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Natural Weather-Style Black-Box Adversarial
Attacks Against Optical Aerial Detectors

Guijian Tang , Wen Yao , Tingsong Jiang, Weien Zhou , Yang Yang, and Donghua Wang

Abstract— Most existing adversarial attack methods against
detectors involve adding adversarial perturbations to benign
images to synthesize adversarial examples. However, directly
applying these methods, originally designed for natural image
detectors, to optical aerial image detectors can lead to perturba-
tions that appear unnatural and suspicious to human eyes, owing
to intrinsic dissimilarities between these two types of images.
Inspired by the fact that the captured optical aerial images are
heavily affected by weather conditions, this article proposes a
novel method for conducting adversarial attacks against optical
aerial detectors by leveraging natural weather-style perturba-
tions. Compared to existing methods, our scheme produces
more natural and stealthy adversarial examples. To enhance
the practicality of the proposed method in real-world scenarios,
we implement the attacks in black-box settings where only the
model’s predictions are accessible. Specifically, we formulate the
generation of adversarial weather perturbations in black-box as
an optimization problem and effectively solve it using the differ-
ential evolution (DE) algorithm. Through extensive experiments,
we verify the effectiveness of our method and investigate the
transferability of generated adversarial examples across different
models. In light of the significant generalization and effectiveness
of our method, we generate and release the first dataset with
adversarial weather-style perturbations based on the DOTA
dataset, which we abbreviate as DOTA-W. This dataset serves as a
valuable resource for evaluating and improving the robustness of
optical aerial detectors. The code and dataset have been released
at https://github.com/tang-agui/attADs-AWP.

Index Terms— Black-box adversarial attacks, natural weather-
style perturbations, optical aerial imagery detectors.

I. INTRODUCTION

DEEP neural networks (DNNs) have exhibited excep-
tional performance in solving visual problems in recent

years [1], [2], [3], [4]. However, the inherent vulnerability of
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Fig. 1. Comparison results with the state-of-the-art methods on the Plane
category. Although the target is successfully hided from the detector in
all cases, the perturbations generated by our method are more natural
and unsuspicious. Best viewed with zooming. (a) Ours. (b) RAP [13].
(c) DAG [14].

DNNs to adversarial examples has come to light. Adversarial
examples are intentionally crafted inputs intended to cause
well-trained DNNs to produce incorrect outputs without being
perceptible to humans. The existence of adversarial examples
was first disclosed by Szegedy et al. [5] in the context of
natural images against classifiers. Subsequently, various adver-
sarial attacks have been proposed, ranging from classifiers [6],
[7], [8], [9] to object detectors [10], [11], [12]. Regrettably,
the vulnerability to adversarial examples also manifests in the
domain of aerial detectors.

Most early works crafted adversarial examples by injecting
carefully elaborated perturbations into benign images. In order
to improve the imperceptibility and stealthiness of the gener-
ated adversarial examples, researchers have employed various
strategies. On the one hand, attackers often impose constraints
on the magnitude of the perturbations, such as the commonly
used L p, (p = 0, 1, 2,∞) constraints [13], [14], [15]. On the
other hand, efforts have been made to develop natural-looking
adversarial perturbations [10], [16], [17]. However, directly
applying these methods to evade optical detectors presents new
challenges. Unlike natural images captured from the ground,
optical aerial images generally display more monochromatic
color variations, rendering them visually less salient. As a
result, in order to achieve a satisfactory attack, the optimized
adversarial perturbations added to the images often become
conspicuous to human observers. A comparison of examples
highlighting this issue is depicted in Fig. 1.

In the real world, images captured by cameras are sig-
nificantly influenced by weather factors, such as snow, fog,
shadows, rain, etc. Different weather conditions can result
in substantial variations in the quality of processed images.
Consequently, researchers have conducted numerous stud-
ies to evaluate the performance of proposed methods under
different weather conditions, aiming to provide a more com-
prehensive assessment. For example, Eykholt et al. [10]
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conducted experiments in both indoor and outdoor environ-
ments to illustrate the effectiveness of their proposed method.
Zhao et al. [12] evaluated their methods separately under sunny
and cloudy days. Zhang et al. [18] elaborated a dataset to
evaluate the robustness of detection models in the physical
world. To cover, they also chose different weather condi-
tions to synthesize the dataset. The field of autonomous
driving has also witnessed related work in recent years. For
instance, [19] and [20] have incorporated diverse weather
conditions as critical factors for evaluating and benchmarking
the robustness of 3-D object detection in autonomous driving.
These observations raise two fundamental questions: Can these
naturally occurring weather factors be leveraged as adversarial
perturbations? Can we deceive detectors by optimizing these
factors?

