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ABSTRACT

Automatic Speech Recognition (ASR) systems frequently produce transcription
errors due to acoustic variability, which require post-processing correction meth-
ods. Recent approaches leverage Large Language Models (LLMs) for generative
ASR error correction using N-best hypotheses but rely on fixed set sizes regardless
of input complexity and do not provide performance guarantees. We propose an
adaptive framework that dynamically determines the optimal number of hypothe-
ses for each input using conformal risk control (CRC). This mechanism leverages
ASR confidence scores and applies CRC to control the expected relative word
error rate degradation compared to the best achievable performance for a given
model and hypothesis set. Experimental results show that our approach matches
or exceeds fixed-size correction baselines while requiring fewer hypotheses on
average, maintaining robust performance under diverse acoustic conditions.

1 INTRODUCTION

ASR systems convert spoken language into text, enabling a wide array of applications from virtual
assistants to transcription services (Kheddar et al., 2024). Over the past decade, deep learning
advancements have propelled ASR performance, with models like Wav2Vec (Baevski et al., 2020)
and Whisper (Radford et al., 2023) achieving remarkable accuracy on benchmark datasets through
self-supervised learning and large-scale training. However, ASR remains challenged by real-world
variability, including background noise, speaker accents, dialects, homophones, out-of-vocabulary
words, and domain shifts, which often lead to transcription errors that degrade downstream
tasks (Schneider et al., 2019).

To mitigate these issues, recent research (Yang et al., 2023; Ma et al., 2025; Mu et al., 2025) has
explored integrating LLMs with ASR outputs for post-processing. A prominent approach involves
generative error correction (GER), where the LLM receives a fixed-size set of hypotheses, produced
by the ASR model, and is asked to provide improved transcriptions (Chen et al., 2023; Hu et al.,
2024). Usually the LLM is fine-tuned on sequences of N-best hypotheses to learn mappings from
noisy ASR outputs to ground-truth text, demonstrating noise-robust improvements.

Despite these advances, existing GER methods suffer from key limitations. They predominantly rely
on a fixed hypothesis set size across all inputs, applying the same N value irrespective of whether
the audio is simple (e.g., clear speech) or complex (e.g., accented or noisy), which can result in
inefficient resource use—overloading the LLM with redundant hypotheses for straightforward cases
or introducing low-quality hypotheses that may degrade correction performance, as can be seen in
Fig. 1(a). Furthermore, these approaches lack statistical guarantees on the expected performance,
such as bounding the gap to the oracle (best possible) transcription, leaving uncertainty in their
reliability and their practical improvement.

To address these shortcomings, we propose an adaptive framework for hypothesis set construction
in LLM-augmented ASR, as illustrated in Fig. 1(b). Instead of a static N , we dynamically form
sets using a threshold rule over the likelihood scores of ASR hypotheses, ensuring only sufficiently
plausible candidates are passed to the LLM. We tune these thresholds via conformal risk con-
trol (CRC) (Angelopoulos et al., 2024b), a distribution-free framework that we demonstrate provides
risk control on the expected loss (e.g., word error rate (WER)) relative to the oracle performance.
This adaptive strategy yields smaller average set sizes, reducing computational costs, while empir-
ically achieving comparable or lower WERs compared to fixed-N baselines on diverse benchmarks.
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(a) Motivating Example (b) Method Illustration

Figure 1: (a) WER performance patterns across hypothesis set sizes over TedLium-3. Samples
are grouped by monotonicity: samples that improve with more hypotheses (top), show consistent
performance (middle), or degrade with more hypotheses (bottom). (b) Comparison of standard GER
using fixed 5-hypothesis sets versus our adaptive GER that dynamically selects variable-sized hy-
pothesis sets with conformal risk control to bound relative performance degradation from the oracle.

Our main contributions can be summarized as follows:

• We propose an adaptive hypothesis selection framework that leverages ASR confidence scores
to dynamically determine the optimal set sizes for each input, replacing the standard fixed-size
approach with difficulty-aware resource allocation.

• We introduce the first application of CRC to GER, empirically demonstrating effective control
over relative performance degradation while enabling principled uncertainty quantification in
multi-hypothesis scenarios.

• We demonstrate substantial computational efficiency gains (up to 57.1% reduction in hypothesis
usage) while maintaining correction performance across diverse acoustic conditions, validating
both the empirical robustness and practical value of the proposed adaptive selection mechanism.

2 RELATED WORK

Automatic Speech Recognition Error Correction. Language model rescoring has been exten-
sively employed in ASR systems to enhance recognition accuracy, with external language models
reranking N-best hypothesis lists to select optimal transcriptions (Song et al., 2021). Recent
advances have moved beyond simple reranking toward generative error correction (GER), where
LLMs synthesize improved transcriptions by leveraging complete N-best lists rather than merely
selecting among existing candidates (Yang et al., 2023; Radhakrishnan et al., 2023; Yang et al.,
2024; Ma et al., 2025; Liu et al., 2025; Ghosh et al., 2024; Mu et al., 2025). Contemporary bench-
marks like HyPoradise (Chen et al., 2023) have formalized the hypotheses-to-transcription (H2T)
mapping task, enabling systematic evaluation of LLM-based correction methods across diverse
acoustic conditions. Our approach builds upon this foundation while introducing reliable and
adaptive hypothesis selection via CRC.

