
Structural Learning of Probabilistic Sentential Decision Diagrams
under Partial Closed-World Assumption

Alessandro Antonucci1 Alessandro Facchini*1 Lilith Mattei1

1Istituto Dalle Molle di Studi per l’Intelligenza Artificiale (IDSIA), Lugano, Switzerland

Abstract

Probabilistic sentential decision diagrams are a
class of structured-decomposable probabilistic cir-
cuits especially designed to embed logical con-
straints. To adapt the classical LEARNSPN scheme
to learn the structure of these models, we propose
a new scheme based on a partial closed-world as-
sumption: data implicitly provide the logical base
of the circuit. Sum nodes are thus learned by re-
cursively clustering batches in the initial data base,
while the partitioning of the variables obeys a given
input vtree. Preliminary experiments show that the
proposed approach might properly fit training data,
and generalize well to test data, provided that these
remain consistent with the underlying logical base,
that is a relaxation of the training data base.

1 INTRODUCTION

Probabilistic Circuits (PCs) have been recently introduced
as a general computational framework unifying the differ-
ent existing formalisms for tractable probabilistic modeling
[Choi et al., 2020].

Learning the structure of a PC from data is emerging as a
crucial challenge for a widespread application of PCs in the
area of machine learning. Different algorithms have been
(e.g., Lowd and Domingos [2012]) and still are (e.g., Peharz
et al. [2020]) designed to improve the state of the art in this
field. Most of these algorithms are somehow inspired by
the LEARNSPN scheme of Gens and Domingos [2013], the
first algorithm for the structural learning of general PCs,
originally designed for sum-product networks [Poon and
Domingos, 2011], the most popoular class of PCs.

In this position paper, we focus on the problem of learn-
ing from data, without other prior domain knowledge, the

*Supported by the Hasler foundation grant n. 20061.

structure of a particular class of PCs, called Probabilistic
Sentential Decision Diagrams (PSDDs, Kisa et al. [2014].
Roughly speaking, a PSDD is a weighted logical circuit
inducing a probability distribution assigning non-zero prob-
ability only to states consistent with the Boolean formula
encoded by the circuit.

As a matter of fact there are only two main algorithms to
learn the structure of a PSDD: LEARNPSDD [Liang et al.,
2017] and STRUDEL [Dang et al., 2020]. Despite their dif-
ferences, both these algorithms start from a circuit subject
to local transformations. These local actions are designed
to preserve the underlying logical base of the circuit, which
should therefore be specified when the initial circuit is given,
meaning that both algorithms may assume some prior do-
main knowledge modelled by the input circuit.

The LEARNSPN architecture is different: the algorithm
learns a circuit from an input database by growing it from the
root, rather than performing local operations on an initial cir-
cuit. LEARNSPN takes as input a database and recursively
divides it into sub-databases by finding almost independent
subsets of variables and clustering similar instances.

Two structural properties of PSDDs prevent a straight-
forward application of LEARNSPN. First, PSDDs are
structured-decomposable, this roughly meaning that the
splitting of the variables into independent sets must agree
to some constraint. Second, a PSDD encodes a Boolean
formula representing a knowledge base (KB); thus it is de-
sirable to steer the operations of LEARNSPN so that the
obtained KB represents the input database. Here we address
such situation by making LEARNSPN able to learn a PSDD
encoding a KB describing the data.

Of course there is no unique way to agree on what “de-
scribing the data” means. In database theory, a traditional
assumption, called closed-world assumption (CWA), states
that a database reflects with fidelity the concerned state of
affairs, that it is complete [Reiter, 1981]. Stated otherwise, a
fact that is true in the world is stored in the database, whereas
a fact that is missing in the database just does not hold in the

Accepted for the 4th Workshop on Tractable Probabilistic Modeling (TPM 2021).

mailto:<alessandro@idsia.ch
mailto:<alessandro.facchini@idsia.ch
mailto:<lilith@idsia.ch


world. This assumption is usually followed in ILP (Inductive
Logic Programming), a branch of Machine Learning whose
objective is to induce a set hypothesis represented as logic
programs (rules). The opposite of the closed-world assump-
tion is the open-world assumption [Reiter, 1981, Imieliński
and Lipski Jr, 1989]. Commonly employed in the area of
description logic [Baader et al., 2003], this simply states
that some facts holding in the real world may be missing,
and thus does not presume that the knowledge of a domain
is complete.

