

CONFIDENT AND ADAPTIVE GENERATIVE SPEECH RECOGNITION VIA RISK CONTROL

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
19

Figure 1: **(a)** WER performance patterns across hypothesis set sizes over **TedLium-3**. Samples are grouped by monotonicity: samples that improve with more hypotheses (top), show consistent performance (middle), or degrade with more hypotheses (bottom). **(b)** Comparison of standard GER using fixed 5-hypothesis sets versus our adaptive GER that dynamically selects variable-sized hypothesis sets with risk control to bound relative performance degradation from the oracle.

strategy yields smaller average set sizes, reducing computational costs, while empirically achieving comparable or lower WERs compared to fixed-N baselines on diverse benchmarks.

Our main contributions can be summarized as follows:

- We propose an adaptive hypothesis selection framework that leverages ASR confidence scores to dynamically determine the optimal set sizes for each input, replacing the standard fixed-size approach with difficulty-aware resource allocation.
- We introduce the first application of risk control to GER, [providing theoretical guarantees alongside empirical validation](#) of effective control over relative performance degradation while enabling principled uncertainty quantification in multi-hypothesis scenarios.
- We demonstrate substantial computational efficiency gains (up to 57.6% reduction in hypothesis usage) while maintaining correction performance across diverse acoustic conditions, validating both the empirical robustness and practical value of the proposed adaptive selection mechanism.

2 RELATED WORK

Automatic Speech Recognition Error Correction. Language model rescoring has been extensively employed in ASR systems to enhance recognition accuracy, with external language models reranking N-best hypothesis lists to select optimal transcriptions (Song et al., 2021). Recent advances have moved beyond simple reranking toward generative error correction (GER), where LLMs synthesize improved transcriptions by leveraging complete N-best lists rather than merely selecting among existing candidates (Yang et al., 2023; Radhakrishnan et al., 2023; Yang et al., 2024; Ma et al., 2025; Liu et al., 2025; Ghosh et al., 2024; Mu et al., 2025). Contemporary benchmarks like HyPoradise (Chen et al., 2023) have formalized the hypotheses-to-transcription (H2T) mapping task, enabling systematic evaluation of LLM-based correction methods across diverse acoustic conditions. Our approach builds upon this foundation while introducing reliable and adaptive hypothesis selection via [risk control methods](#).

Uncertainty Quantification in Language and Speech Processing. Uncertainty quantification has become critical for deploying natural language processing (NLP) and speech systems in high-stakes applications, with traditional approaches including ensemble methods, Monte Carlo dropout, and calibration techniques for well-calibrated probability estimates (Xiao et al., 2022). Speech processing faces unique challenges due to temporal audio signals and cascading recognition errors, leading to various approaches including acoustic confidence measures and neural uncertainty estimation (Wullach & Chazan, 2023; Rumberg et al., 2025). However, these methods often lack theoretical guarantees and may not generalize across acoustic conditions, making risk control methods attractive as a principled approach providing distribution-free uncertainty quantification.

Conformal Prediction and Risk Control Methods. Conformal prediction (CP) (Vovk et al., 2005; Angelopoulos et al., 2024a) provides a distribution-free framework for uncertainty quan-

108 tification that constructs prediction sets with guaranteed coverage under minimal exchangeability
 109 assumptions, without requiring distributional assumptions about models or data. The framework
 110 has found extensive applications across regression, classification, and structured prediction tasks,
 111 including recent demonstrations in NLP for machine translation, text classification, and question
 112 answering (Campos et al., 2024). Conformal risk control (CRC) extends CP’s coverage guarantees
 113 to control expected loss functions beyond simple miscoverage, **but requires bounded monotone**
 114 **loss functions to maintain distribution-free guarantees** (Angelopoulos et al., 2024b). **Learn then**
 115 **test (LTT) provides an alternative risk control approach that handles non-monotone loss functions**
 116 **through multiple hypothesis testing with family-wise error rate control, offering high-probability**
 117 **bounds without monotonicity assumptions.**

3 PROBLEM FORMULATION

121 Consider an input audio signal $x \in \mathcal{X}$, and a corresponding transcription y . Possible transcription
 122 *hypotheses* are generated by a pre-trained ASR model using beam search decoding, and the top N
 123 are selected:

$$\mathcal{H}_N = \{(\hat{y}_1, c_1), (\hat{y}_2, c_2), \dots, (\hat{y}_N, c_N)\} \quad (1)$$

124 where \hat{y}_i represents the i -th hypothesis transcription and $c_i = \log p(y_i|x)$ denotes the log-likelihood
 125 score from the ASR model. The hypotheses are ranked by their scores in descending order such
 126 that $c_1 \geq c_2 \geq \dots \geq c_N$, with higher scores indicating higher confidence.

127 The goal is to learn a mapping function \mathcal{M}_{H2T} that predicts an improved transcription \hat{y}^* from the
 128 N-best list:

$$\hat{y}^* = \mathcal{M}_{\text{H2T}}(\mathcal{H}_N; \theta) \quad (2)$$

129 where θ represents learnable parameters. While traditional language model rescoring approaches
 130 (Song et al., 2021) re-rank existing hypotheses to select the best candidate, generative error correc-
 131 tion (GER)(Ma et al., 2025; Hu et al., 2024a; Yang et al., 2023) represents the current state-of-the-art
 132 approach that can synthesize new transcriptions by leveraging information across all N-best hy-
 133 potheses, potentially producing corrections that do not appear in the original hypothesis list.

134 LLMs have emerged as powerful tools for this task due to their ability to understand linguistic
 135 patterns and perform text generation. The common approaches involve either leveraging existing
 136 LLMs with various prompt engineering techniques (Chen et al., 2023; Yang et al., 2023) or
 137 fine-tuning a pre-trained LLM to learn the mapping from N-best hypotheses to ground-truth
 138 transcriptions (Hu et al., 2024a; Radhakrishnan et al., 2023). The model receives the ranked
 139 hypotheses (optionally along with their confidence scores) as input and generates the corrected
 140 transcription autoregressively. The training process utilizes pairs (\mathcal{H}_N, y) , enabling the model to
 141 learn the relationship between ASR error patterns and optimal corrections across diverse acoustic
 142 conditions and speaking styles.

143 However, the conventional approach of using fixed-sized hypothesis sets overlooks a critical
 144 observation: not all audio segments require the same number of hypotheses for effective correction.
 145 In many cases, a smaller set is sufficient or even preferable for achieving optimal transcription
 146 quality. As illustrated in Fig. 1, there exist numerous instances where smaller hypothesis sets are
 147 sufficient and sometimes even yield better corrections than larger ones. This phenomenon suggests
 148 that additional hypotheses can introduce noise rather than useful signal, motivating the need for
 149 adaptive selection mechanisms that can dynamically determine the optimal number of hypotheses
 150 based on the specific characteristics of each audio segment.

4 BACKGROUND - LEARN THEN TEST FRAMEWORK

151 Conformal prediction (CP) is a distribution-free framework for uncertainty quantification that
 152 requires only the weak assumption of exchangeability between calibration and test data, without
 153 distributional assumptions about the underlying model or data generating process. A complete
 154 exposition is provided in Appendix A. While standard CP controls miscoverage probability, many
 155 applications require control over more general risk measures. Conformal risk control (CRC)

162 extends CP to control bounded, monotone loss functions, but this monotonicity constraint limits
 163 applicability when loss functions exhibit non-monotone behavior with respect to the parameter.
 164

165 The Learn then test (LTT) framework addresses these limitations by reformulating risk control
 166 as a multiple hypothesis testing problem, enabling finite-sample guarantees without monotonicity
 167 assumptions. Consider a calibration dataset $\{(X^{(i)}, Y^{(i)})\}_{i=1}^m$, where $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ denote
 168 feature-response pairs. Given a parameterized prediction set function $\Gamma_\lambda : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ and bounded
 169 loss function $\ell : 2^{\mathcal{Y}} \times \mathcal{Y} \rightarrow [0, B]$, our goal is to find $\hat{\lambda}$ such that:

$$171 \quad E[\ell(\Gamma_{\hat{\lambda}}(X^{(m+1)}), Y^{(m+1)})] \leq \alpha \quad (3)$$

173 where $(X^{(m+1)}, Y^{(m+1)})$ is a new test point drawn exchangeably with the calibration data.
 174

175 LTT operates on a discrete parameter grid $\Lambda = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$ and associates each parameter λ_j
 176 with a null hypothesis $H_j : R(\lambda_j) > \alpha$, where $R(\lambda_j) = E[\ell(\Gamma_{\lambda_j}(X), Y)]$. Rejecting hypothesis
 177 H_j indicates that λ_j achieves the desired risk control. For each hypothesis, valid p-values are
 178 computed using the Hoeffding-Bentkus inequality (Appendix B.3) applied to the empirical risk:
 179

$$180 \quad \hat{R}_m(\lambda_j) = \frac{1}{m} \sum_{i=1}^m \ell(\Gamma_{\lambda_j}(X^{(i)}), Y^{(i)}). \quad (4)$$

183 A key advantage of LTT is its flexibility in handling non-monotone loss functions without requiring
 184 monotonicity enforcement. When combined with sequential testing procedures, LTT can avoid
 185 conservative multiplicity corrections by testing hypotheses in a predetermined sequence and
 186 stopping at the first rejection, achieving family-wise error rate control without the power loss of
 187 traditional methods like Bonferroni correction.
 188

190 **Theorem 1** (LTT Finite-Sample Guarantee). *For any FWER-controlling algorithm at level δ , the
 191 rejection set $\hat{\Lambda}$ satisfies:*

$$192 \quad P \left(\sup_{\lambda \in \hat{\Lambda}} \{R(\lambda)\} \leq \alpha \right) \geq 1 - \delta \quad (5)$$

195 Unlike CRC, LTT handles arbitrary loss functions, including those exhibiting non-monotone
 196 relationships with the parameter λ . This flexibility makes LTT particularly suitable for applications
 197 where monotonicity assumptions are violated, such as scenarios where computational efficiency
 198 and prediction quality exhibit complex trade-offs.
 199

200 5 METHOD

202 5.1 ADAPTIVE HYPOTHESIS SELECTION VIA CONFORMAL RISK CONTROL

204 Building on the GER framework, presented in § 3, we propose an adaptive selection mechanism
 205 that dynamically estimates the optimal number of hypotheses for each input sample. Rather than
 206 using a fixed set of size N , our approach selects the minimal subset size n^* that maintains correction
 207 performance while reducing computational cost.