Based on the aforementioned analysis, this article explores
the use of natural weather-style perturbations for adversarial
attacks. Specifically, we generate adversarial examples by
incorporating snow, fog, shadow, and sun flares into the benign
images. While there have been several works conducting
adversarial attacks by modeling rain factors, they are mostly
focused on attacking natural images captured from the ground.
For instance, Zhai et al. [21] have proposed an innovative
adversarial rain attack to simulate diverse rain conditions and
explore the potential threats to classifiers and detectors. How-
ever, it’s important to acknowledge that optical aerial images
differ significantly from natural images in terms of spectrum,
perspective, and orientation, and thus need to be considered
independently. Additionally, although rainfall is another preva-
lent weather phenomenon, it is not directly observable in the
optical aerial imagery. Instead, we observe them as puddles on
the ground, visually resembling sun flares. Therefore, rainfall
is not considered in this study. Considering that the noise
introduced by these weather factors appears natural to human
observers, we believe that the generated adversarial examples
are more deceptive and stealthy, minimizing the likelihood of
raising alarms.

Furthermore, adversarial attacks can be categorized as
white-box attacks [7], [11], [22], [23] and black-box
attacks [9], [24], [25] based on the level of knowledge pos-
sessed by the attackers. In white-box attacks, the adversaries
have complete access to internal information of the model,
including its weights, training parameters, etc. Conversely,
in black-box attacks, attackers can only acquire input–output
pairs from the target models. While white-box attacks
often yield higher attack success rates (ASRs), access to
model-specific information is typically restricted and unavail-
able in real-world scenarios. Therefore, conducting effective
attacks in black-box settings presents both practicality and
challenges.

The generation of adversarial examples in black-box settings
can be formulated as an optimization problem. The goal of this
article is to find optimal weather-style perturbations within
L p constraints to deceive optical aerial detectors and induce
incorrect predictions. To tackle this challenge, we employ
differential evolution (DE), a powerful population-based evo-
lutionary optimization technique [26], [27], to solve it. DE is a
gradient-free and problem-specific approach that solely relies

on the predicted outputs of the model, making it a suitable
tool for black-box attacks.

In summary, the main contributions of this article are as
follows.

1) We propose a novel adversarial attack method based
on natural weather-style perturbations. Compared with
the existing attack methods, the adversarial examples
generated by our proposed method are more natural and
stealthy.

2) We model the generation of adversarial weather pertur-
bations in black-box settings as an optimization problem
and utilize the DE algorithm to solve it effectively under
both constraints of L∞ and L2, respectively.

3) We conduct intensive experiments to verify the effec-
tiveness of our method and study the transferability
of generated adversarial examples between different
models. Additionally, we also analyze the performance
of generated adversarial examples under typical defense
mechanisms, and our experimental results demonstrate
the strong attack robustness of the proposed method.

4) Based on our proposed method, we generate and release
the first dataset for optical aerial detection, dubbed
DOTA-W. Acting as a potential benchmark dataset for
evaluating the improving robustness of optical aerial
detectors, DOTA-W was built upon the subset of
DOTA-v1.0 [28] validation set.

The rest of the article is organized as follows. The related
works are reviewed in Section II. In Section III, we overview
the framework of the proposed method and introduce the
details of loss functions designed for generating adversarial
patches against aerial detectors, followed by experimental
assessments in Section IV. Further discussions and conclusions
are summarized in Section V.

II. RELATED WORK

In this section, we provide an overview of related work on
white-box and black-box attacks.

