PRE-TRAINING UNDER INFINITE COMPUTE

Anonymous authors
Paper under double-blind review

ABSTRACT

Since compute grows much faster than web text available for language model
pre-training, we ask how one should approach pre-training under fixed data and no
compute constraints. We first show that existing data-constrained approaches of
increasing epoch count and parameter count overfit, and we improve upon such
recipes by tuning regularization, finding that the optimal weight decay is 30 x larger
than standard practice. Since our regularized recipe monotonically decreases loss
following a power law in parameter count, we estimate its best possible performance
via the asymptote of its scaling law rather than the performance at a fixed compute
budget. We then identify that ensembling independently trained models achieves a
significantly lower loss asymptote than the regularized recipe. Our best intervention
combining epoching, regularization, parameter scaling, and ensemble scaling
achieves an asymptote at 200M tokens using 5.17x less data than our baseline, and
our data scaling laws predict that this improvement persists at higher token budgets.
We find that our data efficiency gains can be realized at smaller parameter counts
as we can distill an ensemble into a student model that is 8 x smaller and retains
83% of the ensembling benefit. Finally, our interventions designed for validation
loss generalize to downstream benchmarks, achieving a 9% improvement for pre-
training evals. Our results show that simple algorithmic improvements can enable
significantly more data-efficient pre-training in a compute-rich future.

1 INTRODUCTION

Language model pre-training has historically been studied under compute constraints at training
(Kaplan et al.}|2020; Hoffmann et al., 2022)) and inference (Brown et al., 2024; [Snell et al., [2024)
while assuming access to unlimited web text. However, web data grows by 1.03x per year, whereas
compute spent on pre-training grows by 4 x per year (Villalobos et al.,|[2024; Sevilla and Roldan,
2024). In anticipation of a regime where compute vastly exceeds data, we ask:

How should one approach pre-training under fixed data and no compute constraints?

To establish a baseline, we fix a seed training corpus of 200M tokens of web text and evaluate a
standard recipe following existing data-constrained approaches of repeating data (Muennighoff et al.,
2023) and increasing parameter count (Kaplan et al.l[2020) (Section[2). We find that either too many
epochs or too many parameters results in the loss eventually increasing due to overfitting. This
bounds the performance improvements we can get from tuning this recipe, even if we were willing to
spend more compute in exchange for a better model.

We instead get predictable monotone scaling in parameter count by considering a regularized recipe
(Section [3). Currently, regularization used in pre-training is often adopted from existing recipes,
defaulting to a weight decay of 0.1 from|Brown et al.|(2020). We find this amount to be inadequate for
preventing overfitting under data constraints as the optimal weight decay is 30x larger than standard
practice for our most over-parameterized models. After jointly tuning weight decay, learning rate, and
epoch count at each parameter count [V, loss closely follows a power law in N for parameter-to-token
ratios 140 x larger than Chinchilla, as shown in Figure[T}

Normally, we would compare two recipes by evaluating performance at different train or inference
compute budgets (Hoffmann et al., [2022} |Snell et al. 2024). However, this does not reflect our
interest in the best possible performance under fixed data and no compute constraints. Since the loss
of the regularized recipe continues to decrease as N increases, we are interested in the limit of the

Comparing scaling recipes with no compute constraints

381 .\’\'_/_4
L] I 1.00 x
\
3.7 N
\
\
N\
2 AN
2 3.6 ~
i S g
£ T 2
= 35 ~< =
< ~~a S
Z @ - ___ =
2 S L TR R R R e F209x &
8 341 — Standard recipe
_ __ Regularized recipe |
(Fit: 0.05/NA1.02 + 3.43)
3.3 . .
Ensembling recipe
(Fit: 0.25/KN1.02 + 3.34)
32 Joint scaling recipe
i asymptote (N, K —) L
150M 300M 600M 14B

Total parameter count

Figure 1: Comparing scaling recipes with no compute constraints. To simulate a data-constrained
future, we restrict models to 200M tokens. Standard recipes overfit with too many epochs or
parameters, even if we tune the epoch count at each parameter count N [2)] By correctly tuning
regularization for each IV, loss monotonically decreases following a power law in N. We predict the
best possible loss of the regularized recipe by the asymptote of its power law. [5)|Instead of scaling
N, we achieve a lower asymptote by ensembling K models of size 300M as K — oo.)] Composing
parameter and ensemble scaling improves the asymptote, and we estimate that the baseline would
need 5.17x more data to match its loss, even with infinite compute. These data efficiency wins hold
for larger token counts, distilled models, and downstream benchmarks (Sections E], @, .

loss as N — oco. More generally, we propose evaluating monotone scaling recipes by the asymptote
of their scaling law (e.g. 3.43 for the regularized recipe as seen in Figure[I)). By preferring recipes
with lower loss asymptotes, we can train better models at sufficiently high compute budgets.

Though taking the parameter count to infinity is one possible limit under infinite compute, we ask if
we can design recipes with even lower asymptotes. We consider an alternative ensembling recipe
where we average the logits of K independently trained models of the same size (Section[d). The
ensembling recipe achieves a lower asymptote as K — oo compared to the regularized recipe as
N — oo (Figure[I). At sufficiently high parameter counts, it is better to train multiple smaller models
instead of a single larger model. We further show that ensembling and parameter scaling compose,
achieving a lower asymptote when following the joint scaling recipe of taking both K, N — oc.

Since our previous experiments were on the scale of 200M tokens, we study how our recipes scale
across higher token counts and find that the asymptotes themselves follow a scaling law (Section [3).
Our estimates indicate that the joint scaling recipe achieves its 200M asymptote with 5.17x less data
than the standard recipe. Importantly, extrapolation of our data scaling laws indicates that the data
efficiency improvements will persist at higher token counts.

Though the asymptotes of our recipes benefit the most from large parameter counts, we find that
distillation (Hinton et al., 2015} |Kim and Rush, 2016) allows us to retain most of the loss improve-
ments without increasing inference parameter count. Distilling an 8-ensemble into a single 300M
model retains 83% of the ensembling loss improvement over the best regularized 300M model and
outperforms the asymptote of the regularized recipe. We also find that self-distilling a 300M teacher
into a student of the same size reduces loss, improving data efficiency without ever explicitly training
a model of higher parameter count.

Finally, we confirm that improvements on validation loss translate to improvements on downstream
benchmarks (Section [7). Ensembles with better validation loss perform better on downstream
benchmarks, with our best ensemble outperforming our best unregularized model by 9% on average
over PIQA, SciQ, and ARC Easy (standard benchmarks for models at our scale (Thrush et al.,|[2025)).

2 STANDARD PRE-TRAINING

Historically, pre-training has focused on training the best possible models subject to compute or
parameter constraints. Under train compute constraints, recipes like Chinchilla recommend jointly
scaling data and model size with 20x more tokens than parameters (Kaplan et al., [2020; |Hoffmann
et al,[2022). Under parameter constraints for cheaper inference, current practice opts for over-training
language models relative to Chinchilla with token counts 2000 larger than parameter counts or
distilling from preexisting larger models (Gadre et al.| 2024; |Grattafiori et al., 2024} Sardana et al.,
2025} Busbridge et al., [2025).

Prior works prescribe such scaling recipes by always training on fresh data. In this paper, we instead
study data-constrained pre-training, where we cannot jointly scale data and model size. We analyze
the purest form of the problem by lifting all other constraints (including compute) besides data. We
formalize standard pre-training as a training routine 4 that accepts arguments such as token count D,
parameter count N, epoch count E to produce a model M with loss £(M). Unspecified arguments
are passed through hyperparameter tuple H. Our data-constrained pre-training objective becomes
Ly =ming L (A (D, H)).

We construct a controlled pre-training environment with a limited amount of web data from DCLM (Li
et al., 20235)). Since our algorithms spend more compute than Chinchilla scaling at a fixed data budget,
we default to 200M tokens and test whether our findings hold across higher token counts in Section[5
For evaluation, we defer to loss on a held-out i.i.d. validation set which is shown to correlate with
downstream capabilities in Sectionﬂ]and prior work (Chen et al., 2025} |Thrush et al., [2025}; |Gadre
et al., 2024)). To best represent standard practice, we follow a standard auto-regressive recipe (full
details in Appendix [B).

2.1 EVALUATING EXISTING DATA-CONSTRAINED RECIPES

Since the amount of fresh data is limited, we build a standard recipe of increasing repetition
count (Muennighoff et al., |2023) and parameter count (Kaplan et al., |2020). Since there is un-
limited compute, we depart from compute-efficient practice by training models that are larger relative
to the token count, defaulting to 300M parameter models for 200M tokens.

We first increase the epoch count F at a fixed parameter count, taking £ X more training compute.
Figure [2| (left) shows for high F, overfitting occurs and loss increases. These findings contradict the
functional form of the decay-based scaling law in Muennighoff et al.|(2023)), which posits that loss
monotonically decreases in F. Their work acknowledges this discrepancy and removes most overfit
runs from their scaling law (see their Appendix D).

Since increasing epoch count arbitrarily hurts loss, we turn to increasing parameter count. To
establish a competitive baseline, we jointly tune epoch count and learning rate for each parameter

Increasing epoch count Increasing parameter count
504 5.0
484 4.8
4.6 4.6
2 44+ 244
424 424
4.04 4.0
384 T
1 2 4 8 16 32 64 128 lSéM 306M 606M 1.4B
Epochs Parameter count
Tuned H 1 8 128 Tuned H 150M 300M 600M 14B
Learning rate le-3 le-3 3e-3 Learning rate 3e-3 le-3 le-3 3e-4
Epoch count 8 8 4 4

Figure 2: Evaluating standard recipe of epoching and parameter scaling for 200M tokens. Left:
Though repeating the data lowers the loss, too many repetitions results in overfitting for 300M models.
Right: We try increasing parameter count, tuning the epoch count at each parameter count. We
similarly find that loss starts increasing. Moreover, increasing the parameter count 10x improves the
loss by less than 0.1.

count (Appendix [C.T)). We find minimal improvement in loss with higher model size, with our 1.4B
model performing worse than our 600M model. This is consistent with the single-pass findings
of |[Kaplan et al| (2020), Figure 9 which show that increasing parameter count eventually starts
increasing loss for fixed data. It is likely that both higher epoch and parameter count result in
overfitting the train set, detailed in Appendix [C.5]

3 REGULARIZED PARAMETER SCALING

We show that to get the best performance from these over-parameterized, epoched models, it is
critical to regularize pre-training with much higher weight decay than standard practice. To jointly
tune weight decay, learning rate, and epoch count, we perform an extensive search for “locally
optimal” hyperparameters using a coordinate descent algorithm inspired by Wen et al.|(2025) (details
in Appendix [C.T)). We find that over-parametrized models need much higher weight decay, over 30x
larger than the standard practice of 0.1 (Figure [3] right table).

With this tuning, loss follows monotone scaling in parameter count for models up to 140 x larger
than Chinchilla as shown in Figure[3] This agrees with theory for over-parameterized regression that
predicts that even when loss does not monotonically decrease due to double descent, the loss will
monotonically decrease when regularization is optimally tuned (Advani and Ganguli, [2016} Nakkiran
et al.| 2021} |Canatar et al., [2021; |Simon et al.,|2024). In Appendix @ we show how locally-optimal
tuning is critical to achieve monotone scaling.

To capture how increasing parameter count improves loss, we fit a power law with an asymptote as
Lp N = A‘;‘TE}) + Ep where we fit free variables Ap, ap, Ep. Our fit across four parameter counts
results in Logom, N = % + 3.4 The exponent of 1.02 for parameter scaling is high given that

Chinchilla finds a parameter scaling exponent of 0.34. This suggests that when we better leverage the
data, there is faster improvement from larger models.

Our monotone scaling law differs from compute-optimal prescriptions where increasing N can hurt
performance due to training on less data. We characterize our best possible performance unconstrained

by compute as limpy o0 L p,n~ e.g. the asymptote E'p. The asymptote for the regularized recipe law
predicts that the best possible model achieves loss 3.4Zﬂ

