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ABSTRACT

Automatic Speech Recognition (ASR) systems frequently produce transcription
errors due to acoustic variability, which require post-processing correction meth-
ods. Recent approaches leverage Large Language Models (LLMs) for generative
ASR error correction using N-best hypotheses but rely on fixed set sizes regardless
of input complexity and do not provide performance guarantees. We propose an
adaptive framework that dynamically determines the optimal number of hypothe-
ses for each input using risk control. This mechanism leverages ASR confidence
scores and applies Learn then test (LTT) to control the expected relative word error
rate degradation compared to the best achievable performance for a given model
and hypothesis set. Experimental results demonstrate that our approach provides
theoretical guarantees with high-probability bounds while matching or exceeding
fixed-size correction baselines and requiring fewer hypotheses on average,
achieving substantial computational savings under diverse acoustic conditions.

1 INTRODUCTION

ASR systems convert spoken language into text, enabling a wide array of applications from virtual
assistants to transcription services (Kheddar et al., 2024). Over the past decade, deep learning
advancements have propelled ASR performance, with models like Wav2Vec (Baevski et al., 2020)
and Whisper (Radford et al., 2023) achieving remarkable accuracy on benchmark datasets through
self-supervised learning and large-scale training. However, ASR remains challenged by real-world
variability, including background noise, speaker accents, dialects, homophones, out-of-vocabulary
words, and domain shifts, which often lead to transcription errors that degrade downstream
tasks (Schneider et al., 2019).

To mitigate these issues, recent research (Yang et al., 2023; Ma et al., 2025; Mu et al., 2025) has
explored integrating LLMs with ASR outputs for post-processing. A prominent approach involves
generative error correction (GER), where the LLM receives a fixed-size set of hypotheses, produced
by the ASR model, and is asked to provide improved transcriptions (Chen et al., 2023; Hu et al.,
2024a). Usually the LLM is fine-tuned on sequences of N-best hypotheses to learn mappings from
noisy ASR outputs to ground-truth text, demonstrating noise-robust improvements.

Despite these advances, existing GER methods suffer from key limitations. They predominantly rely
on a fixed hypothesis set size across all inputs, applying the same N value irrespective of whether
the audio is simple (e.g., clear speech) or complex (e.g., accented or noisy), which can result in
inefficient resource use—overloading the LLM with redundant hypotheses for straightforward cases
or introducing low-quality hypotheses that may degrade correction performance, as can be seen in
Fig. 1(a). Furthermore, these approaches lack statistical guarantees on the expected performance,
such as bounding the gap to the oracle (best possible) transcription, leaving uncertainty in their
reliability and their practical improvement.

To address these shortcomings, we propose an adaptive framework for hypothesis set construction
in LLM-augmented ASR, as illustrated in Fig. 1(b). Instead of a static N , we dynamically form
sets using a threshold rule over the likelihood scores of ASR hypotheses, ensuring only sufficiently
plausible candidates are passed to the LLM. We tune these thresholds via Learn then test (LTT)
(Angelopoulos et al., 2025), a distribution-free framework that we demonstrate provides risk control
on the expected loss (e.g., word error rate (WER)) relative to the oracle performance. This adaptive
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5
(a) Motivating Example (b) Method Illustration

Figure 1: (a) WER performance patterns across hypothesis set sizes over TedLium-3. Samples
are grouped by monotonicity: samples that improve with more hypotheses (top), show consistent
performance (middle), or degrade with more hypotheses (bottom). (b) Comparison of standard
GER using fixed 5-hypothesis sets versus our adaptive GER that dynamically selects variable-sized
hypothesis sets with risk control to bound relative performance degradation from the oracle.

strategy yields smaller average set sizes, reducing computational costs, while empirically achieving
comparable or lower WERs compared to fixed-N baselines on diverse benchmarks.

Our main contributions can be summarized as follows:

• We propose an adaptive hypothesis selection framework that leverages ASR confidence scores
to dynamically determine the optimal set sizes for each input, replacing the standard fixed-size
approach with difficulty-aware resource allocation.

• We introduce the first application of risk control to GER, providing theoretical guarantees
alongside empirical validation of effective control over relative performance degradation while
enabling principled uncertainty quantification in multi-hypothesis scenarios.

• We demonstrate substantial computational efficiency gains (up to 57.6% reduction in hypothesis
usage) while maintaining correction performance across diverse acoustic conditions, validating
both the empirical robustness and practical value of the proposed adaptive selection mechanism.

2 RELATED WORK

Automatic Speech Recognition Error Correction. Language model rescoring has been exten-
sively employed in ASR systems to enhance recognition accuracy, with external language models
reranking N-best hypothesis lists to select optimal transcriptions (Song et al., 2021). Recent
advances have moved beyond simple reranking toward generative error correction (GER), where
LLMs synthesize improved transcriptions by leveraging complete N-best lists rather than merely
selecting among existing candidates (Yang et al., 2023; Radhakrishnan et al., 2023; Yang et al.,
2024; Ma et al., 2025; Liu et al., 2025; Ghosh et al., 2024; Mu et al., 2025). Contemporary bench-
marks like HyPoradise (Chen et al., 2023) have formalized the hypotheses-to-transcription (H2T)
mapping task, enabling systematic evaluation of LLM-based correction methods across diverse
acoustic conditions. Our approach builds upon this foundation while introducing reliable and
adaptive hypothesis selection via risk control methods.

Uncertainty Quantification in Language and Speech Processing. Uncertainty quantification
has become critical for deploying natural language processing (NLP) and speech systems in
high-stakes applications, with traditional approaches including ensemble methods, Monte Carlo
dropout, and calibration techniques for well-calibrated probability estimates (Xiao et al., 2022).
Speech processing faces unique challenges due to temporal audio signals and cascading recognition
errors, leading to various approaches including acoustic confidence measures and neural uncertainty
estimation (Wullach & Chazan, 2023; Rumberg et al., 2025). However, these methods often lack
theoretical guarantees and may not generalize across acoustic conditions, making risk control
methods attractive as a principled approach providing distribution-free uncertainty quantification.

Conformal Prediction and Risk Control Methods. Conformal prediction (CP) (Vovk et al.,
2005; Angelopoulos et al., 2024a) provides a distribution-free framework for uncertainty quan-
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tification that constructs prediction sets with guaranteed coverage under minimal exchangeability
assumptions, without requiring distributional assumptions about models or data. The framework
has found extensive applications across regression, classification, and structured prediction tasks,
including recent demonstrations in NLP for machine translation, text classification, and question
answering (Campos et al., 2024). Conformal risk control (CRC) extends CP’s coverage guarantees
to control expected loss functions beyond simple miscoverage, but requires bounded monotone
loss functions to maintain distribution-free guarantees (Angelopoulos et al., 2024b). Learn then
test (LTT) provides an alternative risk control approach that handles non-monotone loss functions
through multiple hypothesis testing with family-wise error rate control, offering high-probability
bounds without monotonicity assumptions.

3 PROBLEM FORMULATION

Consider an input audio signal x ∈ X , and a corresponding transcription y. Possible transcription
hypotheses are generated by a pre-trained ASR model using beam search decoding, and the top N
are selected:

HN = {(ŷ1, c1), (ŷ2, c2), . . . , (ŷN , cN )} (1)

where ŷi represents the i-th hypothesis transcription and ci = log p(yi|x) denotes the log-likelihood
score from the ASR model. The hypotheses are ranked by their scores in descending order such
that c1 ≥ c2 ≥ . . . ≥ cN , with higher scores indicating higher confidence.