208 **Adaptive hypothesis set.** We formulate an adaptive hypothesis selection problem within the **LTT**
 209 framework, established in § E.1. We define adaptive hypothesis sets, parametrized by λ as:

$$211 \quad \Gamma_\lambda(\mathcal{H}_N) = \{(\hat{y}_1, c_1), \dots, (\hat{y}_n, c_n)\}, \quad (6)$$

213 where n is the adaptive set size determined according to λ :

$$214 \quad n = \min \left\{ j : \sum_{i=1}^j s_i \geq \lambda \right\}, \quad (7)$$

216 and $\mathbf{s} = (s_1, \dots, s_N)$ represents normalized nonconformity scores derived from ASR confidence
 217 scores $\mathbf{c} = (c_1, \dots, c_N)$.
 218

219 The enhanced pipeline becomes $\hat{y}^* = \mathcal{M}_{\text{H2T}}(\Gamma_{\hat{\lambda}}(\mathcal{H}_N); \theta)$, where $\hat{\lambda}$ is the calibrated threshold for
 220 controlling expected performance degradation. This approach maintains compatibility with any
 221 pre-trained H2T model while reducing computational overhead through principled uncertainty
 222 quantification.

223 **Risk function and .** Our loss is defined with respect to word error rate (WER), which is a standard
 224 metric used for evaluating ASR performance. The WER quantifies transcription accuracy by mea-
 225 suring the minimum number of word-level edits required to transform the predicted transcription
 226 into the ground truth:

$$227 \quad \text{WER}(\hat{y}, y) = \frac{S(\hat{y}, y) + D(\hat{y}, y) + I(\hat{y}, y)}{W(\hat{y})} \quad (8)$$

229 where $S(\hat{y}, y)$, $D(\hat{y}, y)$, and $I(\hat{y}, y)$ represent the number of substitutions, deletions, and insertions,
 230 respectively, and $W(y)$ is the total number of words in the reference transcription.

231 Rather than controlling absolute WER, which requires domain-specific thresholds, we control the
 232 *per-sample* relative degradation from the best achievable performance:

$$234 \quad \ell(\Gamma_{\lambda}(\mathcal{H}_N), y) = \text{WER}(\mathcal{M}_{\text{H2T}}(\Gamma_{\lambda}(\mathcal{H}_N)), y) - \min_{j \in [N]} \text{WER}(\mathcal{M}_{\text{H2T}}(\mathcal{H}_j), y) \quad (9)$$

236 where $\mathcal{H}_j = \{(\hat{y}_1, c_1), \dots, (\hat{y}_j, c_j)\}$ denotes the top- j hypothesis set.

237 This loss function exhibits predominantly monotonic behavior, where enlarging the hypothesis set
 238 typically does not worsen performance. Our adaptive selection can identify cases where smaller sets
 239 are sufficient or even beneficial. In the worst-case scenario, selecting all N hypotheses converges
 240 to the standard fixed- N baseline performance, ensuring no performance degradation from existing
 241 methods. **Finally, our risk control objective follows the LTT framework:**

$$243 \quad P(E[\ell(\Gamma_{\hat{\lambda}}(\mathcal{H}_N), Y)] \leq \alpha) \geq 1 - \delta, \quad (10)$$

244 where $\hat{\lambda}$ is selected from the rejection set obtained by the LTT procedure, providing finite-
 245 sample guarantees for expected performance degradation control. Our method is summarized in
 246 Algorithm 1.

249 **Algorithm 1** Learn then Test Selection Procedure

251 **Require:** Calibration set $\{(H_N^{(i)}, y^{(i)})\}_{i=1}^m$, parameter grid $\Lambda = \{\lambda_1, \dots, \lambda_k\}$, error level δ
 252 1: **for** $j = 1$ to k **do**
 2: Compute empirical risk $\hat{R}_m(\lambda_j) = \frac{1}{m} \sum_{i=1}^m \ell(\Gamma_{\lambda_j}(H_N^{(i)}), y^{(i)})$
 253 Calculate p-value p_j using Hoeffding-Bentkus inequality
 254 **if** $p_j \leq \delta$ **then**
 255 **return** $\hat{\lambda} = \lambda_j$
 256 **end if**
 257 7: **end for**
 258 8: **return** failure (no valid λ found)

261 **Score definition.** The selection mechanism relies on a composite score derived from ASR log-
 262 likelihoods, designed to adapt flexibly to varying dataset characteristics:

$$265 \quad \mathbf{s} = \text{softmax} \left(\frac{\phi_{\gamma}(\mathbf{c})}{\tau} \right) \quad (11)$$

268 Here, ϕ_{γ} denotes an adaptive normalization function and τ is a temperature parameter. The function
 269 ϕ_{γ} interpolates between two transformation regimes through a single parameter γ , enabling the
 score to adjust to dataset-specific speech quality. To prevent redundancy, penalties are applied when

270 the ASR system generates repeated hypotheses. Further details on the adaptive normalization,
 271 design rationale, and repetition handling are provided in the Appendix B.1.
 272

273 It is important to note that our method is independent of the specific choice of the score used to
 274 define the adaptive set. Previous research in ASR has shown that likelihood values do not always
 275 provide a reliable measure of confidence (Li et al., 2021; Ravi et al., 2024) While Li et al. (2021);
 276 Ravi et al. (2024) focus on top-label calibration, approaches such as that of Popordanoska et al.
 277 (2022) offer canonical calibration, which enables the generation of confidence scores for several
 278 top hypotheses that can be seamlessly integrated with our framework. Nevertheless, for simplicity,
 279 we demonstrate our method using the more commonly available likelihood values.
 280

281 5.2 THEORETICAL CONSIDERATIONS

282 While risk control frameworks provide principled methods for uncertainty quantification, our ASR
 283 application operates under conditions that require careful consideration of theoretical assumptions.
 284 We address these considerations and their practical implications.

285 **Bounded loss.** Risk control frameworks require bounded loss functions. Our loss function satisfies
 286 boundedness through clipping: we enforce $\ell(\Gamma_\lambda(\mathcal{H}_N), y) \leq B$ where B is set based on validation
 287 set statistics such that violations are rare and have negligible impact.
 288

289 **Monotonicity.** While some risk control methods like CRC require monotone loss functions, the
 290 monotonicity violations in our application ($\sim 20\%$ of cases) represent precisely the efficiency op-
 291 portunities our adaptive method exploits - scenarios where smaller hypothesis sets genuinely outper-
 292 form larger ones. To maintain theoretical guarantees without monotonicity constraints, we employ
 293 the LTT framework, which handles non-monotone losses naturally through sequential hypothesis
 294 testing, ensuring our approach provides rigorous finite-sample bounds regardless of monotonicity
 295 violations.
 296

297 6 EXPERIMENTAL SETUP

298 **Datasets and Benchmark** We evaluate our approach on three datasets from the HyPoradise
 299 benchmark (Chen et al., 2023), spanning different acoustic difficulty levels based on average WER
 300 performance:

- 302 • **TedLium-3** (Hernandez et al., 2018) (avg. WER $\sim 8\%$) contains TED Talk recordings with
 303 diverse noise, accents, and topics. Following HyPoradise protocol, we sample 50,000 utterances:
 304 47,500 for training/validation, and 2,500 for calibration/test.
- 306 • **CHiME-4** (Vincent et al., 2017) (avg. WER $\sim 11\%$) contains far-field noisy recordings across
 307 different environments. We use the complete train split (9,600 utterances) for train/validation and
 308 test-real split (1,320 utterances) for calibration/test. Data was obtained from RobustGER (Hu
 309 et al., 2024a), which provides the required ASR likelihood scores.
- 310 • **CommonVoice** (Ardila et al., 2020) (avg. WER $\sim 14\%$) contains multilingual recordings from
 311 diverse speakers with different accents. We select 50,000 samples from train-en split using
 312 47,500 samples for train/validation, and 2,500 samples for calibration/test.

313 **ASR Hypothesis Generation.** We employ Whisper models (Radford et al., 2023) for N -best
 314 hypothesis generation via beam search, removing repetitive utterances and selecting top-5 ($N = 5$)
 315 hypotheses by posterior probability. TedLium-3 and CommonVoice use Whisper-base (beam-
 316 width is 60, following HyPoradise (Chen et al., 2023)), while CHiME-4 uses Whisper-Large-v2
 317 (beam-width is 50, following RobustGER (Hu et al., 2024a)).