Uncertainty Quantification in Language and Speech Processing. Uncertainty quantification
has become critical for deploying natural language processing (NLP) and speech systems in
high-stakes applications, with traditional approaches including ensemble methods, Monte Carlo
dropout, and calibration techniques for well-calibrated probability estimates (Xiao et al., 2022).
Speech processing faces unique challenges due to temporal audio signals and cascading recognition
errors, leading to various approaches including acoustic confidence measures and neural uncertainty
estimation (Wullach & Chazan, 2023; Rumberg et al., 2025). However, these methods often lack
theoretical guarantees and may not generalize across acoustic conditions, making CRC attractive as
a principled approach providing distribution-free uncertainty quantification.

Conformal Prediction and Conformal Risk Control. Conformal prediction (CP) (Vovk et al.,
2005; Angelopoulos et al., 2024a) provides a distribution-free framework for uncertainty quan-
tification that constructs prediction sets with guaranteed coverage under minimal exchangeability
assumptions, without requiring distributional assumptions about models or data. The framework
has found extensive applications across regression, classification, and structured prediction tasks,
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including recent demonstrations in NLP for machine translation, text classification, and question
answering (Campos et al., 2024). conformal risk control (CRC) extends CP’s coverage guarantees
to control expected loss functions beyond simple miscoverage, allowing practitioners to specify
task-specific risk tolerances while maintaining distribution-free guarantees (Angelopoulos et al.,
2024b). This generalization has established CRC as a versatile framework for applications requiring
rigorous risk management where both performance and reliability are critical.

3 PROBLEM FORMULATION

Consider an input audio signal x ∈ X , and a corresponding transcription y. Possible transcription
hypotheses are generated by a pre-trained ASR model using beam search decoding, and the top N
are selected:

HN = {(ŷ1, c1), (ŷ2, c2), . . . , (ŷN , cN )} (1)

where ŷi represents the i-th hypothesis transcription and ci = log p(yi|x) denotes the log-likelihood
score from the ASR model. The hypotheses are ranked by their scores in descending order such
that c1 ≥ c2 ≥ . . . ≥ cN , with higher scores indicating higher confidence.

The goal is to learn a mapping function MH2T that predicts an improved transcription ŷ∗ from the
N-best list:

ŷ∗ = MH2T(HN ; θ) (2)

where θ represents learnable parameters. While traditional language model rescoring approaches
(Song et al., 2021) re-rank existing hypotheses to select the best candidate, generative error
correction (GER)(Ma et al., 2025; Hu et al., 2024; Yang et al., 2023) represents the current state-of-
the-art approach that can synthesize new transcriptions by leveraging information across all N-best
hypotheses, potentially producing corrections that do not appear in the original hypothesis list.

LLMs have emerged as powerful tools for this task due to their ability to understand linguistic
patterns and perform text generation. The common approaches involve either leveraging existing
LLMs with various prompt engineering techniques (Chen et al., 2023; Yang et al., 2023) or
fine-tuning a pre-trained LLM to learn the mapping from N-best hypotheses to ground-truth
transcriptions (Hu et al., 2024; Radhakrishnan et al., 2023). The model receives the ranked
hypotheses (optionally along with their confidence scores) as input and generates the corrected
transcription autoregressively. The training process utilizes pairs (HN , y), enabling the model to
learn the relationship between ASR error patterns and optimal corrections across diverse acoustic
conditions and speaking styles.

However, the conventional approach of using fixed-sized hypothesis sets overlooks a critical
observation: not all audio segments require the same number of hypotheses for effective correction.
In many cases, a smaller set is sufficient or even preferable for achieving optimal transcription
quality. As illustrated in Fig. 1, there exist numerous instances where smaller hypothesis sets are
sufficient and sometimes even yield better corrections than larger ones. This phenomenon suggests
that additional hypotheses can introduce noise rather than useful signal, motivating the need for
adaptive selection mechanisms that can dynamically determine the optimal number of hypotheses
based on the specific characteristics of each audio segment.

4 BACKGROUND - CONFORMAL RISK CONTROL

Conformal prediction (CP) is a distribution-free framework for uncertainty quantification that
requires only the weak assumption of exchangeability between calibration and test data, without
distributional assumptions about the underlying model or data generating process.A complete
exposition is provided in Appendix A.

Consider a calibration dataset {(X(i), Y (i))}mi=1, where X ∈ X and Y ∈ Y denote feature-response
pairs. While standard CP controls miscoverage probability, many applications require control over
more general risk measures. conformal risk control (CRC) extends CP to control the expectation of
any bounded, monotone loss function ℓ : 2Y × Y → [0, B]:

E[ℓ(Γλ(X
(m+1)), Y (m+1))] ≤ α (3)
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where Γλ : X → 2Y represents a parameterized prediction set function, (X(m+1), Y (m+1)) is a
new test point drawn exchangeably with the calibration data, and the expectation is taken over the
randomness in both calibration data and the test point.