The goal is to learn a mapping function MH2T that predicts an improved transcription ŷ∗ from the
N-best list:

ŷ∗ = MH2T(HN ; θ) (2)

where θ represents learnable parameters. While traditional language model rescoring approaches
(Song et al., 2021) re-rank existing hypotheses to select the best candidate, generative error correc-
tion (GER)(Ma et al., 2025; Hu et al., 2024a; Yang et al., 2023) represents the current state-of-the-art
approach that can synthesize new transcriptions by leveraging information across all N-best hy-
potheses, potentially producing corrections that do not appear in the original hypothesis list.

LLMs have emerged as powerful tools for this task due to their ability to understand linguistic
patterns and perform text generation. The common approaches involve either leveraging existing
LLMs with various prompt engineering techniques (Chen et al., 2023; Yang et al., 2023) or
fine-tuning a pre-trained LLM to learn the mapping from N-best hypotheses to ground-truth
transcriptions (Hu et al., 2024a; Radhakrishnan et al., 2023). The model receives the ranked
hypotheses (optionally along with their confidence scores) as input and generates the corrected
transcription autoregressively. The training process utilizes pairs (HN , y), enabling the model to
learn the relationship between ASR error patterns and optimal corrections across diverse acoustic
conditions and speaking styles.

However, the conventional approach of using fixed-sized hypothesis sets overlooks a critical
observation: not all audio segments require the same number of hypotheses for effective correction.
In many cases, a smaller set is sufficient or even preferable for achieving optimal transcription
quality. As illustrated in Fig. 1, there exist numerous instances where smaller hypothesis sets are
sufficient and sometimes even yield better corrections than larger ones. This phenomenon suggests
that additional hypotheses can introduce noise rather than useful signal, motivating the need for
adaptive selection mechanisms that can dynamically determine the optimal number of hypotheses
based on the specific characteristics of each audio segment.

4 BACKGROUND - LEARN THEN TEST FRAMEWORK

Conformal prediction (CP) is a distribution-free framework for uncertainty quantification that
requires only the weak assumption of exchangeability between calibration and test data, without
distributional assumptions about the underlying model or data generating process. A complete
exposition is provided in Appendix A. While standard CP controls miscoverage probability, many
applications require control over more general risk measures. Conformal risk control (CRC)
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extends CP to control bounded, monotone loss functions, but this monotonicity constraint limits
applicability when loss functions exhibit non-monotone behavior with respect to the parameter.

The Learn then test (LTT) framework addresses these limitations by reformulating risk control
as a multiple hypothesis testing problem, enabling finite-sample guarantees without monotonicity
assumptions. Consider a calibration dataset {(X(i), Y (i))}mi=1, where X ∈ X and Y ∈ Y denote
feature-response pairs. Given a parameterized prediction set function Γλ : X → 2Y and bounded
loss function ℓ : 2Y × Y → [0, B], our goal is to find λ̂ such that:

E[ℓ(Γλ̂(X
(m+1)), Y (m+1))] ≤ α (3)

where (X(m+1), Y (m+1)) is a new test point drawn exchangeably with the calibration data.

LTT operates on a discrete parameter grid Λ = {λ1, λ2, . . . , λk} and associates each parameter λj

with a null hypothesis Hj : R(λj) > α, where R(λj) = E[ℓ(Γλj
(X), Y )]. Rejecting hypothesis

Hj indicates that λj achieves the desired risk control. For each hypothesis, valid p-values are
computed using the Hoeffding-Bentkus inequality (Appendix B.3) applied to the empirical risk:

R̂m(λj) =
1

m

m∑
i=1

ℓ(Γλj
(X(i)), Y (i)). (4)

A key advantage of LTT is its flexibility in handling non-monotone loss functions without requiring
monotonicity enforcement. When combined with sequential testing procedures, LTT can avoid
conservative multiplicity corrections by testing hypotheses in a predetermined sequence and
stopping at the first rejection, achieving family-wise error rate control without the power loss of
traditional methods like Bonferroni correction.

Theorem 1 (LTT Finite-Sample Guarantee). For any FWER-controlling algorithm at level δ, the
rejection set Λ̂ satisfies:

P

(
sup
λ∈Λ̂

{R(λ)} ≤ α

)
≥ 1− δ (5)

Unlike CRC, LTT handles arbitrary loss functions, including those exhibiting non-monotone
relationships with the parameter λ. This flexibility makes LTT particularly suitable for applications
where monotonicity assumptions are violated, such as scenarios where computational efficiency
and prediction quality exhibit complex trade-offs.

5 METHOD

5.1 ADAPTIVE HYPOTHESIS SELECTION VIA CONFORMAL RISK CONTROL

Building on the GER framework, presented in § 3, we propose an adaptive selection mechanism
that dynamically estimates the optimal number of hypotheses for each input sample. Rather than
using a fixed set of size N , our approach selects the minimal subset size n∗ that maintains correction
performance while reducing computational cost.

Adaptive hypothesis set. We formulate an adaptive hypotheis selection problem within the LTT
framework, established in § E.1. We define adaptive hypothesis sets, parametrized by λ as:

Γλ(HN ) = {(ŷ1, c1), . . . , (ŷn, cn)}, (6)

where n is the adaptive set size determined according to λ:

n = min

{
j :

j∑
i=1

si ≥ λ

}
, (7)
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and s = (s1, . . . , sN ) represents normalized nonconformity scores derived from ASR confidence
scores c = (c1, . . . , cN ).

The enhanced pipeline becomes ŷ∗ = MH2T(Γλ̂(HN ); θ), where λ̂ is the calibrated threshold for
controlling expected performance degradation. This approach maintains compatibility with any
pre-trained H2T model while reducing computational overhead through principled uncertainty
quantification.

Risk function and . Our loss is defined with respect to word error rate (WER), which is a standard
metric used for evaluating ASR performance. The WER quantifies transcription accuracy by mea-
suring the minimum number of word-level edits required to transform the predicted transcription
into the ground truth:

WER(ŷ, y) =
S(ŷ, y) +D(ŷ, y) + I(ŷ, y)

W (ŷ)
(8)

where S(ŷ, y), D(ŷ, y), and I(ŷ, y) represent the number of substitutions, deletions, and insertions,
respectively, and W (y) is the total number of words in the reference transcription.

Rather than controlling absolute WER, which requires domain-specific thresholds, we control the
per-sample relative degradation from the best achievable performance:

ℓ(Γλ(HN ), y) = WER(MH2T(Γλ(HN )), y)− min
j∈[N ]

WER(MH2T(Hj), y) (9)

where Hj = {(ŷ1, c1), . . . , (ŷj , cj)} denotes the top-j hypothesis set.

This loss function exhibits predominantly monotonic behavior, where enlarging the hypothesis set
typically does not worsen performance. Our adaptive selection can identify cases where smaller sets
are sufficient or even beneficial. In the worst-case scenario, selecting all N hypotheses converges
to the standard fixed-N baseline performance, ensuring no performance degradation from existing
methods. Finally, our risk control objective follows the LTT framework:

P
(
E[ℓ(Γλ̂(HN ), Y )] ≤ α

)
≥ 1− δ, (10)

where λ̂ is selected from the rejection set obtained by the LTT procedure, providing finite-
sample guarantees for expected performance degradation control. Our method is summarized in
Algorithm 1.