However, in many cases, it may be desirable to have an
intermediate perspective: some parts of the observed data
may be complete, and some others may be incomplete. First
treated by Motro [1989], this view has later been instanti-
ated in various forms under various names (local closed-
world assumption, partial closed-world assumption, partial
completeness, and others; see, e.g., Galárraga et al. [2013],
Darari et al. [2013], Dong et al. [2014])

In this work we follow a similar intermediate perspective.
More precisely, we extract a KB from a database D by
recursively applying an instance of a partial closed-world
assumption (PCWA). That is, each step of the procedure
extracts a sub-database D′ and a subsetX ′ of variables for
which D′ is assumed to reflect completely the concerned
possible states of affairs (given the constraints provided by
the previous step). This idea is made precise in Section 3.

The paper is organised as follows. In Section 2 we provide
the necessary background about PSDDs. Our contribution
is in Section 3, where we present a PCWA based structural
learning algorithm for PSDDs inspired by the LEARNSPN
schema. In Section 4 we run preliminary experiments. Con-
clusions and outlooks are in Section 5.

2 BACKGROUND

2.1 BASICS

We focus on a set of Boolean variablesX := (X1, . . . , Xn).
Let D denote a database of joint states of X , to be also
called records and denoted as x = (x1, . . . , xn). The data-
base obtained by taking only the columns of D relative to
variables inX ′ ⊆X is denoted as DX′

. When coping with
a single variable X ∈X , with a small abuse of notation, we
intend as DX=1 the (sub)set of true instances of DX , and
we analogously intend DX=0. Notation |D| is used instead
to denote the number of records in D. If the records are
indexed by the integers {1, . . . ,m}, with m := |D|, we de-
note as DJ the database obtained by taking only the records
indexed by the elements of J , with J ⊆ {1, . . . ,m}. Let
xj = xj1, . . . , x

j
n denote the j-th record of D. According

to CWA, we assume the database D = {x1, . . . ,xm} com-
plete, this meaning that it completely describes the possible
state of (the concerned aspects of) the world. Hence, D

induces a Disjunctive Normal Form (DNF)

φ(D) :=

m∨
j=1

n∧
i=1

Lj
i , (1)

whose conjunctive clauses are the ones describing the re-
cords belonging to D. That is, for each record xj :=
(xj1, . . . , x

j
n) ∈ D, the corresponding conjunctive clause

under the CWA coincides with Lj
1 ∧ · · · ∧ Lj

n where, for
i ≤ n

Lj
i =

{
Xi when xji = 1 ,

¬Xi otherwise.
(2)

2.2 PSDDS

Inspired by Choi et al. [2020], in this section we intro-
duce PSDDs as a class of PCs that, in addition to spe-
cific structural properties (e.g., determinism and structured-
decomposability), encode Boolean formulae.

2.2.1 Probabilistic Circuits

A PC C overX is a rooted DAG G annotated by parameters
θ in order to represent a joint probability mass function
P(X). Formally, each leaf (terminal node) g of G is called
an input unit and it is associated with a variableXg ∈X and
a (possibly degenerate) probability mass function dg(Xg).
Non-leaves nodes can be sum units and product units. Para-
meters are associated with both input units and sum units. In
case of a sum unit, these can be seen as the probabilities of
a mass function weighting its outgoing arcs, while for input
units a mass function π is directly provided. In practice, if
ch(g) are the children of a node g (also called its inputs)
and Xg the set of variables associated to the input units
reachable from g, and called its scope, the corresponding
probability mass function Pg(Xg) is defined as follows:

Pg(xg) :=


πg(xg) if g is an input unit,∏

`∈ch(g) P`(x`) if g is a product unit,∑
`∈ch(g) θ`,gP`(x`) if g is a sum unit.