318 **LLM and Training.** We fine-tune LLaMA-2-7B (Touvron et al., 2023) using LoRA (Hu et al.,
 319 2022) for efficient H2T mapping. The model generates corrected transcriptions from N-best
 320 inputs via standard next-token prediction. Training details, hyperparameters, and computational
 321 requirements are in Appendix D.

323 **Risk Calibration.** We use the validation data to determine both the target risk levels (α) and the
 324 dataset-specific score function parameters (γ and τ), based on the empirical performance and score

discriminability patterns. The selection methodology and theoretical considerations are discussed in Appendix B.

Table 1: LTT WER (%) results with LLaMA-2-7B fine-tuning. Baseline: Whisper’s top-1 hypothesis. O_{llm} : post-LLM oracle. Our LTT method results with $\delta = 0.25$ across datasets. Subscript percentages denote relative WER change vs. vanilla GER (WER column) and relative size reduction vs. constant $N = 5$ (size column).

Test Set	Baseline	GER	LTT Method		α	Success Rate	O_{llm}
			Set Size	WER			
TedLium-3	8.0	6.06	2.121 _{57.58%}	6.05 _{-0.25%}	0.024	0.95	4.38
CHiME-4	11.49	6.24	3.866 _{22.68%}	6.37 _{+2.06%}	0.027	0.98	4.71
CommonVoice	14.1	8.42	3.212 _{38.09%}	8.55 _{+1.62%}	0.022	0.97	6.98

6.1 EVALUATION METRICS

Performance Measurements. We evaluate our approach using WER as the primary metric, as described in § 5. We employ two complementary WER calculation methodologies. The primary approach performs instance-level computation followed by averaging across samples, directly corresponding to the defined loss function 9. As secondary validation, we compute corpus-level WER through concatenation of all predictions and references using the `evaluate`¹ package, which reduces sensitivity to sample length variability and enables comparison with prior works using corpus-level conventions.

Risk Control Validation. Beyond standard WER evaluation, we validate the empirical effectiveness of our LTT framework by tracking the success rate of risk control across independent trials. For each dataset, we perform multiple calibration-test splits and measure the proportion of trials where the risk constraint $R(\hat{\lambda}) \leq \alpha$ is satisfied, validating the high-probability bound $P(R(\hat{\lambda}) \leq \alpha) \geq 1 - \delta$ empirically. Results demonstrate success rates consistently exceeding the theoretical minimum of $1 - \delta$, confirming effective risk control in practice. We compare against all constant set sizes (1–5) to show that our adaptive method achieves superior performance-efficiency trade-offs across all possible fixed-size baselines while maintaining the theoretical guarantees.

Experimental Protocol. To ensure statistical reliability, we perform $T = 50$ independent trials with resampled calibration/test splits, allocating 30-50% of test samples for calibration. We set $\delta = 0.25$ for the LTT framework to account for relatively small calibration set sizes, preventing overly conservative p-value thresholds in the Hoeffding-Bentkus inequality while maintaining robust theoretical guarantees, resulting in empirical success rates above 75%. Among the selected α levels, we report only configurations achieving 100% calibration success rate. Final results represent mean values across all trials.

7 RESULTS AND ANALYSIS

7.1 WER AND SET SIZE TRADEOFFS

Table 1 presents experimental results across datasets. The baseline performance corresponds to Whisper’s top-1 hypothesis, establishing the initial recognition accuracy before post-processing. The GER results demonstrate the effectiveness of the fine-tuned LLaMA-2-7B model when provided with a fixed set of top-5 hypotheses. For reference, we include the oracle bound O_{llm} , which represents the best possible performance when the LLM receives the optimal number of hypotheses for each sample (between 1–5).

The results show that GER achieves substantial improvements over the baseline across all conditions, with gains varying according to dataset difficulty. Our adaptive selection framework demonstrates superior computational efficiency while preserving or enhancing correction quality. Our

¹<https://pypi.org/project/evaluate/>

Figure 2: Performance-compute trade-off analysis across datasets. Each plot shows WER vs. set size for constant set sizes (connected line), oracle performance level (vertical line), and our adaptive method performance (points).

method dynamically determines the optimal number of hypotheses for each input, as reflected in the average set sizes reported. These results validate the effectiveness of our approach across diverse acoustic conditions. On TedLium-3, the method achieves a 57.6% reduction in average set size while improving performance. CHiME-4 demonstrates computational savings of 23% with a modest performance trade-off of 2% relative increase in WER. CommonVoice exhibits 38% computational reduction with minimal performance impact. Notably, the adaptive selection mechanism occasionally outperforms the fixed-size baseline, indicating that excessive hypotheses can introduce noise rather than useful information for error correction.

Regarding the reliability of our selection mechanism, we find that the theoretical guarantees hold empirically across all trials, with the high-probability bound $(P(R(\hat{\lambda}) \leq \alpha) \geq 1 - \delta = 0.75$, in our case) consistently satisfied in practice. This confirms the effectiveness of our approach in providing rigorous risk control - a property absent in prior methods and made possible through the LTT framework.

Our complementary corpus-level WERs are presented in Table C.1. Though this metric produces different absolute values but maintain the same relative trends and ordering compared to constant set sizes, confirming the robustness of our findings across evaluation methodologies.

Figure 2 illustrates the performance-compute trade-off characteristics of our adaptive approach compared to fixed set sizes across all datasets. Each subplot displays the WER performance curve for constant set sizes $N = 1$ through $N = 5$, with vertical reference line indicating the O_{lm} oracle performance bound. We observe that our method’s operating points consistently demonstrate better tradeoffs relative to the fixed-set performance curve, achieving computational efficiency gains while maintaining competitive or even improved error rates.

7.2 ANALYSIS

To better understand the adaptive selection mechanism’s behavior, we examine representative cases that illustrate when different set sizes are optimal. Table 2 presents three scenarios with complete hypothesis lists, ASR scores, and LLM predictions that demonstrate the correlation between score distributions and optimal set sizes.

Case 1: Full Set Required (Common Voice): When ASR scores exhibit narrow gaps (-0.42 to -0.51), our method correctly identifies the need for comprehensive information. The LLM progressively refines its prediction across set sizes, ultimately achieving perfect accuracy with the complete hypothesis set by correctly generating “gastroliths” rather than the various incorrect alternatives (“gallstones,” “gastrolytes”). The compressed score distribution leads our normalization to select larger sets, aligning with the empirical benefit of additional hypotheses.

Case 2: Single Hypothesis Optimal (TedLium-3): When the top hypothesis achieves perfect accuracy and exhibits substantial score separation (-0.21 vs -0.31), additional hypotheses degrade performance from 0% to 21% WER. In this case, the discriminative score gap correctly signals high confidence in the first hypothesis, leading our method to favor minimal sets. This demonstrates that additional hypotheses can introduce harmful noise.

432
 433 Table 2: Representative examples showing the relationship between ASR score distributions and
 434 optimal set sizes. Case 1 demonstrates progressive improvement with larger sets, Case 2 shows
 435 degradation beyond the optimal single hypothesis, and Case 3 illustrates performance plateau
 436 enabling computational savings.

437 Case	438 Hypotheses	439 Score	440 LLM Predictions by Set Size	441 WER per Size (%)
442 Case 1: Full Set	443 H1: calculi are not to be confused with gastro lits 444 H2: calculi are not to be confused with gastrolites 445 H3: calculi are not to be confused with gastrolites 446 H4: calculi are not to be confused with gastrolites 447 H5: calculi are not to be confused with gastrolites 448 <i>GT: calculi are not to be confused with gastroliths</i>	449 -0.42 450 -0.44 451 -0.47 452 -0.50 453 -0.51	454 Size 1: ...with gallstones 455 Size 2: ...with gastrolites 456 Size 3: ...with gastrolites 457 Size 4: ...with gastrolites 458 Size 5: ...with gastroliths	459 12.5 460 12.5 461 12.5 462 12.5 463 0.0
464 Case 2: Single Opt.	465 H1: ...medical team assign of the ship... 466 H2: ...medical team a sign of the ship... 467 H3: ...medical team assigned to the ship... 468 H4: ...medical team assigned of the ship... 469 H5: ...medical team assigned the ship... 470 <i>GT: ...medical team a sign of the ship...</i>	471 -0.21 472 -0.31 473 -0.37 474 -0.41 475 -0.43	476 Size 1: ...team a sign of... 477 Size 2-5: ...team assigned to... 478 479 480	481 0.0 482 21 483 21 484 21 485 21
486 Case 3: Plateau	487 H1: ...new york state sold about seventy seven million of... 488 H2: ...new york state sold about seventy seven million in... 489 H3: ...here it states all about seventy seven million in... 490 H4: ...new york state sold about seventy seven million of... 491 H5: ...new york state sold about seventy seven million dollars in... 492 <i>GT: ...seventy seven point one million dollars of...</i>	493 -0.46 494 -0.47 495 -0.47 496 -0.49 497 -0.49	498 All sizes: separately new york 499 state sold about seventy seven 500 point one million dollars in 501 certificates of participation	502 6.25 503 6.25 504 6.25 505 6.25 506 6.25

450 **Case 3: Performance Plateau** (CHiME-4): When WER remains constant (6.25%) across all set
 451 sizes, our method demonstrates computational efficiency potential. While the tight score clustering
 452 (-0.46 to -0.49) would typically lead our normalization to select larger sets, this case illustrates
 453 where our approach provides a safety net—in the worst case, we select all 5 hypotheses and achieve
 454 identical performance to the baseline, but when score normalization successfully identifies the
 455 plateau, we achieve the same WER with reduced computational cost.