Algorithm 1 Learn then Test Selection Procedure

Require: Calibration set {(H(i)
N , y(i))}mi=1, parameter grid Λ = {λ1, . . . , λk}, error level δ

1: for j = 1 to k do
2: Compute empirical risk R̂m(λj) =

1
m

∑m
i=1 ℓ(Γλj

(H
(i)
N ), y(i))

3: Calculate p-value pj using Hoeffding-Bentkus inequality
4: if pj ≤ δ then
5: return λ̂ = λj

6: end if
7: end for
8: return failure (no valid λ found)

Score definition. The selection mechanism relies on a composite score derived from ASR log-
likelihoods, designed to adapt flexibly to varying dataset characteristics:

s = softmax
(
ϕγ(c)

τ

)
(11)

Here, ϕγ denotes an adaptive normalization function and τ is a temperature parameter. The function
ϕγ interpolates between two transformation regimes through a single parameter γ, enabling the
score to adjust to dataset-specific speech quality. To prevent redundancy, penalties are applied when
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the ASR system generates repeated hypotheses. Further details on the adaptive normalization,
design rationale, and repetition handling are provided in the Appendix B.1.

It is important to note that our method is independent of the specific choice of the score used to
define the adaptive set. Previous research in ASR has shown that likelihood values do not always
provide a reliable measure of confidence (Li et al., 2021; Ravi et al., 2024) While Li et al. (2021);
Ravi et al. (2024) focus on top-label calibration, approaches such as that of Popordanoska et al.
(2022) offer canonical calibration, which enables the generation of confidence scores for several
top hypotheses that can be seamlessly integrated with our framework. Nevertheless, for simplicity,
we demonstrate our method using the more commonly available likelihood values.

5.2 THEORETICAL CONSIDERATIONS

While risk control frameworks provide principled methods for uncertainty quantification, our ASR
application operates under conditions that require careful consideration of theoretical assumptions.
We address these considerations and their practical implications.

Bounded loss. Risk control frameworks require bounded loss functions. Our loss function satisfies
boundedness through clipping: we enforce ℓ(Γλ(HN ), y) ≤ B where B is set based on validation
set statistics such that violations are rare and have negligible impact.

Monotonicity. While some risk control methods like CRC require monotone loss functions, the
monotonicity violations in our application (∼ 20% of cases) represent precisely the efficiency op-
portunities our adaptive method exploits - scenarios where smaller hypothesis sets genuinely outper-
form larger ones. To maintain theoretical guarantees without monotonicity constraints, we employ
the LTT framework, which handles non-monotone losses naturally through sequential hypothesis
testing, ensuring our approach provides rigorous finite-sample bounds regardless of monotonicity
violations.

6 EXPERIMENTAL SETUP

Datasets and Benchmark We evaluate our approach on three datasets from the HyPoradise
benchmark (Chen et al., 2023), spanning different acoustic difficulty levels based on average WER
performance:

• TedLium-3 (Hernandez et al., 2018) (avg. WER ∼ 8%) contains TED Talk recordings with
diverse noise, accents, and topics. Following HyPoradise protocol, we sample 50, 000 utterances:
47, 500 for training/validation, and 2, 500 for calibration/test.

• CHiME-4 (Vincent et al., 2017) (avg. WER ∼ 11%) contains far-field noisy recordings across
different environments. We use the complete train split (9, 600 utterances) for train/validation and
test-real split (1, 320 utterances) for calibration/test. Data was obtained from RobustGER (Hu
et al., 2024a), which provides the required ASR likelihood scores.

• CommonVoice (Ardila et al., 2020) (avg. WER ∼ 14%) contains multilingual recordings from
diverse speakers with different accents. We select 50, 000 samples from train-en split using
47, 500 samples for train/validation, and 2, 500 samples for calibration/test.

ASR Hypothesis Generation. We employ Whisper models (Radford et al., 2023) for N -best
hypothesis generation via beam search, removing repetitive utterances and selecting top-5 (N = 5)
hypotheses by posterior probability. TedLium-3 and CommonVoice use Whisper-base (beam-
width is 60, following HyPoradise (Chen et al., 2023)), while CHiME-4 uses Whisper-Large-v2
(beam-width is 50, following RobustGER (Hu et al., 2024a)).

LLM and Training. We fine-tune LLaMA-2-7B (Touvron et al., 2023) using LoRA (Hu et al.,
2022) for efficient H2T mapping. The model generates corrected transcriptions from N-best
inputs via standard next-token prediction. Training details, hyperparameters, and computational
requirements are in Appendix D.

Risk Calibration. We use the validation data to determine both the target risk levels (α) and the
dataset-specific score function parameters (γ and τ ), based on the empirical performance and score
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discriminability patterns. The selection methodology and theoretical considerations are discussed
in Appendix B.

Table 1: LTT WER (%) results with LLaMA-2-7B fine-tuning. Baseline: Whisper’s top-1 hypoth-
esis. Ollm: post-LLM oracle. Our LTT method results with δ = 0.25 across datasets. Subscript
percentages denote relative WER change vs. vanilla GER (WER column) and relative size reduc-
tion vs. constant N = 5 (size column).

Test Set Baseline GER LTT Method α Success Rate Ollm

Set Size WER
TedLium-3 8.0 6.06 2.12157.58% 6.05−0.25% 0.024 0.95 4.38

CHiME-4 11.49 6.24 3.86622.68% 6.37+2.06% 0.027 0.98 4.71

CommonVoice 14.1 8.42 3.21238.09% 8.55+1.62% 0.022 0.97 6.98

6.1 EVALUATION METRICS

Performance Measurements. We evaluate our approach using WER as the primary metric, as
described in § 5. We employ two complementary WER calculation methodologies. The primary
approach performs instance-level computation followed by averaging across samples, directly
corresponding to the defined loss function 9. As secondary validation, we compute corpus-level
WER through concatenation of all predictions and references using the evaluate1 package,
which reduces sensitivity to sample length variability and enables comparison with prior works
using corpus-level conventions.

Risk Control Validation. Beyond standard WER evaluation, we validate the empirical effec-
tiveness of our LTT framework by tracking the success rate of risk control across independent
trials. For each dataset, we perform multiple calibration-test splits and measure the proportion
of trials where the risk constraint R(λ̂) ≤ α is satisfied, validating the high-probability bound
P (R(λ̂) ≤ α) ≥ 1 − δ empirically. Results demonstrate success rates consistently exceeding the
theoretical minimum of 1− δ, confirming effective risk control in practice. We compare against all
constant set sizes (1−5) to show that our adaptive method achieves superior performance-efficiency
trade-offs across all possible fixed-size baselines while maintaining the theoretical guarantees.

Experimental Protocol. To ensure statistical reliability, we perform T = 50 independent trials
with resampled calibration/test splits, allocating 30-50% of test samples for calibration. We set
δ = 0.25 for the LTT framework to account for relatively small calibration set sizes, preventing
overly conservative p-value thresholds in the Hoeffding-Bentkus inequality while maintaining robust
theoretical guarantees, resulting in empirical success rates above 75%. Among the selected α levels,
we report only configurations achieving 100% calibration success rate. Final results represent mean
values across all trials.

7 RESULTS AND ANALYSIS

7.1 WER AND SET SIZE TRADEOFFS

Table 1 presents experimental results across datasets. The baseline performance corresponds to
Whisper’s top-1 hypothesis, establishing the initial recognition accuracy before post-processing.
The GER results demonstrate the effectiveness of the fine-tuned LLaMA-2-7B model when
provided with a fixed set of top-5 hypotheses. For reference, we include the oracle bound Ollm,
which represents the best possible performance when the LLM receives the optimal number of
hypotheses for each sample (between 1− 5).