The key insight is that for monotone loss functions—where enlarging the prediction set cannot
increase the loss—CRC maintains the distribution-free guarantees of standard CP while enabling
control over task-specific risk measures. The CRC threshold selection procedure aims to find the
optimal threshold:

λ̂ = inf

{
λ :

m

m+ 1
R̂m(λ) +

B

m+ 1
≤ α

}
, (4)

where the empirical risk is computed as:

R̂m(λ) =
1

m

m∑
i=1

ℓ(Γλ(X
(i)), Y (i)), (5)

representing the average empirical loss over the calibration set. For monotone loss functions, this
threshold can be found efficiently by gradually adjusting λ until the risk constraint is satisfied.

CRC provides finite-sample guarantees that are tight up to O(1/m) terms as stated in the following
Theorem.
Theorem 1 (CRC Finite-Sample Guarantee). Under the exchangeability assumption and for
bounded monotone loss functions, the set predictor Γλ̂ selected by the CRC procedure satisfies:

α− 2B

m+ 1
≤ E[ℓ(Γλ̂(X

(m+1)), Y (m+1))] ≤ α. (6)

Note that CRC reduces to standard CP when the loss function is the miscoverage indicator. CRC has
been applied to areas such as such as medical diagnosis, autonomous driving, ordinal classification,
and ranked retrieval systems (Andéol et al., 2023; Xu et al., 2023; 2024; Overman et al., 2024).

5 METHOD

5.1 ADAPTIVE HYPOTHESIS SELECTION VIA CONFORMAL RISK CONTROL

Building on the GER framework, presented in § 3, we propose an adaptive selection mechanism
that dynamically estimates the optimal number of hypotheses for each input sample. Rather than
using a fixed set of size N , our approach selects the minimal subset size n∗ that maintains correction
performance while reducing computational cost.

Adaptive hypothesis set. We formulate an adaptive hypotheis selection problem within the CRC
framework, established in § 4. We define adaptive hypothesis sets, parametrized by λ as:

Γλ(HN ) = {(ŷ1, c1), . . . , (ŷn, cn)}, (7)

where n is the adaptive set size determined according to λ:

n = min

{
j :

j∑
i=1

si ≥ λ

}
, (8)

and s = (s1, . . . , sN ) represents normalized nonconformity scores derived from ASR confidence
scores c = (c1, . . . , cN ).

The enhanced pipeline becomes ŷ∗ = MH2T(Γλ̂(HN ); θ), where λ̂ is the calibrated threshold for
controlling expected performance degradation. This approach maintains compatibility with any
pre-trained H2T model while reducing computational overhead through principled uncertainty
quantification.

Risk function and CRC. Our loss is defined with respect to word error rate (WER), which
is a standard metric used for evaluating ASR performance. The WER quantifies transcription
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Algorithm 1 Adaptive Selection Procedure with CRC Calibration Framework

Require: Calibration set {(H(i)
N , y(i))}mi=1 and a test sample H(m+1)

N
1: Calibration Phase:
2: for λ ∈ Λ (candidate threshold values) do
3: Compute ℓ(Γλ(H(i)

N ), y(i)) for all i ∈ [m]

4: Estimate R̂m(λ) = 1
m

∑m
i=1 ℓ(Γλ(H(i)

N ), yi)
5: end for
6: Select λ̂ = inf

{
λ : m

m+1 R̂m(λ) + B
m+1 ≤ α

}
7: Test Phase:
8: Compute normalized scores s = softmax(ϕγ(c

(m+1))/τ)

9: Select n∗ = min{n :
∑n

i=1 si ≥ λ̂}
10: Return hypothesis set H(m+1)

n∗ =
{(

ŷ
(m+1)
1 , c

(m+1)
1

)
, . . . ,

(
ŷ
(m+1)
n∗ , c

(m+1)
n∗

)}

accuracy by measuring the minimum number of word-level edits required to transform the predicted
transcription into the ground truth:

WER(ŷ, y) =
S(ŷ, y) +D(ŷ, y) + I(ŷ, y)

W (ŷ)
(9)

where S(ŷ, y), D(ŷ, y), and I(ŷ, y) represent the number of substitutions, deletions, and insertions,
respectively, and W (y) is the total number of words in the reference transcription.

Rather than controlling absolute WER, which requires domain-specific thresholds, we control the
per-sample relative degradation from the best achievable performance:

ℓ(Γλ(HN ), y) = WER(MH2T(Γλ(HN )), y)− min
j∈[N ]

WER(MH2T(Hj), y) (10)

where Hj = {(ŷ1, c1), . . . , (ŷj , cj)} denotes the top-j hypothesis set.

This loss function exhibits predominantly monotonic behavior, where enlarging the hypothesis set
typically does not worsen performance. Our adaptive selection can identify cases where smaller sets
are sufficient or even beneficial. In the worst-case scenario, selecting all N hypotheses converges
to the standard fixed-N baseline performance, ensuring no performance degradation from existing
methods. Finally, our risk control objective adapts the CRC framework:

E[ℓ(Γλ̂(HN ), Y )] ≤ α, (11)

where λ̂ is calibrated according to the CRC procedure, for controlling expected performance
degradation. Our method is summarized in Algorithm 1.

Score definition. The selection mechanism relies on a composite score derived from ASR log-
likelihoods, designed to adapt flexibly to varying dataset characteristics:

s = softmax
(
ϕγ(c)

τ

)
(12)

Here, ϕγ denotes an adaptive normalization function and τ is a temperature parameter. The function
ϕγ interpolates between two transformation regimes through a single parameter γ, enabling the
score to adjust to dataset-specific speech quality. To prevent redundancy, penalties are applied when
the ASR system generates repeated hypotheses. Further details on the adaptive normalization,
design rationale, and repetition handling are provided in the Appendix B.1.