456 These examples demonstrate how our adaptive selection responds to different ASR confidence
 457 patterns: discriminative scores enable efficient small sets, while compressed scores lead to more
 458 comprehensive hypothesis selection. This validates our approach of dynamically adjusting set sizes
 459 based on the underlying score distributions rather than using fixed configurations.

460 7.3 ABLATION STUDIES

462 We briefly report several ablation studies that we performed to validate different aspects of our
 463 proposed framework.

464 **Alternative Problem Formulations.** We evaluated multiple CP and risk control methods
 465 configurations including absolute WER targets, coverage-based objectives for samples below
 466 specified WER thresholds, and bounded-WER hypothesis guarantees, following approaches from
 467 prior ASR uncertainty quantification works (Ernez et al., 2023). These alternatives consistently
 468 yielded inferior empirical performance compared to our relative loss, defined in Eq. 9. Absolute
 469 WER targets operate at a global level without instance-specific optimization, while bounded-WER
 470 guarantees (Ernez et al., 2023) showed poor correlation between hypothesis quality and final
 471 LLM output quality, validating our relative degradation formulation that adapts to each sample’s
 472 achievable performance range.

473 **Training Set Size Analysis:** We examined our choice of training the LLM with constant-5 hypothe-
 474 sis sets, while evaluating with variable set sizes. To this end, we conducted comprehensive ablation
 475 experiments training separate LLaMA-2-7B models on fixed set sizes (1-5 hypotheses), as well as
 476 dynamic sizes, then evaluating each model across all possible test set sizes. The results are reported
 477 in Tab. C.2. This 6×5 result matrix reveals that while specific combinations (e.g., train-3/test-3)
 478 occasionally outperformed the baseline, the constant-5 trained model achieved optimal average
 479 WER across all test configurations. These results confirm that our adaptive approach provides
 480 genuine improvements over the best achievable fixed-size baseline, establishing the validity of our
 481 comparative framework.

482 **Scalability to Larger Models and Zero-Shot Settings.** To evaluate generalizability beyond
 483 our LLaMA-2-7B baseline, we conducted experiments with LLaMA-2-13B (fine-tuned) and GPT-
 484 3.5-turbo (zero-shot prompting). Results demonstrate that our framework maintains consistent
 485 performance-efficiency trade-offs across both larger model scales and deployment scenarios where
 486 fine-tuning is not feasible. The computational savings persist relative to the increased inference

486 costs, confirming that our adaptive selection mechanism provides value across different model ar-
 487 chitectures and prompting paradigms. This addresses practical deployment considerations where
 488 model size and training constraints vary significantly. Detailed results are provided in Appendix C.2.
 489

490 **Cross-Domain Extension.** We extended our framework to speech translation tasks using the Gen-
 491 Translate paradigm on multilingual datasets, with some methodological adaptation. Results show
 492 successful transfer with substantial computational savings while maintaining competitive translation
 493 quality. This cross-domain validation demonstrates broader applicability beyond ASR to generative
 494 error correction scenarios involving N-best hypothesis integration, directly addressing the broader
 495 impact potential in the GER community. Full methodology and results in Appendix C.3.
 496

497 **CRC Implementation.** We also implemented the CRC framework as an alternative risk control
 498 method. While CRC lacks theoretical guarantees due to monotonicity violations in our application
 499 ($\sim 20\%$ of cases), it achieves similar empirical performance to our LTT approach. This demonstrates
 500 that both frameworks effectively exploit the same underlying adaptive selection patterns, with LTT
 501 providing the additional benefit of rigorous theoretical validation. The CRC implementation and
 502 comparative analysis are detailed in Appendix E.
 503

504 **Theoretical Bound Validation.** To examine the gap between theoretical high-probability guar-
 505 antees (75%) and observed empirical performance (95-98%), we conducted experiments with larger
 506 calibration sets. Results confirm that empirical performance approaches theoretical bounds as cali-
 507 bration data increases, validating that our method maintains the required statistical guarantees while
 508 the observed gap reflects conservative finite-sample bounds. Detailed analysis is provided in Ap-
 509 pendix C.4.
 510

511 8 CONCLUSION AND FUTURE WORK

512 This work presents an adaptive framework for hypothesis selection in generative ASR error cor-
 513 rection, addressing computational inefficiency through principled uncertainty quantification. Our
 514 method employs LTT to dynamically determine optimal hypothesis set sizes, providing rigorous
 515 theoretical guarantees with high-probability bounds while demonstrating substantial computational
 516 savings and maintaining competitive performance across datasets with diverse acoustic conditions.
 517 Validation across larger language models, zero-shot settings, and cross-domain speech translation
 518 tasks confirms the framework’s broad applicability and robustness across different deployment sce-
 519 narios.

520 The framework requires only calibration without model retraining, enabling straightforward adop-
 521 tion in existing systems. Future work could investigate confidence-driven adaptive compute al-
 522 location in multi-model systems, including reasoning and agent-based applications, where similar
 523 mechanisms for identifying and reducing computational costs may achieve comparable performance
 524 with greater efficiency.

525 REFERENCES

526 Léo Andéol, Thomas Fel, Florence De Grancey, and Luca Mossina. Confident object detection
 527 via conformal prediction and conformal risk control: an application to railway signaling. In
 528 *Conformal and Probabilistic Prediction with Applications*, pp. 36–55. PMLR, 2023.

529 Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. Theoretical foundations of
 530 conformal prediction. *arXiv preprint arXiv:2411.11824*, 2024a.

532 Anastasios N Angelopoulos, Stephen Bates, Emmanuel J Candès, Michael I Jordan, and Lihua Lei.
 533 Learn then test: Calibrating predictive algorithms to achieve risk control. *The Annals of Applied
 534 Statistics*, 19(2):1641–1662, 2025. doi: 10.1214/24-AOAS1998.

536 Anastasios Nikolas Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Con-
 537 formal risk control. In *The Twelfth International Conference on Learning Representations*, 2024b.

538 Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer,
 539 Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gregor Weber. Common voice: A

massively-multilingual speech corpus. In *Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)*, pp. 4211–4215, 2020.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for self-supervised learning of speech representations. *Advances in neural information processing systems*, 33:12449–12460, 2020.

Margarida M. Campos, António Farinhos, Chrysoula Zerva, Mário A. T. Figueiredo, and André F. T. Martins. Conformal prediction for natural language processing: A survey. *Transactions of the Association for Computational Linguistics*, 12:1497–1516, 2024. doi: 10.1162/tacl_a_00715.

Chen Chen, Yuchen Hu, Chao-Han Huck Yang, Sabato Marco Siniscalchi, Pin-Yu Chen, and Eng-Siong Chng. Hyporadise: An open baseline for generative speech recognition with large language models. *Advances in Neural Information Processing Systems*, 36:31665–31688, 2023.

Fares Ernez, Alexandre Arnold, Audrey Galametz, Catherine Kobus, and Nawal Ould-Amer. Applying the conformal prediction paradigm for the uncertainty quantification of an end-to-end automatic speech recognition model (wav2vec 2.0). In *Proceedings of the Twelfth Symposium on Conformal and Probabilistic Prediction with Applications*, volume 204 of *Proceedings of Machine Learning Research*, pp. 16–35. PMLR, 2023.

Sreyan Ghosh, Mohammad Sadegh Rasooli, Michael Levit, Peidong Wang, Jian Xue, Dinesh Manocha, and Jinyu Li. Failing forward: Improving generative error correction for asr with synthetic data and retrieval augmentation. *arXiv preprint arXiv:2410.13198*, 2024.

François Hernandez, Vincent Nguyen, Sahar Ghannay, Natalia Tomashenko, and Yannick Estève. Ted-lium 3: twice as much data and corpus repartition for experiments on speaker adaptation. *arXiv preprint arXiv:1805.04699*, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022.

Yuchen Hu, Chen Chen, Chao-Han Huck Yang, Ruizhe Li, Chao Zhang, Pin-Yu Chen, and Eng Siong Chng. Large language models are efficient learners of noise-robust speech recognition. In *International Conference on Learning Representations*, 2024a. URL <https://arxiv.org/abs/2401.10446>.

Yuchen Hu, Chen Chen, Chao-Han Huck Yang, Ruizhe Li, Dong Zhang, Zhehuai Chen, and Eng Siong Chng. Gentranslate: Large language models are generative multilingual speech and machine translators. 2024b.

Hamza Kheddar, Mustapha Hemis, and Yassine Himeur. Automatic speech recognition using advanced deep learning approaches: A survey. *Information fusion*, 109:102422, 2024.

Qiuqia Li, David Qiu, Yu Zhang, Bo Li, Yanzhang He, Philip C Woodland, Liangliang Cao, and Trevor Strohman. Confidence estimation for attention-based sequence-to-sequence models for speech recognition. In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 6388–6392. IEEE, 2021.

Yanyan Liu, Minqiang Xu, Yihao Chen, Liang He, Lei Fang, Sian Fang, and Lin Liu. Denoising ger: A noise-robust generative error correction with llm for speech recognition. *arXiv preprint arXiv:2509.04392*, 2025.