The results show that GER achieves substantial improvements over the baseline across all condi-
tions, with gains varying according to dataset difficulty. Our adaptive selection framework demon-
strates superior computational efficiency while preserving or enhancing correction quality. Our

1https://pypi.org/project/evaluate/
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(a) TedLium-3 (b) CHiME-4 (c) CommonVoice

Figure 2: Performance-compute trade-off analysis across datasets. Each plot shows WER vs. set
size for constant set sizes (connected line), oracle performance level (vertical line), and our adaptive
method performance (points).

method dynamically determines the optimal number of hypotheses for each input, as reflected in
the average set sizes reported. These results validate the effectivness of our approach across di-
verse acoustic conditions. On TedLium-3, the method achieves a 57.6% reduction in average set
size while improving performance. CHiME-4 demonstrates computational savings of 23% with a
modest performance trade-off of 2% relative increase in WER. CommonVoice exhibits 38% com-
putational reduction with minimal performance impact. Notably, the adaptive selection mechanism
occasionally outperforms the fixed-size baseline, indicating that excessive hypotheses can introduce
noise rather than useful information for error correction.

Regarding the reliability of our selection mechanism, we find that the theoretical guarantees hold
empirically across all trials, with the high-probability bound (P (R(λ̂) ≤ α) ≥ 1 − δ = 0.75,
in our case) consistently satisfied in practice. This confirms the effectiveness of our approach in
providing rigorous risk control - a property absent in prior methods and made possible through the
LTT framework.

Our complementary corpus-level WERs are presented in Table C.1. Though this metric produces
different absolute values but maintain the same relative trends and ordering compared to constant
set sizes, confirming the robustness of our findings across evaluation methodologies.

Figure 2 illustrates the performance-compute trade-off characteristics of our adaptive approach
compared to fixed set sizes across all datasets. Each subplot displays the WER performance curve
for constant set sizes N = 1 through N = 5, with vertical reference line indicating the Ollm oracle
performance bound. We observe that our method’s operating points consistently demonstrate better
tradeoffs relative to the fixed-set performance curve, achieving computational efficiency gains while
maintaining competitive or even improved error rates.

7.2 ANALYSIS

To better understand the adaptive selection mechanism’s behavior, we examine representative cases
that illustrate when different set sizes are optimal. Table 2 presents three scenarios with complete
hypothesis lists, ASR scores, and LLM predictions that demonstrate the correlation between score
distributions and optimal set sizes.

Case 1: Full Set Required (Common Voice): When ASR scores exhibit narrow gaps (-0.42
to -0.51), our method correctly identifies the need for comprehensive information. The LLM
progressively refines its prediction across set sizes, ultimately achieving perfect accuracy with
the complete hypothesis set by correctly generating “gastroliths” rather than the various incorrect
alternatives (“gallstones,” “gastrolytes”). The compressed score distribution leads our normalization
to select larger sets, aligning with the empirical benefit of additional hypotheses.

Case 2: Single Hypothesis Optimal (TedLium-3): When the top hypothesis achieves perfect
accuracy and exhibits substantial score separation (-0.21 vs -0.31), additional hypotheses degrade
performance from 0% to 21% WER. In this case, the discriminative score gap correctly signals high
confidence in the first hypothesis, leading our method to favor minimal sets. This demonstrates that
additional hypotheses can introduce harmful noise.
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Table 2: Representative examples showing the relationship between ASR score distributions and
optimal set sizes. Case 1 demonstrates progressive improvement with larger sets, Case 2 shows
degradation beyond the optimal single hypothesis, and Case 3 illustrates performance plateau
enabling computational savings.

Case Hypotheses Score LLM Predictions by Set Size WER per Size (%)

Case 1: Full Set H1: calculi are not to be confused with gastro lits -0.42 Size 1: ...with gallstones 12.5
H2: calculi are not to be confused with gastrolytes -0.44 Size 2: ...with gastrolytes 12.5
H3: calculi are not to be confused with gastrolyts -0.47 Size 3: ...with gastrolytes 12.5
H4: calculi are not to be confused with gastrolets -0.50 Size 4: ...with gastrolytes 12.5
H5: calculi are not to be confused with gastrolettes -0.51 Size 5: ...with gastroliths 0.0
GT: calculi are not to be confused with gastroliths

Case 2: Single Opt. H1: ...medical team assign of the ship... -0.21 Size 1: ...team a sign of... 0.0
H2: ...medical team a sign of the ship... -0.31 Size 2-5: ...team assigned to... 21
H3: ...medical team assigned to the ship... -0.37 21
H4: ...medical team assigned of the ship... -0.41 21
H5: ...medical team assigned the ship... -0.43 21
GT: ...medical team a sign of the ship...

Case 3: Plateau H1: ...new york state sold about seventy seven million of... -0.46 All sizes: separately new york 6.25
H2: ...new york state sold about seventy seven million in... -0.47 state sold about seventy seven 6.25
H3: ...here it states all about seventy seven million in... -0.47 point one million dollars in 6.25
H4: ...new york state sold about seventy seven million of... -0.49 certificates of participation 6.25
H5: ...new york state sold about seventy seven million dollars in... -0.49 6.25
GT: ...seventy seven point one million dollars of...

Case 3: Performance Plateau (CHiME-4): When WER remains constant (6.25%) across all set
sizes, our method demonstrates computational efficiency potential. While the tight score clustering
(-0.46 to -0.49) would typically lead our normalization to select larger sets, this case illustrates
where our approach provides a safety net—in the worst case, we select all 5 hypotheses and achieve
identical performance to the baseline, but when score normalization successfully identifies the
plateau, we achieve the same WER with reduced computational cost.

These examples demonstrate how our adaptive selection responds to different ASR confidence
patterns: discriminative scores enable efficient small sets, while compressed scores lead to more
comprehensive hypothesis selection. This validates our approach of dynamically adjusting set sizes
based on the underlying score distributions rather than using fixed configurations.

7.3 ABLATION STUDIES

We briefly report several ablation studies that we performed to validate different aspects of our
proposed framework.

Alternative Problem Formulations. We evaluated multiple CP and risk control methods
configurations including absolute WER targets, coverage-based objectives for samples below
specified WER thresholds, and bounded-WER hypothesis guarantees, following approaches from
prior ASR uncertainty quantification works (Ernez et al., 2023). These alternatives consistently
yielded inferior empirical performance compared to our relative loss, defined in Eq. 9. Absolute
WER targets operate at a global level without instance-specific optimization, while bounded-WER
guarantees (Ernez et al., 2023) showed poor correlation between hypothesis quality and final
LLM output quality, validating our relative degradation formulation that adapts to each sample’s
achievable performance range.

Training Set Size Analysis: We examined our choice of training the LLM with constant-5 hypothe-
sis sets, while evaluating with variable set sizes. To this end, we conducted comprehensive ablation
experiments training separate LLaMA-2-7B models on fixed set sizes (1-5 hypotheses), as well as
dynamic sizes, then evaluating each model across all possible test set sizes. The results are reported
in Tab. C.2. This 6 × 5 result matrix reveals that while specific combinations (e.g., train-3/test-3)
occasionally outperformed the baseline, the constant-5 trained model achieved optimal average
WER across all test configurations. These results confirm that our adaptive approach provides
genuine improvements over the best achievable fixed-size baseline, establishing the validity of our
comparative framework.

Scalability to Larger Models and Zero-Shot Settings. To evaluate generalizability beyond
our LLaMA-2-7B baseline, we conducted experiments with LLaMA-2-13B (fine-tuned) and GPT-
3.5-turbo (zero-shot prompting). Results demonstrate that our framework maintains consistent
performance-efficiency trade-offs across both larger model scales and deployment scenarios where
fine-tuning is not feasible. The computational savings persist relative to the increased inference

9
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costs, confirming that our adaptive selection mechanism provides value across different model ar-
chitectures and prompting paradigms. This addresses practical deployment considerations where
model size and training constraints vary significantly. Detailed results are provided in Appendix C.2.