As we focus here on Boolean variables, we can identify
input units with literals or logical constants, sum units with
disjunctions, and product units with conjunctions. Graph
G can be consequently seen as a logical circuit encoding a
Boolean formula. Both logical and probabilistic elements
are considered by the PSDD definition provided in the next
section.

2.2.2 Defining PSDDs

PSDDs have been originally presented as a probabilistic ex-
tension of a class of logical circuits called sentential decision



diagrams [Darwiche, 2011]. The extension is obtained by re-
specting the formula in the underlying circuit. Thus, unlike
PCs, the position of the variables in a PSDD is constrained
by a meta-structure called vtree.

A vtree over X is just a full binary tree whose leaves are
in one-to-one correspondence with the variables inX (see,
e.g., Figure 1). We intend vtrees as recursive objects and
denote them with their root node. In practice, each node u of
vtree v is a(sub-)vtree. Notation v is used for the variables
of v. Moreover, we denote as vl and vr the sub-vtrees of v
rooted at its left and right children.

3

1

X1 X2

5

X3 X4

(a)

3

1

X1 5

X2 X3

X4

(b)

Figure 1: Two vtrees overX = {X1, X2, X3, X4}.

Using PCs terminology, we can define a PSDD associated to
a vtree v by the properties of its structure and its parameters.

PSDD Structure. PSDD graph G is defined as follows.

• Input units are associated with the leaves of vtree v,
i.e., have scope {X} for some X ∈ v. They can be
literals (X or ¬X) or the logical constant > (true).

• A product unit n has two inputs. Notation n = (p, s)
is used, p is called its prime and s its sub.

• A sum unit n is associated with an internal node u of v,
its inputs are product units and are called its elements.
The notation n := {(pi, si)}ki=1 is used. Its primes and
subs are either sum or input units. The scope of n and
of its elements is u. The scope of the primes is ul and
the scope of the subs is ur.

• The root is a sum unit.

PSDD Parameters. Parameters θ are defined as follows.

• Each input unit > associated with variable X is annot-
ated with a weight θ ∈]0, 1[.

• Each sum unit {(pi, si)}ki=1 is annotated with non-
negative weights θ1, . . . , θk such that Σk

i=1 θi = 1.

PSDD Logical Base Each PSDD node n encodes a
Boolean formula 〈n〉 called its (logical) base and defined
recursively as follows.

• For input units: 〈X〉 := X , 〈¬X〉 := ¬X , and 〈>〉 :=
>

1

5

1

5

1

5

3

¬X1

¬X2

X3

X4

¬X3

¬X4

X1

¬X2

¬X1

X2

¬X3

X4

X3

X4 : 1
4

X1

X2

X3

¬X4

¬X3

X4

1

3
10

7
10

2
14

12
14

2
14

12
14

1

4
6

2
6

10
30

14
30

6
30

Figure 2: A PSDD over four variables trained from the
database in Table 1. Its vtree is in Figure 1a.

• If n = (p, s) is a product unit, 〈n〉 := 〈p〉 ∧ 〈s〉

• If n is a sum unit, n = {ni}ki=1, 〈n〉 :=
∨k

i=1〈ni〉.

In fact, product units represent AND gates and sum units
represent OR gates. The primes of a sum unit are defined as
exclusive, i.e., 〈pi〉 ∧ 〈pj〉 ≡ ⊥ for i 6= j.

Induced Probability Mass Function. Each unit n in-
duces a probability mass function Pn over the variables of
its scope.

• If n is an input unit with scope {X}, Pn is a univari-
ate mass function: P>(X) := (θ, 1 − θ); PX(X) :=
(1, 0); and P¬X(X) := (0, 1).

• Otherwise, let (X,Y ) be the scope of n, whereX are
its left variables and Y its right ones.

– If n = (p, s) is a product unit,

Pn(x,y) := Pp(x)Ps(y) . (3)

– If n = {ni}ki=1 is a sum unit,

Pn(x,y) := θiPni(x,y) , (4)

for the unique 1 ≤ i ≤ k such that x |= 〈pi〉.
Moreover, each input of a sum unit assigns non-
zero probability to at least one world.1

1This means that, unlike in the original definition, and as done
in [Liang et al., 2017], we do not consider elements encoding the
false, aka dead branches.