R. Ma, M. Qian, M. Gales, and K. Knill. Asr error correction using large language models. *IEEE Transactions on Audio, Speech and Language Processing*, 33:1389–1401, 2025. doi: 10.1109/TASLPRO.2025.3551083.

Rao Ma, Mengjie Qian, Mark Gales, and Kate Knill. Asr error correction using large language models. *arXiv preprint arXiv:2409.09554*, 2024.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin Bossan. PEFT: State-of-the-art parameter-efficient fine-tuning methods. <https://github.com/huggingface/peft>, 2022.

594 Bingshen Mu, Kun Wei, Pengcheng Guo, and Lei Xie. Mixture of lora experts with multi-modal and
 595 multi-granularity llm generative error correction for accented speech recognition. *IEEE Transactions on Audio, Speech and Language Processing*, 2025.

596

597 William Overman, Jacqueline Vallon, and Mohsen Bayati. Aligning model properties via conformal
 598 risk control. *Advances in Neural Information Processing Systems*, 37:110702–110722, 2024.

599

600 Teodora Popordanoska, Raphael Sayer, and Matthew Blaschko. A consistent and differentiable l_p
 601 canonical calibration error estimator. *Advances in Neural Information Processing Systems*, 35:
 602 7933–7946, 2022.

603

604 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 605 Robust speech recognition via large-scale weak supervision. In *International conference on ma-
 606 chine learning*, pp. 28492–28518. PMLR, 2023.

607

608 Srijith Radhakrishnan, Chao-Han Huck Yang, Sumeer Ahmad Khan, Rohit Kumar, Narsis A. Kiani,
 609 David Gomez-Cabrero, and Jesper N. Tegner. Whispering llama: A cross-modal generative error
 610 correction framework for speech recognition. In *Proceedings of the 2023 Conference on Empir-
 611 ical Methods in Natural Language Processing*, pp. 10007–10016, Singapore, 2023. Association
 612 for Computational Linguistics.

613

614 Nagarathna Ravi, Vipul Arora, et al. Teles: Temporal lexeme similarity score to estimate confidence
 615 in end-to-end asr. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 32:
 4399–4408, 2024.

616

617 Lars Rumberg, Christopher Gebauer, and Jörn Ostermann. Aggregation-free uncertainty estimation
 618 for ctc-based automatic speech recognition. *IEEE Transactions on Audio, Speech and Language
 619 Processing*, 2025.

620

621 Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised
 622 pre-training for speech recognition. *Proceedings of Interspeech*, pp. 3465–3469, 2019.

623

624 Yuanfeng Song, Di Jiang, Xuefang Zhao, Qian Xu, Raymond Chi-Wing Wong, Lixin Fan, and Qiang
 625 Yang. L2rs: A learning-to-rescore mechanism for hybrid speech recognition. In *Proceedings of
 626 the 29th ACM International Conference on Multimedia*, pp. 3474–3482. ACM, 2021.

627

628 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 629 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 630 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

631

632 Emmanuel Vincent, Shinji Watanabe, Aditya Arie Nugraha, Jon Barker, and Ricard Marxer. An
 633 analysis of environment, microphone and data simulation mismatches in robust speech recogni-
 634 tion. *Computer Speech & Language*, 46:535–557, 2017.

635

636 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*,
 637 volume 29. Springer, 2005.

638

639 Tomer Wullach and Shlomo E Chazan. Don't be so sure! boosting asr decoding via confidence
 640 relaxation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.
 641 13780–13788, 2023.

642

643 Yuxin Xiao, Paul Pu Liang, Umang Bhatt, Willie Neiswanger, Ruslan Salakhutdinov, and Louis-
 644 Philippe Morency. Uncertainty quantification with pre-trained language models: A large-scale
 645 empirical analysis. In *Findings of the Association for Computational Linguistics: EMNLP*, pp.
 646 7273–7284, 2022.

647

648 Yunpeng Xu, Wenge Guo, and Zhi Wei. Conformal risk control for ordinal classification. In *Uncer-
 649 tainty in Artificial Intelligence*, pp. 2346–2355. PMLR, 2023.

650

651 Yunpeng Xu, Mufang Ying, Wenge Guo, and Zhi Wei. Two-stage risk control with application to
 652 ranked retrieval. *arXiv preprint arXiv:2404.17769*, 2024.

648 C.-H. Huck Yang, Y. Gu, Y.-C. Liu, S. Ghosh, I. Bulyko, and A. Stolcke. Generative speech
 649 recognition error correction with large language models and task-activating prompting. In *2023*
 650 *IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)*, pp. 1–8, 2023. doi:
 651 10.1109/ASRU57964.2023.10389673.

652 C.-H. Huck Yang et al. Large language model based generative error correction: A challenge and
 653 baselines for speech recognition, speaker tagging, and emotion recognition. In *2024 IEEE Spoken
 654 Language Technology Workshop (SLT)*, pp. 371–378, 2024. doi: 10.1109/SLT61566.2024.
 655 10832176.

658 A CONFORMAL PREDICTION FRAMEWORK

659 Let \mathcal{X} denote the input space and \mathcal{H} the output space. Consider a calibration set $\{(X^{(i)}, Y^{(i)})\}_{i=1}^m$
 660 where $(X^{(i)}, Y^{(i)}) \in \mathcal{X} \times \mathcal{H}$, and a new test point $(X^{(m+1)}, Y^{(m+1)})$. Conformal prediction
 661 requires that the calibration data and test point are exchangeable, meaning the joint distribution
 662 remains invariant under permutations.

663 Conformal prediction is a distribution-free statistical framework that provides uncertainty quantifi-
 664 cation for machine learning predictions with finite-sample guarantees. Given a calibration dataset
 665 separate from training data, CP constructs prediction sets that satisfy coverage properties regardless
 666 of the underlying model architecture or data distribution.

667 For the test input $X^{(m+1)}$ with unknown label $Y^{(m+1)}$, the goal is to construct a prediction set
 668 $C(X^{(m+1)})$ such that:

$$669 P(Y^{(m+1)} \notin C(X^{(m+1)})) \leq \alpha \quad (12)$$

670 where α is a user-specified significance level (e.g., 0.1 for 90% coverage).

671 The framework relies on nonconformity scores $s_i : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ that measure how atypical a
 672 prediction is for a given input. For any pair $(x, y) \in \mathcal{X} \times \mathcal{Y}$, the nonconformity score $s(x, y)$
 673 should reflect their agreement, with lower scores indicating better agreement. For the calibration set,
 674 where true labels are known, $s_i = s(X^{(i)}, Y^{(i)})$ quantifies the disagreement between the model’s
 675 prediction and the true label. The prediction set is then constructed by including all labels whose
 676 nonconformity scores fall below a data-dependent threshold.

677 B RISK CONTROL IMPLEMENTATION DETAILS

678 B.1 SCORE FUNCTION DESIGN

679 B.1.1 MOTIVATION

680 Our analysis revealed that score distributions vary significantly across datasets with different noise
 681 characteristics. Higher signal-to-noise ratio conditions (e.g., TedLium-3) produce more discrimina-
 682 tive ASR confidence scores, while challenging acoustic environments (e.g., CommonVoice) yield
 683 compressed score distributions. Temperature-only adaptation proved insufficient, creating overly
 684 homogeneous score distributions that degraded selection quality. Consequently, we developed the
 685 two-level normalization strategy with parameter γ , enabling adaptive score transformation based on
 686 dataset difficulty while maintaining robustness across parameter choices.

687 B.1.2 FUNCTION DESIGN

688 The normalization function $\phi_\gamma(c)$ smoothly interpolates between two transformation regimes based
 689 on a single parameter $\gamma \in [0, 1]$:

$$690 \phi_\gamma(\mathbf{c}) = (1 - \gamma) \cdot (-\mathbf{c}^{-1}) + \gamma \cdot \mathbf{c} \quad (13)$$

691 where \mathbf{c}^{-1} denotes element-wise reciprocal operation, i.e., $(\mathbf{c}^{-1})_i = 1/c_i$ for each component i .

Figure B.1: ASR confidence score distributions for TedLium-3 (left) and CommonVoice (right) across processing stages: raw scores (top), softmax normalization (middle), and full transformation (bottom).

The identity transformation ($\gamma = 1$) preserves natural ASR score differences for high-SNR conditions, while the reciprocal transformation ($\gamma = 0$) amplifies small differences between compressed scores for challenging acoustic conditions. The parameter γ controls smooth transitions between these regimes.

B.1.3 PARAMETER SELECTION STRATEGY

We base parameter selection on signal-to-noise ratio characteristics and empirical validation.

Figure B.1 illustrates score evolution across processing stages for different acoustic conditions. TedLium-3's high-SNR conditions produce naturally discriminative scores, requiring only sharpening via low temperature ($\tau = 0.05$) while preserving relationships ($\gamma = 1.0$). CommonVoice's challenging conditions with compressed distributions require reciprocal amplification ($\gamma = 0.0$) followed by moderate temperature ($\tau = 1.0$). CHiME-4 represents intermediate conditions requiring balanced transformation ($\gamma = 0.5$).

To validate this SNR-based rationale, we conducted systematic grid testing across the parameter space. Figure B.2 shows success regions where the method achieves valid risk control with better performance-compute trade-offs than fixed baselines.

The heatmaps confirm that successful regions align with our SNR-based parameter selection, with edge cases (high/low SNR) showing concentrated success areas and intermediate conditions requiring parameters within mid-value ranges.