Cross-Domain Extension. We extended our framework to speech translation tasks using the Gen-
Translate paradigm on multilingual datasets. with some methodological adaptation. Results show
successful transfer with substantial computational savings while maintaining competitive translation
quality. This cross-domain validation demonstrates broader applicability beyond ASR to generative
error correction scenarios involving N-best hypothesis integration, directly addressing the broader
impact potential in the GER community. Full methodology and results in Appendix C.3.

CRC Implementation. We also implemented the CRC framework as an alternative risk control
method. While CRC lacks theoretical guarantees due to monotonicity violations in our application
(∼ 20% of cases), it achieves similar empirical performance to our LTT approach. This demonstrates
that both frameworks effectively exploit the same underlying adaptive selection patterns, with LTT
providing the additional benefit of rigorous theoretical validation. The CRC implementation and
comparative analysis are detailed in Appendix E.

Theoretical Bound Validation. To examine the gap between theoretical high-probability guaran-
tees (75%) and observed empirical performance (95-98%), we conducted experiments with larger
calibration sets. Results confirm that empirical performance approaches theoretical bounds as cali-
bration data increases, validating that our method maintains the required statistical guarantees while
the observed gap reflects conservative finite-sample bounds. Detailed analysis is provided in Ap-
pendix C.4.

8 CONCLUSION AND FUTURE WORK

This work presents an adaptive framework for hypothesis selection in generative ASR error cor-
rection, addressing computational inefficiency through principled uncertainty quantification. Our
method employs LTT to dynamically determine optimal hypothesis set sizes, providing rigorous
theoretical guarantees with high-probability bounds while demonstrating substantial computational
savings and maintaining competitive performance across datasets with diverse acoustic conditions.
Validation across larger language models, zero-shot settings, and cross-domain speech translation
tasks confirms the framework’s broad applicability and robustness across different deployment sce-
narios.

The framework requires only calibration without model retraining, enabling straightforward adop-
tion in existing systems. Future work could investigate confidence-driven adaptive compute al-
location in multi-model systems, including reasoning and agent-based applications, where similar
mechanisms for identifying and reducing computational costs may achieve comparable performance
with greater efficiency.
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A CONFORMAL PREDICTION FRAMEWORK

Let X denote the input space and H the output space. Consider a calibration set {(X(i), Y (i))}mi=1

where (X(i), Y (i)) ∈ X × H, and a new test point (X(m+1), Y (m+1)). Conformal prediction
requires that the calibration data and test point are exchangeable, meaning the joint distribution
remains invariant under permutations.

Conformal prediction is a distribution-free statistical framework that provides uncertainty quantifi-
cation for machine learning predictions with finite-sample guarantees. Given a calibration dataset
separate from training data, CP constructs prediction sets that satisfy coverage properties regardless
of the underlying model architecture or data distribution.

For the test input X(m+1) with unknown label Y (m+1), the goal is to construct a prediction set
C(X(m+1)) such that:

P (Y (m+1) /∈ C(X(m+1))) ≤ α (12)

where α is a user-specified significance level (e.g., 0.1 for 90% coverage).

The framework relies on nonconformity scores si : X × Y → R that measure how atypical a
prediction is for a given input. For any pair (x, y) ∈ X × Y , the nonconformity score s(x, y)
should reflect their agreement, with lower scores indicating better agreement. For the calibration set,
where true labels are known, si = s(X(i), Y (i)) quantifies the disagreement between the model’s
prediction and the true label. The prediction set is then constructed by including all labels whose
nonconformity scores fall below a data-dependent threshold.

B RISK CONTROL IMPLEMENTATION DETAILS

B.1 SCORE FUNCTION DESIGN

B.1.1 MOTIVATION

Our analysis revealed that score distributions vary significantly across datasets with different noise
characteristics. Higher signal-to-noise ratio conditions (e.g., TedLium-3) produce more discrimina-
tive ASR confidence scores, while challenging acoustic environments (e.g., CommonVoice) yield
compressed score distributions. Temperature-only adaptation proved insufficient, creating overly
homogeneous score distributions that degraded selection quality. Consequently, we developed the
two-level normalization strategy with parameter γ, enabling adaptive score transformation based on
dataset difficulty while maintaining robustness across parameter choices.

B.1.2 FUNCTION DESIGN

The normalization function ϕγ(c) smoothly interpolates between two transformation regimes based
on a single parameter γ ∈ [0, 1]:

ϕγ(c) = (1− γ) · (−c−1) + γ · c (13)

where c−1 denotes element-wise reciprocal operation, i.e., (c−1)i = 1/ci for each component i.
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Figure B.1: ASR confidence score distributions for TedLium-3 (left) and CommonVoice (right)
across processing stages: raw scores (top), softmax normalization (middle), and full transformation
(bottom).

The identity transformation (γ = 1) preserves natural ASR score differences for high-SNR condi-
tions, while the reciprocal transformation (γ = 0) amplifies small differences between compressed
scores for challenging acoustic conditions. The parameter γ controls smooth transitions between
these regimes.

B.1.3 PARAMETER SELECTION STRATEGY

We base parameter selection on signal-to-noise ratio characteristics and empirical validation.

Figure B.1 illustrates score evolution across processing stages for different acoustic conditions.
TedLium-3’s high-SNR conditions produce naturally discriminative scores, requiring only sharp-
ening via low temperature (τ = 0.05) while preserving relationships (γ = 1.0). CommonVoice’s
challenging conditions with compressed distributions require reciprocal amplification (γ = 0.0) fol-
lowed by moderate temperature (τ = 1.0). CHiME-4 represents intermediate conditions requiring
balanced transformation (γ = 0.5).

To validate this SNR-based rationale, we conducted systematic grid testing across the parameter
space. Figure B.2 shows success regions where the method achieves valid risk control with better
performance-compute trade-offs than fixed baselines.

The heat-maps confirm that successful regions align with our SNR-based parameter selection, with
edge cases (high/low SNR) showing concentrated success areas and intermediate conditions requir-
ing parameters within mid-value ranges.
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(a) TedLium-3 (b) CHiME-4 (c) CommonVoice as
Figure B.2: Parameter selection grid test results showing success regions across (γ, τ) parameter
space. Success is defined as achieving valid risk control with superior performance-compute trade-
offs compared to fixed baselines. Heat-maps confirm that successful regions align with SNR-based
parameter selection strategy.

B.1.4 ROBUSTNESS ANALYSIS

Grid testing across uniformly sampled parameter combinations demonstrates method robustness.
Success criteria require: (1) valid λ selection with controlled risk, and (2) superior performance-
compute trade-offs compared to fixed-set baselines.

Results show overall success rate of 70% (61/88 combinations), with per-dataset rates: TedLium-
3: 80% (24/30), CHiME-4: 62% (18/29), CommonVoice: 66% (19/29). This indicates parameter
selection is an optimization step rather than a critical requirement, providing practitioners flexibility
while maintaining performance guarantees.

B.1.5 AUTOMATED PARAMETER SELECTION

To automate parameter selection for deployment across unseen acoustic conditions, we investigated
the relationship between score distribution characteristics and working point success. Our intuition
is that meaningful working points should exhibit score vectors that respond differently across vary-
ing input difficulties, with entropy serving as a natural measure of this distributional behavior.

Analysis confirmed that score vector entropy serves as a reliable predictor of parameter effective-
ness - successful working points exhibit distinct entropy patterns compared to failed configurations.
Based on this observation, we developed a simple entropy-based rule: thresholding score vector
entropy at 4.85 effectively discriminates between suitable and unsuitable parameter combinations.