A. White-Box Attacks

Previous studies have shown that adversarial examples gen-
erated by adding imperceptible adversarial perturbations to
clean images can cause DNNs to produce incorrect labels.
In white-box scenarios, Szegedy et al. [5] first introduced
adversarial examples against classifiers, and subsequent attack
methods such as FGSM [6], PGD [7], C&W [8], and
Deepfool [29] have been proposed. For object detectors,
Xie et al. [14] made their first effort and proposed dense
adversary generation (DAG), which simultaneously attacks
all targets by iteratively optimizing the loss function using
back-propagation. Li et al. [13] proposed Robust adversarial
perturbation (RAP) to attack deep proposal-based object detec-
tors. Similarly, Huang et al. [30] developed RPAttack to evade
both one-stage and two-stage detectors, employing a novel
pixel selection and refining scheme to remove inconsequential
perturbations gradually. Inspired by [30], Sun et al. [15] pro-
posed an improved technique that identifies the most critical
sub-regions and utilizes a novel objective function to avoid the
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Fig. 2. Overview of the proposed method. First, the population is initialized randomly according to the preset weather factors θ . Second, the offspring
population is generated through mutation, crossover, and selection operations. Third, after obtaining the adversarial weather perturbations, candidate adversarial
examples X∗ can be synthesized by adding these perturbations to the clean images X. Next, the candidates are fed into the target aerial detector, and we
extract the objectness score from the predictions to construct the fitness function. Finally, we repeat the evolution process until the stop criterion is satisfied.
More details refer to Algorithm 1.

problem of gradient inundation when directly applying [30] to
attack optical aerial detectors.

The aforementioned works primarily focus on conducting
pixel-level adversarial attacks. In recent years, adversarial
patches have been widely applied and deployed in the physical
world to targeted optical aerial object detectors [10], [31].
Lian et al. [32] investigated the feasibility of using adversarial
patches as a means of camouflaging objects in aerial imagery.
Lian et al. [33] and [34] introduced contextual background
attack (CBA), in which contextual background adversarial
patches are employed to protect ground objects from being
detected. Tang et al. [35] demonstrated that utilizing interme-
diate layer outputs of the target model rather than the final
output can enhance the attack efficiency against aerial detec-
tors. The approaches mentioned above are all performed in
white-box settings, where attackers can iteratively update the
perturbations using the model’s gradients. However, in real-
world scenarios, the knowledge of the target model is typically
private and inaccessible, leading to a growing interest in
black-box adversarial attacks.

B. Black-Box Attacks

Traditional gradient-based methods cannot be used in
black-box settings to generate adversarial examples due to the
unavailability of gradients from the target model. Black-box
attacks can be further categorized into two main categories:
transfer-based and query-based methods [36], [37]. Transfer-
based methods argue that the adversarial examples generated
against one model will likely deceive another similar model.
Researchers utilize the adversarial examples generated by

applying existing white-box attack schemes to evade target
models without querying them. Representative works in this
category include [37], [38], [39], and [40].

Query-based methods can be subdivided into two groups.
The first type involves estimating the gradients of the
target model through a series of queries. For example,
Chen et al. [41] proposed zeroth-order optimization (ZOO)
based methods to directly estimate the gradients of the target
model, while Ilyas et al. [42] used a natural evolution strategy
(NES) to approximate the gradients. Although these works
achieve comparable attack performance in most cases, the need
for a large number of queries brings a significant computa-
tional burden. The second type of query-based method refers
to population-based stochastic optimization techniques, where
attackers randomly search populations to generate adversarial
examples without using the gradients of the model [43],
making them suitable for black-box settings. Su et al. [26]
considered an extreme scenario where only one pixel can
be modified and utilized the DE algorithm to determine the
most important pixel that can fool the models. Ghosh et al.
[44] proposed the DEceit algorithm, which constructs effective
pixel-restricted perturbations using only black-box feedback
from the victim model. Additionally, Wei et al. [45] introduced
the adversarial attributes attack, successfully optimizing adver-
sarial examples using the DE algorithm. In this work, we focus
on utilizing the DE algorithm, a typical population-based
optimization technique, to generate adversarial examples.

Our work was partially inspired by [21] and [45].
Zhai et al. [21] designed a rain generator to synthesize rainy
images and presented an adversarial rain attack against image
classifiers and object detectors, respectively. Wei et al. [45]
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conducted a black-box attack on typical classifiers by manip-
ulating picture attributes, such as brightness, contrast, and
chroma. Compared to theirs, there are two main differences
between our work and theirs. First, we specifically focus
on conducting experiments on optical aerial images, while
their work focuses on natural images captured on the ground.
Second, we establish adversarial attacks based on existing
techniques without developing any new techniques, showing
the flexibility of our method.