5.2 THEORETICAL CONSIDERATIONS

While CRC provides a principled framework for risk control, our ASR application operates under
conditions that slightly deviate from the strict theoretical assumptions. We address these deviations
and their practical implications.

5
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Bounded loss. The CRC framework requires bounded, monotone loss functions. Our loss function
satisfies boundedness through clipping: we enforce ℓ(Γλ(HN ), y) ≤ B where B is set based on
validation set statistics such that violations are rare and have negligible impact.

Monotonicity. Strict monotonicity is violated in approximately 20% of samples, where smaller hy-
pothesis sets occasionally outperform larger ones. In addition, 95% of consecutive pairwise compar-
isons maintain monotonicity, indicating predominantly monotonic behavior with minor violations.
To address this, we evaluated the monotonizing procedure proposed by Angelopoulos et al. (2024b)
for handling non-monotone loss functions. This approach constructs ℓ̃i(λ) = supλ′≥λ ℓi(λ

′) to en-
force monotonicity with asymptotic guarantees. However, empirical results showed degraded perfor-
mance across datasets, likely because monotonizing eliminates the beneficial non-monotonic cases
that our adaptive method is designed to exploit. By forcing conservative behavior, this procedure
prevents identification of scenarios where smaller sets genuinely outperform larger ones—precisely
the phenomenon enabling our computational savings. We therefore use the loss as is, as it demon-
strates empirical robustness and maintains effective risk control in practice despite the slight assump-
tion violations. This suggests that the theoretical worst-case scenarios may not reflect typical ASR
behavior, where monotonicity violations often signal exploitable efficiency opportunities rather than
problematic cases.

6 EXPERIMENTAL SETUP

Datasets and Benchmark We evaluate our approach on three datasets from the HyPoradise
benchmark (Chen et al., 2023), spanning different acoustic difficulty levels based on average WER
performance:

• TedLium-3 (Hernandez et al., 2018) (avg. WER ∼ 8%) contains TED Talk recordings with
diverse noise, accents, and topics. Following HyPoradise protocol, we sample 50, 000 utterances:
47, 500 for training/validation, and 2, 500 for calibration/test.

• CHiME-4 (Vincent et al., 2017) (avg. WER ∼ 11%) contains far-field noisy recordings across
different environments. We use the complete train split (9, 600 utterances) for train/validation and
test-real split (1, 320 utterances) for calibration/test. Data was obtained from RobustGER (Hu
et al., 2024), which provides the required ASR likelihood scores.

• CommonVoice (Ardila et al., 2020) (avg. WER ∼ 14%) contains multilingual recordings from
diverse speakers with different accents. We select 50, 000 samples from train-en split using
47, 500 samples for train/validation, and 2, 500 samples for calibration/test.

ASR Hypothesis Generation. We employ Whisper models (Radford et al., 2023) for N -best
hypothesis generation via beam search, removing repetitive utterances and selecting top-5 (N = 5)
hypotheses by posterior probability. TedLium-3 and CommonVoice use Whisper-base (beam-
width is 60, following HyPoradise (Chen et al., 2023)), while CHiME-4 uses Whisper-Large-v2
(beam-width is 50, following RobustGER (Hu et al., 2024)).

LLM and Training. We fine-tune LLaMA-2-7B (Touvron et al., 2023) using LoRA (Hu et al.,
2022) for efficient H2T mapping. The model generates corrected transcriptions from N-best
inputs via standard next-token prediction. Training details, hyperparameters, and computational
requirements are in Appendix C.

CRC Calibration. We use the validation data to determine both the target risk levels (α) and the
dataset-specific score function parameters (γ and τ ), based on the empirical performance and score
discriminability patterns. The selection methodology and theoretical considerations are discussed
in Appendix B.

6.1 EVALUATION METRICS

Performance Measurements. We evaluate our approach using WER as the primary metric, as
described in § 5. We employ two complementary WER calculation methodologies. The primary
approach performs instance-level computation followed by averaging across samples, directly
corresponding to the defined loss function 10. As secondary validation, we compute corpus-level

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: WER (%) results with LLaMA-2-7B fine-tuning. Baseline: Whisper’s top-1 hypothesis.
Ollm: post-LLM oracle. Our method results represent one operating point from Figure 2. Subscript
percentages denote relative WER change vs. vanilla GER (WER column) and relative size reduction
vs. constant N = 5 (size column).

Test Set Baseline GER Our Method α(Target WER) Ollm

Set Size WER
TedLium-3 8.0 6.04 2.14557.1% 5.96−1.3% 1.785(6.115) 4.33

CHiME-4 11.49 6.38 3.824.0% 6.55+2.7% 1.9(6.63) 4.73

CommonVoice 14.1 8.46 3.138.0% 8.5+0.5% 1.7(8.65) 6.95

WER through concatenation of all predictions and references using the evaluate1 package,
which reduces sensitivity to sample length variability and enables comparison with prior works
using corpus-level conventions.