We validated this rule on previously unseen parameter pairs, achieving prediction precision exceed-
ing 80% and F1 scores above 75%. This enables practitioners to assess parameter suitability on
new datasets without extensive manual calibration, providing a practical deployment pathway that
transforms manual parameter tuning into principled selection with automated validation.

It should be noted that parameter sensitivity increases when targeting tighter performance bounds
(lower α and δ values), as the method operates in narrower feasible regions where precise parameter
selection becomes more critical.

B.1.6 HANDLING HYPOTHESIS REPETITIONS

When the ASR system produces fewer than N unique hypotheses, repeated hypotheses receive
exponentially decaying scores to avoid overweighting redundant information:

si,r = si · βr (14)

where Ri,r is the adjusted score for hypothesis i with repetition count r, and β ∈ (0, 1) is the decay
factor. This mechanism is based on the assumption that repeated hypotheses provide no additional
information for well-calibrated models, which we validate empirically in our experiments.
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B.2 TARGET RISK

B.2.1 RISK TARGET CALIBRATION

We establish target risk levels based on the performance range achievable through fixed hypoth-
esis set selection. The feasible degradation range spans from fixed-1-hypothesis (worst case) to
fixed-5-hypotheses (best case) performance. Since our adaptive method dynamically selects smaller
sets with minimal degradation, targeting risk bounds within this empirically-derived range repre-
sents the natural operating regime. These empirically-derived ranges are [1.7, 3.0] for TedLium-3,
[1.53, 5.76] for CHiME-4, and [1.46, 3.81] for CommonVoice. We uniformly sample target risk val-
ues within the validated degradation range. The specific choice within this range determines the
desired performance-compute trade-off: values closer to 1-hypothesis’ risk prioritize computational
efficiency, while values approaching 5-hypotheses’ risk emphasize performance preservation. The
two risk–control frameworks require different α–calibration approaches. For CRC, we directly use
validation–derived values as the target expected risk levels, since CRC bounds E[R(λ̂)] ≤ α. On
the other hand, LTT provides high–probability bounds Pr

(
R(λ̂) ≤ α

)
≥ 1 − δ, meaning that α

represents approximately the (1 − δ)th percentile of the empirical risk distribution rather than its
expectation. To achieve equivalent average performance, LTT therefore requires α values that are
higher than the target expected empirical risk. Due to small calibration set sizes, the Hoeffding-
Bentkus inequality produces conservative p-values, leading to more conservative set selections with
higher empirical coverage. In practice, LTT typically yields valid selections for α values from the
upper 75% of the feasible range, while CRC can achieve valid selections across the full range due to
its expectation-based formulation. We report results only for α values that demonstrate successful
risk control within the validated range, ensuring both theoretical validity and practical utility across
different performance-efficiency preferences.

B.2.2 PERFORMANCE TRADE-OFFS

The target risk α directly controls the performance-compute trade-off by determining acceptable
expected relative WER degradation from oracle performance. Lower α values (tighter bounds)
require larger hypothesis sets to achieve the target risk level, due to average WER monotonicity
on average, while higher α values (looser bounds) enable smaller sets with acceptable performance
degradation.

Table B.1: Effect of risk tolerance α on performance-compute trade-offs (CommonVoice dataset).

Risk Tolerance (α) Avg. Set Size WER (%)

0.21 (tighter) 3.73 8.53
0.22 3.49 8.59
0.23 3.14 8.66

0.24 (looser) 2.99 8.73

Table B.1 demonstrates this relationship empirically. As α increases, average set sizes decrease from
while WER increases as well. The different operating points in Figure 2 correspond to varying α
selections within these validated ranges.

B.3 OTHER PARAMETERS SELECTION

We set additional framework parameters based on validation analysis to ensure robust performance
across datasets. The repetition penalty β = 1.25 − 1.5 handles duplicate hypotheses by applying
exponential decay to repeated entries, preventing overweighting of redundant information. The loss
bound B = 1.25 accounts for rare cases exceeding 100% relative WER degradation, satisfying the
bounded loss requirement for theoretical guarantees. These parameters were determined through
empirical validation to maintain stability across varying hypothesis quality distributions while pre-
serving the risk control framework’s theoretical foundations.
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B.4 HOEFFDING-BENTKUS P-VALUE COMPUTATION

For LTT implementation, we compute valid p-values using the Hoeffding-Bentkus inequality. Given
empirical risk R̂m(λj) on the calibration set, the p-value for hypothesis Hj : R(λj) > α is:

pHB
j = min

{
exp{−nh1(R̂m(λj) ∧ α, α)}, eP

(
Bin(n, α) ≥ ⌊nR̂m(λj)⌋

)}
(15)

where h1(a, b) = a log(a/b) + (1 − a) log((1 − a)/(1 − b)) and n is the calibration set size. This
provides finite-sample valid p-values without distributional assumptions, enabling the sequential
testing procedure in Algorithm 1.

C ABLATION STUDY

Table C.1: Corpus-level WER (%) results with LLaMA-2-7B fine-tuning. Our method results repre-
sent one operating point from Figure 2. Results show consistent trends with instance-level averaging
(Table E.1) despite different absolute values, demonstrating robustness across evaluation methodolo-
gies. Subscript percentages denote relative WER change vs. vanilla GER and relative size reduction
vs. constant N = 5.

Test Set GER Our Method Ollm

Set Size WER
TedLium-3 5.05 2.2155.8% 5.050.0% 3.03

CHiME-4 6.37 3.824.0% 6.6+3.6% 4.78

CommonVoice 7.8 3.0738.6% 7.95+1.9% 6.31

C.1 ANALYSIS OF TRAINING SET SIZE EFFECTS

Note: This ablation study uses a simplified experimental setup with different hyperparameters and
dataset splits compared to the main experiments, but demonstrates consistent patterns that validate
our core findings.

The ablation results reveal several key patterns that validate our experimental design. The constant-5
training approach achieves the lowest average WER (7.79%) across all test configurations, confirm-
ing its superiority as a baseline model. While diagonal elements (matching train/test sizes) occa-
sionally show local optima—such as train-3/test-3 achieving 6.58% versus the train-5/test-3 result
of 6.74%—these improvements are marginal and inconsistent across the full evaluation matrix.

Models trained on smaller hypothesis sets exhibit clear performance degradation when tested on
larger sets, as expected. The train-1 model struggles significantly with multi-hypothesis inputs,
achieving 11.65% WER on 5-hypothesis tests compared to 6.38% for the train-5 model. This
demonstrates the importance of exposure to diverse hypothesis patterns during training.

The dynamic training model, despite having access to variable set sizes during training, underper-
forms the constant-5 baseline (8.43% vs 7.79% average WER). This degraded performance likely
stems from the increased complexity of learning hypothesis-to-transcription mappings across vary-
ing input lengths simultaneously, creating a more challenging optimization landscape that prevents
the model from fully mastering any single configuration. The model must learn to handle the vari-
ability in input structure while maintaining transcription quality, leading to suboptimal specialization
compared to the focused constant-5 training regime.

These results establish that our adaptive approach provides genuine improvements over the best
achievable fixed-size baseline, validating the comparative framework used throughout our main ex-
periments.