Figure B.2: Parameter selection grid test results showing success regions across (γ, τ) parameter space. Success is defined as achieving valid risk control with superior performance-compute trade-offs compared to fixed baselines. Heat-maps confirm that successful regions align with SNR-based parameter selection strategy.

B.1.4 ROBUSTNESS ANALYSIS

Grid testing across uniformly sampled parameter combinations demonstrates method robustness. Success criteria require: (1) valid λ selection with controlled risk, and (2) superior performance-compute trade-offs compared to fixed-set baselines.

Results show overall success rate of 70% (61/88 combinations), with per-dataset rates: TedLium-3: 80% (24/30), CHiME-4: 62% (18/29), CommonVoice: 66% (19/29). This indicates parameter selection is an optimization step rather than a critical requirement, providing practitioners flexibility while maintaining performance guarantees.

B.1.5 AUTOMATED PARAMETER SELECTION

To automate parameter selection for deployment across unseen acoustic conditions, we investigated the relationship between score distribution characteristics and working point success. Our intuition is that meaningful working points should exhibit score vectors that respond differently across varying input difficulties, with entropy serving as a natural measure of this distributional behavior.

Analysis confirmed that score vector entropy serves as a reliable predictor of parameter effectiveness - successful working points exhibit distinct entropy patterns compared to failed configurations. Based on this observation, we developed a simple entropy-based rule: thresholding score vector entropy at 4.85 effectively discriminates between suitable and unsuitable parameter combinations.

We validated this rule on previously unseen parameter pairs, achieving prediction precision exceeding 80% and F1 scores above 75%. This enables practitioners to assess parameter suitability on new datasets without extensive manual calibration, providing a practical deployment pathway that transforms manual parameter tuning into principled selection with automated validation.

It should be noted that parameter sensitivity increases when targeting tighter performance bounds (lower α and δ values), as the method operates in narrower feasible regions where precise parameter selection becomes more critical.

B.1.6 HANDLING HYPOTHESIS REPETITIONS

When the ASR system produces fewer than N unique hypotheses, repeated hypotheses receive exponentially decaying scores to avoid overweighting redundant information:

$$s_{i,r} = s_i \cdot \beta^r \quad (14)$$

where $R_{i,r}$ is the adjusted score for hypothesis i with repetition count r , and $\beta \in (0, 1)$ is the decay factor. This mechanism is based on the assumption that repeated hypotheses provide no additional information for well-calibrated models, which we validate empirically in our experiments.

810 B.2 TARGET RISK
811812
813 B.2.1 RISK TARGET CALIBRATION
814

815 We establish target risk levels based on the performance range achievable through fixed hypothesis
816 set selection. The feasible degradation range spans from fixed-1-hypothesis (worst case) to
817 fixed-5-hypotheses (best case) performance. Since our adaptive method dynamically selects smaller
818 sets with minimal degradation, targeting risk bounds within this empirically-derived range repre-
819 sents the natural operating regime. These empirically-derived ranges are $[1.7, 3.0]$ for TedLium-3,
820 $[1.53, 5.76]$ for CHiME-4, and $[1.46, 3.81]$ for CommonVoice. We uniformly sample target risk val-
821 ues within the validated degradation range. The specific choice within this range determines the
822 desired performance-compute trade-off: values closer to 1-hypothesis' risk prioritize computational
823 efficiency, while values approaching 5-hypotheses' risk emphasize performance preservation. The
824 two risk-control frameworks require different α -calibration approaches. For CRC, we directly use
825 validation-derived values as the target expected risk levels, since CRC bounds $\mathbb{E}[R(\hat{\lambda})] \leq \alpha$. On
826 the other hand, LTT provides high-probability bounds $\Pr(R(\hat{\lambda}) \leq \alpha) \geq 1 - \delta$, meaning that α
827 represents approximately the $(1 - \delta)$ th percentile of the empirical risk distribution rather than its
828 expectation. To achieve equivalent average performance, LTT therefore requires α values that are
829 higher than the target expected empirical risk. Due to small calibration set sizes, the Hoeffding-
830 Bentkus inequality produces conservative p-values, leading to more conservative set selections with
831 higher empirical coverage. In practice, LTT typically yields valid selections for α values from the
832 upper 75% of the feasible range, while CRC can achieve valid selections across the full range due to
833 its expectation-based formulation. We report results only for α values that demonstrate successful
834 risk control within the validated range, ensuring both theoretical validity and practical utility across
835 different performance-efficiency preferences.

836 B.2.2 PERFORMANCE TRADE-OFFS
837

838 The target risk α directly controls the performance-compute trade-off by determining acceptable
839 expected relative WER degradation from oracle performance. Lower α values (tighter bounds)
840 require larger hypothesis sets to achieve the target risk level, due to average WER monotonicity
841 on average, while higher α values (looser bounds) enable smaller sets with acceptable performance
842 degradation.

843 Table B.1: Effect of risk tolerance α on performance-compute trade-offs (CommonVoice dataset).
844

Risk Tolerance (α)	Avg. Set Size	WER (%)
0.21 (tighter)	3.73	8.53
0.22	3.49	8.59
0.23	3.14	8.66
0.24 (looser)	2.99	8.73

851 Table B.1 demonstrates this relationship empirically. As α increases, average set sizes decrease from
852 while WER increases as well. The different operating points in Figure 2 correspond to varying α
853 selections within these validated ranges.

854 B.3 OTHER PARAMETERS SELECTION
855

856 We set additional framework parameters based on validation analysis to ensure robust performance
857 across datasets. The repetition penalty $\beta = 1.25 - 1.5$ handles duplicate hypotheses by applying
858 exponential decay to repeated entries, preventing overfitting of redundant information. The loss
859 bound $B = 1.25$ accounts for rare cases exceeding 100% relative WER degradation, satisfying the
860 bounded loss requirement for theoretical guarantees. These parameters were determined through
861 empirical validation to maintain stability across varying hypothesis quality distributions while pre-
862 serving the risk control framework's theoretical foundations.

864 **B.4 HOEFFDING-BENTKUS P-VALUE COMPUTATION**
865866 For LTT implementation, we compute valid p-values using the Hoeffding-Bentkus inequality. Given
867 empirical risk $\hat{R}_m(\lambda_j)$ on the calibration set, the p-value for hypothesis $H_j : R(\lambda_j) > \alpha$ is:
868

869
$$p_j^{HB} = \min \left\{ \exp\{-nh_1(\hat{R}_m(\lambda_j) \wedge \alpha, \alpha)\}, eP \left(\text{Bin}(n, \alpha) \geq \lfloor n\hat{R}_m(\lambda_j) \rfloor \right) \right\} \quad (15)$$

870

871 where $h_1(a, b) = a \log(a/b) + (1 - a) \log((1 - a)/(1 - b))$ and n is the calibration set size. This
872 provides finite-sample valid p-values without distributional assumptions, enabling the sequential
873 testing procedure in Algorithm 1.
874875 **C ABLATION STUDY**
876877 Table C.1: Corpus-level WER (%) results with LLaMA-2-7B fine-tuning. Our method results
878 represent one operating point from Figure 2. Results show consistent trends with instance-level averaging
879 (Table E.1) despite different absolute values, demonstrating robustness across evaluation methodolo-
880 gies. Subscript percentages denote relative WER change vs. vanilla GER and relative size reduction
881 vs. constant $N = 5$.
882

Test Set	GER	Our Method		O_{llm}
		Set Size	WER	
TedLium-3	5.05	2.21 _{55.8%}	5.05 _{0.0%}	3.03
CHiME-4	6.37	3.8 _{24.0%}	6.6 _{+3.6%}	4.78
CommonVoice	7.8	3.07 _{38.6%}	7.95 _{+1.9%}	6.31

883 **C.1 ANALYSIS OF TRAINING SET SIZE EFFECTS**
884885 *Note: This ablation study uses a simplified experimental setup with different hyperparameters and
886 dataset splits compared to the main experiments, but demonstrates consistent patterns that validate
887 our core findings.*
888889 The ablation results reveal several key patterns that validate our experimental design. The constant-5
890 training approach achieves the lowest average WER (7.79%) across all test configurations, confirming
891 its superiority as a baseline model. While diagonal elements (matching train/test sizes) occa-
892 sionally show local optima—such as train-3/test-3 achieving 6.58% versus the train-5/test-3 result
893 of 6.74%—these improvements are marginal and inconsistent across the full evaluation matrix.
894895 Models trained on smaller hypothesis sets exhibit clear performance degradation when tested on
896 larger sets, as expected. The train-1 model struggles significantly with multi-hypothesis inputs,
897 achieving 11.65% WER on 5-hypothesis tests compared to 6.38% for the train-5 model. This
898 demonstrates the importance of exposure to diverse hypothesis patterns during training.
899900 The dynamic training model, despite having access to variable set sizes during training, underper-
901 forms the constant-5 baseline (8.43% vs 7.79% average WER). This degraded performance likely
902 stems from the increased complexity of learning hypothesis-to-transcription mappings across vary-
903 ing input lengths simultaneously, creating a more challenging optimization landscape that prevents
904 the model from fully mastering any single configuration. The model must learn to handle the vari-
905 ability in input structure while maintaining transcription quality, leading to suboptimal specialization
906 compared to the focused constant-5 training regime.
907908 These results establish that our adaptive approach provides genuine improvements over the best
909 achievable fixed-size baseline, validating the comparative framework used throughout our main
910 experiments.
911912 **C.2 SCALABILITY TO LARGER LANGUAGE MODELS**
913914 To evaluate the generalizability of our adaptive framework beyond the LLaMA-2-7B baseline, we
915 conducted experiments with LLaMA-2-13B (fine-tuned) and GPT-3.5-turbo (zero-shot prompting).
916