Risk Control Validation. Beyond standard WER evaluation, we validate the empirical effective-
ness of our CRC framework by tracking whether average relative WER degradation remains below
the specified target α, demonstrating effective risk control in practice. We compare against all
constant set sizes (1−5) to show that our adaptive method achieves superior performance-efficiency
trade-offs across all possible fixed-size baselines.

Experimental Protocol. To ensure statistical reliability, we perform T = 50 independent trials
with resampled calibration/test splits, allocating 30-40% of test samples for calibration Among the
selected α levels, we report only configurations achieving 100% calibration success rate. Final
results represent mean values across all trials.

7 RESULTS AND ANALYSIS

7.1 WER AND SET SIZE TRADEOFFS

Table 1 presents experimental results across datasets. The baseline performance corresponds to
Whisper’s top-1 hypothesis, establishing the initial recognition accuracy before post-processing.
The GER results demonstrate the effectiveness of the fine-tuned LLaMA-2-7B model when
provided with a fixed set of top-5 hypotheses. For reference, we include the oracle bound Ollm,
which represents the best possible performance when the LLM receives the optimal number of
hypotheses for each sample (between 1− 5).

The results show that GER achieves substantial improvements over the baseline across all condi-
tions, with gains varying according to dataset difficulty. Our adaptive selection framework demon-
strates superior computational efficiency while preserving or enhancing correction quality. Our
method dynamically determines the optimal number of hypotheses for each input, as reflected in
the average set sizes reported. These results validate the effectivness of our approach across diverse
acoustic conditions. On TedLium-3, the method achieves a 57.1% reduction in average set size while
improving performance (5.96% vs 6.04% WER). CHiME-4 demonstrates computational savings of
24% with a modest performance trade-off of 2.7% relative increase in WER. CommonVoice exhibits
38% computational reduction with minimal performance impact (0.5% relative increase). Notably,
the adaptive selection mechanism occasionally outperforms the fixed-size baseline, indicating that
excessive hypotheses can introduce noise rather than useful information for error correction.

Regarding the reliability of our selection mechanism, we find that the obtained WER remains
below the target, empirically confirming the effectiveness of our approach in providing guaranteed
performance—a property absent in prior methods and made possible through the CRC framework.

Our complementary corpus-level WERs are presented in Table D.1. Though this metric produces
different absolute values but maintain the same relative trends and ordering compared to constant
set sizes, confirming the robustness of our findings across evaluation methodologies.

1https://pypi.org/project/evaluate/
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(a) TedLium-3 (b) CHiME-4 (c) CommonVoice

Figure 2: Performance-compute trade-off analysis across datasets. Each plot shows WER vs. set
size for constant set sizes (connected line), oracle performance level (vertical line), and our adaptive
method performance (points).

Figure 2 illustrates the performance-compute trade-off characteristics of our adaptive approach
compared to fixed set sizes across all datasets. Each subplot displays the WER performance curve
for constant set sizes N = 1 through N = 5, with vertical reference line indicating the Ollm oracle
performance bound. We observe that our method’s operating points consistently demonstrate better
tradeoffs relative to the fixed-set performance curve, achieving computational efficiency gains while
maintaining competitive or even improved error rates.

7.2 ANALYSIS

To better understand the adaptive selection mechanism’s behavior, we examine representative cases
that illustrate when different set sizes are optimal. Table 2 presents three scenarios with complete
hypothesis lists, ASR scores, and LLM predictions that demonstrate the correlation between score
distributions and optimal set sizes.

Case 1: Full Set Required (Common Voice): When ASR scores exhibit narrow gaps (-0.42
to -0.51), our method correctly identifies the need for comprehensive information. The LLM
progressively refines its prediction across set sizes, ultimately achieving perfect accuracy with
the complete hypothesis set by correctly generating “gastroliths” rather than the various incorrect
alternatives (“gallstones,” “gastrolytes”). The compressed score distribution leads our normalization
to select larger sets, aligning with the empirical benefit of additional hypotheses.

Case 2: Single Hypothesis Optimal (TedLium-3): When the top hypothesis achieves perfect
accuracy and exhibits substantial score separation (-0.21 vs -0.31), additional hypotheses degrade
performance from 0% to 21% WER. In this case, the discriminative score gap correctly signals high
confidence in the first hypothesis, leading our method to favor minimal sets. This demonstrates that
additional hypotheses can introduce harmful noise.

Case 3: Performance Plateau (CHiME-4): When WER remains constant (6.25%) across all set
sizes, our method demonstrates computational efficiency potential. While the tight score clustering
(-0.46 to -0.49) would typically lead our normalization to select larger sets, this case illustrates
where our approach provides a safety net—in the worst case, we select all 5 hypotheses and achieve
identical performance to the baseline, but when score normalization successfully identifies the
plateau, we achieve the same WER with reduced computational cost.

These examples demonstrate how our adaptive selection responds to different ASR confidence
patterns: discriminative scores enable efficient small sets, while compressed scores lead to more
comprehensive hypothesis selection. This validates our approach of dynamically adjusting set sizes
based on the underlying score distributions rather than using fixed configurations.

7.3 ABLATION STUDIES

We briefly report several ablation studies that we performed to validate different aspects of our
proposed framework.