C.2 SCALABILITY TO LARGER LANGUAGE MODELS

To evaluate the generalizability of our adaptive framework beyond the LLaMA-2-7B baseline, we
conducted experiments with LLaMA-2-13B (fine-tuned) and GPT-3.5-turbo (zero-shot prompting).
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Table C.2: Training Set Size Ablation Study: WER (%) across different training and test configura-
tions on CHiME-4 dataset

Train \ Test 1-hyp 2-hyp 3-hyp 4-hyp 5-hyp Average
Train-1 10.32 10.85 11.12 11.38 11.65 11.06
Train-2 10.72 8.55 8.92 9.15 9.41 9.35
Train-3 10.89 8.95 6.58 6.89 7.12 8.09
Train-4 10.95 9.12 6.89 6.52 6.71 8.04
Train-5 10.48 8.69 6.74 6.64 6.38 7.79

Dynamic 11.23 9.45 7.32 7.18 6.95 8.43

These experiments assess whether the computational efficiency gains and adaptive selection benefits
persist with more capable and resource-intensive models. All experiments use the LTT calibration
procedure with dataset-specific α values, as detailed in Section B.1.6.

C.2.1 LLAMA-2-13B RESULTS

We fine-tuned LLaMA-2-13B using identical training procedures, hyperparameters, and evalua-
tion protocols as our main experiments. Table C.3 presents representative working points for each
dataset.

Table C.3: LLaMA-2-13B adaptive selection results. Results shown for one representative working
point per dataset; multiple valid working points exist across the parameter space.

Test Set Baseline GER Our Method α δ Ollm
Set Size WER

TedLium-3 8.0 6.47 2.4051.9% 6.46−0.01% 2.1 0.25 4.69
CHiME-4 11.49 7.92 3.8822.4% 8.16+3.06% 1.25 0.25 7.26
CommonVoice 14.1 8.10 3.5030.1% 8.28+2.27% 2.0 0.25 6.50

The results demonstrate that our framework maintains its value proposition with larger models:
TedLium-3 achieves 51.9% computational savings with identical performance, while CHiME-4 and
CommonVoice show modest performance trade-offs (3.06% and 2.27% relative WER increase) for
substantial efficiency gains (22.4% and 30.1% hypothesis reduction). These results confirm that the
performance of the adaptive selection mechanism generalizes across model scales.

C.2.2 GPT-3.5-TURBO ZERO-SHOT RESULTS

To assess applicability without fine-tuning, we evaluated GPT-3.5-turbo using zero-shot prompting
based on templates from HyPoradise (Chen et al., 2023) and (Ma et al., 2024).

Table C.4: GPT-3.5-turbo zero-shot adaptive selection results. Results shown for one representative
working point per dataset.

Test Set Baseline GER Our Method α δ Ollm
Set Size WER

CommonVoice 14.1 11.73 2.3142.3% 11.81+0.67% 1.5 0.25 10.51
CHiME-4 11.49 9.77 2.1956.1% 9.89+1.17% 1.65 0.25 8.61

Our adaptive method achieves substantial computational savings (42-56% hypothesis reduction)
with minimal performance impact (+0.67-1.17% relative WER increase) in zero-shot settings

Experimental notes: For CommonVoice, we evaluated hypothesis sets in the range [1, 4] as pre-
liminary tests showed performance degradation beyond 4 hypotheses; the GER baseline (11.73%)
represents the best fixed size in this range. TedLium-3 was excluded from this evaluation because,
consistent with findings in (Ma et al., 2024), all zero-shot working points performed worse than the
baseline across all hypothesis sizes - likely due to the dataset’s initially strong baseline performance,
making the comparison uninformative.
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These experiments validate three key findings: (1) the adaptive framework generalizes across model
scales with consistent behavior, (2) zero-shot prompting achieves substantial efficiency gains (42-
56% reduction) despite smaller absolute WER differences, and (3) computational savings persist
relative to the increased inference cost of larger models.

C.3 EXTENSION TO SPEECH TRANSLATION TASKS

To demonstrate the broader applicability of our adaptive hypothesis selection framework, we evalu-
ated its performance on speech translation tasks using the GenTranslate paradigm Hu et al. (2024b).
This cross-domain validation examines whether our method maintains its computational efficiency
benefits when applied to translation scenarios involving N-best hypothesis integration.

Dataset Selection and Monotonicity Validation. We selected three language pairs from the
FLEURS X→En speech translation dataset (fr→en, cy→en, ar→en) based on a critical prereq-
uisite: monotonic performance improvement with increasing hypothesis set sizes. Using the pub-
lished GenTranslate checkpoint 2, we validated that BLEU scores followed the expected ordering
BLEU(N = 5) > BLEU(N = 4) > ... > BLEU(N = 1) on average across these language pairs.
This monotonicity condition ensures a meaningful performance-compute trade-off exists, validating
the potential utility of adaptive selection.

Methodological Adaptation for Speech Translation. A key challenge emerged in adapting our
framework to speech translation tasks: BLEU, the standard evaluation metric, operates at the corpus
level and provides limited meaningful information at the instance level required for our risk-based
selection mechanism. To address this, we employed TER (Translation Edit Rate) for instance-level
risk computation and adaptive set selection, while reporting final results using corpus-level BLEU
for comparability with existing work. This approach leverages TER’s established validity at the
instance level while maintaining evaluation consistency. We validated that TER and BLEU preserve
relative ordering (with inverse correlation) across our test sets.

Table C.5: Speech translation results with adaptive hypothesis selection on FLEURS X→En test
sets compared to fixed N=5 baseline. Our method achieves substantial computational savings while
maintaining competitive translation quality.

Task GER Adaptive Selection α
Success

Rate TEROllm

TER (%) BLEU Avg. Size BLEU TER (%)
fr→en 4.62 37.50 3.2135.8% 37.23−0.70% 4.67 5 0.97 4.24

cy→en 5.1 33.89 2.6247.7% 33.39−1.47% 5.3 6.9 0.96 4.67

ar→en 5.21 34.47 1.7265.5% 33.44−2.98% 5.29 5.65 0.98 4.81

Implementation Details. Due to smaller test set sizes (400-1000 samples) compared to ASR ex-
periments, we increased the error tolerance δ to 0.3 to prevent overly conservative bounds in the
LTT framework. All other methodological components, including parameter selection and risk cal-
ibration procedures, remained consistent with our ASR implementation. The same LTT sequential
testing approach was applied with TER-based loss functions for hypothesis set selection.

Summary. This cross-domain validation demonstrates that our adaptive hypothesis selection
framework generalizes effectively beyond ASR to speech translation tasks, achieving substantial
computational savings (36-66% hypothesis reduction) while maintaining competitive translation
quality. These results confirm the broader applicability of our approach across generative error cor-
rection scenarios involving N-best hypothesis integration, addressing the computational efficiency
challenges inherent in LLM-based post-processing systems.

2https://huggingface.co/PeacefulData/GenTranslate
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C.4 THEORETICAL HIGH-PROBABILITY GUARANTEE ANALYSIS

Our LTT framework provides finite-sample guarantees P (R(λ̂) ≤ α) ≥ 1 − δ through the
Hoeffding-Bentkus inequality. In practice, we observe empirical success rates (95-98%) that consis-
tently exceed the theoretical bounds of 1− δ = 0.75. To validate that this behavior reflects conser-
vative finite-sample bounds, we conducted systematic experiments varying calibration set sizes and
δ values.

We modified the splits to enable larger calibration sets for statistical analysis. For CommonVoice,
we reran the complete pipeline with modified train-test split, while for TedLium-3 and CHiME-4
we re-split the existing test sets (CHiME-4 also expanded with its ’simu’ set samples). All operating
points maintained superior performance-efficiency trade-offs compared to fixed-size baselines.

Table C.6: Theoretical vs. empirical performance on modified-split CommonVoice.