Regularized parameter scaling Tuned H 150M 300M 600M 14B
3851 Learning rate 3e-3 3e-3 le-3 le-3
3.80 4 Epoch count 16 16 8 8
Weight decay 0.8 1.6 32 32
3751 @
\\
N
01N, —— Figure 3: Power law scaling from jointly tuning
N ipoched recipe . . 3
4361 . _ Regularized recipe regularization. We compare the standard recipe
360 gk ECRAT o) in Figure[2] (red line) to our regularized recipe that
355 el jointly tunes learning rate, epoch count, and weight
soo] “\,\\ decay (purple linq). After reglilarization, the loss
~~~~~~~~ o decreases proportional to ~ 3. The power law
3451 . .
; predicts that as N — oo, the best model achieves

156M 306M éO(‘)M 14B
3.43 loss.

Parameter count

4 ENSEMBLE SCALING

The regularized recipe offers a straightforward way to improve performance by taking N — oo.
Can different training algorithms better leverage the data under infinite compute? In this section,
we consider ensembling (Dietterich, [2000): independently train K models and average their logits
for generation (Section[4.1). In Section 4.2} we show how ensembling can outperform parameter
scaling at fixed parameter counts and under the limit as total parameter count approaches infinity.

'For this power law and all following ones, the units of parameters and tokens will be in billions for cleaner
visualization and comparison. This only affects the numerator of the scaling law, not its asymptote or exponent.

*Because of run-to-run variance of the points forming the power law, we share a sensitivity analysis in
Appendix@ showing that the asymptotes vary by at most 0.02 loss across 3 seeds.



In Section[4.3] we construct our best recipe composing regularized parameter scaling and ensemble
scaling by taking the limit as both N, K’ — oo.

4.1 DEFINING ENSEMBLES

The ensembling pre-training algorithm & accepts a pre-training algorithm A, trains & members that
are identical up to random seed Z; controlling data order and model initialization, and returns a
model that averages the logits of the K members. See Appendix for a full formal definition.

The number of FLOPs needed to generate from or evaluate an ensemble is simply the sum of the costs
for all members. Since the number of FLOPs in a forward pass is approximately linear in parameter
count (Kaplan et al., 2020; [Hoffmann et al., [2022), we will consider an ensemble’s total parameter
count as N K when comparing it to standard pre-training.

Ensemble member scaling

751 @ - == Model scaling; (Fit: 0.05/NA1.02 + 3.43) Figure 4: Comparing scaling parameter count
i N S0OM ensembles (Fi023/KA1L02 £ 334 vs scaling ensemble member count. Instead of
365 {1, scaling the parameter count of a single model, we
3601 can train an ensemble of smaller models and scale
£ 55 the number of ensemble members (resulting in N K
3501 e total parameters for K ensemble members). Scaling
25 ] e up member count K can similarly be fit by a power
240 law with exponent approximately 1. Importantly,
. this law achieves a better asymptote than scaling V.
15(v1M SOKIJM GU(I)M 1 .:IB

Total parameter count

4.2 SCALING MEMBER COUNT INSTEAD OF PARAMETER COUNT

We compare the regularized and ensembling recipes under the best regularized hyperparameters from
Section[3] In Figure[d we find that the ensembling recipe’s excess loss decreases close to a rate of
%, similar to how the regularized recipe’s excess loss decreases at a rate close to % Under infinite
compute, the ensembling recipe’s (N = 300M, K — oo) asymptote is 3.34, which is lower than
the regularized recipe’s (N — oo, K = 1) asymptote of 3.43. Thus, for large NV, it is better to train
multiple small models instead of a single large model. In fact, even the K = 3 ensemble outperforms

the regularized recipe’s asymptote.

Why does ensembling improve over parameter scaling?|Allen-Zhu and Li| (2023)) shows that ensem-
bling helps when the data can be well-classified with one of many features but is best classified using
all such features. Under this “multi-view” structure, they find that a single model is only learns one
feature, whereas each ensemble member learns different features. E]

4.3 JOINT SCALING RECIPE COMPOSING PARAMETER AND ENSEMBLE SCALING

Although the ensembling recipe outperforms parameter scaling, we can compose both by taking the
number of members and the size of each member to infinity (N, K — o00). To estimate the best
possible loss of a joint scaling recipe, we take two limits:

Cp = lim lim mi D,N,K,H

Lp= lim lim minZ(Ea(D,N, K, H))
Aslong as ming £ (€4 (D, N, K, H)) monotonically decreases in N and K when fixing the other
variable, the value does not depend on the order of the limits. We choose this order as it results
in the most convenient hyperparameter tuning (Appendix [D.6). For the inner limit, we cannot
fully find locally optimal hyperparameters due to experimental constraints. Instead, we use the
heuristic of taking the optimal regularized hyperparameters with 2x epochs and 0.5x weight decay

(Appendix [D.4).

In Figure[5] we show how we take this double limit. Our final estimate for the joint scaling recipe’s
loss is 3.17, which is much better than the regularized and unregularized losses of 3.43 and the 3.75.

In Appendix we find optimally tuned ensembles match this intuition. Slightly overfitting each ensemble
member beats an ensemble using the best regularized hyperparameters.



Taking member count K — o, 200M tokens Taking parameter count N — o, 200M tokens

ETIE N 38 --- Standard recipe
S A == Regularized asymptote
37 . 37 ©®  209M tokens (Fit: 0.01/NA1.62 + 3.17)
e
36 Y 36
®---o
935 235{ @
2 4
3 3
34 34
337 === 150M params (Fit: 0.32/K*1.06 + 3.49) 33
300M params (Fit: 0.44/K"1.03 + 3.27)
32 600M params (Fit: 0.58/K"1.06 +3.21) 32
1.4B params (Fit: 0.52/K"1.06 + 3.17)
31 31
1 2 3 4 5 150M 300M 600M 14B

Ensemble member count K Parameter count N for « ensembles

Figure 5: Composing the regularized and ensembling recipes under the double limit. Left: For
each N, we fit a power law on the loss as K increases. We select hyperparameters for low asymptotes
instead of loss at small K. Right: We take the asymptotes from the left plot and fit a power law to
capture how the asymptote changes for bigger ensemble members. This law’s asymptote estimates
the best possible loss under the joint scaling recipe.

5 SCALING THE SEED TOKEN COUNT UNDER INFINITE COMPUTE

Do our loss improvements at 200M tokens generalize to larger scales? In Sections[5.1]and [5.2] we
first measure the best possible loss of our recipes at higher token counts up to 1.6B tokens. We
contextualize the loss improvement and data efficiency of a recipe by interpolating how much data
the standard recipe would need to match performance. In Section[5.3] we fit data-scaling laws to
extrapolate how our recipes would perform at even higher token counts.

Taking parameter count N — c Varying seed token count D
387 o 38 ° Standard recipe
. T77 (Fit: 1.30/DA0.23 + 1.89)
A ___ Regularized asymptotes
1 36 . (Fit: 1.03/D0.23 + 1.96)
® A
34 34{ O -
232 S32 A ~
30 3.0 L
®  209M tokens (fit: 0.05/NA1.02 + 3.43)
bg] A 419Mtokens (Git:004/NM16 +3.22) 28
“®1 m 838M tokens (fit: 0.07/NA1.02 + 3.03)
% 1.7B tokens (fit: 0.09/N0.97 + 2.88)
26 26
150M 300M 600M 14B 209M 419M 8390M 1.67B

Parameter count N Seed token count D

Figure 6: Scaling the seed token count for single models. We first consider the best loss of the
standard recipe tuning epochs and parameters (red points, right). We then consider the best loss of
the regularized recipe by fitting parameter scaling laws across four token counts (left) and taking
their asymptotes (purple points, right). We fit data-scaling laws (red and purple lines) to extrapolate
performance as seed token count increases.

5.1 DATA SCALING LAWS FOR SINGLE MODEL RECIPES

As shown in Section [2] the standard recipe overfits and does not admit a monotone scaling law.
Instead, we search for the best parameter count and hyperparameters at each of our four data scales
(Appendix [E-T). Given these four estimates of the best loss at each token count (Figure[6} right), we

fit a data scaling power law shown as the red line using Lp:= % + E.

We characterize the best possible loss of the regularized recipe by estimating
limy 0o ming £ (A (D, N, H)) as shown in Section Since we have to compute asymp-
totes to build the points for the data scaling law, we follow a two step procedure shown in

Figure[6]

Measuring data efficiency. We measure the data efficiency between two recipes at a fixed token
count D. We first compute the effective data D’ that .A; would need to match As. After interpolating

D’ via the data scaling law of A1, we report the data efficiency as %. This metric characterizes the

regularized recipe asymptote as 2.29x more data efficient than the standard recipe at 200M tokens.



Even without any extrapolation of the asymptote, the best 1.4B model at 200M tokens is 2.09 x more
data efficient than our baseline.

5.2 DATA SCALING LAWS FOR ENSEMBLES

We repeat the above procedure for ensembles by following Section [4.3] and estimating
limy o0 img 0o ming £ (E4 (D, N, K, H)) for each seed token count D. We visualize the three
step procedure in Figure[7} At 200M tokens, the asymptote of the joint scaling recipe is 5.17 x more
data efficient than the standard recipe. Without taking asymptotes, our best ensemble of five 1.4B
models is itself 3.75x more data efficient.

Taking member count K — oo Taking parameter count N — co Varying seed token count D
381 8- 38 Fit: 0.01/NA1.62 + 3.17) 38 ° Standard recipe
A 419M tokens (Fit: 0.04/NA1.29 + 2.98) . 77 (Fit: 1.30/DA0.23 + 1.89)
36 s - 36 W 838M toke @ :0.06/NALIL +2.81) 36 \ N (liugmjg?DA[E;“PI{.;;
xr A ° % 1.7B tokens (Fit: 0.10/NA0.97 + 2.68) “~a
e ) 1
34 * 34 i 344 O~
3 ®  209M tokens 3 2 ‘W
=327 4 419M tokens 332 =32 . . b
W 838M tokens R
301 % 1.7Btokens 30 3.0 LN
@® 150M params
28 300M params 28 28
600M params
1.4B params
26 26 26
1 2 3 4 5 150M 300M 600M 14B 209M 419M 839M 1.67B
Ensemble member count K Parameter count N for « ensembles Seed token count D

Figure 7: Scaling the seed token count for ensembles. Left: For fixed parameter and token count,
we fit a power law in K, with hyperparameters optimized for the asymptote. Middle: We take the
asymptote of the left 16 laws and fit a power law to measure how the asymptote changes in /N. Right:
We take the asymptote of the middle 4 laws and fit a power law to measure how the asymptote of
asymptotes changes in D. At all token counts, we find over 2x and 5x data efficiency wins over the
regularized and standard recipes respectively.

5.3 DATA SCALING ANALYSIS

Although the data scaling laws are expected to be noisy, they predict that all recipes decay at a similar
rate with exponents between 0.23 and 0.24 and asymptotes between 1.89 and 1.96. Asymptotic
statistics suggests that the asymptotes are equal if the algorithms achieve Bayes-optimal error under
infinite data and compute, in which case their loss would be the entropy of text (Shannon, (1951}
Van der Vaart, 2000). When the asymptote & and exponent « of the laws are the same for two
algorithms, there is a constant data efficiency improvement at all token counts determined by the

numerators Ay, Ao, equal to (Ay/ Al)é. Our preliminary analysis suggests that our data efficiency
wins will not disappear across all data scales even if they perform similarly under infinite data.

6 DATA EFFICIENCY UNDER PARAMETER CONSTRAINTS

The asymptotes of the regularized and ensembling recipes rely on arbitrarily high parameter models
We study whether large models are necessary for data efficiency, either for the final model or for
training. In Section[6.1] we distill an 8-ensemble of 300M members into a 300M student, preserving
83% of the loss improvement with an 8 x smaller final model. In Section we show self-distilling
a 300M model into a student of the same size outperforms the teacher, removing the need for large
parameter counts at training.

6.1 REDUCING FINAL PARAMETER COUNT VIA ENSEMBLE DISTILLATION

Even if our best scaling recipe helps in the limit as NV, K’ — oo, can it help train models that are
small relative to D? It is known that better large models can improve the performance of smaller
models through knowledge distillation (Hinton et al.l 2015} [Yang et al., [2025; Team et al., | 2025a).
Since we are not bound by train compute, we can first pre-train a data-efficient teacher M’ on D
tokens using our existing recipes. Then, we sample from M’ unconditionally (i.e. with no prompt) to
generate D’ tokens. We train our distilled student model M from scratch on the mixture of D and
D’ (Kim and Rush| [2016).



Distilling a 300M student (200M seed tokens)

e -~ Regularized recipe (Fit:0.05/N"102 + 343) Figure 8: Ensemble distillation and self-
AN DR 5L distillation. We can compress our data efficiency
% corcmos gains into smaller models through distillation. Dis-
36 T tilling an 8-ensemble teacher into a 300M student
4 retains most of the loss improvement (pink star)
2 el and outperforms the regularized asymptote. Self-
a Se~o . . . .

e distillation with a 300M teacher and 300M student
” (green star) is surprisingly effective, matching the
asymptote of the regularized recipe without increas-

i ing parameter count at training.

600M 14B
Total parameter count (billions)

150M 300M

In Figure [§] we show the student model (pink star) obtained from using an 8-ensemble of 300M
models (right-most blue point) with loss 3.32. Despite the 8 x smaller size, our distillation model
attains a loss of 3.36, preserving 83% of the ensemble improvement over the regularized 300M model
loss of 3.57 (purple point). Our student outperforms the regularized recipe asymptote and matches
the loss of a 4-ensemble (details in Appendix [F).

6.2 REDUCING TRAIN PARAMETER COUNT VIA SELF-DISTILLATION

Is it possible to train a data-efficient model without high parameter count at train time as well? We
consider this question for self-distillation where the teacher and student are of the same size and
architecture. Many recent papers discuss how training a new student model on model generations can
result in model collapse (Shumailov et al., 2024} |Gerstgrasser et al., [2024; |Dohmatob et al., |[2024;
Taor1 and Hashimotol, [2022).

On the contrary, by mixing together the D real tokens and D’ synthetic tokens, we avoid collapse
and can train a fresh student that vastly outperforms its teacher. In Figure[§] we show how using a
300M model as a teacher (blue point) results in a 300M student model (green star) that outperforms
the best regularized 300M model (purple point). Why does self-distillation help?Allen-Zhu and Li
(2023)) provide theory interpreting self-distillation as implicitly ensembling the teacher and freshly
initialized student.

7 DOWNSTREAM TASKS

Validation loss

Downstream benchmark error

—— Epoched recipe —e— Epoched recipe
38 \ ' 046 :
\ --- Model scaling —e— Model scaling
'\ -== 150M ensembles —e— 150M ensembles
37 RN 300M ensembles 044 300M ensembles
& 600M ensembles 600M ensembles
, 36 “e, & 1.4B ensembles 5 1.4B ensembles
2 ~ * .. N £ 042 fosctond-:
=3 N e * Self-distill & * Self-distill
N — o
E 35 .‘\\s 8-Ensemble distill -| 20 Ne 8-Ensemble distill
T R T =
2 * O 20w
34 * X
. 038
32 036
100 10! 100 10!

Total parameter count (billions) Total parameter count (billions)