Alternative Problem Formulations. We evaluated multiple CP and CRC configurations including
absolute WER targets, coverage-based objectives for samples below specified WER thresholds,
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Table 2: Representative examples showing the relationship between ASR score distributions and
optimal set sizes. Case 1 demonstrates progressive improvement with larger sets, Case 2 shows
degradation beyond the optimal single hypothesis, and Case 3 illustrates performance plateau
enabling computational savings.

Case Hypotheses Score LLM Predictions by Set Size WER per Size (%)

Case 1: Full Set H1: calculi are not to be confused with gastro lits -0.42 Size 1: ...with gallstones 12.5
H2: calculi are not to be confused with gastrolytes -0.44 Size 2: ...with gastrolytes 12.5
H3: calculi are not to be confused with gastrolyts -0.47 Size 3: ...with gastrolytes 12.5
H4: calculi are not to be confused with gastrolets -0.50 Size 4: ...with gastrolytes 12.5
H5: calculi are not to be confused with gastrolettes -0.51 Size 5: ...with gastroliths 0.0
GT: calculi are not to be confused with gastroliths

Case 2: Single Opt. H1: ...medical team assign of the ship... -0.21 Size 1: ...team a sign of... 0.0
H2: ...medical team a sign of the ship... -0.31 Size 2-5: ...team assigned to... 21
H3: ...medical team assigned to the ship... -0.37 21
H4: ...medical team assigned of the ship... -0.41 21
H5: ...medical team assigned the ship... -0.43 21
GT: ...medical team a sign of the ship...

Case 3: Plateau H1: ...new york state sold about seventy seven million of... -0.46 All sizes: separately new york 6.25
H2: ...new york state sold about seventy seven million in... -0.47 state sold about seventy seven 6.25
H3: ...here it states all about seventy seven million in... -0.47 point one million dollars in 6.25
H4: ...new york state sold about seventy seven million of... -0.49 certificates of participation 6.25
H5: ...new york state sold about seventy seven million dollars in... -0.49 6.25
GT: ...seventy seven point one million dollars of...

and bounded-WER hypothesis guarantees, following approaches from prior ASR uncertainty
quantification works (Ernez et al., 2023). These alternatives consistently yielded inferior empirical
performance compared to our relative loss, defined in Eq. 10. Absolute WER targets operate at a
global level without instance-specific optimization, while bounded-WER guarantees (Ernez et al.,
2023) showed poor correlation between hypothesis quality and final LLM output quality, validating
our relative degradation formulation that adapts to each sample’s achievable performance range.

Training Set Size Analysis: We examined our choice of training the LLM with constant-5 hypothe-
sis sets, while evaluating with variable set sizes. To this end, we conducted comprehensive ablation
experiments training separate LLaMA-2-7B models on fixed set sizes (1-5 hypotheses), as well as
dynamic sizes, then evaluating each model across all possible test set sizes. The results are reported
in Tab. D.2. This 6 × 5 result matrix reveals that while specific combinations (e.g., train-3/test-3)
occasionally outperformed the baseline, the constant-5 trained model achieved optimal average
WER across all test configurations. These results confirm that our adaptive approach provides
genuine improvements over the best achievable fixed-size baseline, establishing the validity of our
comparative framework.

8 CONCLUSION AND FUTURE WORK

This work presents an adaptive framework for hypothesis selection in generative ASR error cor-
rection, addressing computational inefficiency through principled uncertainty quantification. Our
method employs CRC to dynamically determine optimal hypothesis set sizes, demonstrating sub-
stantial computational savings while maintaining competitive performance across datasets with di-
verse acoustic conditions. The framework requires only calibration without model retraining, en-
abling straightforward adoption in existing systems.

Future work could investigate confidence-driven adaptive compute allocation in multi-model sys-
tems, including reasoning and agent-based applications, where similar mechanisms for identifying
and reducing computational costs may achieve comparable performance with greater efficiency.
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A CONFORMAL PREDICTION FRAMEWORK

Let X denote the input space and H the output space. Consider a calibration set {(X(i), Y (i))}mi=1

where (X(i), Y (i)) ∈ X × H, and a new test point (X(m+1), Y (m+1)). Conformal prediction
requires that the calibration data and test point are exchangeable, meaning the joint distribution
remains invariant under permutations.

Conformal prediction is a distribution-free statistical framework that provides uncertainty quantifi-
cation for machine learning predictions with finite-sample guarantees. Given a calibration dataset
separate from training data, CP constructs prediction sets that satisfy coverage properties regardless
of the underlying model architecture or data distribution.

For the test input X(m+1) with unknown label Y (m+1), the goal is to construct a prediction set
C(X(m+1)) such that:

P (Y (m+1) /∈ C(X(m+1))) ≤ α (13)

where α is a user-specified significance level (e.g., 0.1 for 90% coverage).

The framework relies on nonconformity scores si : X × Y → R that measure how atypical a
prediction is for a given input. For any pair (x, y) ∈ X × Y , the nonconformity score s(x, y)
should reflect their agreement, with lower scores indicating better agreement. For the calibration set,
where true labels are known, si = s(X(i), Y (i)) quantifies the disagreement between the model’s
prediction and the true label. The prediction set is then constructed by including all labels whose
nonconformity scores fall below a data-dependent threshold.