918
919 Table C.2: Training Set Size Ablation Study: WER (%) across different training and test configura-
920 tions on CHiME-4 dataset

Train \ Test	1-hyp	2-hyp	3-hyp	4-hyp	5-hyp	Average
Train-1	10.32	10.85	11.12	11.38	11.65	11.06
Train-2	10.72	8.55	8.92	9.15	9.41	9.35
Train-3	10.89	8.95	6.58	6.89	7.12	8.09
Train-4	10.95	9.12	6.89	6.52	6.71	8.04
Train-5	10.48	8.69	6.74	6.64	6.38	7.79
Dynamic	11.23	9.45	7.32	7.18	6.95	8.43

921
922
923
924
925
926
927
928
929 These experiments assess whether the computational efficiency gains and adaptive selection benefits
930 persist with more capable and resource-intensive models. All experiments use the LTT calibration
931 procedure with dataset-specific α values, as detailed in Section B.1.6.932
933 C.2.1 LLAMA-2-13B RESULTS
934935 We fine-tuned LLaMA-2-13B using identical training procedures, hyperparameters, and evalua-
936 tion protocols as our main experiments. Table C.3 presents representative working points for each
937 dataset.938 Table C.3: LLaMA-2-13B adaptive selection results. Results shown for one representative working
939 point per dataset; multiple valid working points exist across the parameter space.
940

Test Set	Baseline	GER	Our Method		α	δ	O_{lm}
			Set Size	WER			
TedLium-3	8.0	6.47	2.40 _{51.9%}	6.46 _{-0.01%}	2.1	0.25	4.69
CHiME-4	11.49	7.92	3.88 _{22.4%}	8.16 _{+3.06%}	1.25	0.25	7.26
CommonVoice	14.1	8.10	3.50 _{30.1%}	8.28 _{+2.27%}	2.0	0.25	6.50

941
942
943
944
945
946
947 The results demonstrate that our framework maintains its value proposition with larger models:
948 TedLium-3 achieves 51.9% computational savings with identical performance, while CHiME-4 and
949 CommonVoice show modest performance trade-offs (3.06% and 2.27% relative WER increase) for
950 substantial efficiency gains (22.4% and 30.1% hypothesis reduction). These results confirm that the
951 performance of the adaptive selection mechanism generalizes across model scales.952
953 C.2.2 GPT-3.5-TURBO ZERO-SHOT RESULTS
954955 To assess applicability without fine-tuning, we evaluated GPT-3.5-turbo using zero-shot prompting
956 based on templates from HyPoradise (Chen et al., 2023) and (Ma et al., 2024).957 Table C.4: GPT-3.5-turbo zero-shot adaptive selection results. Results shown for one representative
958 working point per dataset.

Test Set	Baseline	GER	Our Method		α	δ	O_{lm}
			Set Size	WER			
CommonVoice	14.1	11.73	2.31 _{42.3%}	11.81 _{+0.67%}	1.5	0.25	10.51
CHiME-4	11.49	9.77	2.19 _{56.1%}	9.89 _{+1.17%}	1.65	0.25	8.61

959
960
961
962
963
964
965 Our adaptive method achieves substantial computational savings (42-56% hypothesis reduction)
966 with minimal performance impact (+0.67-1.17% relative WER increase) in zero-shot settings967
968
969
970
971 *Experimental notes:* For CommonVoice, we evaluated hypothesis sets in the range [1, 4] as pre-
972 liminary tests showed performance degradation beyond 4 hypotheses; the GER baseline (11.73%)
973 represents the best fixed size in this range. TedLium-3 was excluded from this evaluation because,
974 consistent with findings in (Ma et al., 2024), all zero-shot working points performed worse than the
975 baseline across all hypothesis sizes - likely due to the dataset's initially strong baseline performance,
976 making the comparison uninformative.

972 These experiments validate three key findings: (1) the adaptive framework generalizes across model
 973 scales with consistent behavior, (2) zero-shot prompting achieves substantial efficiency gains (42-
 974 56% reduction) despite smaller absolute WER differences, and (3) computational savings persist
 975 relative to the increased inference cost of larger models.
 976

978 C.3 EXTENSION TO SPEECH TRANSLATION TASKS

980 To demonstrate the broader applicability of our adaptive hypothesis selection framework, we evaluated
 981 its performance on speech translation tasks using the GenTranslate paradigm Hu et al. (2024b).
 982 This cross-domain validation examines whether our method maintains its computational efficiency
 983 benefits when applied to translation scenarios involving N-best hypothesis integration.

984 **Dataset Selection and Monotonicity Validation.** We selected three language pairs from the
 985 FLEURS X→En speech translation dataset (fr→en, cy→en, ar→en) based on a critical prerequisite:
 986 monotonic performance improvement with increasing hypothesis set sizes. Using the published
 987 GenTranslate checkpoint ², we validated that BLEU scores followed the expected ordering
 988 BLEU($N = 5$) > BLEU($N = 4$) > ... > BLEU($N = 1$) on average across these language pairs.
 989 This monotonicity condition ensures a meaningful performance-compute trade-off exists, validating
 990 the potential utility of adaptive selection.

991 **Methodological Adaptation for Speech Translation.** A key challenge emerged in adapting our
 992 framework to speech translation tasks: BLEU, the standard evaluation metric, operates at the corpus
 993 level and provides limited meaningful information at the instance level required for our risk-based
 994 selection mechanism. To address this, we employed TER (Translation Edit Rate) for instance-level
 995 risk computation and adaptive set selection, while reporting final results using corpus-level BLEU
 996 for comparability with existing work. This approach leverages TER’s established validity at the
 997 instance level while maintaining evaluation consistency. We validated that TER and BLEU preserve
 998 relative ordering (with inverse correlation) across our test sets.

1000 Table C.5: Speech translation results with adaptive hypothesis selection on FLEURS X→En test
 1001 sets compared to fixed N=5 baseline. Our method achieves substantial computational savings while
 1002 maintaining competitive translation quality.

1004 Task	1005 GER		1006 Adaptive Selection			1007 α	1008 Success 1009 Rate	1010 $TER_{O_{lm}}$
	1011 TER (%)	1012 BLEU	1013 Avg. Size	1014 BLEU	1015 TER (%)			
1007 fr→en	1008 4.62	1009 37.50	1010 3.21 _{35.8%}	1011 37.23 _{-0.70%}	1012 4.67	1013 5	1014 0.97	1015 4.24
1007 cy→en	1008 5.1	1009 33.89	1010 2.62 _{47.7%}	1011 33.39 _{-1.47%}	1012 5.3	1013 6.9	1014 0.96	1015 4.67
1007 ar→en	1008 5.21	1009 34.47	1010 1.72 _{65.5%}	1011 33.44 _{-2.98%}	1012 5.29	1013 5.65	1014 0.98	1015 4.81

1012 **Implementation Details.** Due to smaller test set sizes (400-1000 samples) compared to ASR ex-
 1013 periments, we increased the error tolerance δ to 0.3 to prevent overly conservative bounds in the
 1014 LTT framework. All other methodological components, including parameter selection and risk cal-
 1015ibration procedures, remained consistent with our ASR implementation. The same LTT sequential
 1016 testing approach was applied with TER-based loss functions for hypothesis set selection.

1017 **Summary.** This cross-domain validation demonstrates that our adaptive hypothesis selection
 1018 framework generalizes effectively beyond ASR to speech translation tasks, achieving substantial
 1019 computational savings (36-66% hypothesis reduction) while maintaining competitive translation
 1020 quality. These results confirm the broader applicability of our approach across generative error cor-
 1021 rection scenarios involving N-best hypothesis integration, addressing the computational efficiency
 1022 challenges inherent in LLM-based post-processing systems.

1023
 1024
 1025 ²<https://huggingface.co/PeacefulData/GenTranslate>

1026 C.4 THEORETICAL HIGH-PROBABILITY GUARANTEE ANALYSIS
10271028 Our LTT framework provides finite-sample guarantees $P(R(\hat{\lambda}) \leq \alpha) \geq 1 - \delta$ through the
1029 Hoeffding-Bentkus inequality. In practice, we observe empirical success rates (95-98%) that consist-
1030 ently exceed the theoretical bounds of $1 - \delta = 0.75$. To validate that this behavior reflects conser-
1031 vative finite-sample bounds, we conducted systematic experiments varying calibration set sizes and
1032 δ values.1033 We modified the splits to enable larger calibration sets for statistical analysis. For CommonVoice,
1034 we reran the complete pipeline with modified train-test split, while for TedLium-3 and CHiME-4
1035 we re-split the existing test sets (CHiME-4 also expanded with its 'simu' set samples). All operating
1036 points maintained superior performance-efficiency trade-offs compared to fixed-size baselines.
10371038 Table C.6: Theoretical vs. empirical performance on modified-split CommonVoice.
10391040

Test Set Size	$\delta = 0.1$ (90%)	$\delta = 0.15$ (85%)	$\delta = 0.2$ (80%)
15k (7.5k for Calib)	90%	86%	83%
15k (4.5k for Calib)	95%	90%	89%