Let us note that the exclusivity of the primes makes PSDDs a
special class of deterministic PCs. Indeed, for each decision
node n = {(pi, si)}ki=1 and for each world (xy), there is
at most one prime pi such that Ppi

(x) > 0. Moreover, the
induced probability mass function of a PSDD factorizes
through its variables by following its vtree. This makes
PSDDs structured-decomposable PCs.

As a demonstrative example, Figure 2 depicts a PSDD over
four variables consistent with the vtree in Figure 1.a and
whose parameters have been trained from the database in
Table 1 as done in [Kisa et al., 2014]. Labels on the decision
nodes denote the vtree nodes for which the sub-PSDD is
associated.

# X1 X2 X3 X4

3 0 0 1 1
7 0 0 0 0
2 1 0 0 1
3 0 1 1 1
9 0 1 1 0
2 1 1 0 1
4 1 1 1 0
0 1 0 1 1
0 1 0 1 0
0 0 1 0 1

Table 1: A database for the joint states of four Boolean
variables. The last three records are unobserved.

2.3 LEARNSPN

To conclude the review of the background material, let us
consider the pseudo-code in Algorithm 1 where an adapt-
ation of the classical LEARNSPN scheme for the learning
of PCs from a database is depicted [Gens and Domingos,
2013]. This is a recursive procedure, where the database
subject to horizontal (line 4) and vertical (line 6) splits. By
horizontal split we intend a partition in clusters of similar
records based on a clustering algorithm generically denoted
as CLUSTER and returning the index sets of the different
clusters. A vertical split is intended instead a partition of
the variables in the database achieved by some independ-
ence test and denoted as PARTITION. When single columns
are found (line 1), univariate mass functions are directly
obtained from the data. The recursion is achieved by ex-
pressing the output mass function as a weighted sum of the
mass functions associated to the different clusters (sums
in line 8) and expressing them as a product of the mass
functions associated with the different groups of variables
(products in line 8).

Algorithm 1 LEARNSPN(D,X) (adaptated from Gens and
Domingos [2013])
Return a PC given database D overX

1: if |X| = 1 then
2: return π(X)← D
3: else
4: {Ji}ki=1 ← CLUSTER(DX)
5: for i← 1, . . . , k do
6: {Xj

i }
mi
j=1 ← PARTITION(X,DJi)

7: end for
8: return

∑k
i=1

|DJi
|

|D|
∏mi

j=1 LEARNSPN(DXi
j

Ji
,Xi

j)

9: end if

3 LEARNING PSDDS UNDER PCWA

The goal of this section is to show how the LEARNSPN
scheme as sketched in Section 2.3 can be modified in or-
der to force the output of Algorithm 1 to be a valid PSDD.
Remarkably, this will be shown to correspond to a PCWA ap-
proach. Similarly to LEARNSPN, we might obtain a PSDD
by recursively perform horizontal and vertical splits of D.
Yet, unlike LEARNSPN, the horizontal splits should be
driven by the vtree, which we assume here available as an
input.

Algorithm 2 SLOPP(D, v)
Return a PSDD given database D and vtree v and overX

1: if |v| = 1 then
2: X ← unique variable in v
3: if |DX=1| = |D| then
4: return X
5: else if |DX=0| = |D| then
6: return ¬X
7: else
8: return (>, |D

X=1|
|D| )

9: end if
10: else
11: {Ji}ki=1 ← CLUSTER(Dvl

)
12: for i = 1, . . . , k do
13: pi ← SLOPP(Dvl

Ji
, vl)

14: si ← SLOPP(Dvr

Ji
, vr)