Figure 9: Performance of pre-trained models on downstream tasks. We have thus far been using
validation loss (left) to seperate whether models are better pre-trained models or not. We evaluate the
same models and ensembles on downstream benchmarks (right). Models with lower validation loss
have lower average error across downstream benchmarks.

Although validation loss is known to correlate with capabilities of interest (Chen et al., 2025} Thrush
et al.,|[2025; (Gadre et al., [2024), we further test our models’ general capabilities using downstream
benchmarks. For evaluations that are informative for models at our scale, we take all of the accuracy-
based benchmarks from Thrush et al.| (2025), namely PIQA (Bisk et al.,[2019), SciQ (Welbl et al.,
2017), and ARC Easy (Clark et al.,2018). Notably, we did not evaluate on any benchmarks until



the end of the project after we selected the best recipes following validation loss, making these
benchmarks a strong test of generalization.

In Figure[9] we show the validation loss (left) and downstream benchmark error (right) of our models
for 200M tokens. Without regularization, the standard recipe does not benefit much from parameter
scaling. Regularization (purple points) makes downstream accuracy scale smoothly with diminishing
returns, similar to validation loss. Ensemble error mirrors loss with increasing IV and K improving
performance. Overall, our best ensemble outperforms our best unregularized model by over 9%
on average and our best distilled model outperforms the unregularized 300M model by 7%. See
Appendix [G]for a full breakdown of results.

8 RELATED WORK

We cite additional related work on over-parametrized maching learning, distillation algorithms,
synthetic data, and classical data-constrained deep learning in Appendix [J|

Scaling laws. Much of the success of language model pre-training was built upon scaling laws which
accurately predict performance at a given resource budget (Hestness et al.,[2017;[2019; Rosenfeld
et al.,|2019; Henighan et al., |2020; |[Kaplan et al., 2020; Sorscher et al., [2023; Hoffmann et al.| 2022;
Ruan et al.| [2024; (Cortes et al.,|1993). Past work has studied scaling laws under constraints such as
data and compute (Muennighoff et al., [2023}; |Goyal et al., [2024)), hardware precision (Kumar et al.,
2024), parameter count (Sardana et al., [2025; Springer et al., [2025; \Gadre et al., [2024)), and test-time
compute (Brown et al.| 2024} Snell et al.,|2024). We show that past work (Muennighoff et al., [2023)
does not account for over-fitting, fix this via regularization, and propose asymptote estimation as a
new metric.

Ensembling. Ensembling (Dietterich} 2000) is known to boost performance across settings in-
cluding uncertainty estimation (Lakshminarayanan et al., [2017), image classification (Huang et al.|
2017; |Garipov et al.| [2018]), and reinforcement learning (van Hasselt et al.l 2015)). Deep ensembles
are shown to follow power laws (Lobacheva et al.,|2021)) and not believed to outperform parameter
scaling in certain theoretical models (Vyas et al.,2023;|Ruben et al.,2024). We show how ensembling
can be adopted for pre-training and build scaling laws to characterize loss. See Appendix for
discussion on related alternatives.

Distillation. Distillation spends compute to produce strong models with lower inference costs (Hin+
ton et al., [2015) which we show with sequence knowledge distillation (Kim and Rushl 2016)). For
self-distillation, there is recent work showing how training on self-generated inputs can be harm-
ful (Shumailov et al., [2024; [Dohmatob et al., [2024; Taori and Hashimoto} 2022). Gerstgrasser et al.
(2024) suggests that training on self-generated data can be helpful in limited scenarios, though their
comparisons are neither compute-matched nor data-matched. The success of self-distillation aligns
with prior evidence from data-constrained deep learning (Mobahi et al.| 2020; [Zhang et al.,[2019).
Notably, |Allen-Zhu and Li (2023)) show how self-distillation can be viewed as implicitly performing
ensembling and distillation.

Modern data-constrained pre-training. There are several recent works which study data-efficient
pre-training and show the benefit of epoching (Muennighoff et al.l |2023), rephrased synthetic
data (Maini et al., 2024; Yang et al., 2024; DatologyAl et al., 2025 Ruan et al.| [2024]), diffusion
language models (Prabhudesai et al.| 2025 N1 et al., [2025)), and energy-based models (Gladstone
et al.,|2025). These recent works do not aggressively regularize for optimal epoching nor build scaling
laws to estimate infinite compute performance.

9 DISCUSSION

The success of classical ideas from data-constrained deep learning like regularization and ensembling
suggests that there is free lunch on the table, encouraging us to revisit pre-training design decisions.
We are also excited by methods that can better leverage extra compute for performance, in line
with The Bitter Lesson (Sutton, [2019). We hope that evaluating scaling recipes via their asymptotes
inspires more data-efficient algorithms for the future.



10 ETHICS

We hope that our work may be applied to settings beyond pre-training to improve data efficiency. We
acknowledge our work may increase the amount of compute used for language model pre-training.
We believe most other harms specific to our work apply to general language modeling research.

11 REPRODUCIBILITY

We make strong efforts to ensure reproducibility of our results. We will open-source all of our training
and evaluation code. We will also provide a script to programmatically reconstruct every single plot
included in this paper.

In addition, we will provide a WandB report and project page with access to all 2000+ runs for tuning
(epoch count, learning rate, batch size, weight decay), scaling (parameters, ensemble members, seed
token count), distilling (ensembles, self-generations), and continued pre-training.

10



REFERENCES

M. Advani and S. Ganguli. Statistical mechanics of optimal convex inference in high dimensions.
Phys. Rev. X, 6:031034, Aug 2016. doi: 10.1103/PhysRevX.6.031034. URL https://link}
aps.org/doi/10.1103/PhysRevX.6.031034.

R. Agarwal, N. Vieillard, Y. Zhou, P. Stanczyk, S. Ramos, M. Geist, and O. Bachem. On-policy
distillation of language models: Learning from self-generated mistakes, 2024. URL https:
//arxiv.org/abs/2306.136409.

S. K. Ainsworth, J. Hayase, and S. Srinivasa. Git re-basin: Merging models modulo permutation
symmetries, 2023. URL https://arxiv.org/abs/2209.04836.

Z. Allen-Zhu and Y. Li. Towards understanding ensemble, knowledge distillation and self-distillation
in deep learning, 2023. URL https://arxiv.org/abs/2012.09816.

Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.1, knowledge storage and extraction,
2024. URL https://arxiv.org/abs/2309.14316.

A. Amini, S. Gabriel, P. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi. Mathqa: Towards
interpretable math word problem solving with operation-based formalisms, 2019. URL https:
//arxiv.org/abs/1905.133109.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and
the classical bias—variance trade-off. Proceedings of the National Academy of Sciences, 116
(32):15849-15854, July 2019. ISSN 1091-6490. doi: 10.1073/pnas.1903070116. URL http:
//dx.doi.org/10.1073/pnas.1903070116.

T. Besiroglu, E. Erdil, M. Barnett, and J. You. Chinchilla scaling: A replication attempt, 2024. URL
https://arxiv.org/abs/2404.10102.

Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi. Piga: Reasoning about physical commonsense in
natural language, 2019. URL https://arxiv.org/abs/1911.11641.

B. Brown, J. Juravsky, R. Ehrlich, R. Clark, Q. V. Le, C. Ré, and A. Mirhoseini. Large language
monkeys: Scaling inference compute with repeated sampling, 2024. URL https://arxivl
org/abs/2407.21787.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models
are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165,

D. Busbridge, A. Shidani, F. Weers, J. Ramapuram, E. Littwin, and R. Webb. Distillation scaling
laws, 2025. URL https://arxiv.org/abs/2502.08606.

A. Canatar, B. Bordelon, and C. Pehlevan. Spectral bias and task-model alignment explain
generalization in kernel regression and infinitely wide neural networks. Nature Communi-
cations, 12(1), May 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-23103-1. URL
http://dx.doi.org/10.1038/s41467-021-23103-1!

Y. Chen, B. Huang, Y. Gao, Z. Wang, J. Yang, and H. Ji. Scaling laws for predicting downstream
performance in llms, 2025. URL https://arxiv.org/abs/2410.08527.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge, 2018. URL https
//arxiv.org/abs/1803.05457.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems, 2021.
URL https://arxiv.org/abs/2110.14168.

11


https://link.aps.org/doi/10.1103/PhysRevX.6.031034
https://link.aps.org/doi/10.1103/PhysRevX.6.031034
https://arxiv.org/abs/2306.13649
https://arxiv.org/abs/2306.13649
https://arxiv.org/abs/2209.04836
https://arxiv.org/abs/2012.09816
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
http://dx.doi.org/10.1073/pnas.1903070116
http://dx.doi.org/10.1073/pnas.1903070116
https://arxiv.org/abs/2404.10102
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2502.08606
http://dx.doi.org/10.1038/s41467-021-23103-1
https://arxiv.org/abs/2410.08527
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168

C. Cortes, L. D. Jackel, S. Solla, V. Vapnik, and J. Denker. Learning curves: Asymp-
totic values and rate of convergence. In J. Cowan, G. Tesauro, and J. Alspector, edi-
tors, Advances in Neural Information Processing Systems, volume 6. Morgan-Kaufmann,
1993. URL https://proceedings.neurips.cc/paper_files/paper/1993/
file/1aa48fc4880bb0c98a3bf979d3b917e—Paper.pdfl

F. D’ Angelo, M. Andriushchenko, A. Varre, and N. Flammarion. Why do we need weight decay in
modern deep learning?, 2024. URL https://arxiv.org/abs/2310.04415,

DatologyAl, :, P. Maini, V. Dorna, P. Doshi, A. Carranza, F. Pan, J. Urbanek, P. Burstein, A. Fang,
A. Deng, A. Abbas, B. Larsen, C. Blakeney, C. Bannur, C. Baek, D. Teh, D. Schwab, H. Mongstad,
H. Yin, J. Wills, K. Mentzer, L. Merrick, R. Monti, R. Adiga, S. Joshi, S. Das, Z. Wang, B. Gaza,
A. Morcos, and M. Leavitt. Beyondweb: Lessons from scaling synthetic data for trillion-scale
pretraining, 2025. URL https://arxiv.org/abs/2508.10975,

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

T. G. Dietterich. Ensemble methods in machine learning. In Proceedings of the First International
Workshop on Multiple Classifier Systems, MCS *00, page 1-15, Berlin, Heidelberg, 2000. Springer-
Verlag. ISBN 3540677046.

E. Dohmatob, Y. Feng, A. Subramonian, and J. Kempe. Strong model collapse, 2024. URL
https://arxiv.org/abs/2410.04840.

K. Everett, L. Xiao, M. Wortsman, A. A. Alemi, R. Novak, P. J. Liu, I. Gur, J. Sohl-Dickstein, L. P.
Kaelbling, J. Lee, and J. Pennington. Scaling exponents across parameterizations and optimizers,
2024. URL https://arxiv.org/abs/2407.05872.

S. Y. Gadre, G. Smyrnis, V. Shankar, S. Gururangan, M. Wortsman, R. Shao, J. Mercat, A. Fang,
J. Li, S. Keh, R. Xin, M. Nezhurina, I. Vasiljevic, J. Jitsev, L. Soldaini, A. G. Dimakis, G. Ilharco,
P. W. Koh, S. Song, T. Kollar, Y. Carmon, A. Dave, R. Heckel, N. Muennighoff, and L. Schmidt.
Language models scale reliably with over-training and on downstream tasks, 2024. URL https:
//arxiv.org/abs/2403.08540.

Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in recurrent neural
networks, 2016. URL https://arxiv.org/abs/1512.05287.

L. Gao, J. Tow, B. Abbasi, S. Biderman, S. Black, A. DiPofi, C. Foster, L. Golding, J. Hsu,
A. Le Noac’h, H. Li, K. McDonell, N. Muennighoff, C. Ociepa, J. Phang, L. Reynolds,
H. Schoelkopf, A. Skowron, L. Sutawika, E. Tang, A. Thite, B. Wang, K. Wang, and A. Zou.
The language model evaluation harness, 07 2024. URL https://zenodo.org/records/
12608602.

T. Garipov, P. [zmailov, D. Podoprikhin, D. Vetrov, and A. G. Wilson. Loss surfaces, mode connectiv-
ity, and fast ensembling of dnns, 2018. URL https://arxiv.org/abs/1802.10026,

M. Gerstgrasser, R. Schaeffer, A. Dey, R. Rafailov, H. Sleight, J. Hughes, T. Korbak, R. Agrawal,
D. Pai, A. Gromov, D. A. Roberts, D. Yang, D. L. Donoho, and S. Koyejo. Is model collapse
inevitable? breaking the curse of recursion by accumulating real and synthetic data, 2024. URL
https://arxiv.org/abs/2404.01413.

A. Gladstone, G. Nanduru, M. M. Islam, P. Han, H. Ha, A. Chadha, Y. Du, H. Ji, J. Li, and
T. Igbal. Energy-based transformers are scalable learners and thinkers, 2025. URL |https:
//arxiv.orqg/abs/2507.02092.

S. Goyal, P. Maini, Z. C. Lipton, A. Raghunathan, and J. Z. Kolter. Scaling laws for data filtering — data
curation cannot be compute agnostic, 2024. URL https://arxiv.org/abs/2404.07177.

S. Goyal, D. Lopez-Paz, and K. Ahuja. Distilled pretraining: A modern lens of data, in-context
learning and test-time scaling, 2025. URL https://arxiv.org/abs/2509.01649,

12


https://proceedings.neurips.cc/paper_files/paper/1993/file/1aa48fc4880bb0c9b8a3bf979d3b917e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/1aa48fc4880bb0c9b8a3bf979d3b917e-Paper.pdf
https://arxiv.org/abs/2310.04415
https://arxiv.org/abs/2508.10975
https://arxiv.org/abs/2410.04840
https://arxiv.org/abs/2407.05872
https://arxiv.org/abs/2403.08540
https://arxiv.org/abs/2403.08540
https://arxiv.org/abs/1512.05287
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2507.02092
https://arxiv.org/abs/2507.02092
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/2509.01649

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sra-
vankumar, A. Korenev, A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru,
B. Roziere, B. Biron, B. Tang, B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell,
C. Keller, C. Touret, C. Wu, C. Wong, C. C. Ferrer, C. Nikolaidis, D. Allonsius, D. Song, D. Pintz,
D. Livshits, D. Wyatt, D. Esiobu, D. Choudhary, D. Mahajan, D. Garcia-Olano, D. Perino, D. Hup-
kes, E. Lakomkin, E. AIBadawy, E. Lobanova, E. Dinan, E. M. Smith, F. Radenovic, F. Guzman,
F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Thattai, G. Nail, G. Mialon, G. Pang, G. Cu-
curell, H. Nguyen, H. Korevaar, H. Xu, H. Touvron, I. Zarov, I. A. Ibarra, I. Kloumann, I. Misra,
I. Evtimov, J. Zhang, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Mahadeokar, J. Shah,
J. van der Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang, J. Liu, J. Wang, J. Yu, J. Bitton,
J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V. Alwala, K. Prasad, K. Upasani, K. Plaw-
iak, K. Li, K. Heafield, K. Stone, K. El-Arini, K. Iyer, K. Malik, K. Chiu, K. Bhalla, K. Lakhotia,
L. Rantala-Yeary, L. van der Maaten, L. Chen, L. Tan, L. Jenkins, L. Martin, L. Madaan, L. Malo,
L. Blecher, L. Landzaat, L. de Oliveira, M. Muzzi, M. Pasupuleti, M. Singh, M. Paluri, M. Kar-
das, M. Tsimpoukelli, M. Oldham, M. Rita, M. Pavlova, M. Kambadur, M. Lewis, M. Si, M. K.
Singh, M. Hassan, N. Goyal, N. Torabi, N. Bashlykov, N. Bogoychev, N. Chatterji, N. Zhang,
O. Duchenne, O. Celebi, P. Alrassy, P. Zhang, P. Li, P. Vasic, P. Weng, P. Bhargava, P. Dubal, P. Kr-
ishnan, P. S. Koura, P. Xu, Q. He, Q. Dong, R. Srinivasan, R. Ganapathy, R. Calderer, R. S. Cabral,
R. Stojnic, R. Raileanu, R. Maheswari, R. Girdhar, R. Patel, R. Sauvestre, R. Polidoro, R. Sumbaly,