Test Set Size δ = 0.1 (90%) δ = 0.15 (85%) δ = 0.2 (80%)

15k (7.5k for Calib) 90% 86% 83%
15k (4.5k for Calib) 95% 90% 89%

Table C.7: Cross-dataset validation of performance behavior.

Dataset Size δ = 0.3 (70%) δ = 0.2 (80%) δ = 0.15 (85%)

TedLium-3 2.5k (2k for calib) 78% 87% 89%
CHiME-4 (expanded) 2.96k (1.48k for calib) 83% 91% 93%

Tables C.6 and C.7 demonstrate consistent patterns across all datasets: empirical performance ap-
proaches theoretical bounds as calibration data increases, while maintaining appropriate response
to δ variations. This validates that our method maintains the required statistical guarantees and
confirms that the observed behavior in our main experiments stems from conservative Hoeffding-
Bentkus bounds with small calibration sets.

D LLM TRAINING CONFIGURATION DETAILS

D.1 HYPERPARAMETERS

We train using AdamW optimizer, effective batch size 32 (achieved through batch size 8 with 4-
step gradient accumulation), and cosine learning rate scheduler (with 0.05 warmup ratio). The
LoRA configuration uses rank r = 16 and scaling parameter α = 32, implemented via the PEFT
library (Mangrulkar et al., 2022).

Dataset-specific hyperparameters accommodate varying dataset sizes: learning rate range from 5e-5
to 1e-4, dropout rates range from 0.05-0.1, training epochs from 5-10, with larger datasets requiring
higher values for both parameters to achieve optimal convergence.

D.2 PROMPT TEMPLATE

The training utilizes the following prompt template:

“Correct this speech recognition transcript using the hypotheses below. Provide
ONLY the corrected transcript, nothing more.
###Hypotheses:
- {1st ∼ 5th utterances}
###Corrected-transcript:”
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D.3 COMPUTATIONAL REQUIREMENTS

Model training is conducted on a single NVIDIA RTX 6000 Ada GPU with 48GB memory. Train-
ing duration varies by dataset size: CHiME-4 requires approximately 1 hour due to its smaller scale
(9,600 samples), while TedLium-3 and CommonVoice each require 3-4 hours given their larger
training sets (47,500 samples each). The LoRA parameterization significantly reduces computa-
tional overhead compared to full fine-tuning, enabling efficient adaptation while maintaining the
frozen backbone parameters.

E CONFORMAL RISK CONTROL APPROACH

E.1 BACKGROUND

Consider a calibration dataset {(X(i), Y (i))}mi=1, where X ∈ X and Y ∈ Y denote feature-response
pairs. Conformal risk control (CRC) extends CP to control the expectation of any bounded,
monotone loss function ℓ : 2Y × Y → [0, B]:

E[ℓ(Γλ(X
(m+1)), Y (m+1))] ≤ α (16)

under the same notations represented in 5.

The key insight is that for monotone loss functions—where enlarging the prediction set cannot
increase the loss—CRC maintains the distribution-free guarantees of standard CP while enabling
control over task-specific risk measures. The CRC threshold selection procedure aims to find the
optimal threshold:

λ̂ = inf

{
λ :

m

m+ 1
R̂m(λ) +

B

m+ 1
≤ α

}
, (17)

where the empirical risk is computed as:

R̂m(λ) =
1

m

m∑
i=1

ℓ(Γλ(X
(i)), Y (i)), (18)

representing the average empirical loss over the calibration set. For monotone loss functions, this
threshold can be found efficiently by gradually adjusting λ until the risk constraint is satisfied.

CRC provides finite-sample guarantees that are tight up to O(1/m) terms as stated in the following
Theorem.

Theorem 2 (CRC Finite-Sample Guarantee). Under the exchangeability assumption and for
bounded monotone loss functions, the set predictor Γλ̂ selected by the CRC procedure satisfies:

α− 2B

m+ 1
≤ E[ℓ(Γλ̂(X

(m+1)), Y (m+1))] ≤ α. (19)

Note that CRC reduces to standard CP when the loss function is the miscoverage indicator. CRC
has been applied to areas such as medical diagnosis, autonomous driving, ordinal classification, and
ranked retrieval systems (Andéol et al., 2023; Xu et al., 2023; 2024; Overman et al., 2024).

E.2 CRC IMPLEMENTATION AND EMPIRICAL ANALYSIS

We initially explored conformal risk control (CRC) as our primary theoretical framework for adap-
tive hypothesis selection. Our CRC implementation follows Algorithm E.1, using the relative WER
degradation loss function defined in Equation 9 with calibrated thresholds to control expected per-
formance degradation.
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Algorithm E.1 Adaptive Selection Procedure with CRC Calibration Framework

Require: Calibration set {(H(i)
N , y(i))}mi=1 and a test sample H(m+1)

N
1: Calibration Phase:
2: for λ ∈ Λ (candidate threshold values) do
3: Compute ℓ(Γλ(H(i)

N ), y(i)) for all i ∈ [m]

4: Estimate R̂m(λ) = 1
m

∑m
i=1 ℓ(Γλ(H(i)

N ), yi)
5: end for
6: Select λ̂ = inf

{
λ : m

m+1 R̂m(λ) + B
m+1 ≤ α

}
7: Test Phase:
8: Compute normalized scores s = softmax(ϕγ(c

(m+1))/τ)

9: Select n∗ = min{n :
∑n

i=1 si ≥ λ̂}
10: Return hypothesis set H(m+1)

n∗ =
{(

ŷ
(m+1)
1 , c

(m+1)
1

)
, . . . ,

(
ŷ
(m+1)
n∗ , c

(m+1)
n∗

)}

Table E.1 presents our CRC experimental results across the three datasets. The method achieves sub-
stantial computational savings while maintaining competitive performance. These results validate
the practical effectiveness of adaptive selection based on this method.

However, our analysis revealed that strict monotonicity is violated in approximately 20% of sam-
ples, where smaller hypothesis sets occasionally outperform larger ones. While 95% of consecutive
pairwise comparisons maintain monotonicity, indicating predominantly monotonic behavior, these
violations present a theoretical challenge for CRC’s formal guarantees. We evaluated the monotoniz-
ing procedure proposed by Angelopoulos et al. (2024b), which constructs ℓ̃i(λ) = supλ′≥λ ℓi(λ

′)
to enforce monotonicity. However, empirical results showed degraded performance across datasets,
as monotonizing eliminates precisely the beneficial cases where smaller sets genuinely outperform
larger ones—the phenomenon enabling our computational savings.

These findings indicate that monotonicity violations in ASR often signal exploitable efficiency op-
portunities rather than problematic cases. While our CRC implementation demonstrates strong em-
pirical performance and effective risk control in practice, the theoretical violations prevent us from
claiming formal statistical guarantees. Therefore, we present this CRC approach as an additional
empirical demonstration that complements our theoretically rigorous LTT framework, which natu-
rally handles non-monotone losses while providing formal P (R(λ̂) ≤ α) ≥ 1− δ guarantees.

Table E.1: WER (%) results with LLaMA-2-7B fine-tuning. Baseline: Whisper’s top-1 hypothesis.
Ollm: post-LLM oracle. Our method results represent one operating point from Figure 2. Subscript
percentages denote relative WER change vs. vanilla GER (WER column) and relative size reduction
vs. constant N = 5 (size column).

Test Set Baseline GER Our Method α Target WER Ollm

Set Size WER
TedLium-3 8.0 6.04 2.14557.1% 5.96−1.3% 1.785 6.115 4.33

CHiME-4 11.49 6.38 3.824.0% 6.55+2.7% 1.9 6.63 4.73

CommonVoice 14.1 8.46 3.138.0% 8.5+0.5% 1.7 8.65 6.95
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