15: end for
16: return {(pi, si,

|DJi
|

|D| )}ki=1

17: end if

We call our procedure SLOPP (structural learning of PSDDs
under PCWA). Algorithm 2 depicts the SLOPP workflow.
This is a recursive procedure, that starts growing the circuit
from the top. A clustering algorithm (line 11) is executed
on the columns of the database corresponding to the left
variables of the vtree. The clusters obtained in this way
are used to generate the primes (line 13), while the subs
are made of the records for the right variables induced by



the same clusters (line 14). The probabilities assigned to
these product units are proportional to the cardinality of the
corresponding clusters (line 16). When we finally obtain
databases over single variables (lines 2-8) univariate mass
functions or simple literals are specified depending on the
frequencies of the two Boolean states in the column. The
only parameters of the algorithm are the number of clusters
to be returned (or the criteria to select this number) and the
minimum amount of records required to run the clustering
algorithm. If the number of records is smaller than this
threshold, a single cluster with all the records is returned.

As discussed in Section 2, given a database D, CWA al-
lows to describe the possible states of the affairs induced
by the database as a DNF φ(D). The PSDD we learn rep-
resents a relaxation of φ(D), i.e, φ(D) logically implies the
formula encoded by the learned PSDD. This is formalised
by the following result, whose derivation is detailed in the
appendix.

Proposition 1 Algorithm 2 returns a valid PSDD repres-
enting a relaxation of the formula induced by the input
database, i.e., φ(D) logically implies 〈SLOPP(D, v)〉.

The aforementioned relaxation happens because SLOPP
applies a PCWA at each recursive call, as we shall explain
with a simple example. Consider Table 1 and vtree v in
Figure 1a whose left variables are vl = {X1, X2} and
whose right variables are vr = {X3, X4}. The horizontal
lines in that table separate the output of a clustering of
the records in Dvl

, these inducing the primes of the root
node, whose corresponding partition Dvr

induces its subs.
For instance, the second element is induced by the records
corresponding to the third, fourth and fifth line in Table 1.
In particular prime p2 is induced by the sub-table described
by the third, fourth and fifth lines restricted to the first two
columns (associated to X1 and X2), whereas the restriction
of those three lines to the last two columns (associated toX3

and X4) induces the corresponding sub s2. By combining
the records of these two sub-tables, we see that three new
virtual records, [1, 0, 1, 1], [1, 0, 1, 0] and [0, 1, 0, 1] arise.
Those three virtual records have zero counts, as showed
at the bottom of Table 1. This notwithstanding, they are
considered to be possible by the PSDD returned by SLOPP.
Indeed, this PSDD, depicted in Figure 2, induces a mass
function that assigns non-zero probability exactly to all
the instances appearing in D, included the virtual records.
Stated otherwise, these records coincide with the joint states
satisfying the Boolean formula encoded by the PSDD that
is returned by SLOPP when applied to Table 1.

4 PRELIMINARY EXPERIMENTS

A first implementation of Algorithm 2 has been achieved
within the Juice2 (Julia) library for PCs [Dang et al., 2021].
The code, freely available as a simple Julia notebook,3 is
highly experimental and not optimized for fast perform-
ance. For this reason, in this position paper, we discuss the
results of a very preliminary validation based only on two
small databases as available in Juice and whose features
are detailed in Table 2. A deeper analysis based on a larger
benchmark is a necessary future work.

Name |Dtrain| |Dtest| |X|
Nltcs 16181 3236 16
Plants 17412 3482 69

Table 2: Characteristics of the benchmark databases.

Given a complete database of Boolean variables, SLOPP
needs a vtree over those variables. Here we adopt the state-
of-the-art techniques proposed by Dang et al. [2021] and
based on Chow-Liu trees as included in the (Juice imple-
mentation of the) STRUDEL algorithm. The PSDD returned
by this algorithm is used to evaluate the performance of our
method, together with a fully-factorised model intended to
provide a trivial baseline level.

To cluster records we use the k-means algorithm. Here we
set the number of clusters k constant (and equal to two and
three), while a threshold on the database size d to create
multiple clusters is also specified (and if this is not the case
a single cluster with all the data is used).