R. Taylor, R. Silva, R. Hou, R. Wang, S. Hosseini, S. Chennabasappa, S. Singh, S. Bell, S. S. Kim,
S. Edunov, S. Nie, S. Narang, S. Raparthy, S. Shen, S. Wan, S. Bhosale, S. Zhang, S. Vandenhende,
S. Batra, S. Whitman, S. Sootla, S. Collot, S. Gururangan, S. Borodinsky, T. Herman, T. Fowler,
T. Sheasha, T. Georgiou, T. Scialom, T. Speckbacher, T. Mihaylov, T. Xiao, U. Karn, V. Goswami,
V. Gupta, V. Ramanathan, V. Kerkez, V. Gonguet, V. Do, V. Vogeti, V. Albiero, V. Petrovic, W. Chu,
W. Xiong, W. Fu, W. Meers, X. Martinet, X. Wang, X. Wang, X. E. Tan, X. Xia, X. Xie, X. Jia,
X. Wang, Y. Goldschlag, Y. Gaur, Y. Babaei, Y. Wen, Y. Song, Y. Zhang, Y. Li, Y. Mao, Z. D.
Coudert, Z. Yan, Z. Chen, Z. Papakipos, A. Singh, A. Srivastava, A. Jain, A. Kelsey, A. Shajnfeld,
A. Gangidi, A. Victoria, A. Goldstand, A. Menon, A. Sharma, A. Boesenberg, A. Baevski, A. Fein-
stein, A. Kallet, A. Sangani, A. Teo, A. Yunus, A. Lupu, A. Alvarado, A. Caples, A. Gu, A. Ho,
A. Poulton, A. Ryan, A. Ramchandani, A. Dong, A. Franco, A. Goyal, A. Saraf, A. Chowdhury,
A. Gabriel, A. Bharambe, A. Eisenman, A. Yazdan, B. James, B. Maurer, B. Leonhardi, B. Huang,
B. Loyd, B. D. Paola, B. Paranjape, B. Liu, B. Wu, B. Ni, B. Hancock, B. Wasti, B. Spence,
B. Stojkovic, B. Gamido, B. Montalvo, C. Parker, C. Burton, C. Mejia, C. Liu, C. Wang, C. Kim,
C. Zhou, C. Hu, C.-H. Chu, C. Cai, C. Tindal, C. Feichtenhofer, C. Gao, D. Civin, D. Beaty,
D. Kreymer, D. Li, D. Adkins, D. Xu, D. Testuggine, D. David, D. Parikh, D. Liskovich, D. Foss,
D. Wang, D. Le, D. Holland, E. Dowling, E. Jamil, E. Montgomery, E. Presani, E. Hahn, E. Wood,
E.-T. Le, E. Brinkman, E. Arcaute, E. Dunbar, E. Smothers, F. Sun, F. Kreuk, F. Tian, F. Kokkinos,
F. Ozgenel, F. Caggioni, F. Kanayet, F. Seide, G. M. Florez, G. Schwarz, G. Badeer, G. Swee,
G. Halpern, G. Herman, G. Sizov, Guangyi, Zhang, G. Lakshminarayanan, H. Inan, H. Shojanazeri,
H. Zou, H. Wang, H. Zha, H. Habeeb, H. Rudolph, H. Suk, H. Aspegren, H. Goldman, H. Zhan,
I. Damlaj, I. Molybog, 1. Tufanov, I. Leontiadis, I.-E. Veliche, 1. Gat, J. Weissman, J. Geboski,
J. Kohli, J. Lam, J. Asher, J.-B. Gaya, J. Marcus, J. Tang, J. Chan, J. Zhen, J. Reizenstein, J. Teboul,
J. Zhong, J. Jin, J. Yang, J. Cummings, J. Carvill, J. Shepard, J. McPhie, J. Torres, J. Ginsburg,
J. Wang, K. Wu, K. H. U, K. Saxena, K. Khandelwal, K. Zand, K. Matosich, K. Veeraraghavan,
K. Michelena, K. Li, K. Jagadeesh, K. Huang, K. Chawla, K. Huang, L. Chen, L. Garg, L. A,
L. Silva, L. Bell, L. Zhang, L. Guo, L. Yu, L. Moshkovich, L. Wehrstedt, M. Khabsa, M. Avalani,
M. Bhatt, M. Mankus, M. Hasson, M. Lennie, M. Reso, M. Groshev, M. Naumov, M. Lathi,
M. Keneally, M. Liu, M. L. Seltzer, M. Valko, M. Restrepo, M. Patel, M. Vyatskov, M. Samvelyan,
M. Clark, M. Macey, M. Wang, M. J. Hermoso, M. Metanat, M. Rastegari, M. Bansal, N. San-
thanam, N. Parks, N. White, N. Bawa, N. Singhal, N. Egebo, N. Usunier, N. Mehta, N. P. Lapteyv,
N. Dong, N. Cheng, O. Chernoguz, O. Hart, O. Salpekar, O. Kalinli, P. Kent, P. Parekh, P. Saab,
P. Balaji, P. Rittner, P. Bontrager, P. Roux, P. Dollar, P. Zvyagina, P. Ratanchandani, P. Yuvraj,
Q. Liang, R. Alao, R. Rodriguez, R. Ayub, R. Murthy, R. Nayani, R. Mitra, R. Parthasarathy,
R. Li, R. Hogan, R. Battey, R. Wang, R. Howes, R. Rinott, S. Mehta, S. Siby, S. J. Bondu,
S. Datta, S. Chugh, S. Hunt, S. Dhillon, S. Sidorov, S. Pan, S. Mahajan, S. Verma, S. Yamamoto,
S. Ramaswamy, S. Lindsay, S. Lindsay, S. Feng, S. Lin, S. C. Zha, S. Patil, S. Shankar, S. Zhang,
S. Zhang, S. Wang, S. Agarwal, S. Sajuyigbe, S. Chintala, S. Max, S. Chen, S. Kehoe, S. Satterfield,
S. Govindaprasad, S. Gupta, S. Deng, S. Cho, S. Virk, S. Subramanian, S. Choudhury, S. Goldman,

13



T. Remez, T. Glaser, T. Best, T. Koehler, T. Robinson, T. Li, T. Zhang, T. Matthews, T. Chou,
T. Shaked, V. Vontimitta, V. Ajayi, V. Montanez, V. Mohan, V. S. Kumar, V. Mangla, V. Ionescu,
V. Poenaru, V. T. Mihailescu, V. Ivanov, W. Li, W. Wang, W. Jiang, W. Bouaziz, W. Constable,
X. Tang, X. Wu, X. Wang, X. Wu, X. Gao, Y. Kleinman, Y. Chen, Y. Hu, Y. Jia, Y. Qi, Y. Li,
Y. Zhang, Y. Zhang, Y. Adi, Y. Nam, Yu, Wang, Y. Zhao, Y. Hao, Y. Qian, Y. Li, Y. He, Z. Rait,
Z. DeVito, Z. Rosnbrick, Z. Wen, Z. Yang, Z. Zhao, and Z. Ma. The llama 3 herd of models, 2024.
URLhttps://arxiv.org/abs/2407.21783.

E. Grave, A. Joulin, and N. Usunier. Improving neural language models with a continuous cache,
2016. URL https://arxiv.org/abs/1612.04426.

Y. Gu, L. Dong, F. Wei, and M. Huang. Minillm: Knowledge distillation of large language models,
2024. URL https://arxiv.org/abs/2306.08543.

T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani. Surprises in high-dimensional ridgeless least
squares interpolation, 2020. URL https://arxiv.org/abs/1903.08560!

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring mathematical problem solving with the math dataset, 2021. URL https://arxiv,
org/abs/2103.03874.

T. Henighan, J. Kaplan, M. Katz, M. Chen, C. Hesse, J. Jackson, H. Jun, T. B. Brown, P. Dhariwal,
S. Gray, C. Hallacy, B. Mann, A. Radford, A. Ramesh, N. Ryder, D. M. Ziegler, J. Schulman,
D. Amodei, and S. McCandlish. Scaling laws for autoregressive generative modeling, 2020. URL
https://arxiv.org/abs/2010.14701.

J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A. Patwary, Y. Yang,
and Y. Zhou. Deep learning scaling is predictable, empirically, 2017. URL https://arxiv,
org/abs/1712.004009.

J. Hestness, N. Ardalani, and G. Diamos. Beyond human-level accuracy: Computational challenges
in deep learning, 2019. URL https://arxiv.org/abs/1909.01736,

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network, 2015. URL
https://arxiv.org/abs/1503.02531l

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,
L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den Driessche,
B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre.
Training compute-optimal large language models, 2022. URL |https://arxiv.org/abs/
2203.15556.

G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger. Snapshot ensembles: Train
1, get m for free, 2017. URL |https://arxiv.org/abs/1704.001009

K. Jordan. On the variance of neural network training with respect to test sets and distributions, 2024.
URLhttps://arxiv.org/abs/2304.01910.

J. Juravsky, A. Chakravarthy, R. Ehrlich, S. Eyuboglu, B. Brown, J. Shetaye, C. Ré, and
A. Mirhoseini. Tokasaurus: An llm inference engine for high-throughput workloads. https:
//scalingintelligence.stanford.edu/blogs/tokasaurus/, 2025.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models, 2020. URL https://arxiv.org/
abs/2001.08361.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training
for deep learning: Generalization gap and sharp minima, 2017. URL https://arxiv.org/
abs/1609.04836!

Y. Kim and A. M. Rush. Sequence-level knowledge distillation, 2016. URL https://arxiv,
org/abs/1606.07947.

14


https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1612.04426
https://arxiv.org/abs/2306.08543
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2010.14701
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1909.01736
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/2304.01910
https://scalingintelligence.stanford.edu/blogs/tokasaurus/
https://scalingintelligence.stanford.edu/blogs/tokasaurus/
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1606.07947
https://arxiv.org/abs/1606.07947

B. Krause, E. Kahembwe, I. Murray, and S. Renals. Dynamic evaluation of neural sequence models,
2017. URLhttps://arxiv.org/abs/1709.07432.

T. Kumar, Z. Ankner, B. F. Spector, B. Bordelon, N. Muennighoff, M. Paul, C. Pehlevan, C. Ré, and
A. Raghunathan. Scaling laws for precision, 2024. URL |https://arxiv.org/abs/2411|
04330.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles, 2017. URL https://arxiv.org/abs/1612.01474|

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

Y. LeCun, L. Bottou, G. B. Orr, and K. R. Miiller. Efficient BackProp, pages 9-50. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998. ISBN 978-3-540-49430-0. doi: 10.1007/3-540-49430-8_2.
URLhttps://doi.org/10.1007/3-540-49430-8_2.

J. Li, A. Fang, G. Smyrnis, M. Ivgi, M. Jordan, S. Gadre, H. Bansal, E. Guha, S. Keh, K. Arora,
S. Garg, R. Xin, N. Muennighoff, R. Heckel, J. Mercat, M. Chen, S. Gururangan, M. Wortsman,
A. Albalak, Y. Bitton, M. Nezhurina, A. Abbas, C.-Y. Hsieh, D. Ghosh, J. Gardner, M. Kilian,
H. Zhang, R. Shao, S. Pratt, S. Sanyal, G. Ilharco, G. Daras, K. Marathe, A. Gokaslan, J. Zhang,
K. Chandu, T. Nguyen, I. Vasiljevic, S. Kakade, S. Song, S. Sanghavi, F. Faghri, S. Oh, L. Zettle-
moyer, K. Lo, A. El-Nouby, H. Pouransari, A. Toshev, S. Wang, D. Groeneveld, L. Soldaini,
P. W. Koh, J. Jitsev, T. Kollar, A. G. Dimakis, Y. Carmon, A. Dave, L. Schmidt, and V. Shankar.
Datacomp-Im: In search of the next generation of training sets for language models, 2025. URL
https://arxiv.org/abs/2406.11794l

J. Liu, J. Su, X. Yao, Z. Jiang, G. Lai, Y. Du, Y. Qin, W. Xu, E. Lu, J. Yan, Y. Chen, H. Zheng,
Y. Liu, S. Liu, B. Yin, W. He, H. Zhu, Y. Wang, J. Wang, M. Dong, Z. Zhang, Y. Kang, H. Zhang,
X. Xu, Y. Zhang, Y. Wu, X. Zhou, and Z. Yang. Muon is scalable for llm training, 2025. URL
https://arxiv.org/abs/2502.16982.

E. Lobacheva, N. Chirkova, M. Kodryan, and D. Vetrov. On power laws in deep ensembles, 2021.
URLhttps://arxiv.org/abs/2007.08483.

P. Maini, S. Seto, H. Bai, D. Grangier, Y. Zhang, and N. Jaitly. Rephrasing the web: A recipe
for compute and data-efficient language modeling, 2024. URL https://arxiv.org/abs/
2401.16380.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of
English: The Penn Treebank. Computational Linguistics, 19(2):313-330, 1993. URL https:
//aclanthology.org/J93-2004/.

M. Marek, S. Lotfi, A. Somasundaram, A. G. Wilson, and M. Goldblum. Small batch size training
for language models: When vanilla sgd works, and why gradient accumulation is wasteful, 2025.
URL https://arxiv.org/abs/2507.07101.

S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team. An empirical model of large-batch training,
2018. URL https://arxiv.org/abs/1812.06162.

S. Merity, N. S. Keskar, and R. Socher. Regularizing and optimizing Istm language models, 2017.
URLhttps://arxiv.org/abs/1708.02182.

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur. Recurrent neural network based
language model. volume 2, pages 1045-1048, 09 2010. doi: 10.21437/Interspeech.2010-343.

H. Mobahi, M. Farajtabar, and P. L. Bartlett. Self-distillation amplifies regularization in hilbert space,
2020. URL https://arxiv.org/abs/2002.05715

N. Muennighoff, A. M. Rush, B. Barak, T. L. Scao, A. Piktus, N. Tazi, S. Pyysalo, T. Wolf, and
C. Raffel. Scaling data-constrained language models, 2023. URL https://arxiv.org/abs/
2305.16264.

15


https://arxiv.org/abs/1709.07432
https://arxiv.org/abs/2411.04330
https://arxiv.org/abs/2411.04330
https://arxiv.org/abs/1612.01474
https://doi.org/10.1007/3-540-49430-8_2
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2007.08483
https://arxiv.org/abs/2401.16380
https://arxiv.org/abs/2401.16380
https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/
https://arxiv.org/abs/2507.07101
https://arxiv.org/abs/1812.06162
https://arxiv.org/abs/1708.02182
https://arxiv.org/abs/2002.05715
https://arxiv.org/abs/2305.16264
https://arxiv.org/abs/2305.16264

P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. Deep double descent: Where
bigger models and more data hurt, 2019. URL https://arxiv.org/abs/1912.02292,

P. Nakkiran, P. Venkat, S. Kakade, and T. Ma. Optimal regularization can mitigate double descent,
2021. URL https://arxiv.org/abs/2003.01897.

J. Ni, the, and team. Diffusion language models are su-
per data learners. https://jinjieni.notion.site/
Diffusion—-Language—Models—are—-Super-Data-Learners—-239d8£f03a866800ab196e49928c019ac
2025. Notion Blog.

M. Prabhudesai, M. Wu, A. Zadeh, K. Fragkiadaki, and D. Pathak. Diffusion beats autoregressive in
data-constrained settings, 2025. URL https://arxiv.org/abs/2507.15857.

J. S. Rosenfeld, A. Rosenfeld, Y. Belinkov, and N. Shavit. A constructive prediction of the general-
ization error across scales, 2019. URL https://arxiv.org/abs/1909.12673.

Y. Ruan, C. J. Maddison, and T. Hashimoto. Observational scaling laws and the predictability of
language model performance, 2024. URL https://arxiv.org/abs/2405.10938|

Y. Ruan, N. Band, C. J. Maddison, and T. Hashimoto. Reasoning to learn from latent thoughts, 2025.
URLhttps://arxiv.org/abs/2503.18866.

B. S. Ruben, W. L. Tong, H. T. Chaudhry, and C. Pehlevan. No free lunch from random feature
ensembles, 2024. URL|https://arxiv.org/abs/2412.05418.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter, 2020. URL https://arxiv.org/abs/1910.01108.

N. Sardana, J. Portes, S. Doubov, and J. Frankle. Beyond chinchilla-optimal: Accounting for inference
in language model scaling laws, 2025. URL https://arxiv.org/abs/2401.00448,

J. Sevilla and E. Roldéan. Training compute of frontier ai models
grows by 4-5x per year, 2024. URL |https://epoch.ai/blog/
training-compute-of-frontier—-ai-models—-grows—-by-4-5x-per-year.
Accessed: 2025-08-21.

C. Shannon. Prediction and entropy of printed english. Bell system technical journal, 30(1):50-64,
1951.

H. Shi, K. Livescu, and K. Gimpel. Substructure substitution: Structured data augmentation for nlp,
2021. URL https://arxiv.org/abs/2101.00411.

I. Shumailov, Z. Shumaylov, Y. Zhao, N. Papernot, R. Anderson, and Y. Gal. Ai models collapse
when trained on recursively generated data. Nature, 631(8022):755-759, 2024.

J. B. Simon, D. Karkada, N. Ghosh, and M. Belkin. More is better in modern machine learning:
when infinite overparameterization is optimal and overfitting is obligatory, 2024. URL https:
//arxiv.org/abs/2311.14646.

S. P. Singh and M. Jaggi. Model fusion via optimal transport, 2023. URL https://arxiv.org/
abs/1910.05653!l

S. L. Smith, E. Elsen, and S. De. On the generalization benefit of noise in stochastic gradient descent,
2020. URL https://arxiv.org/abs/2006.15081.

C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling llm test-time compute optimally can be more effective
than scaling model parameters, 2024. URL https://arxiv.org/abs/2408.03314|

B. Sorscher, R. Geirhos, S. Shekhar, S. Ganguli, and A. S. Morcos. Beyond neural scaling laws:

beating power law scaling via data pruning, 2023. URL https://arxiv.org/abs/2206,
14486.

16


https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/2003.01897
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://arxiv.org/abs/2507.15857
https://arxiv.org/abs/1909.12673
https://arxiv.org/abs/2405.10938
https://arxiv.org/abs/2503.18866
https://arxiv.org/abs/2412.05418
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2401.00448
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://arxiv.org/abs/2101.00411
https://arxiv.org/abs/2311.14646
https://arxiv.org/abs/2311.14646
https://arxiv.org/abs/1910.05653
https://arxiv.org/abs/1910.05653
https://arxiv.org/abs/2006.15081
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2206.14486

J. M. Springer, S. Goyal, K. Wen, T. Kumar, X. Yue, S. Malladi, G. Neubig, and A. Raghunathan.
Overtrained language models are harder to fine-tune, 2025. URL https://arxiv.org/abs/
2503.19206.

D. Su, K. Kong, Y. Lin, J. Jennings, B. Norick, M. Kliegl, M. Patwary, M. Shoeybi, and B. Catanzaro.