III. METHODOLOGY

In this section, we first provide a formulation of adversarial
attacks against detectors. Subsequently, we report the natu-
ral weather-style adversarial perturbations, followed by the
description of the DE algorithm employed in this article.

A. Problem Formulation

Considering a benign image x0, the attacker dedicated
to optimizing a malicious perturbation E that is added to
the image to generate an adversarial example x′, which can
deceive a victim model into producing wrong predictions.
Technically, the generation of adversarial perturbations E in
this article can be formulated as

min ∥E∥p

s.t. O(x′) ̸= O(x) (1)

where x′ = x + E , O denotes the victim model, where
the attackers have no access to its internal information but
can obtain its predictions in this article. For object detec-
tion, the model predicts a set of bounding boxes O(x) =

{o1, o2, . . . , on} where oi = (bx
i , by

i , bw
i , bh

i , pobj
i , Pclass

i ),
including the predicted location (bx

i , by
i , bw

i , bh
i ) where (bx

i , by
i )

represent the coordinates of the box and (bw
i , bh

i ) is the
width and height of the box, an objectness score of pobj

i
being a real object, and a group of class probability vectors
Pclass

i = (p1, p2, . . . , pn) associated with the bounding box.
Equation (1) aims to find the minimum visual distortion,
constrained by L p norm, to mislead the detector, that is,
O(x′) ̸= O(x0).

B. Adversarial Weather Perturbations

Equation (1) is a general paradigm for conducting adver-
sarial attacks. Since the detector will predict the location,
class probabilities, and objectness score of all instances in
an image, (1) can be expressed in different forms depending
on the distinct purpose of attackers. Following the discussion
in [35], the goal of this article is to minimize the objectness
score of instances, aiming to realize an adversarial attack effect
where the detector cannot detect existing objects in the scene.
Therefore, (1) can be reformulated as

E∗ = arg min
E

Pobj(g(x, E)), s.t. ∥E∥p ≤ ϵ (2)

where Pobj
= (pobj

1 , pobj
2 , . . . , pobj

n ) denotes the objectness
score vector predicted for all instances in the image, g(x, E)

represents the perturbations operator. For cases of directly
adding perturbations to the image, g(x, E) = x + E , while
in our scenarios of synthesizing adversarial weather-style
perturbations, g(x, E) is an implicit function, details would
be outlined in Section IV-A4. Here, E = (θ1, θ2, . . . , θm)

are parameters to control the intensity of adversarial weather
perturbations, where θi represents the i th variable, and m
denotes the number of used weathers factors.

From (2), it is evident that the magnitude of perturbations
is constrained by the L p bound ∥ · ∥p. We consider both
p = 2 and p = ∞ to verify the effectiveness of our
method, respectively. Specifically, when p = ∞, ∥E∥∞ equals
|θi | ≤ ϵ, allowing independent evolution of each factor within
the range of [−ϵ, ϵ], and as for p = 2, ∥E∥2 = (θ2

1 +

θ2
2+, . . . ,+θ2

m))1/2
≤ ϵ, implying that optimization of one

factor must consider the influence of other factors. We delve
into the distinctions between these two constraint strategies
and provide a potential explanation in Section IV-B.

C. Differential Evolution

This section first gives an overview of the DE algorithm,
and then we introduce the fitness function designed for solving
the problem raised in this article.

1) Overview: DE is a widely used evolutionary algorithm
that employs random population selection iteratively to search
for optimal solutions. Since DE does not rely on gradi-
ent information from the model, it is commonly applied
to solve various black-box optimization problems. The DE
algorithm typically consists of population initialization, muta-
tion, crossover, and selection operations.

In our study on adversarial weather-style perturbations, the
population can be expressed as: Pt = {Pt (i)|θ L

i ≤ Pt (i) ≤
θU

i , 1 ≤ i ≤ N , 1 ≤ t ≤ T }, where N denotes the population
size and T is the maximum allowable evolutionary genera-
tions. Pt (i) is the i th individual in the t th step. Individuals
in every iteration are randomly sampled from the distribu-
tion within the ranges of (θ L

i , θU
i ). In our attack scenarios,

as our optimization variables consist of multiple numeric types
(float and integer), the boundaries of different variables are
inconsistent. More details can be found in Section IV-A4.
Subsequently, a mutation operator is employed to generate
candidate solutions by