B CONFORMAL RISK CONTROL IMPLEMENTATION DETAILS

B.1 SCORE FUNCTION DESIGN

B.1.1 MOTIVATION

Our analysis revealed that score distributions vary significantly across datasets with different noise
characteristics. Higher signal-to-noise ratio conditions (e.g., TedLium-3) produce more discrimina-
tive ASR confidence scores, while challenging acoustic environments (e.g., CommonVoice) yield
compressed score distributions. Temperature-only adaptation (means extreme values for the com-
pressed distributions) proved insufficient, creating overly homogeneous score distributions that de-
graded selection quality. Consequently, we developed the two-level normalization strategy with the
additional parameter γ, enabling adaptive score transformation based on dataset difficulty. This pa-
rameterization directly influences the resulting score distributions and, subsequently, the selected set
sizes, proving essential for robust performance across diverse acoustic conditions.

B.1.2 FUNCTION DESIGN

The normalization function ϕγ(c) smoothly interpolates between two transformation regimes based
on a single parameter γ ∈ [0, 1]:

ϕγ(c) = winv(γ) · finv(c) + wid(γ) · fid(c) (14)

where:

• fid(c) = c (identity transformation)

• finv(c) = −1/c (reciprocal transformation)

The identity transformation fid(c) = c preserves the natural ASR score differences, suitable for
high-SNR conditions where scores are discriminative. The reciprocal transformation finv(c) =
−1/c amplifies small differences between compressed scores, beneficial for challenging acoustic
conditions where ASR confidence variations are minimal.
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The parameter γ ∈ [0, 1] controls the interpolation: γ = 1 corresponds to pure identity (high-
SNR), while γ = 0 corresponds to pure reciprocal transformation (low-SNR). The linear weights
wid(γ) = γ and winv(γ) = (1− γ) ensure smooth transitions between regimes.

B.1.3 CHOSEN VALUES

We select γ and temperature parameters based on dataset discriminability characteristics. Easier
conditions with discriminative ASR scores use γ ≈ 1 (preserving natural score differences), while
challenging acoustic conditions require γ ≈ 0 (amplifying small differences through reciprocal
transformation). The temperature parameter balances the softmax distribution accordingly.

Table B.1 presents the optimal parameters determined for each dataset:

Dataset γ Temperature (τ )

TedLium-3 1.0 0.05
CHiME-4 0.5 1.0
CommonVoice 0.0 1.0

Table B.1: Score function parameters for each dataset.

These parameter selections reflect the varying signal-to-noise characteristics across datasets.
TedLium-3, with the highest SNR from clean TED talk recordings, uses γ = 1.0 to preserve the
naturally discriminative ASR confidence scores, combined with low temperature (τ = 0.05) to
create sharp selection boundaries. CHiME-4, representing intermediate SNR with moderate noise
environments, employs γ = 0.5 to balance between preserving and amplifying score differences.
CommonVoice, with the most challenging acoustic conditions and lowest effective SNR due to
diverse speaker accents and recording qualities, requires γ = 0.0 to maximally amplify small con-
fidence variations through reciprocal transformation. The higher temperature values (τ = 1.0) for
CHiME-4 and CommonVoice create smoother selection boundaries appropriate for noisier confi-
dence estimates. In practice, we explore dynamic ranges around these base values rather than single
fixed parameters, enabling the multiple operating points with different performance-efficiency trade-
offs presented in Figure 2.

B.1.4 HANDLING HYPOTHESIS REPETITIONS

When the ASR system produces fewer than N unique hypotheses, repeated hypotheses receive
exponentially decaying scores to avoid overweighting redundant information:

si,r = si · βr (15)

where Ri,r is the adjusted score for hypothesis i with repetition count r, and β ∈ (0, 1) is the decay
factor. This mechanism is based on the assumption that repeated hypotheses provide no additional
information for well-calibrated models, which we validate empirically in our experiments.

B.2 RISK TARGET CALIBRATION

To establish achievable risk targets α for our CRC framework, we perform preliminary analysis
on the validation set to characterize the performance gap between optimal and fixed 5-hypothesis
selection. We compute the relative WER degradation statistics across multiple random validation
subsets, measuring the difference between the best achievable performance (oracle selection) and
constant 5-hypothesis performance for each subset.

From this empirical distribution of performance gaps, we select the 90th percentile as our initial
risk target α. This serves as a conservative starting point that we can then adjust based on dataset-
specific characteristics: moving slightly downward for more aggressive operating points when val-
idation statistics support tighter bounds, or upward for more conservative settings in challenging
acoustic conditions. These adjustments yield the different operating points presented in our results.
The validation-derived statistics inform both the selection of achievable α values and the calibra-
tion of dataset-specific parameters, providing robustness across varying acoustic conditions while
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preventing calibration failures that could compromise the empirical risk control properties of our
method.

Table B.2 presents the empirical degradation statistics that inform our risk target selection. The cho-
sen α ranges closely align with the 90th-95th percentile statistics: TedLium-3 uses α ∈ [1.75, 1.85]
(90th-95th percentiles: 1.77-1.79), CommonVoice operates at α ∈ [1.695, 1.725] (90th-95th per-
centiles: 1.71-1.87), and CHiME-4 employs α ∈ [1.9, 2.0] (90th-95th percentiles: 1.87-1.96). These
operating ranges demonstrate how dataset-specific statistics guide the selection of achievable risk
targets while maintaining conservative bounds. Note that for CHiME-4, due to significant distri-
bution shift between training (∼25% WER), test-real (∼11.5% WER), and dev-real (∼9% WER)
subsets, we computed weighted statistics using an external validation subset (dev-real) to better
estimate the degradation distribution for the test-real evaluation set.