Nemotron-cc: Transforming common crawl into a refined long-horizon pretraining dataset, 2025.
URL https://arxiv.org/abs/2412.02595.

C. Summers and M. J. Dinneen. Nondeterminism and instability in neural network optimization,
2021. URL https://arxiv.org/abs/2103.04514.

R. Sutton. The bitter lesson. http://www.incompleteideas.net/IncIdeas/
BitterLesson.html) 2019. Blog post.

S. Takase, J. Suzuki, and M. Nagata. Direct output connection for a high-rank language model, 2018.
URLhttps://arxiv.org/abs/1808.10143.

R. Taori and T. B. Hashimoto. Data feedback loops: Model-driven amplification of dataset biases,
2022. URLhttps://arxiv.org/abs/2209.03942.

G. Team, A. Kamath, J. Ferret, S. Pathak, N. Vieillard, R. Merhej, S. Perrin, T. Matejovicova,
A. Ramé, M. Riviere, L. Rouillard, T. Mesnard, G. Cideron, J. bastien Grill, S. Ramos, E. Yvinec,
M. Casbon, E. Pot, 1. Penchev, G. Liu, F. Visin, K. Kenealy, L. Beyer, X. Zhai, A. Tsitsulin,
R. Busa-Fekete, A. Feng, N. Sachdeva, B. Coleman, Y. Gao, B. Mustafa, 1. Barr, E. Parisotto,
D. Tian, M. Eyal, C. Cherry, J.-T. Peter, D. Sinopalnikov, S. Bhupatiraju, R. Agarwal, M. Kazemi,
D. Malkin, R. Kumar, D. Vilar, I. Brusilovsky, J. Luo, A. Steiner, A. Friesen, A. Sharma, A. Sharma,
A. M. Gilady, A. Goedeckemeyer, A. Saade, A. Feng, A. Kolesnikov, A. Bendebury, A. Abdagic,
A. Vadi, A. Gyorgy, A. S. Pinto, A. Das, A. Bapna, A. Miech, A. Yang, A. Paterson, A. Shenoy,
A. Chakrabarti, B. Piot, B. Wu, B. Shahriari, B. Petrini, C. Chen, C. L. Lan, C. A. Choquette-Choo,
C. Carey, C. Brick, D. Deutsch, D. Eisenbud, D. Cattle, D. Cheng, D. Paparas, D. S. Sreepathihalli,
D. Reid, D. Tran, D. Zelle, E. Noland, E. Huizenga, E. Kharitonov, F. Liu, G. Amirkhanyan,
G. Cameron, H. Hashemi, H. Klimczak-Plucifiska, H. Singh, H. Mehta, H. T. Lehri, H. Hazimeh,
I. Ballantyne, I. Szpektor, 1. Nardini, J. Pouget-Abadie, J. Chan, J. Stanton, J. Wieting, J. Lai,
J. Orbay, J. Fernandez, J. Newlan, J. yeong Ji, J. Singh, K. Black, K. Yu, K. Hui, K. Vodrahalli,
K. Greff, L. Qiu, M. Valentine, M. Coelho, M. Ritter, M. Hoffman, M. Watson, M. Chaturvedi,
M. Moynihan, M. Ma, N. Babar, N. Noy, N. Byrd, N. Roy, N. Momchev, N. Chauhan, N. Sachdeva,
O. Bunyan, P. Botarda, P. Caron, P. K. Rubenstein, P. Culliton, P. Schmid, P. G. Sessa, P. Xu,
P. Stanczyk, P. Tafti, R. Shivanna, R. Wu, R. Pan, R. Rokni, R. Willoughby, R. Vallu, R. Mullins,
S. Jerome, S. Smoot, S. Girgin, S. Igbal, S. Reddy, S. Sheth, S. Pdder, S. Bhatnagar, S. R. Panyam,
S. Eiger, S. Zhang, T. Liu, T. Yacovone, T. Liechty, U. Kalra, U. Evci, V. Misra, V. Roseberry,
V. Feinberg, V. Kolesnikov, W. Han, W. Kwon, X. Chen, Y. Chow, Y. Zhu, Z. Wei, Z. Egyed,
V. Cotruta, M. Giang, P. Kirk, A. Rao, K. Black, N. Babar, J. Lo, E. Moreira, L. G. Martins,
O. Sanseviero, L. Gonzalez, Z. Gleicher, T. Warkentin, V. Mirrokni, E. Senter, E. Collins, J. Barral,
Z. Ghahramani, R. Hadsell, Y. Matias, D. Sculley, S. Petrov, N. Fiedel, N. Shazeer, O. Vinyals,
J. Dean, D. Hassabis, K. Kavukcuoglu, C. Farabet, E. Buchatskaya, J.-B. Alayrac, R. Anil, Dmitry,
Lepikhin, S. Borgeaud, O. Bachem, A. Joulin, A. Andreev, C. Hardin, R. Dadashi, and L. Hussenot.
Gemma 3 technical report, 2025a. URL https://arxiv.org/abs/2503.19786.

K. Team, Y. Bai, Y. Bao, G. Chen, J. Chen, N. Chen, R. Chen, Y. Chen, Y. Chen, Y. Chen, Z. Chen,
J. Cui, H. Ding, M. Dong, A. Du, C. Du, D. Du, Y. Du, Y. Fan, Y. Feng, K. Fu, B. Gao, H. Gao,
P. Gao, T. Gao, X. Gu, L. Guan, H. Guo, J. Guo, H. Hu, X. Hao, T. He, W. He, W. He, C. Hong,
Y. Hu, Z. Hu, W. Huang, Z. Huang, Z. Huang, T. Jiang, Z. Jiang, X. Jin, Y. Kang, G. Lai, C. Li,
F. Li, H.Li, M. Li, W. Li, Y. Li, Y. Li, Z. Li, Z. Li, H. Lin, X. Lin, Z. Lin, C. Liu, C. Liu, H. Liu,
J. Liu, J. Liu, L. Liu, S. Liu, T. Y. Liu, T. Liu, W. Liu, Y. Liu, Y. Liu, Y. Liu, Y. Liu, Z. Liu,
E. Ly, L. Lu, S. Ma, X. Ma, Y. Ma, S. Mao, J. Mei, X. Men, Y. Miao, S. Pan, Y. Peng, R. Qin,
B. Qu, Z. Shang, L. Shi, S. Shi, F. Song, J. Su, Z. Su, X. Sun, F. Sung, H. Tang, J. Tao, Q. Teng,
C. Wang, D. Wang, F. Wang, H. Wang, J. Wang, J. Wang, J. Wang, S. Wang, S. Wang, Y. Wang,
Y. Wang, Y. Wang, Y. Wang, Y. Wang, Z. Wang, Z. Wang, Z. Wang, C. Wei, Q. Wei, W. Wu,
X. Wu, Y. Wy, C. Xiao, X. Xie, W. Xiong, B. Xu, J. Xu, J. Xu, L. H. Xu, L. Xu, S. Xu, W. Xu,
X. Xu, Y. Xu, Z. Xu, J. Yan, Y. Yan, X. Yang, Y. Yang, Z. Yang, Z. Yang, Z. Yang, H. Yao, X. Yao,
W. Ye, Z. Ye, B. Yin, L. Yu, E. Yuan, H. Yuan, M. Yuan, H. Zhan, D. Zhang, H. Zhang, W. Zhang,

17


https://arxiv.org/abs/2503.19206
https://arxiv.org/abs/2503.19206
https://arxiv.org/abs/2412.02595
https://arxiv.org/abs/2103.04514
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://arxiv.org/abs/1808.10143
https://arxiv.org/abs/2209.03942
https://arxiv.org/abs/2503.19786

X. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, H. Zhao,
Y. Zhao, H. Zheng, S. Zheng, J. Zhou, X. Zhou, Z. Zhou, Z. Zhu, W. Zhuang, and X. Zu. Kimi k2:
Open agentic intelligence, 2025b. URL https://arxiv.org/abs/2507.20534,

T. Thrush, C. Potts, and T. Hashimoto. Improving pretraining data using perplexity correlations,
2025. URL https://arxiv.org/abs/2409.05816.

A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double g-learning, 2015.
URLhttps://arxiv.org/abs/1509.06461.

P. Villalobos, A. Ho, J. Sevilla, T. Besiroglu, L. Heim, and M. Hobbhahn. Will we run out of data?
limits of llm scaling based on human-generated data, 2024. URL https://arxiv.org/abs/
2211.04325.

N. Vyas, A. Atanasov, B. Bordelon, D. Morwani, S. Sainathan, and C. Pehlevan. Feature-learning
networks are consistent across widths at realistic scales, 2023. URL https://arxiv.org/
abs/2305.18411l

Z. Wang, F. Zhou, X. Li, and P. Liu. Octothinker: Mid-training incentivizes reinforcement learning
scaling, 2025. URL |https://arxiv.org/abs/2506.20512.

A. Warstadt, L. Choshen, A. Mueller, A. Williams, E. Wilcox, and C. Zhuang. Call for papers — the
babylm challenge: Sample-efficient pretraining on a developmentally plausible corpus, 2023. URL
https://arxiv.orqg/abs/2301.11796.

J. Welbl, N. F. Liu, and M. Gardner. Crowdsourcing multiple choice science questions, 2017. URL
https://arxiv.org/abs/1707.062009.

K. Wen, D. Hall, T. Ma, and P. Liang. Fantastic pretraining optimizers and where to find them, 2025.
URLhttps://arxiv.org/abs/2509.02046.

M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos, H. Namkoong,
A. Farhadi, Y. Carmon, S. Kornblith, and L. Schmidt. Model soups: averaging weights of
multiple fine-tuned models improves accuracy without increasing inference time, 2022. URL
https://arxiv.org/abs/2203.05482.

Z.Xie, S. 1. Wang, J. Li, D. Lévy, A. Nie, D. Jurafsky, and A. Y. Ng. Data noising as smoothing in
neural network language models, 2017. URL https://arxiv.org/abs/1703.02573l

A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv, C. Zheng,
D. Liu, F. Zhou, F. Huang, F. Hu, H. Ge, H. Wei, H. Lin, J. Tang, J. Yang, J. Tu, J. Zhang,
J. Yang, J. Yang, J. Zhou, J. Zhou, J. Lin, K. Dang, K. Bao, K. Yang, L. Yu, L. Deng, M. Li,
M. Xue, M. Li, P. Zhang, P. Wang, Q. Zhu, R. Men, R. Gao, S. Liu, S. Luo, T. Li, T. Tang,
W. Yin, X. Ren, X. Wang, X. Zhang, X. Ren, Y. Fan, Y. Su, Y. Zhang, Y. Zhang, Y. Wan,
Y. Liu, Z. Wang, Z. Cui, Z. Zhang, Z. Zhou, and Z. Qiu. Qwen3 technical report, 2025. URL
https://arxiv.orqg/abs/2505.09388.

G. Yang, E. J. Hu, 1. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W. Chen, and
J. Gao. Tensor programs v: Tuning large neural networks via zero-shot hyperparameter transfer,
2022. URL https://arxiv.org/abs/2203.03466.

Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen. Breaking the softmax bottleneck: A high-rank
rnn language model, 2018. URL https://arxiv.org/abs/1711.03953.

Z. Yang, N. Band, S. Li, E. Candes, and T. Hashimoto. Synthetic continued pretraining, 2024. URL
https://arxiv.orqg/abs/2409.07431.

W. Zaremba, 1. Sutskever, and O. Vinyals. Recurrent neural network regularization, 2015. URL
https://arxiv.org/abs/1409.2329,

L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma. Be your own teacher: Improve the
performance of convolutional neural networks via self distillation, 2019. URL https://arxivl
org/abs/1905.08094.

18


https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2409.05816
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2305.18411
https://arxiv.org/abs/2305.18411
https://arxiv.org/abs/2506.20512
https://arxiv.org/abs/2301.11796
https://arxiv.org/abs/1707.06209
https://arxiv.org/abs/2509.02046
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/1703.02573
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/1711.03953
https://arxiv.org/abs/2409.07431
https://arxiv.org/abs/1409.2329
https://arxiv.org/abs/1905.08094
https://arxiv.org/abs/1905.08094

J. G. Zilly, R. K. Srivastava, J. Koutnik, and J. Schmidhuber. Recurrent highway networks, 2017.
URL https://arxiv.org/abs/1607.03474.

19


https://arxiv.org/abs/1607.03474

CONTENTS

I TIntreduction|

|2 Standard pre-training|

2.1 Evaluating existing data-constrained recipes| . . . . . . . . . . ... ... .. ...

|3 Regularized parameter scaling|

|4  Ensemble scaling|

4.1 Definingensembles| . . . . . . ... ... ..

4.2 Scaling member count 1nstead of parametercount| . . . . . . ... ... L.

4.3 Joint scaling recipe composing parameter and ensemble scaling|. . . . . . .. . ..

[>__Scaling the seed token count under infinite compute]

[5.1 Data scaling laws for single model recipes| . . . . . . . .. ... ... ... ....

5.2 Datascaling laws forensembles| . . . . . . ... .. ... ... ... ... . ...

5.3 Datascalinganalysis| . . .. ... ... .. ... .. .

[6 Data efficiency under parameter constraints|

6.1  Reducing final parameter count via ensemble distillation| . . . . . . .. .. .. ..

6.2 Reducing train parameter count via self-distillation| . . . . . . ... ..o .

(7__Downstream tasks|

8 Related Workl
9 Discussionl
[10_Ethics|

[TT Reproducibility|

A" Continued pre-training|

[B Problem setfing|

|[C  Standard pre-training details|

|C.1 Locally optimal hyperparameters| . . . . . . . ... ... ... ...........

|C.2 Ablating on coordinate descent| . . . . . . . ... ... ... ...,

|C.3 Tuned hyperparameters| . . . . . . . . . . . .. ... .. ..

|C.4  Hyperparameter ablations|. . . . . . ... ... ... ... ... o,

IC.5 Overfitting analysis| . . . . . . . . . ... L

~N 9 O A [V, I B I N

2

10

10

21

22



[D Ensembling details| 27

ID.IEnsembling formalization|. . . . . . . .. ... ... ... oL 27
ID.2 Overview of ensembling tuning|. . . . . . . . . . ... .. ... ... ... ... 27
ID.3 Seedscience|. . . . . . ... 28
ID.4 " Hyperparameter tuning for ensembles| . . . . . . . ... ... ... ... ..... 28
ID.5 Alternatives toensembling| . . . . . ... ... .. ... .. .. .. 28
ID.5.1 Mixture-of-Experts| . . . . .. ... ... ... 30

ID.5.2 Modelsoups| . . . ... ... 30

D.6 Orderof limitsl. . . . . . . . . .. 30

D g 31

[E.I Epochtunedbaseline] . . . ... ... ... ... . ... ... ... ... ..., 31
[E.2  Scaling parametercount] . . . . . . .. .. .. ... ... 31
[E.3  Scaling member and parametercount|. . . . . . . .. ... ... 32
[F_Distillation defails 32
[E.1 Datageneration| . . . . . . .. ... L 32
IE.2 Hyperparameters| . . . . . . . . . . . . . . . . . e 33
I3 Mixing data ablation| . . . .. ... ... ... ... .. ... ... 33
IG_Downstream task detailsl 34
[GT Downstreamtasks] . . . . . . . . . .. . 34
|G.2  Hyperparameter tuning| . . . . . . . . . . . o v i it e e e e e 34

[ Continued pre-training| 35
[H.1 Hyperparameters| . . . . . . . . . . .. . . 35

H P DSl . . e 35
[Power laws| 36
I.1  Sensttivity analysis| . . . . . ... ... 36

L2 Fittinglaws| . . . . . . . .. e 36
[J__Additional related work| 36

A CONTINUED PRE-TRAINING

We demonstrate the immediate applicability of our findings in settings outside of pre-training from
scratch by improving the data efficiency of existing CPT recipes. We adopt the setup from Wan
(2025) of performing continued pre-training on Llama 3.2 3B Base (Grattafiori et al., 2024)
with the MegaMath-Web—-Pro mid-training dataset. To simulate a data-constrained setting, we
restrict ourselves to only 4B seed tokens of the full 73B tokens. We evaluate math performance by
via accuracy on a subset of representative benchmarks from (2025): GSM8K
2021)), MATH (Hendrycks et al.| [2021)), and MathQA (Amini et al., 2019).

21



In Table [T} we show that many of our results for pre-training from scratch transfer to continued
pre-training setting. We start with a CPT baseline (Default) from the reference hyperparameters
of [Wang et al.|(2025) which gives a 6.34% improvement over the base model. We then apply our
interventions from Appendix [C.4]and Section[3|by decreasing batch size and epoching, and we find
that weight decay was not helpful for CPT. Our final single model baseline provides an additional
5.23% lift in average accuracy on top of the reference hyperparameters. See Appendix [H|for details.

We further show that ensembling eight epoched models provides an additional 4.76% gain in average
accuracy over just a single epoched CPT model (' = 1). We observe that average accuracy scales
with increasing ensemble member count, and our best ensembles exceed the performance of a baseline
continually pre-trained on the full 73B tokens, providing a 17.5x data efficiency win.

Table 1: Data efficiency improvements on OctoThinker. We take reasoning mid-training data
from [Wang et al.| (2025)) and apply our data efficiency interventions of reducing batch size (Ap-
pendix [C.4), epoching data, and ensembling multiple models. Our best ensemble utilizing 4B tokens
outperforms vanilla CPT on 73B tokens following the original paper’s training hyperparameters,
resulting in a 17.5x data efficiency improvement.

CPT (4B tokens) K -ensembles

Benchmarks Llama 3B Defaull Lower BS Epoching (K = 1) | K=2 K —4 K=8 CPT (73B tokens)
GSMBSK 3-shot) 28.23 38.44 44.50 44.05 49.28  51.80  52.99 49.51
MATH 4-shot) 6.90 14.38 17.64 19.74 21.84  23.04  23.50 23.40
MATHQA (5 shor) 35.07 38.96 41.31 42.58 4512 46.06  45.26 44.79
Average 24.25 30.59 34.48 35.82 38.79 4035  40.58 39.23

B PROBLEM SETTING

Pre-training algorithm. We instantiate the pre-training algorithm .4 using a standard pre-training
recipe developed through the Marin project (https://marin.community) by following the
best practices shared publicly and found internally.

* Optimizer. We train with AdamW, either with a default of 0.1 or a tuned weight decay. We
set other hyperparameters to standard defaults (3, = 0.9, 32 = 0.95, ¢ = 10~%). We clip
the norm of the gradient at 1.

 Learning rate. We use a cosine learning rate schedule with a warmup for the first 1% of
training, decaying to 0 by the end of training. We always tune learning rate for all of our
experiments. Every run has its own learning rate schedule and we never report the loss
before the learning rate anneals to zero in the main body .

e Architecture. We train Llama-style auto-regressive language models. We specify the
main architectural choices in Table[2] When scaling models, we change the initialization
scheme to have variance inversely proportional to the hidden dimension (this is known
to outperform pP (Yang et al.| 2022) within our framework: https://github.com/
marin—-community/marin/issues/621. Forother architectural choices, we default