As a consequence of Proposition 1, the PSDD returned by
SLOPP might be consistent even with records not present in
the training set. Yet, it might be possible that testing records
not available in the training set would be inconsistent with
the PSDD. We discard those records from the test database
and we denote as γ their number. This clearly gives an unfair
advantage to SLOPP if compared with STRUDEL or with
the fully-factorised model, as both these PSDDs encode the
tautology (i.e., no KB). Yet, for such a preliminary study, we
are interested in evaluating the strength of such advantage
in terms of performance or its relevance as shown by γ.
Tables 3 and 4 depict the test log-likelihood on the consistent
records for different values of the parameters.

As a positive remark we notice comparable performance
levels between SLOPP and STRUDEL and a relatively low
number of inconsistent test records. The most critical point
seems to be the huge size of the PSDDs returned by SLOPP:
for Plants there are more than an order of magnitude lar-
ger than the ones produced by STRUDEL. This is probably
related to the fact that the current implementation of our

2github.com/Juice-jl.
3github.com/IDSIA-papers/2021-TPM.

https://github.com/Juice-jl
https://github.com/IDSIA-papers/2021-TPM


C k d γ LLC |C|
FULLY FACT. - - - -35’844 79
STRUDEL - - - -20’054 786
SLOPP 2 20 4 -22’148 1’229
SLOPP 2 50 7 -23’441 1’232
SLOPP 3 20 23 -19’744 2’258
SLOPP 3 50 15 -20’176 2’033

Table 3: Test log-likelihood with Nltcs for SLOPP, STRU-
DEL and fully factorised models. Different experiments with
different number of clusters k and threshold on the minimum
cluster size d are reported. Parameter γ is the number of
inconsistent test instances, while |C| is the number of nodes
of the circuit C obtained with the different approaches.

C k d γ LLC |C|
FULLY FACT. - - - -133’389 344
STRUDEL - - - -38’266 2’503
SLOPP 2 20 582 -40’442 71’602
SLOPP 2 50 594 -39’354 69’529
SLOPP 3 20 713 -48’329 103’742
SLOPP 3 50 793 -36’003 95’889

Table 4: Test log-likelihood with Plants. The same setup as
in Table 3 is considered.

algorithm is only coping with singly-connected topologies,
thus creating unnecessarily large circuits. Forcing the cre-
ation of multiple connections in the circuit could lead to
smaller circuits.

5 CONCLUSIONS

A new structural learning algorithm for PSDDs has been
presented. The algorithm uses the input data as a knowledge
base to be relaxed by a PCWA approach. A very prelim-
inary validation suggests that the algorithm might lead to
reliable models to be used in frameworks where (some form
of) PCWA is a tenable hypothesis. Besides an extensive
experimental analysis, as a future work we intend to embed
the learning of the vtree within the SLOPP architecture in
order to better exploit the statistical information in the data
set. In order to keep under control the size of the circuit
returned by the algorithm, the dynamic generation of mul-
tiple connections when more elements involving the same
sub-circuit are present should be also considered. A relaxed
version of this idea might be used to obtain even smaller
models. An integration between SLOPP and LEARNPSDD
(e.g., achieved by using the output of the first algorithm as
an input for the second) might also be considered to train
better models. Finally, belief revision techniques could be
considered to solve the training-testing-set inconsistency
issue discussed in the experimental section.

PROOFS

Proof of Proposition 1 It is an easy exercise to verify that
the output of SLOPP is a valid PSDD.

To see that the formula encoded by SLOPP(D, v) is a re-
laxation of φ(D), we proceed by induction on the number
n of variables in D. If n = 1, v is a leaf and SLOPP(D, v)
is a trivial PSDD consisting in a single unit X , ¬X or
(>, |D

X=1|
|D| ). In each case the encoded formula is by defin-

ition φ(D). Assume that the statement holds for a number
of variables strictly smaller than a fixed n > 1. Then, for
a database D over n variables and associated vtree v, con-
sider SLOPP(D, v) = {(pi, si, θi)}ki=1. For 1 ≤ i ≤ k,
pi = SLOPP(Dvl

Ji
, vl) and si = SLOPP(Dvr

Ji
, vr), where

J1, . . . , Jk are the clusters obtained from Dvl

.