1044
1045 Table C.7: Cross-dataset validation of performance behavior.
10461047

Dataset	Size	$\delta = 0.3$ (70%)	$\delta = 0.2$ (80%)	$\delta = 0.15$ (85%)
TedLium-3	2.5k (2k for calib)	78%	87%	89%
CHiME-4 (expanded)	2.96k (1.48k for calib)	83%	91%	93%

1048 Tables C.6 and C.7 demonstrate consistent patterns across all datasets: empirical performance ap-
1049 proaches theoretical bounds as calibration data increases, while maintaining appropriate response
1050 to δ variations. This validates that our method maintains the required statistical guarantees and
1051 confirms that the observed behavior in our main experiments stems from conservative Hoeffding-
1052 Bentkus bounds with small calibration sets.
10531054 D LLM TRAINING CONFIGURATION DETAILS
10551056 D.1 HYPERPARAMETERS
10571058 We train using AdamW optimizer, effective batch size 32 (achieved through batch size 8 with 4-
1059 step gradient accumulation), and cosine learning rate scheduler (with 0.05 warmup ratio). The
1060 LoRA configuration uses rank $r = 16$ and scaling parameter $\alpha = 32$, implemented via the PEFT
1061 library (Mangrulkar et al., 2022).
10621063 Dataset-specific hyperparameters accommodate varying dataset sizes: learning rate range from 5e-5
1064 to 1e-4, dropout rates range from 0.05-0.1, training epochs from 5-10, with larger datasets requiring
1065 higher values for both parameters to achieve optimal convergence.
10661067 D.2 PROMPT TEMPLATE
10681069 The training utilizes the following prompt template:
10701071
1072 *“Correct this speech recognition transcript using the hypotheses below. Provide
1073 ONLY the corrected transcript, nothing more.
1074 ####Hypotheses:
1075 - {1st ~ 5th utterances}
1076 ####Corrected-transcript.”*
1077

1080 D.3 COMPUTATIONAL REQUIREMENTS
1081

1082 Model training is conducted on a single NVIDIA RTX 6000 Ada GPU with 48GB memory. Training
1083 duration varies by dataset size: CHiME-4 requires approximately 1 hour due to its smaller scale
1084 (9,600 samples), while TedLium-3 and CommonVoice each require 3-4 hours given their larger
1085 training sets (47,500 samples each). The LoRA parameterization significantly reduces computa-
1086 tional overhead compared to full fine-tuning, enabling efficient adaptation while maintaining the
1087 frozen backbone parameters.

1088
1089 E CONFORMAL RISK CONTROL APPROACH
10901091 E.1 BACKGROUND
1092

1093 Consider a calibration dataset $\{(X^{(i)}, Y^{(i)})\}_{i=1}^m$, where $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ denote feature-response
1094 pairs. Conformal risk control (CRC) extends CP to control the expectation of any bounded,
1095 monotone loss function $\ell : 2^{\mathcal{Y}} \times \mathcal{Y} \rightarrow [0, B]$:

$$1097 \quad E[\ell(\Gamma_{\lambda}(X^{(m+1)}), Y^{(m+1)})] \leq \alpha \quad (16)$$

1099 under the same notations represented in 5.

1100 The key insight is that for monotone loss functions—where enlarging the prediction set cannot
1101 increase the loss—CRC maintains the distribution-free guarantees of standard CP while enabling
1102 control over task-specific risk measures. The CRC threshold selection procedure aims to find the
1103 optimal threshold:

$$1105 \quad \hat{\lambda} = \inf \left\{ \lambda : \frac{m}{m+1} \hat{R}_m(\lambda) + \frac{B}{m+1} \leq \alpha \right\}, \quad (17)$$

1108 where the empirical risk is computed as:

$$1111 \quad \hat{R}_m(\lambda) = \frac{1}{m} \sum_{i=1}^m \ell(\Gamma_{\lambda}(X^{(i)}), Y^{(i)}), \quad (18)$$

1114 representing the average empirical loss over the calibration set. For monotone loss functions, this
1115 threshold can be found efficiently by gradually adjusting λ until the risk constraint is satisfied.

1116 CRC provides finite-sample guarantees that are tight up to $O(1/m)$ terms as stated in the following
1117 Theorem.

1118 **Theorem 2** (CRC Finite-Sample Guarantee). *Under the exchangeability assumption and for
1119 bounded monotone loss functions, the set predictor $\Gamma_{\hat{\lambda}}$ selected by the CRC procedure satisfies:*

$$1121 \quad \alpha - \frac{2B}{m+1} \leq E[\ell(\Gamma_{\hat{\lambda}}(X^{(m+1)}), Y^{(m+1)})] \leq \alpha. \quad (19)$$

1123 Note that CRC reduces to standard CP when the loss function is the miscoverage indicator. CRC
1124 has been applied to areas such as medical diagnosis, autonomous driving, ordinal classification, and
1125 ranked retrieval systems (Andéol et al., 2023; Xu et al., 2023; 2024; Overman et al., 2024).

1128 E.2 CRC IMPLEMENTATION AND EMPIRICAL ANALYSIS
1129

1131 We initially explored conformal risk control (CRC) as our primary theoretical framework for adapt-
1132 tive hypothesis selection. Our CRC implementation follows Algorithm E.1, using the relative WER
1133 degradation loss function defined in Equation 9 with calibrated thresholds to control expected per-
formance degradation.

1134	Algorithm E.1 Adaptive Selection Procedure with CRC Calibration Framework
1135	
1136	Require: Calibration set $\{(\mathcal{H}_N^{(i)}, y^{(i)})\}_{i=1}^m$ and a test sample $\mathcal{H}_N^{(m+1)}$
1137	1: Calibration Phase:
1138	2: for $\lambda \in \Lambda$ (candidate threshold values) do
1139	3: Compute $\ell(\Gamma_\lambda(\mathcal{H}_N^{(i)}), y^{(i)})$ for all $i \in [m]$
1140	4: Estimate $\hat{R}_m(\lambda) = \frac{1}{m} \sum_{i=1}^m \ell(\Gamma_\lambda(\mathcal{H}_N^{(i)}), y_i)$
1141	5: end for
1142	6: Select $\hat{\lambda} = \inf \left\{ \lambda : \frac{m}{m+1} \hat{R}_m(\lambda) + \frac{B}{m+1} \leq \alpha \right\}$
1143	7: Test Phase:
1144	8: Compute normalized scores $\mathbf{s} = \text{softmax}(\phi_\gamma(\mathbf{c}^{(m+1)})/\tau)$
1145	9: Select $n^* = \min\{n : \sum_{i=1}^n s_i \geq \hat{\lambda}\}$
1146	10: Return hypothesis set $\mathcal{H}_{n^*}^{(m+1)} = \left\{ \left(\hat{y}_1^{(m+1)}, c_1^{(m+1)} \right), \dots, \left(\hat{y}_{n^*}^{(m+1)}, c_{n^*}^{(m+1)} \right) \right\}$
1147	
1148	
1149	

1150 Table E.1 presents our CRC experimental results across the three datasets. The method achieves sub-
 1151 substantial computational savings while maintaining competitive performance. These results validate the
 1152 practical effectiveness of adaptive selection based on this method.

1153 However, our analysis revealed that strict monotonicity is violated in approximately 20% of samples,
 1154 where smaller hypothesis sets occasionally outperform larger ones. While 95% of consecutive
 1155 pairwise comparisons maintain monotonicity, indicating predominantly monotonic behavior, these
 1156 violations present a theoretical challenge for CRC's formal guarantees. We evaluated the monotonizing
 1157 procedure proposed by Angelopoulos et al. (2024b), which constructs $\hat{\ell}_i(\lambda) = \sup_{\lambda' \geq \lambda} \ell_i(\lambda')$
 1158 to enforce monotonicity. However, empirical results showed degraded performance across datasets,
 1159 as monotonizing eliminates precisely the beneficial cases where smaller sets genuinely outperform
 1160 larger ones—the phenomenon enabling our computational savings.

1161 These findings indicate that monotonicity violations in ASR often signal exploitable efficiency op-
 1162 portunities rather than problematic cases. While our CRC implementation demonstrates strong em-
 1163 pirical performance and effective risk control in practice, the theoretical violations prevent us from
 1164 claiming formal statistical guarantees. Therefore, we present this CRC approach as an additional
 1165 empirical demonstration that complements our theoretically rigorous LTT framework, which natu-
 1166 rally handles non-monotone losses while providing formal $P(R(\hat{\lambda}) \leq \alpha) \geq 1 - \delta$ guarantees.

1167 Table E.1: WER (%) results with LLaMA-2-7B fine-tuning. Baseline: Whisper's top-1 hypothesis.
 1168 \mathbf{O}_{llm} : post-LLM oracle. Our method results represent one operating point from Figure 2. Subscript
 1169 percentages denote relative WER change vs. vanilla GER (WER column) and relative size reduction
 1170 vs. constant $N = 5$ (size column).

Test Set	Baseline	GER	Our Method		α	Target WER	\mathbf{O}_{llm}
			Set Size	WER			
TedLium-3	8.0	6.04	2.145 _{-57.1%}	5.96 _{-1.3%}	1.785	6.115	4.33
CHiME-4	11.49	6.38	3.8 _{-24.0%}	6.55 _{+2.7%}	1.9	6.63	4.73
CommonVoice	14.1	8.46	3.1 _{-38.0%}	8.5 _{+0.5%}	1.7	8.65	6.95

1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187