to SiLU activations, untied word embeddings, and rotary position embeddings. We note
that the non-standard scaling for the 1.4B model is a consequence of using presets in our
pre-training framework.

» Systems. We train in mixed-precision with parameters in fp32 and compute + output in
bf16. Most of our jobs were run on v4-64 or v4-128 TPUs, with bitwise-determinism for
handling preemption and promoting reproducibility.

* Data. We pre-train using DCLM data (L1 et al., [2025). We keep a fixed validation set
of 1024 sequences (4 million tokens) across all experiments for clear comparison. When
increasing the size of the train pool, we ensure that smaller pools are a subset of larger pools.

* Data order. We generate a random permutation of the windows after tokenization and use
this same permutation across epochs. We note that performance might have been better if
we used a unique permutation every epoch but keep this fixed across models which further
reduces randomness of training.

22


https://marin.community
https://github.com/marin-community/marin/issues/621
https://github.com/marin-community/marin/issues/621

Parameter 150M 300M 600M 1.4B

Context Length 4096 4096 4096 4096
Hidden Dimension 512 768 1024 2048
Intermediate Dimension 1792 2688 7168 7168
Attention Heads 8 12 16 16
KV Heads 8 12 8 8
Layers 6 12 24 16

Table 2: Model architecture configurations for different model sizes. We default to the 300M model
if not specified.

C STANDARD PRE-TRAINING DETAILS

C.1 LOCALLY OPTIMAL HYPERPARAMETERS

We are interested in finding the best setting of hyperparameters (e.g. learning rate, epoch count, and
weight decay) for a fixed parameter count and token count in the data-efficient pre-training setting.
To make this search problem tractable, we first discretize the space of hyperparameters (e.g. only
try epoch counts that are powers of 2). Under this discretization, it is prohibitively expensive to try
every possible hyperparameter selection within our grid. Therefore, we search for locally-optimal
hyperparameters as defined below.

Definition 1 (Locally-optimal hyperparameters). We define the neighborhood B(H ) of hyperparame-
ter tuple H containing m variables as the 2m neighbors from incrementing/decrementing exactly
one of the variables. We say H is locally optimal if and only if

VH' € B(H), L(A(D,N,H)) < L(A(D,N, H"))

Under certain assumptions, the locally-optimal hyperparameters are also globally optimal (for
example, if the loss was convex in each dimension when the other variables are fixed). Though this
may seem like a big assumption, we did not observe counter-examples to this in early experiments.
One can verify this property for the single model losses presented in Figure

Assuming this property, we use the following search procedure

1. Seed the search with initial runs around a best guess for optimal hyperparameters (heuristi-
cally set by us, using all runs until this point in time)

2. Take the best run so far and run its neighbors.

3. If any of its neighbors is better than the current candidate, the current candidate is sub-
optimal. Repeat step 2 with the new best run.

4. If this run is better than all of its neighbors, we consider it “certified” and terminate the
search procedure.

Though this procedure is quite expensive, we found it better than other natural heuristics which
don’t rigorously follow this procedure separately for each parameter and token count (Appendix [C.2).
Furthermore, it seems to give clean scaling in both loss and hyperparameters, suggesting that the
hyperparameter optimization landscape is nice enough for this coordinate descent algorithm to work.
We note that this is a simplified version of the assumptions used in|Wen et al.| (2025)).

Our specific discretization was forcing learning rate to be 1 or 3 times a power of 10, epoch count to be
an integer power of 2, and weight decay to be either 0.0 or an integer power of 2 times 0.1. To further
restrict the search space, we set bounds based on initial experiments tuning these hyperparameters,
with a maximum learning rate of 3e-3, maximum weight decay of 6.4, and a maximum epoch count
of 64 (these bounds only triggered for three of our searches).

23



Ablating hyper-parameter tuning

31 Figure 10: Ablating joint tuning procedure. We gener-
3501 3 ally jointly tune learning rate, epoch count, and weight
3751 @ o * decay separately for each parameter count (purple). We
370 show that trying to naively transfer hyperparameters
% 365 ] across scales is a bad idea. Red: fixing weight decay to
el i 0.1 (default regularization). Green: assuming that the
sss ]| @ Tuning epochs baseine) optimal weight decay for 150M models (0.8) is optimal
| e avsansrot o across V. Blue: assuming that the optimal epoch count
W Fixing 0.8 weight decay N .
N o for 150M models (16) is optimal across V.

100
Parameter count

C.2 ABLATING ON COORDINATE DESCENT

For the parameter scaling experiments, we jointly tune learning rate, epoch count, and weight
decay. We find this joint tuning necessary for clean scaling. To demonstrate this, we consider three
alternatives and show their scaling in Figure [I0]

1. Fixing weight decay 0.1 and tuning learning rate and epoch count (red). This baseline
has already been shown to fail in Section[2.1]

2. Jointly tuning weight decay only for 150M (green). Here, we jointly tune the weight
decay for the 150M model, finding the optimal value is 0.8. We then assume this is the
optimal value for higher parameter counts and correspondingly tune learning rate and epoch
count. We find that this scaling is not even monotonic.

3. Jointly tuning epoch count only for 150M (blue). Here, we jointly tune the epoch count
for the 150M model, finding the optimal value is 16. We then assume this is the optimal
value for higher parameter counts and correspondingly tune learning rate and weight decay.
We find that this scaling plateaus much faster than the regularized recipe.

This shows the importance of jointly tuning both weight decay and epoch count at each model scale
instead of blindly hoping for transfer.

C.3 TUNED HYPERPARAMETERS

In Figure[TT] we share the locally optimal hyperparameters we found for 4 different token counts and
4 different parameter counts. We notice a few trends when looking at the resulting hyperparameters
and power laws.

* The optimal learning rate decreases for larger models, noted by prior work (Yang et al.,|[2022}
Everett et al., 2024). The optimal learning rate does not strongly depend on the number of
tokens.

» The optimal weight decay increases for larger models. Similarly, the optimal weight decay
decreases for larger token counts. When fixing the parameter-to-token ratio, the weight
decay stays around 0.8.

 The optimal epoch count decreases for larger models. Similarly, the optimal epoch count
increases for larger token counts. When fixing the parameter-to-token ratio, the epoch count
stays around 16.

* The power laws fit across all token counts share similar scaling exponents close to 1. This
holds even though almost every model is over-parameterized at 200M tokens and under-
parameterized at 1.6B tokens.

C.4 HYPERPARAMETER ABLATIONS
We perform additional ablations on hyperparameters to understand their role beyond their optimal

values. We start from a recipe of single epoch pre-training with 0.1 weight decay and tuned learning
rate, and build our way up to tuning all hyperparameters.

24



DCLM Loss

3.75 % 10°
3.7 %100
3.65x10°
3.6x100
3.55x10°
35x100

3.45x10°

209M seed tokens

419M seed tokens

838M seed tokens

e

e

\ T 0.05/NA1.02 +3.43

DCLM Loss

3.6x10°
355x10°
35x10°
3.45x10°
34x10°
335x10°
33x10°
3.25x10°

% - 004/NALI6+322
\

-

DCLM Loss

35x10°

34x10°

33x10°

32x10°

3.1x10°

% ==+ 0.07/NALO2+3.03
\

e

150M

300M  600M

1.4B

150M

300M  600M

14B

150M

300M  600M

Model p

Model parameters

Model p

1.4B

150M

300M

600M

1.4B

150M

300M

600M

14B

150M

300M

600M

14B

32

32

08

0.8

1.6

32

04

16

LR [3e-03 | 3e-03

le-03

1e-03

LR

3e-03

3e-03

1le-03

1le-03

LR

3e-03

3 | 1e-03

8

8

32

16

8

8

64

8

S5

DCLM Lo

34x10°
33x10°
32x10°
3.1x10°

3x10°

1

1.7B seed tokens

o

\ Tt 0.09/NA0.97 +2.88
\

e

50M

300M  600M
Model parameters

1.4B

150M

300M

600M

1.4B

01

04

0.8

0.8

3e-03

le-03

le-03

1le-03

64

32

16

8

Figure 11: Tuned hyperparameters for regularized scaling. We show the optimal hyperparameters
tuned seperately for each parameter and token count. We find that as parameter count increases,
optimal weight decay goes up, optimal epoch count goes down, and optimal learning rate goes down.
We find the trends for weight decay and epoch count hold when token count decreases.

Batch size. It is known that when optimizing for throughput, it is best to train at the “critical batch
size” to best utilizes hardware (McCandlish et al.,[2018)). However if we drop this constraint and
instead measure performance for a fixed number of data points, we find that it is best to use smaller
batch sizes, as shown in Figure [12] left, corroborating prior work in optimization (Smith et al.} 2020;
Keskar et al.,|[2017; [LeCun et al.,[1998]; Marek et al.,[2025]). We use a batch size of 64, which is the
smallest size that is practical for our hardware.

Weight decay. It is known that regularization can further improve generalization when repeating
data (D”Angelo et al.}[2024). Figure[I2] right shows how varying the weight decay impacts epoched
models (1.4B parameters for 8 epochs vs 300M parameters for 16 epochs). More over-parametrized
models require a larger amount of regularization (3.2 vs 1.6). Without optimally tuning weight
decay, one may draw the incorrect conclusion that larger models are worse than smaller models in
the data-constrained setting. We also reproduce findings that higher weight decay enables a higher
optimal learning rate and epoch count, shown by contrasing Figure 2] and Figure 3]

We find that increasing weight decay strongly changes the training dynamics. Though the train and
validation losses decrease much slower at the start of training with high weight decay, they decrease
rapidly by the end of training, eventually beating the run with low weight decay. In Figure[T3] we
visualize this for the best run with weight decay 0.1 and the best run tuning weight decay. This
phenomenon also holds when using a higher weight decay on top of the best 0.1 weight decay
hyperparameters. This is in line with previous findings in optimization research (Wen et al.| 2025}
Liu et al., [2025; D’ Angelo et al., [2024)) and suggests that we should only look at the performance at
the end of training.

C.5 OVERFITTING ANALYSIS

In Section 2.1} we discuss how introducing too many epochs or parameters results in validation loss
going up which we believe is due to over-fitting. In Figure[T4] we track train loss for the interventions
of increasing epoch count and parameter count. On the left, we show how increasing epoch count
monotonically decreases train loss but eventually results in validation loss going up. On the right, we
show how increasing parameter count results in erratic changes in train loss. We hypothesize this is
because the optimal epoch count changes from 8 for the first two models to 4 for the last two models.
We find that when we restrict all models to only use 4 epochs, train loss decreases monotonically and
validation loss still goes up, suggesting over-fitting.

We note that another reason over-fitting may be happening is because our 1.4B model trades depth
for width. We did not recognize our model scaling was non-standard until the majority of our
experiments had finished because these were the default settings in our pre-training framework. We
do not think this is a severe issue since correctly tuning weight decay seems to correct for the fact
that this architecture has less layers. Moreover, the large improvement from weight decay is also
suggestive of the fact that larger models are over-fitting.

25



Batch size Tuning weight decay

4.0
7.5 1
39
7.0 4 3.8
k3 g
~ 651 = 371
3.6
6.0 4
351 —®— 300M parameters
554 o 1.4B parameters
T T T T T T T T T T T T
64 128 256 512 0.1 0.2 0.4 0.8 16 32 6.4 12.8
Batch size Weight decay

Figure 12: Re-evaluating hyperparameters for standard pre-training. Left: smaller batch sizes
are better, we stop at 64 since this is the smallest our hardware practically supports (shown for 1
epoch training with 0.1 weight decay and a fixed learning rate of 3e-3). Right: weight decay helps,
and the optimal weight decay is higher for larger models (300M is 16 epochs 3e-3 learning rate, 1.4B
is 8 epochs le-3 learning rate).

Train loss Validation loss

—— Weight decay 0.1

444 —— Weight decay 1.6 444

424

404

Loss
Loss

381

3.6

34

3.2

T T T T
101 10° 107! 10°
Tokens (billions) Tokens (billions)

Figure 13: Loss trajectories for different weight decays. We compare the best run with default
weight decay (8 epochs, 1e-3 learning rate, 0.1 weight decay) and the best run with tuned weight
decay (16 epochs, 3e-3 learning rate, 1.6 weight decay) for 200M tokens and 300M parameters. We
find that loss for runs with high weight decay decreases much more slowly at the start of training, but
quickly decreases near the end of training.

Increasing epoch count train loss Increasing parameter count train loss
504 4.0
451 38 ‘\Q\J
. °
4.0
3.6
¢ 2
EESS K
344 /
3.0 1
—@— Tuned epochs validation loss
3.2 4 —®— Tuned epochs train loss Ld
257 —e— Validation loss 4 epochs validation loss
—®— Train loss 4 epochs train loss
20 T T T T T T T T 3.0 T T T T
1 2 4 8 16 32 64 128 150M 300M 600M 14B
Epochs Parameter count

Figure 14: Train losses for epoching and parameter scaling. Left: Increasing epoch count results
in train loss decreasing while validation loss starts increasing. Right: Increasing parameter count
does not always decrease loss, potentially due to optimal epoch count changing (8, 8, 4, 4). Train loss
monotonically goes down when restricted to 4 epochs.

26



Varying ensemble hyper-parameters Single member loss Infinite member asymptote

414 Best asymptote: 32 epochs, 0.8 WD

(Fit: 0.44/KA1.03 +3.27) 8{ 3656 3595  3.607 8

40 ___ Bestsingle model: 16 epochs, 1.6 WD
(Fit: 0.25/KA1.02 +3.34)

DCLM Loss
-
g
Epochs

1 2 3 4 5 04 0.8 16 04 0.8 16
Ensemble member count K Weight Decay Weight Decay

Figure 15: Tuning hyperparameters of ensemble members for lowest asymptote under X' — oo.
We construct ensembles for different K when varying epoch count and weight decay. We find that
the ranking between hyperparameters changes across K (left) and that the infinite member asymptote
benefiting from more epochs and less weight decay per member.

D ENSEMBLING DETAILS

D.1 ENSEMBLING FORMALIZATION

The ensembling pre-training algorithm & accepts a standard pre-training algorithm A and trains
K members that are identical except for random seed Z; controlling the data order and model
initialization. The output of the ensembling algorithm is a model that averages the logits of the K
models, computed by querying all & models. More formally, we define the ensembling algorithm as

gA(D7N7 Ka H) = LOgltAVg ({A (D7N7 ZZ’H)}ZE[K]>

for randomness Z;, where LogitAvg produces a model with likelihood for a sequence x given by

. 1
LogitAvg (Mie(k)) (z) o exp Ve Z log (M (x))
1€[K]

D.2 OVERVIEW OF ENSEMBLING TUNING