PM(i) = Pt (r1)+ F(Pt (r2)− Pt (r3)), r1 ̸= r2 ̸= r3 ̸= i

(3)

where F is the scale parameter set by default to be 0.5 [46],
and r1, r2, r3 are randomly chosen from N without
replacement. Following mutation, we go through a crossover
operation to generate new offspring:

PC(i) =

{
PM(i), rand < Cr

Pt (i), otherwise
(4)

where Cr denotes the crossover probability. Finally, in the
selection stage, the DE retains the better individuals by com-
peting with the parent population Pt with the corresponding
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offspring population PC

Pt+1(i) =

{
Pt (i), f (Pt (i)) < f (PC(i))
PC(i), otherwise

(5)

where f represents the fitness function used to evaluate the
quality of per individual.

Although the DE algorithm is a very effective method for
solving black-box problems and has been successfully used to
generate adversarial examples, the existing techniques are all
targeted at classifiers. Because of the large gap between the
output of classifiers and detectors, the existing fitness function
designed for classifiers [9], [26], [44] cannot be directly
utilized for detectors. In Section III-C2, we will report a fitness
function elaborated for detectors, which can effectively solve
the optimization problem proposed in this article.

2) Fitness Function: The fitness function plays a crucial
role in the selection of individuals within the DE algorithm
and is closely tied to the optimization problem at hand.
As discussed in Sections III-A and III-B, the primary objective
of this article is to optimize an adversarial weather-style
perturbation solution that manipulates benign images in a way
that objects cannot be detected by detectors. To accomplish
this objective, the fitness function can be outlined as

min f = length
(
Pt (i)obj

− S0
)

(6)

where Pt (i)obj
= (pobj

1 , pobj
2 , . . . , pobj

n ) signifies the predicted
objectness score vector of the i th individual in the t th iteration
step, and S0 represents a predefined threshold. Through the
minimization of (6), the objectness score of the targets can be
effectively decreased below a specified threshold, ultimately
achieving a successful vanishing attack.

Based on the above analysis, this paper combines the dif-
ferential evolution algorithm to conduct black-box adversarial
attacks against aerial detectors based on weather factors.
The overview of the proposed method is illustrated in
Fig. 2, withdetailed implementation providedin Algorithm 1.
The algorithm takes inputs including the clean image x,
perturbation dimension m (total number of preset weather
factors), population size N , target detection algorithm D,
confidence threshold S0, and the early stopping monitor flag
= 0. Specifically, line 1 randomly initializes the population
P0 based on the N and m. Following this, lines 3–6 perform
mutation and crossover operations to generate new individuals
of PM and PC , along with the corresponding objectness score
vector extracted from the detector’s output. Subsequently,
individual selection is conducted according to (6), as outlined
in lines 7–16. During this selection process, the number of
targets L (as indicated in lines 12 and 15) that are still detected
by the detector is also recorded. If any element of L equals 0,
it signifies that all targets in the image have been successfully
attacked, signaling that the optimization should stop. In this
case, the flag is switched to 1, and we return the corresponding
index i .

IV. EXPERIMENTS

In this section, we first report the datasets, victim models,
evaluation metrics, and experiment implementation. Then, we

Algorithm 1 Pseudocode of Natural Weather-Style Black-Box
Attacks Using DE
Input: Detector D, Benign image x, perturbation dimensions
m, population size N , maximum evolutionary generations T ,
fitness function f , detection score Pobj

∈ RN×n , early stopping
monitor flag = 0.
Output: The index of the best individual.

1: P0 = I ni t (N , m), initialization
2: for t < T do
3: PM = Mutation(Pt , F), (3)
4: PC = Crossover(Pt , PM , Cr ), (4)
5: Pobj

t = D(x, Pt ), predicted objectness score of Pt

6: Pobj
C = D(x, PC), predicted objectness score of PC

7: for i < N do
8: St (i) = Pt (i)obj

− S0
9: SC(i) = PC(i)obj

− S0
10: if length(St (i)) < length(SC(i)) then
11: Pt+1(i) = Pt (i)
12: L(i) = length(St (i))
13: else
14: Pt+1(i) = PC(i)
15: L(i) = length(SC(i))
16: end if
17: if L(i) == 0 then
18: flag = 1, ← a successful attack
19: index = i
20: return index, f lag← return the index of the best

individual
21: end if
22: end for
23: t = t + 1
24: end for

TABLE I
DISTRIBUTION OF WEATHER FACTORS AND PARAMETER SETTINGS

validate the effectiveness of the proposed method on variant
detectors and categories, and conduct an ablation to evaluate
the impact of a single weather perturbation on the attack
performance. Next, we analyze the transferability of gener-
ated adversarial examples across different models. Finally,
we assess the robustness of the proposed method against
various defense mechanisms.

