.25 0.5 33.38±2.08 22.26±3.72 15.10±4.85
0.05 0.05 0.9 30.74±1.44 15.50±6.34 9.52±4.12

tially outperforms them in calibration metrics. When aligned with KEP-2/7, our best-performing
configuration of DIRECTOR achieves both competitive accuracy and slightly improved calibration
compared to other baselines. Additionally, DIRECTOR can be enhanced by integrating post-
training baselines such as MCD or aligning with attention-modified methods like SGPA to further
improve calibration. However, due to computational constraints, we leave these extensions for future
investigation.

Finally, Table 10 compares DIRECTOR against pre-trained models (Transformer and KEP) and other
baselines on the CoLA OOD dataset. DIRECTOR achieves the highest MCC score, outperforming
all baselines, and shows significant gains in both calibration and failure prediction metrics.

A.6.5 EFFECT OF VARYING LOSS WEIGHTS

We perform extensive ablation studies on the loss weight configurations to investigate their im-
pact on DIRECTOR’s performance on both the CoLA and CIFAR-10 datasets. Specifically, we
examine how varying the weights assigned to the mean matching term (λmean), the Cholesky-like
factor alignment (λChol), and the performance-aware loss (λNLL) affects both predictive accuracy
and uncertainty calibration. When applying diffusion-based reconfiguration with DIRECTOR to
KEP-5/5 on CoLA (see Table 11), we observe distinct trends: excessively high λmean, as in the
configuration (0.9, 0.05, 0.05), produces very strong calibration while maintaining decent predictive
performance. Conversely, assigning too much weight to λNLL, as in (0.05, 0.05, 0.9), prioritizes
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Table 12: Ablation on loss weighting on CIFAR-10 (single run) when reconfiguring ViT with
DIRECTOR. We report test accuracy (ACC), Expected Calibration Error (ECE), and Negative
Log-Likelihood (NLL). The configuration (λmean, λNLL) = (0.8, 0.2) (gray) is selected as it achieves
the best balance between accuracy and calibration, and is used for all diffusion-based reconfigured
ViT produced by DIRECTOR .

Method λmean λNLL ACC ↑ AURC ↓ AUROC ↑ FPR95 ↓ ECE ↓ NLL ↓ Brier ↓
ViT – – 84.22 3.90 86.62 65.34 12.39 10.67 27.52

DIRECTOR

0.0 1.0 84.03 4.01 85.97 67.81 12.12 9.69 27.49
0.1 0.9 85.24 3.26 87.54 62.87 10.97 8.51 24.99
0.2 0.8 85.67 3.03 88.16 61.83 10.52 7.75 24.11
0.3 0.7 86.08 3.06 87.57 59.91 10.24 7.86 23.44
0.4 0.6 86.05 2.91 88.51 62.22 10.25 7.61 23.45
0.5 0.5 86.18 2.86 88.21 63.89 9.97 7.41 23.45
0.6 0.4 86.60 2.83 87.81 64.93 9.50 6.98 22.58
0.7 0.3 86.66 2.73 88.39 61.02 9.18 6.74 22.05
0.8 0.2 87.16 2.52 88.92 57.94 8.54 6.06 20.99
0.9 0.1 85.09 3.54 86.73 64.19 10.15 7.37 24.79

accuracy at the expense of calibration, leading to more confident yet less well-calibrated predictions.
Intermediate configurations, such as (0.5, 0.2, 0.3), provide a balanced trade-off, achieving high
predictive performance while significantly improving calibration. Based on these insights, we adopt
(0.5, 0.2, 0.3) consistently for all diffusion-based reconfigured KEP produced by DIRECTOR, as it
offers the most reliable combination of accuracy and calibrated uncertainty.

We also study the effect of varying the weights for the mean matching term (λmean) and the
performance-aware loss (λNLL) while setting λChol = 0 during diffusion-based reconfiguring ViT
with DIRECTOR on CIFAR-10 (Table 12). When λmean is excluded (e.g., (0.0, 1.0)), the NLL
term dominates, which may slightly improve calibration but leads to reduced predictive performance.
In contrast, including both mean matching (λmean ̸= 0) and performance-aware loss consistently
enhances accuracy and uncertainty calibration. Notably, the configuration (0.8, 0.2) achieves the best
overall balance, with the highest accuracy (87.16) and lowest ECE (8.54). Consequently, we adopt
(0.8, 0.2) for all diffusion-based reconfigured ViT produced by DIRECTOR.
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