Moreover, 〈SLOPP(D, v)〉 =
∨k

i=1〈pi〉 ∧ 〈si〉, and by in-
duction hypothesis 〈pi〉 and 〈si〉 are relaxations of φ(Dvl

Ji
)

and φ(Dvr

Ji
), respectively.

This means that 〈pi〉 implies φ(Dvl

Ji
) and 〈si〉 implies

φ(Dvr

Ji
), and thus we get that 〈pi〉 ∧ 〈si〉 implies their con-

junction. We can immediately conclude that 〈SLoPP(D, v)〉
implies

∨k
i=1 φ(Dvl

Ji
) ∧ φ(Dvr

Ji
).

Now, for 1 ≤ i ≤ k, both φ(Dvl

Ji
) and φ(Dvr

Ji
) are DNFs

whose conjunctive clauses are induced by the rows of Dvl

Ji

and of Dvr

Ji
, respectively. By taking their conjunction we

combine their clauses and clearly get, among others, φ(xi),
the conjunctive clause induced by the ith record of D. This
yields the desired conclusion.

References

Franz Baader, Diego Calvanese, Deborah McGuinness,
Peter Patel-Schneider, Daniele Nardi, et al. The descrip-
tion logic handbook: Theory, implementation and applic-
ations. Cambridge University Press, 2003.

Yoo Jung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. Technical report, UCLA, 2020.
URL http://starai.cs.ucla.edu/papers/ProbCirc20.pdf.

Meihua Dang, Antonio Vergari, and Guy Broeck. Strudel:
Learning structured-decomposable probabilistic circuits.
In International Conference on Probabilistic Graphical
Models, pages 137–148. PMLR, 2020.

Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Ver-
gari, and Guy Van den Broeck. Juice: A Julia package
for logic and probabilistic circuits. In Proceedings of the
35th AAAI Conference on Artificial Intelligence (Demo
Track), Feb 2021.

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf


Fariz Darari, Werner Nutt, Giuseppe Pirro, and Simon
Razniewski. Completeness statements about RDF data
sources and their use for query answering. In Interna-
tional Semantic Web Conference, pages 66–83. Springer,
2013.

Adnan Darwiche. SDD: A new canonical representation
of propositional knowledge bases. In Twenty-Second
International Joint Conference on Artificial Intelligence,
2011.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua
Sun, and Wei Zhang. Knowledge vault: A web-scale ap-
proach to probabilistic knowledge fusion. In Proceedings
of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 601–610,
2014.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose,
and Fabian Suchanek. AMIE: association rule mining un-
der incomplete evidence in ontological knowledge bases.
In Proceedings of the 22nd international conference on
World Wide Web, pages 413–422, 2013.

Robert Gens and Pedro Domingos. Learning the Structure
of Sum-Product Networks. In International conference
on machine learning, 2013.

Tomasz Imieliński and Witold Lipski Jr. Incomplete in-
formation in relational databases. In Readings in Artifi-
cial Intelligence and Databases, pages 342–360. Elsevier,
1989.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan
Darwiche. Probabilistic sentential decision diagrams. In
Fourteenth International Conference on the Principles of
Knowledge Representation and Reasoning, 2014.

Yitao Liang, Jessa Bekker, and Guy Van den Broeck. Learn-
ing the Structure of Probabilistic Sentential Decision Dia-
grams. In UAI, 2017.

Daniel Lowd and Pedro Domingos. Learning arithmetic
circuits. arXiv preprint arXiv:1206.3271, 2012.

Amihai Motro. Integrity = validity + completeness. ACM
Transactions on Database Systems (TODS), 14(4):480–
502, 1989.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabil-
istic circuits. In International Conference on Machine
Learning, pages 7563–7574. PMLR, 2020.

Hoifung Poon and Pedro Domingos. Sum-Product Net-
works: A New Deep Architecture. In ICCV. IEEE, 2011.

Raymond Reiter. On closed world data bases. In Readings
in artificial intelligence, pages 119–140. Elsevier, 1981.


	Introduction
	Background
	Basics
	PSDDs
	Probabilistic Circuits
	Defining PSDDs

	LearnSPN

	Learning PSDDs under PCWA
	Preliminary Experiments
	Conclusions