A. Experimental Setups

1) Datasets: Our experimental evaluation was conducted
using the DOTA-v1.0 dataset [28], which is a comprehensive
dataset consisting of 2806 images, and 15 common categories
captured from diverse sensors and platforms. The images
in DOTA are of the size in different ranges, to ensure
consistent evaluation, we divided all images into sub-images
of 608 × 608 [28]. Consequently, there are 39 905 images
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TABLE II
QUANTITATIVE EVALUATIONS AGAINST DIFFERENT MODELS FOR THE THREE GIVEN CATEGORIES

in the training set and 13 603 in the validation set. In our
experiments, we select the Plane, Ship, and Large-vehicle
categories as our target classes since they are highly important
in both civilian and military domains. For each category,
we randomly sampled 100 images from the validation for each
category to perform black-box attacks.

2) Victim Models: Four mainstream detectors are employed
in our experiments, including YOLOv3 [47], YOLOv4 [48],
Faster R-CNN [49], and RetinaNet [50]. The YOLOv3
and YOLOv4 are trained using the dataset collected in
Section IV-A1. The mean average precision (mAP) mea-
sured at the intersection over union (IoU) threshold of
0.50 are 58.5 and 64.34, respectively, which are on
par with the models trained on MS-COCO. For the
Faster R-CNN1 [51] and RetinaNet2 [52], we cloned
them from GitHub to conduct attacks. We only get the
model’s outputs without any modification to the model
itself.

3) Metrics: The average precision (AP) is our first metric
to evaluate the effectiveness of the proposed method, which
can be used to evaluate each object category separately.
In the context of attack scenarios, a lower AP indicates a
better attack. In addition, we adopt the attack success rate
[10] as a supplement, which is defined as the fraction of
instances that are not correctly predicted by detectors after the
attack. Intuitively, a more powerful attack will yield a higher
ASR.

4) Implementation Details: We use the Automold3 pack-
age, which is built on opencv,4 to implement the g(x, E)

of (2). To validate the effectiveness of our proposed method,
we select four commonly encountered weather factors: snow,
fog, shadow, and sun flare. The specific details of these
weather factors are provided in Table I. The [x1, y1, x2, y2]

of shadow represent the rectangular constraint of the shadow
area, and [x0, y0] of sun flare indicate the center coordi-
nates of the sun flare. For the case of L∞ norm in (2),
we independently perform the evolutionary selection process
for each weather factor. For the case of L2 norm setting,
we employ a two-step scheme because we need to consider
the numerical constraints between different factors. In the first
step, we sample the population independently for each factor.

1https://github.com/dingjiansw101/AerialDetection
2https://github.com/csuhan/s2anet
3https://github.com/UjjwalSaxena/Automold–Road-Augmentation-Library
4https://github.com/opencv/opencv

Subsequently, we conducted a reject-accept process where
only the samples satisfying the L2 bound were retained for the
next optimization. In this article, all experiments are conducted
on a NVIDIA RTX 3090 24GB GPU.

B. Quantitative Results and Analysis

This section first verifies the effectiveness of the proposed
method on different categories and victim models. The quan-
titative results are shown in Tables II, and some generated
adversarial examples are listed in Fig. 3. In the table, Random
refers to that we randomly sample individuals from each vari-
able range without any optimization, serving as a comparative
result. We can conclude from the results.

1) Our method achieves remarkable attack performance
across all cases, demonstrating its effectiveness and
generality.

2) Attacks under L∞ constraints generally outperform
those under L2 constraints when setting the same ϵ.
Revisiting the definitions of L∞ and L2 constraints
in Section III-B, we can observe that, compared to
the scenarios where individuals can be independently
searched under the L∞ constraint, there are mutual
constraints among individuals under the L2 constraint.
Consequently, the L∞ constraint provides a larger search
space, resulting in more efficient attacks.