Given the success of ensembles, we study how to tune their hyperparameters. In Figure {] the
ensemble members were trained using the best hyperparameters for a single model, but this may not
be optimal for large K ensembles. More formally,

argmin £ (A(D, N, H)) = argmin L (E4(D,N, K =1,H)) # argminKlim L(EA(D,N,K, H))
H H H —00

best for single model best for ensemble member asymptote

In Figure|15} we train ensembles for K € [5] as we vary weight decay and epoch counﬂ To estimate
the best hyperparameters as K — oo, we fit a power law and refer to the asymptote. We find that
the ranking between hyperparameters changes depending on K (Figure [I3] left). Importantly, the
optimal hyperparameters for /' = 1 (black) are not the best asymptote under K — oo (pink), which
benefits from more epochs and less weight decay. This intuitively corresponds to each member being
more overfit to the data, which might be helpful to learn different views of the data. Selecting the
hyperparameters when considering K — oo improves the ensembling asymptote from 3.34 to 3.27

(Figure T3] right).
Another design choice for our ensembles is the source of randomness Z;. Though we vary both the

data order and model initialization, we find that either one by itself obtains most of the benefits of
ensembling and reserve a full analysis to Appendix [D.3]

*We find that optimal learning rate is generally consistent across K, Appendix

27



Ensembles with different sources of randomness

350 1 N

Loss
/

345 .~ -

=== Varying no seed N -@
=== Only train seed (fit: 0.20/K~1.13 + 3.38) ===o
~== Only data seed (fit: 0.24/K"1.10 + 3.34)

Both seeds (fit: 0.26/K*0.97 + 3.32)

340 1

1 2 3 4 5
Ensemble member count

Figure 16: Sources of randomness for ensembling. Only varying train or data seed is enough to
induce the benefits of ensembling. Varying data seed (i.e. order) is better between these two.

D.3 SEED SCIENCE

For our training runs, the randomness only comes from the sampled initialization (train seed) and
shuffled data order (data seed). We first characterize the run-to-run variance when varying both seeds,
only train seed, or only data seed. We train 5 models for each of the three randomness options. When
using the optimal hyperparameters for a 300M model with 200M tokens, the standard deviation is
estimated to be 0.008207 for both seeds, 0.007605 for only train seed, and 0.007213 for only data
seed. This is in line with prior work that shows how only a small amount of instability is needed to
induce the majority of the variance over a final model’s loss (Summers and Dinneen| 2021} Jordan)
2024).

We now measure the loss of ensembles with these sources of variance in Figure [I6] Either of these
sources delivers most of the benefit of ensembling, with data order helping more. Considering the
marginal benefit of introducing additional sources of randomness, we didn’t strongly explore adding
more sources of randomness during training.

D.4 HYPERPARAMETER TUNING FOR ENSEMBLES

Similar to parameter scaling, we hope to find the locally optimal hyperparameters for a given
parameter count and token count. However, we care about the hyperparameters as K — oo, not at
K =1 (as discussed in Section[4.2). Since it is too experimentally prohibitive to search for locally
optimal hyperparameters for the asymptote, we study how the hyperparameters change relative to the
optimal H for single models.

We repeat the analysis in Figure[I5]for 3 different parameter counts as well as 2 different learning
rates at 300M parameters, shown in Figure[T7} We find that for all of the displayed settings, our best
run comes from an ensemble with the same learning rate, half weight decay, and double epoch count
relative to the optimal single model hyperparameters. For the three parameter counts we display, we
verify that these are locally optimal hyperparameters. In fact, across all of the ensembles we trained
across our scales (including many that are not directly visualized), we find only one counter-example
to this heuristic. This occurs for 1.4B models trained on 200M tokens, where the hyperparameters
that minimize the asymptote do not halve the weight decay. We suspect this change occurs because
this is our most over-parameterized setting, and our scaling laws use this best run over the heuristic
for this single setting.

D.5 ALTERNATIVES TO ENSEMBLING

The success of ensembling suggests alternative parameterizations that might also boost data efficiency.
We discuss commonly considered ones here, which we were not able to get to outperform ensembling.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Ensemble tuning for N =150M, D =209M

Single member loss Infinite member asymptote
(LR =0.003) (LR = 0.003)

3515

3510

3.505 ,§
3.500
3.495
0.2 04 0.8 0.2 04
Weight Decay Weight Decay
Ensemble tuning for N =300M, D =209M
Single member loss Infinite member asymptote
(LR - 0.001) (LR = 0.001
346
3639 359 a4
43 34
42 342
3.629
41 340 Y
40 g 3.38 2
3.36
39
334
38
332
37
330
36
04 08 16 04 08 16
Weight Decay Weight Decay

Single member loss Infinite member asymptote
(LR = 0.003) (LR = 0.003)

-

08 X 04 08
Weight Decay Weight Decay

Ensemble tuning for N = 600M, D =209M

3.595

Loss

Single member loss
(LR = 0.001)

43
3.506 42 8
41

Infinite member asymptote
(LR = 0.001)

16 » X
Weight Decay Weight Decay

08 32

Figure 17: Single model and asymptote loss when varying epoch count and weight decay for
different model sizes, token counts, and learning rates. We display an extended version of
Figure T3] for 200M tokens with 150M, 300M (sub-optimal and optimal LR), and 600M parameter
models. For these settings, the “double epoch, half weight decay” heuristic correctly predicts the best
ensemble. This heuristic is consistent with all of our parameter and token counts except for our most
over-parameterized setting.

29



D.5.1 MIXTURE-OF-EXPERTS

Ensembling may qualitatively seem similar to training with Mixture-of-Experts (MoE). However,
we find an important distinction: when training an ensemble, the learning trajectory for each model
is completely independent of each other, whereas for a MoE, it is still a single learning trajectory.
Unfortunately, the intuition from |Allen-Zhu and Li| (2023)) suggests that the sparsity of the MoE
architecture is not guaranteed to benefit from “multi-view” data in the way ensembles do. In their
paper, they consider a simplified analogue where they construct a model that runs the ten models
in parallel and takes the gradient step through the ensemble jointly. They find that this barely
improves performance over a single model. In early experiments, we were able to reproduce this
phenomenon, with a jointly trained 10 ensemble of models outperforming a single model by only
0.02 loss. Therefore, we hypothesize that if MoE’s were to help, their benefits would come from the
drop-out aspect instead of the sparsity aspect, which does not require MoE’s (note that we did not
tune or consider drop-out in this work, though we expect it to further help performance). We hope
future experiments can settle this intuition more concretely.

D.5.2 MODEL SOUPS

Prior works have shown that averaging the weights of independent training runs can result in better
models (Wortsman et al., [2022)). However, we note that most success from averaging weights
comes at fine-tuning, not pre-training. We replicate these results in our own settings, with model
soups achieving close to random performance on downstream benchmarks (Table [5) but slightly
outperforming ensembles in continued pre-training (Table [7).

One intuition for this discrepancy is that models need to be in the same “loss basin” for averaging to
help final performance, and pre-trained models enter different loss basins (Singh and Jaggi, 2023}
Ainsworth et al.,[2023)). Past studies also design compute-efficient algorithms for merging models
trained from scratch, but they find that the more expensive procedure of distillation outperforms
their method (Singh and Jaggi, 2023). Since we are in the infinite compute regime, we opt to use
distillation over model merging for the best performance.

D.6 ORDER OF LIMITS

In Section[4.3] we are interested in computing the best possible performance of ensembles as N and
K both go to co. There are a couple of different ways to compute this, some of which are enumerated
below

Double Limit 1 (Our Approach). We first solve for the limit as K — oo by tuning asymptotes
and then solve for the outer limit via a second power law over the inner asymptotes.
lim lim min £ (€4 (D, N, K, H))

N—oo K—oco H
Hypothetical Double Limit 2. We can flip the above order and instead take N — oo before
K — oo, corresponding to

li li i D,N,K,H

W U (B (D B 1))
Hypothetical Double Limit 3. Following literature in compute-optimal scaling, we can find the
best possible performance for a given compute budget C' and take C' — oo.

lim min L(EA(D,N,K,H))

C—00 H,N,K
s.t. FLOPs(D,N,K,H)=C

We believe that our approach is experimentally much more convenient than the hypothetical ap-
proaches even though they are equivalent in output under assumptions. We share our reasoning by
answering the following questions comparing the approaches.

The core assumption that we will make is that f(N, K) = ming £ (€4 (D, N, K, H)) is monotone
in N and K when the other is fixed. Across all of our experiments, we do not observe any contra-
dictions to this assumption as long as we tune regularization (for examples, refer to Figure []and

Figure[7).

30



* Are Double Limit 1 and 2 mathematically equivalent? Mathematically, both limits are
equivalent. For a quick proof, define k; := limg oo (D, N)andn; := limy_,oo f(D, N).
By monotonicity, both k; and n; exist and are non-increasing sequences. Define k& =
limy 00 k; and n = lim g, m; which exist for the same reason. Note that f(NV, K) < n,,
and since limits preserve inequality, it follows that k; < n, and further follows that &k < n.
By repeating this argument in the reverse direction, it follows that k = n.

¢ Are Double Limits 1 and 2 mathematically equivalent to 3? If we make the same mono-
tonicity assumption as earlier, then we have that the minimization problem is monotonic in
C'. With this, we can apply a similar argument as above to show that the limit converges and
is equivalent to k and n.

* How do we solve for the inner limit in Double Limit 1? It is computationally prohibitive
to tune all the hyperparameters for each choice of N and K. Therefore, we would prefer
searching for optimal hyperparameters once per choice of IV to fit the outer limit. Since we
are only interested in the performance as X' — oo increases, we can reasonably approximate
this via our hyperparameter heuristic from Appendix [D.4] without ever determining the
optimal hyperparameters at lower values of K.

* Why do we prefer Double Limit 1 to Double Limit 2? We first make the observation that
tuning hyperparameters depends on NV, but if we follow the previous bullet’s asymptote
tuning heuristic, tuning hyperparameters does not depend on any finite value of K. Therefore,
Approach 2 would still have to fit hyperparameters for each N, K, whereas Approach 1
avoids this by fitting it once per N.

* Why do we not use Double Limit 3? In Double Limit 1, we keep the hyperparameter as
the scaling axis, instead of Double Limit 3 which sets compute as the scaling axis. When we
choose to scale the hyperparameter, we can use our locally optimal hyperparameter search
algorithm to find the best possible performance for that hyperparameter. This is difficult
when scaling compute, since our hyperparameters such as model size and epoch count
influence the compute spent during pre-training. Our preference reflects how practitioners
typically use Chinchilla Approach 3 (fitting loss for best run given N, D, closer to Double
Limit 1) over Chinchilla Approach 1 (fitting the envelope of the runs, closer to Double Limit
3) (Besiroglu et al., [2024)).

E DATA SCALING

E.1 EPOCH TUNED BASELINE

Unlike regularized parameter scaling and ensemble scaling where we estimate the best possible loss
via asymptotes (Section 3], epoch tuning eventually over-fits. To estimate the best possible loss under
epoch tuning for each token count, we use the following procedure.

1. For a fixed token count D and fixed parameter count N, search for locally optimal hyperpa-
rameters while fixing weight decay to be 0.1

2. Perform this for all parameter counts /N and token counts D

After following this procedure, we found that 600M models and 1.4B models were within ~ 0.02 loss
of each other and were much better than the other models, as shown in Figure@ Across all our token
scales, 600M models slightly outperformed 1.4B models, which we discuss in[C.5 Therefore, we take
the 600M performance as an estimate of the best possible loss under regularized parameter scaling.
We believe the performance of this algorithm would be better under better width/depth/architectures,
though we expect this benefit to translate to our other recipes as well.

E.2 SCALING PARAMETER COUNT

For each token count D, we characterize the best possible loss of the regularized recipe by estimating
limy o0 ming £ (A (D, N, H)) via the asymptote of the power law as described in Section[3} Since
we now have to compute asymptotes to build the points for the data scaling law, we follow a two step
procedure as visualized in Figure[d]

31



1. Varying parameter count (left plot). We first follow the locally-optimal hyperparameter
search detailed in Section [3]to find the best possible models for four parameter counts across
four seed token counts. These are the 16 points in Figure|[d] left.

2. Varying token count (right plot). For each seed token count, we can fit a power law and
use the asymptote Ep as an estimate of £%,. These four (D, Ep) tuples form the purple
points in Figure[6] right. We then fit a data scaling power law over these asymptotes, shown
as the purple line.

E.3 SCALING MEMBER AND PARAMETER COUNT

Following Section we repeat the above procedure for ensembles by taking
limpy o0 img oo ming £ (E4 (D, N, K, H)) for each seed token count D. This results in
the following three step procedure, visualized in Figure[7]

1. Varying ensemble member count (left plot). In Figure [/} left, we picture the losses
of ensembles across our 4 token counts, 4 parameter counts, and 5 member counts with
hyperparameters selected for better asymptotes. For each of the 16 pairs of D and N, we
use a power law to extrapolate the performance as we take member count X' — oo.

2. Varying member parameter count (middle plot). The asymptotes of the above 16 limits
are visualized in Figure[/| middle. Given these asymptotes, we can fit a second set of 4
power laws that extrapolate the loss as we take parameter count N — oo.

3. Varying token count (right plot). The asymptotes of these 4 limits are visualized by the
gold points on Figure (/] right. We then fit a data scaling law, depicted by the gold line.

Tuning parameter and epoch count

Figure 18: Scaling seed token count for epoching and
% parameter scaling. For each seed token count, we train
sl models of varying N with jointly tuned learning rate and
e epoch count with a weight decay of 0.1. We take the best
- possible model at each token count as an estimate of the best
