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ABSTRACT

This paper explores a novel approach for modeling renormalization processes us-
ing Markov categories, a formalism rooted in category theory. By leveraging the
abstraction provided by Markov categories, we aim to provide a coherent frame-
work that bridges stochastic processes with renormalization theory, potentially en-
hancing the interpretability and application of these crucial transformations. Our
study elucidates theoretical insights, outlines computational benefits, and suggests
interdisciplinary applications, especially in conjunction with machine learning
methodologies. Key comparisons with existing models highlight the advantages
in terms of flexibility and abstraction.

Background. In the realm of modern physics, renormalization is an indispensable tool that ad-
dresses some of the most complex challenges faced in theoretical and practical applications (Pes18).
It provides a means of managing some infinities that arise in quantum field theories, allowing
physicists to make accurate predictions across varying scales (Wei95). Despite its pivotal role,
traditional approaches to renormalization, while successful in many aspects, often fall short of
offering a coherent framework that integrates seamlessly with both computational and theoretical
ideas (BSH80; Pes18).

Renormalization has been a cornerstone technique for achieving scale consistency and extracting
meaningful physical predictions in diverse fields such as quantum electrodynamics and statistical
mechanics (Zin02; Car96). These methods have historically guided the translation of vague theoret-
ical constructs into quantifiable hypotheses and results (Fey61). However, the pursuit of a unified
approach remains a significant hurdle, primarily due to the fragmented nature of existing methods,
which are effective, but lack cohesive integration (Car96).

Conceptual framework. In this work we venture into innovative territory by positing the use of
Markov categories (CJ19; Fri20), in particular categories of stochastic matrices and Markov kernels,
as a formal structural framework for renormalization. Using the rich structures provided by these
categories, we can formalize renormalization processes in a structural way. The objective is not
only to systematically capture the stochastic nature inherent in these physical processes, but also to
elucidate the underlying conceptual structures, which could in turn enhance computational efficiency
and provide a more unified theoretical basis for future applications.

In a Markov category, objects can be interpreted as “spaces of outcomes” (e.g., all possible mi-
crostates of a physical system), and morphisms are stochastic kernels (i.e. conditional probability
distributions). In renormalization:

• The fine-grained space X is the set of all microstates (e.g., spin configurations at high
resolution).

• The coarse-grained space Y is the set of fewer, lower-resolution effective states (e.g.,
block spins or averaged magnetization).

• A coarse-graining map φ : X → Y is a Markov kernel: for each microstate x ∈ X , it
assigns a probability distribution φ(· | x) over Y .

As renormalization typically proceeds by iterating such block transformations, we regard

φ1 : X −→ Y, φ2 : Y −→ Z, . . .
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as a sequence of Markov morphisms. Composition in the Markov category then matches the repeated
application of these coarse-graining steps, i.e. φ2 ◦ φ1 represents further reduction in degrees of
freedom. One might think of this iterative process as a discrete version of the renormalization group
flow.

Usually, the coarse-graining step involves a form of “averaging” over the quotiented degrees of
freedom. Sometimes this is a deterministic procedure (a function), sometimes, such as in the next
example, the procedure is probabilistic. A Markov kernel is therefore a way of modeling all these
possible ways.

Example: Ising spin chain. Consider a finite one-dimensional (1D) Ising chain of N spins with
periodic boundary conditions (Kad66). Each spin σi can take values in {+1,−1}. Thus the mi-
crostate space is

X = {±1}N .
We assume a Hamiltonian of the typical form

H(σ) = −J
N∑
i=1

σiσi+1,

where J > 0 and σN+1 ≡ σ1 (periodic boundary). A simple real-space renormalization step groups
spins in blocks of size b (for instance, b = 2) and replaces each block with an effective spin that
depends stochastically on the spins in that block. Denote by

Y = {±1}N/b

the coarse-grained configuration space, where each “block spin” σ̃k ∈ {±1} represents block k of
original spins (σ(k−1)b+1, . . . , σkb).

A common (though still somewhat simplistic) choice for the block-spin rule might be the majority
rule:

σ̃k =

{
+1, with probability proportional to e−βH̃(σ),

−1, with probability proportional to e−βH̃(σ),

where H̃(σ) is an effective Hamiltonian constructed from the block’s original spins. More explicitly,
for each block k one might define

P (σ̃k = +1 |σ(k−1)b+1, . . . , σkb) =
e−β∆E+

e−β∆E+ + e−β∆E−
and similarly for σ̃k = −1,

with ∆E± representing the energy cost of assigning +1 or −1 to the block spins, given the original
microscopic configuration.

Taken together, these conditional probabilities for each block define a single Markov kernel

φ : X −→ Y, σ 7→ P
(
σ̃ |σ

)
,

where σ̃ represents the entire coarse-grained configuration. In the category of finite sets and stochas-
tic matrices, φ(σ̃|σ) is simply the product of each block’s transition probability.

The power of the Markov category viewpoint emerges when we iterate block-spin transformations.
For a second-level coarse-graining,

ψ : Y −→ Z,

one obtains a composed Markov morphism

ψ ◦ φ : X −→ Z,

capturing the effect of applying two successive coarse-graining steps (first from X to Y , then from
Y to Z). This repeated application of Markov morphisms mimics the iterative RG flow in a rigorous
categorical sense: each new morphism lumps fewer degrees of freedom at each step, maintaining
track of how spin configurations evolve probabilistically under repeated blocking. In diagrams:

X φ1 φ2 . . .X(1) X(2)
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Note that the Markov kernels can be obtained canonically from (measurable) taking values in proba-
bility distributions, by postcomposing with the sampling kernel (see for example (FGPR23)), mean-
ing that at each step, the following diagram commutes,

X(k) P (X(k+1))

X(k+1)

kernel

function

sample

where P (. . . ) denotes forming the space of probability measures. Therefore, the Markov kernel
language is equivalent to to the usual way, but it is more concise and structured.

Conclusion. This paper presents a novel perspective on renormalization by recasting its core pro-
cesses in the language of Markov categories. By viewing block-spin transformations and other
coarse-graining steps as morphisms in a category of stochastic maps, we obtain a unified framework
for handling the iterative, multi-scale aspects of renormalization. This categorical approach offers
high-level clarity and organizes the stochastic transformations that can otherwise be obscured in
traditional settings. The underlying string-diagram calculus helps track marginalizations, condition-
als, and effective parameters in a more transparent way, aligning renormalization steps with broader
principles of probabilistic programming and Bayesian inference.

Beyond providing a disciplined bookkeeping tool, the Markov-category perspective paves the way
for cross-disciplinary applications, particularly in machine learning, where multi-scale modeling
and hierarchical abstractions share conceptual links with the renormalization group. Although es-
tablished challenges, such as strong coupling or sign problems, remain, casting renormalization in
this compositional framework opens new routes for theoretical and computational innovations. We
hope that this work fosters further exploration of the categorical underpinnings of physical theory,
stimulating a deeper synergy between statistical physics, probability theory, and machine learning.
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