3) The attack results against different detectors exhibit
inconsistent properties across these three categories.
For example, the ASR gap between attacking against
YOLOv3 and RetinaNt can reach 25.95% when target-
ing the Plane category, whereas there is no significant
difference in the other two categories.

In order to further illustrate the effectiveness of our
proposed method, we choose two classic methods, namely
RAP [13] and DAG [14], for comparison. For simplicity,
all experiments are only conducted against YOLOv3. The
results are shown in Table III, and some examples are illus-
trated in Fig. 1. From the perspective of ASR, our method
outperforms both RAP and DAG on both Plane and Large-
vehicle categories. Although its attack effectiveness is lower
than DAG on the Ship category, it still surpasses RAP. Par-
ticularly, our method achieves a significant improvement of
50.69% over DAG on the Plane category. From the perspective
of visualization, although all perturbations are concentrated
around the targets, those generated by RAP and DAG are more
pronounced compared to the weather-based perturbations we
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Fig. 3. (Top) Visualization of detection results for clean, (middle) randomly added weather noise and (bottom) corresponding adversarial examples. While
the added weather-style adversarial perturbations corrupt the images to some extent, they remain inconspicuous to humans due to their natural properties.

TABLE III
COMPARISON WITH THE STATE-OF-THE-ART ATTACK METHOD

TABLE IV
EVALUATION RESULTS VERSUS DIFFERENT WEATHER FACTORS AGAINST Plane CATEGORY

employ. Additionally, both RAP and DAG methods exhibit
significant clustering of perturbations, resulting in a less effec-
tive stealth effect. Furthermore, it is important to note that
RAP and DAG are executed in white-box settings, utilizing
model’s gradients to update adversarial perturbations. In con-
trast, our method operates in black-box settings, yet achieves
superior attack performance, highlighting the effectiveness and
advancement of our method.

C. Ablation Study
After jointly optimizing all weather factors to generate

adversarial perturbations in Section IV-B, this section focuses
on studying the impact of optimizing a single weather factor.
The quantitative results are presented in Tables IV–VI. The
tables show that while optimizing a single weather factor
can still generate adversarial perturbations, their effectiveness
varies significantly. Notably, the snow factor appears to be
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TABLE V
EVALUATION RESULTS VERSUS DIFFERENT WEATHER FACTORS AGAINST Ship CATEGORY

TABLE VI
EVALUATION RESULTS VERSUS DIFFERENT WEATHER FACTORS AGAINST Large-Vehicle CATEGORY

the most influential, while the shadow factor has the least
impact. This could be attributed to the fact that when opti-
mizing the snow factor, it perturbs the whole image, whereas
the generated shadows tend to be concentrated in localized
regions, thereby limiting its attack effectiveness. To fully
exploit the advantages of each weather factor and achieve the
best adversarial attack effect, it is recommended to optimize
all weather factors simultaneously when applying the method
outlined in this chapter.

D. Transfer Attacks

This section conducts transfer attacks across various models
to comprehensively evaluate the robustness of adversarial
examples crafted by our methods. Specifically, we employ
the adversarial examples crafted against the source mod-
els to attack the target models directly. The assessment
outcomes are illustrated in Fig. 4. In each subgraph, the
models on the left of each row represent the source model
used to generate adversarial samples, while the target mod-
els represented as transfer attacks are identified below each
column.

1) Fig. 4(a) reveals that for the Plane category, the
adversarial examples generated against YOLOv3 and
YOLOv4 have limited attack transferability on Faster
R-CNN and RetinaNet. Conversely, the adversarial
examples crafted against Faster R-CNN and Reti-
naNet demonstrate strong transferability to YOLOv3
and YOLOv4. This discrepancy may be attributed to
differences in the model architectures. Generally, Faster
R-CNN and RetinaNet possess more complex architec-
tures, which make the generated adversarial examples
more effective.

2) Fig. 4(b) and (c) indicate that the Ship and Large-vehicle
exhibit distinct characteristics compared to the Plane.
Notably, there is no noticeable difference in the trans-
ferability effects among models, as adversarial examples
generated based on source models can show superior
performance on target models. This observation can be
attributed to the fact that from an overhead perspective,

Fig. 4. Attack transferability across different models against variant
categories. (a) Plane. (b) Ship. (c) Large-vehicle.

ships and large vehicles often exhibit simple geometric
shapes (rectangles), making the targets themselves more
vulnerable to adversarial perturbations.
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Fig. 5. Attack performance before and after defenses. In these cases, the gap before and after attacks is the key metric for evaluating the robustness of
methods. The smaller the drop, the more robust the method.