performance under the standard recipe.

321 @ 209M tokens
A 419M tokens
314 [ 838M tokens
9 1.7B tokens

150M 300M 600M 148
Parameler count

F DISTILLATION DETAILS

F.1 DATA GENERATION

For all distillation experiments, we generate teacher data from the same model family: K -ensembles
of 300M models with optimal hyperparameters for asymptotic performance. We choose to perform
self-distillation with a 1-ensemble from this family rather than the 300M model from the regularized
recipe to cleanly isolate the effect of distilling from a stronger teacher. In practice, we don’t observe a
significant difference: self-distillation from the 1-ensemble (blue point, Figure[8)) gives a loss of 3.43
while self-distillation from the 300M regularized recipe (purple point, Figure ) gives a loss of 3.44.

Because we are unconstrained by train compute, optimal distillation should never epoch on teacher
data and instead generate more. We pre-generate a large pool of teacher distillation data by sampling
unconditionally with temperature 1 using a high-throughput inference engine designed for batched
workloads (Juravsky et al.,[2025). For generating ensemble teacher distillation data, we experiment
with inferencing both the logit averaged ensemble as well as the individual members. We observe
better student performance using the individual members.

32



F.2 HYPERPARAMETERS

For both ensemble distillation and self-distillation, we search for optimal hyperparameters using a
procedure similar to Appendix [C.I] Our distillation recipe also introduces a new hyperparameter
which we refer to as the mixing ratio: the ratio of batches of real data to synthetic data. A mixing ratio
of 1 : 1 indicates that we take the same number of gradient steps on real data as teacher-generated
data. For example, if we have 209M tokens of real data that we wish to epoch on 16 times, a 1 : 1
mixing ratio would require 209 - 106 x 16 = 3.3B tokens of teacher-generated distillation data. We
find tuning the mixing ratio to be important for performance.

We detail the exact values of hyperparameters in Table 3] Interestingly, we observe that optimal
weight decay for distillation is lower than that of our regularized recipes, in line with standard practice.
In addition, we find that ensemble distillation admits a higher optimal mixing ratio, likely due to
the greater diversity from the teacher’s synthetic data. Our ensemble distillation run trains on a
total of 16 x 209 - 10° x (1 + 9) = 33.4B tokens, while our self-distillation run trains on a total of
16 x 209 - 10° x (1 + 3) = 13.4B tokens. Due to limitations in inferencing, we only generate 10B
tokens each of ensemble distillation and self-distillation data, so our ensemble distillation may epoch
up to 3 times on the teacher data.

Parameter Ensemble Distill Self-Distill

Learning Rate 3e-3 3e-3
Weight Decay 0.1 0.1
Mixing Ratio 1:9 1:3
Epochs 16 16

Table 3: Optimal hyperparameters for ensemble and self-distillation.

F.3 MIXING DATA ABLATION

We provide a token-matched ablation for the effect of mixing in the real pre-training data when doing
self-distillation. As in Appendix [F.2] we start with the same pool of 10B pre-generated tokens from a
300M 1-ensemble. Perfect distillation into a student model of the same size (with an infinite amount
of teacher data) would achieve the same loss as the teacher.

We compare self-distillation with and without mixing in real data. For mixing in real data, we epoch
the real data 16 times and use a 1 : 1 mixing ratio so that the total number of tokens we train on is less
than 10B. For no mixing, we simply train on a subset of the pre-generated pool. Both methods use
the same learning rate and batch size, train on a total of 16 x 209 - 106 x (1+1) = 6.688B tokens,
and never repeat the synthetic teacher data. For no mixing, we additionally search over weight decay.

Table 4] shows that without mixing in real pre-training data, self-distillation is substantially worse
than the teacher model (as one might expect). Mixing data allows for self-distillation to exceed the
teacher model.

Teacher Model  Self-Distill (1 : 1 mixing)  Self-Distill (No mixing)
Val Loss 3.7103 3.4373 4.0693

Table 4: Effect of mixing real pre-training data for self-distillation.

33



Model type ARC-Easy (%) PIQA (%) SciQ (%) Avg (%)
150M 40.9511 o1 59.6811 14 62.4041 53 54.354070

. . 300M 41.9641 o1 61.1541 14 62.904153 5534107
Unregularized model scaling 6\ y 30.861100  59.90i114 605011 55 534240 79
1.4B 40.6141 o1 60.3911 14 61.404; 54 54141070

150M 41.2911 o1 60.1711 14 63.9041 50 55.1240.70

. 300M 44.28 11 oo 61.811113 69.1041 46 58.3940.70

Model scaling 600M 471041 02 63.0641 13 69.704145 59.9510.70
1.4B 45.66i1,02 63.82i1_12 72-70i1.41 60-73i0.69

K=1 42.8541 02 60.8841 14 64.90415 5621107

K= 44.6141 oo 62.0211 13 65.8011 50 57.4840 7

150M ensembles K=3 44.91:|:1_02 62.08:|:1_13 68.30:‘:1.47 58.43:‘:0,71
K =4 45.8341 02 621941 13 69.2041 46 59.0710.70

K=5 45-50i1.02 62.30i1_13 70-40i1.44 59-40i0.70

K=1 44.3641 02 62.9541 13 68.104147 584741071

K =2 46.7241 02 63.8711 12 70.7041 44 60.434070

300M ensembles K=3 47.77:|:1_02 64.74:|:1_11 72.90:‘:1.41 61.80:‘:0,69
K =4 48.3641 03 65.8041 11 73.104140 62.4510.69

K=5 49-33i1.03 65.67i1_11 74-00i1.39 63-00i0.68

K=1 45.9241 02 62.8441 13 68504147 59.0940.71

K =2 475611 o2 64.0411 12 71.8041 45 61.1320.60

600M ensembles K=3 48.44:|:1_03 64.25:|:1_12 73.30:‘:1.40 62.00:‘:0,69
K =4 49.0341 03 64.8041 11 73.704130 62.5110.69

K=5 50-34i1.03 64.80i1_11 75-30i1.36 63-48i0.68

K=1 43.56.41 02 64.2041 12 68.8041 47 58.8510.70

K =2 47.2611 o2 65.1311 11 75.3041 36 62.5640.68
1.4B ensembles K=3 49.33:|:1_03 65.40:|:1_11 76.50:‘:1.34 63.74:‘:0,67
K =4 48.8641 03 66.3841 10 T77.804131 64354067
K=5 49-71i1.03 66.38i1_10 77-10i1.33 64-39i0.67

o Self 46.6841 02 62.3541 13 T72.604141 60.5410.69
Distillation (300M) Ensemble 48444, 05  62.841115 75304156 62195068
K=2 26.5610 91 54.8441 16 24.704136 35.37T10.67

Model soups K=14 24961050 55284116 23.9011 45 3471006

Table 5: Benchmark accuracies of all methods using 200M tokens on ARC-Easy, PIQA, and SciQ
with averages. Entries are value gg in percentage points.

G DOWNSTREAM TASK DETAILS

G.1 DOWNSTREAM TASKS

We provide a full breakdown of downstream benchmark scores per model type in Table[5] We use
Ilm-evaluation-harness (Gao et al.,[2024) for our evaluations.

G.2 HYPERPARAMETER TUNING

We find that hyperparameter tuning from validation loss transfers to downstream benchmarks as well.
Figure [T9] (left) shows how adding heavy regularization with weight decay (with a fixed learning
rate of 3e-3) shifts the overfitting point based on validation loss to the right and down. We observe a
similar effect in Figure [T9](right), although the overfitting threshold (in epochs) is twice the threshold

observed for validation loss.

34



Weight decay overfitting (Loss)

Weight decay overfitting (Downstream benchmarks)

5.50 q

5251

5.00 q

4.75

Loss

450 q

4251

4.00 q

—8— Weight decay 0.1 0.65 4
—8— Weight decay 1.6

0.60 1

o

o

&
L

Average error

0.50 7

045 4

—@— Weight decay 0.1
—8— Weight decay 1.6

Figure 19: Effect of regularization on overfitting for downstream benchmarks. Downstream
benchmarks also reflect the benefit of heavy regularization on performance. The effect of overfitting
on downstream benchmarks (right) appears at twice the epoch count compared to validation loss

(left).

T T T T T T T T T
8 16 32 64 128 1 2 4 8

T T
16 32

Epochs Epochs

H CONTINUED PRE-TRAINING

H.1 HYPERPARAMETERS

Hyperparameters for continued pre-training baselines are shown in Table [ The 73B CPT run
uses the default hyperparameters from (Wang et al.,|[2025)), except for learning rate which we tuned
ourselves. The individual members of the K -ensembles use the same hyperparameters as the standard

recipe.

H.2 CPT soups

We ablate the performance of model soups compared to ensembling in our continued pre-training
setting by averaging the weights of the members instead of ensembling them. Unlike standard
pre-training, CPT soups perform strongly and slightly outperform ensembles as we increase the

Parameter Default Lower BS Epoching

Learning Rate 3e-5 3e-5 3e-5
Weight Decay 0.1 0.1 0.1
Batch Size 512 64 64
Epochs 1 1 4

Table 6: Hyperparameters for continued pre-training.

number of averaged models (Table[7).

Table 7: Continually pre-trained ensembles vs. soups

T T
64 128

Benchmarks Llama 3B [ -ensembles K-soups

K=2 K=4 K=8| K=2 K=4 K=28
GSMS8K 8_shot) 28.23 49.28 51.80 5299 49.73 53.83 54.96
MATH 4-sho) 6.90 21.84  23.04 23.50 2240  23.02  23.72
MATHQA 5 shor) 35.07 45.12 46.06  45.26 4459  46.10 45.33
Average 24.25 3879  40.35 40.58 38.91 4098 41.34

35




Sensitivity analysis for regularized parameter scaling Subsampling for ensembling

3751 @ === Main body power law (Fit: 0.05/NA1.02 + 3.43) 370 Using 8 runs (Fit: 0.44/KA1.03 + 3.27)
\X Seed 1 power law (Fit: 0.03/NA1.14 + 3.44) N —=~ Using 4 runs (Fit: 0.44/K1.04 + 3.27)
3.70 4 % === Seed 2 power law (Fit: 0.04/N~1.09 + 3.43) 3.65 1 \\
‘\ \
N 3.60 1 %
3.65 1 N \
N .
N 355 4 S5
2 N 2 AN
A
& 360 Y 3 350 hS
» LS
N SN
3.55 1 RN 345 4 .
T Y
RSN 3.40 4 ~o
350 o ~e
Tessa 3.35
.
.

345 T T T T T T T T T T T T

150M 300M 600M 148 1 2 3 4 5 6 78

Parameter count Ensemble member count K

Figure 20: Sensitity analysis. Left: When re-fitting the regularized power law across two additional
seeds, we find that the asymptote stays relatively stable. Right: When subsampling the number of
points for the ensemble scaling law, we find that the power law barely changes.

I POWER LAWS

I.1 SENSITIVITY ANALYSIS

To test whether our asymptote estimation is reliable due to run-to-run variance, we conduct a
sensitivity analysis for regularized parameter scaling and ensembling, shown in Figure

To test parameter scaling, we fit three power laws to all the models trained where each power law
uses a different seed (governing data order and model initialization). Though the scaling laws change
per seed, they remain relatively consistent, with the asymptotes staying close together. This is
encouraging, as the standard deviation in asymptotes is close to the run-to-run standard deviation for
300M models (Appendix [D.3).

Since we have more runs for ensembling, we test the reliability of ensembling by subsampling the
number of members. When fitting a power law using up to four ensemble members, we find an
extremely similar law to using up to eight ensemble members. Qualitatively, over the course of our
experiments, we found that the scaling law for ensembling is a lot more stable than the scaling law
for parameter scaling.

We note that this is a limited stress-test and that it is likely our asymptote estimation procedure is
quite noisy. Furthermore, we note that this does not test our two-tier and three-tier power laws for
joint scaling of parameters, members, and data, nor does it test our settings where our best run is
further from the asymptote. We advise taking these asymptotes with a grain of salt and interpreting
them as rough estimates.

1.2 FITTING LAWS

To fit our power laws, we use scipy.optimize.curve_fit, either with no initial condi-
tions and bounds or with p0=[1.0, 0.5, 2.0] and bounds=([0, 0, 0], [np.inf,
np.inf, np.inf]) ‘. We note that unlike prior work where such parameters have been found
to be important (Besiroglu et al., [2024; Hoffmann et al.,[2022), we did not find them to be critical
considering how our fits are simple and over 1 dimension.

J ADDITIONAL RELATED WORK

Over-parametrized machine learning. We show that even though early work in double descent
suggests that over-parameterized deep learning does not have clean scaling laws due to double
descent (Belkin et al.,|2019; Hastie et al., 2020; Nakkiran et al.,|2019)), we can get clean scaling via
tuning regularization, agreeing with theory in over-parameterized regression (Advani and Gangulil
2016; Nakkiran et al., [2021; |Canatar et al., 2021; Simon et al., 2024).

36



Distillation algorithms Though we use sequence knowledge distillation (Kim and Rush|, 2016))
as a preliminary demonstration, there are many better distillation algorithms such as using more
supervision via logits (Sanh et al.| 2020) and minimizing different divergences between the teacher
and student (Agarwal et al.l 2024} |Gu et al.} [2024). Past work has further quantified the scaling
properties of logit distillation (Busbridge et al.,[2025)), and logit distillation is increasingly used to
pre-train the most performant small language models (Goyal et al., 2025} [Yang et al.| 2025}, [Team

et al, 2025%).

Synthetic data. We can interpret distillation as a form of synthetic data, and unlike recent work on
synthetic data to improve data efficiency (Maini et al, 2024} [Allen-Zhu and Li, 2024}, [Su et al., 2025}

Team et al., 2025b} [Yang et al.} [2024}; Ruan et al.,[2025), distillation requires minimal human priors
such as a trusted reward function or known augmentation invariance like rephrasing.

Classical data-constrained deep learning. Historically, many machine learning benchmarks
before the era of large language models were data-constrained (Marcus et al., [1993; [Warstadt et al.
2023}; |[Deng et all, [2009; [Lecun et al [1998), resulting in many effective algorithms. For example,
the best models on Penn Tree Bank utilized dynamic evaluation (Mikolov et al.} 2010} [Krause et al.,
[2017), ensembling and model averaging (Takase et al., 2018 [Zaremba et al., 2015), regularization
(drop-out, weight decay, weight tying, lower batch size) (Merity et al., [2017; [Zaremba et al., 2015},
[Gal and Ghahramanil, 2016)), data augmentation (Shi et al., [2021; Xie et al., 2017), and novel
architectures (Zilly et al., [2017; [Grave et al,[2016; [Yang et al., 2018). We revisit a few of these
algorithms and advocate for future work to explore all others.

37



	Introduction
	Standard pre-training
	Evaluating existing data-constrained recipes

	Regularized parameter scaling
	Ensemble scaling
	Defining ensembles
	Scaling member count instead of parameter count
	Joint scaling recipe composing parameter and ensemble scaling

	Scaling the seed token count under infinite compute
	Data scaling laws for single model recipes
	Data scaling laws for ensembles
	Data scaling analysis

	Data efficiency under parameter constraints
	Reducing final parameter count via ensemble distillation
	Reducing train parameter count via self-distillation

	Downstream tasks
	Related Work
	Discussion
	Ethics
	Reproducibility
	Continued pre-training
	Problem setting
	Standard pre-training details
	Locally optimal hyperparameters
	Ablating on coordinate descent
	Tuned hyperparameters
	Hyperparameter ablations
	Overfitting analysis

	Ensembling details
	Ensembling formalization
	Overview of ensembling tuning
	Seed science
	Hyperparameter tuning for ensembles
	Alternatives to ensembling
	Mixture-of-Experts
	Model soups

	Order of limits

	Data scaling
	Epoch tuned baseline
	Scaling parameter count
	Scaling member and parameter count

	Distillation details
	Data generation
	Hyperparameters
	Mixing data ablation

	Downstream task details
	Downstream tasks
	Hyperparameter tuning

	Continued pre-training
	Hyperparameters
	CPT soups

	Power laws
	Sensitivity analysis
	Fitting laws

	Additional related work