Dataset 99th 95th 90th

TedLium-3 1.83 1.79 1.77
CHiME-4 2.05 1.96 1.87
CommonVoice 2.0 1.87 1.71

Table B.2: Relative WER degradation statistics across datasets (percentage points).

Additionally, we set implementation parameters based on validation analysis: repetition penalty
β = 1.25 − 1.5 for handling duplicate hypotheses and loss bound B = 1.25 across all datasets to
account for rare cases exceeding 100% relative WER degradation. These parameters were deter-
mined through empirical validation to ensure robust performance across varying hypothesis quality
distributions and maintain the bounded loss requirements for our empirical risk control framework.

C LLM TRAINING CONFIGURATION DETAILS

C.1 HYPERPARAMETERS

We train using AdamW optimizer, effective batch size 32 (achieved through batch size 8 with 4-
step gradient accumulation), and cosine learning rate scheduler (with 0.05 warmup ratio). The
LoRA configuration uses rank r = 16 and scaling parameter α = 32, implemented via the PEFT
library (Mangrulkar et al., 2022).

Dataset-specific hyperparameters accommodate varying dataset sizes: learning rate range from 5e-5
to 1e-4, dropout rates range from 0.05-0.1, training epochs from 5-10, with larger datasets requiring
higher values for both parameters to achieve optimal convergence.

C.2 PROMPT TEMPLATE

The training utilizes the following prompt template:

“Correct this speech recognition transcript using the hypotheses below. Provide
ONLY the corrected transcript, nothing more.
###Hypotheses:
- {1st ∼ 5th utterances}
###Corrected-transcript:”

C.3 COMPUTATIONAL REQUIREMENTS

Model training is conducted on a single NVIDIA H100 GPU with 80GB memory. Training duration
varies by dataset size: CHiME-4 requires approximately 1 hour due to its smaller scale (9,600
samples), while TedLium-3 and CommonVoice each require 3-4 hours given their larger training sets
(47,500 samples each). The LoRA parameterization significantly reduces computational overhead
compared to full fine-tuning, enabling efficient adaptation while maintaining the frozen backbone
parameters.
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D ABLATION STUDY

Table D.1: Corpus-level WER (%) results with LLaMA-2-7B fine-tuning. Our method results repre-
sent one operating point from Figure 2. Results show consistent trends with instance-level averaging
(Table 1) despite different absolute values, demonstrating robustness across evaluation methodolo-
gies. Subscript percentages denote relative WER change vs. vanilla GER and relative size reduction
vs. constant N = 5.

Test Set GER Our Method Ollm

Set Size WER
TedLium-3 5.05 2.2155.8% 5.050.0% 4.33

CHiME-4 6.37 3.824.0% 6.6+3.6% 4.73

CommonVoice 7.8 3.0738.6% 7.95+1.9% 6.95

D.1 ANALYSIS OF TRAINING SET SIZE EFFECTS

Note: This ablation study uses a simplified experimental setup with different hyperparameters and
dataset splits compared to the main experiments, but demonstrates consistent patterns that validate
our core findings.

The ablation results reveal several key patterns that validate our experimental design. The constant-5
training approach achieves the lowest average WER (7.79%) across all test configurations, confirm-
ing its superiority as a baseline model. While diagonal elements (matching train/test sizes) occa-
sionally show local optima—such as train-3/test-3 achieving 6.58% versus the train-5/test-3 result
of 6.74%—these improvements are marginal and inconsistent across the full evaluation matrix.

Models trained on smaller hypothesis sets exhibit clear performance degradation when tested on
larger sets, as expected. The train-1 model struggles significantly with multi-hypothesis inputs,
achieving 11.65% WER on 5-hypothesis tests compared to 6.38% for the train-5 model. This
demonstrates the importance of exposure to diverse hypothesis patterns during training.

The dynamic training model, despite having access to variable set sizes during training, underper-
forms the constant-5 baseline (8.43% vs 7.79% average WER). This degraded performance likely
stems from the increased complexity of learning hypothesis-to-transcription mappings across vary-
ing input lengths simultaneously, creating a more challenging optimization landscape that prevents
the model from fully mastering any single configuration. The model must learn to handle the vari-
ability in input structure while maintaining transcription quality, leading to suboptimal specialization
compared to the focused constant-5 training regime.

These results establish that our adaptive approach provides genuine improvements over the best
achievable fixed-size baseline, validating the comparative framework used throughout our main ex-
periments.

Table D.2: Training Set Size Ablation Study: WER (%) across different training and test configura-
tions on CHiME-4 dataset

Train \ Test 1-hyp 2-hyp 3-hyp 4-hyp 5-hyp Average
Train-1 10.32 10.85 11.12 11.38 11.65 11.06
Train-2 10.72 8.55 8.92 9.15 9.41 9.35
Train-3 10.89 8.95 6.58 6.89 7.12 8.09
Train-4 10.95 9.12 6.89 6.52 6.71 8.04
Train-5 10.48 8.69 6.74 6.64 6.38 7.79

Dynamic 11.23 9.45 7.32 7.18 6.95 8.43
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