3) In general, transfer attacks constitute another form
of black-box attacks (as illustrated in Section II-B).
In existing works targeting optical aerial detectors,
transfer attacks generally yield inferior performance
compared to white-box attacks [35], [53] (the value of
off-diagonal elements in tables will be much smaller
than that of diagonal elements). However, the proposed
method in this article is essentially a query-based black-
box attack technique. Since we do not heavily rely on
the internal information of the model, such as gradients,
the generated adversarial examples typically show better
universality and generalization.

E. Attack Performance Under Defense

In addition to examining the transferability of adversarial
examples across models, assessing whether the generated
adversarial samples remain effective under defense methods
is another important indicator for evaluating their adversar-
ial robustness. This section employs two common defense
methods, namely JPEG compression [54] and spatial smooth-
ing [55], to conduct experiments. The results are shown
in Fig. 5, where we specifically discuss the performance
of adversarial examples generated under both L∞ and
L2 constraints, as well as the adversarial examples crafted
by DAG. For simplicity, all experiments are conducted
against YOLOv3. From the results, we can conclude as
follows.

1) JPEG compression has no defensive effect on the adver-
sarial examples generated by our method. In fact, it even
improves the attack efficiency for the Ship category. This
can be attributed to the fact that our method goes beyond
the simple addition of adversarial noise, rendering JPEG
compression ineffective in compressing the adversarial

perturbations. Conversely, JPEG compression demon-
strates a notable effect on DAG.

2) Unlike JPEG compression, although spatial smooth-
ing demonstrates defensive effects against our method
and DAG, our approach exhibits greater robustness
compared to DAG in this context. Additionally, the
effectiveness of spatial smoothing varies across different
categories. For instance, the ASR reduction for the Plane
category can reach up to 26.37%, whereas for Ship and
Large-vehicle, the maximum drops are only 12.32% and
16.89%, respectively.

F. DOTA-W

Since our method is modeled on black-box settings, the
generated adversarial examples do not rely heavily on the
target models’ private information. Furthermore, the above
experiments have verified the effectiveness and generalization
of our method, enabling us to synthesize a universal dataset to
evade optical aerial detectors. A universal adversarial dataset is
of great significance for evaluating and improving the robust-
ness of detectors. Because the original images come from the
DOTA validation set, and the adversarial images are perturbed
by weather factors, we hence name the dataset DOTA-W.
To create DOTA-W, we randomly sample 1000 images from
the validation set, considering 13 606 images available (as
described in Section IV-A1). We would like to note that our
code has been made publicly available, and we encourage
researchers to generate additional adversarial samples based
on our code.

Our target model for crafting adversarial examples in
DOTA-W is YOLOv3, and the parameters used align
with the cases involving the L∞ constraint discussed in
Section IV-B. These parameters provide a worst case attack
scenario, hence more sufficient to evaluate the robustness of
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models. Researchers can refer to the GitHub repository at
https://github.com/tang-agui/attADs-AWP for more adversarial
examples generated using our method.

V. CONCLUSION

This article proposed a novel adversarial attack method
utilizing weather factors, resulting in more natural and stealthy
adversarial examples. Given the absence of internal model
information in real-world scenarios, this article formulated the
optimization problem of generating adversarial examples in
black-box settings. To address this challenge, we adopted the
DE algorithm to solve the optimization problem effectively.
We demonstrated the effectiveness of our proposed method
across various detectors and categories under both L∞ and
L2 constraints. Furthermore, we have shown the universality
and generalization of our approach through extensive transfer
attacks across different models and evaluated the robustness
of the generated adversarial examples against two commonly
used defense methods. However, this article has certain limita-
tions. First, while using weather factors to generate adversarial
perturbations yields excellent stealth effects, the perturbations
are applied globally, preventing us from controlling their spe-
cific locations. As a consequence, the generated perturbations
might not be physically realizable. Second, we introduced a
dataset for robustness evaluation in Section IV-F, but we have
not yet conducted corresponding model training based on this
dataset. Therefore, in future work, we intend to further enhance
our approach from these two branches.
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