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Abstract
Despite their success in many domains, large lan-
guage models (LLMs) remain under-studied in
scenarios requiring optimal decision-making un-
der uncertainty. This is crucial as many real-world
applications, ranging from personalized recom-
mendations to healthcare interventions, demand
that LLMs not only predict but also actively learn
to make optimal decisions through exploration.
In this work, we measure LLMs’ (in)ability to
make optimal decisions in bandits, a state-less
reinforcement learning setting relevant to many
applications. We develop a comprehensive suite
of environments, including both context-free and
contextual bandits with varying task difficulties,
to benchmark LLMs’ performance. Motivated by
the existence of optimal exploration algorithms,
we propose efficient ways to integrate this algo-
rithmic knowledge into LLMs: by providing ex-
plicit algorithm-guided support during inference;
and through algorithm distillation via in-context
demonstrations and fine-tuning, using synthetic
data generated from these algorithms. Impres-
sively, these techniques allow us to achieve supe-
rior exploration performance with smaller mod-
els, surpassing larger models on various tasks.
We conducted an extensive ablation study to shed
light on various factors, such as task difficulty and
data representation, that influence the efficiency
of LLM exploration. Additionally, we conduct
a rigorous analysis of the LLM’s exploration ef-
ficiency using the concept of regret, linking its
ability to explore to the model size and underly-
ing algorithm.

1. Introduction
The rapid advance of LLMs has positioned them as valu-
able tools for a wide range of decision-making tasks, in-
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cluding but not limited to personal assistants (Liu et al.,
2024a), recommendation systems (Li et al., 2023a), game-
playing (Wang et al., 2023a;c), education (Nie et al., 2024;
He-Yueya et al., 2024), and healthcare (Singhal et al., 2023).
In these tasks, LLMs function as agents that engage with
users or the environment in a dynamic interaction process.
For example, at each time step, the LLM suggests a ped-
agogical strategy or make a recommendation to a specific
user, then receives feedback - either explicit or implicit -
in the form of rewards. Based on this feedback, the agent
updates its beliefs about the environment, e.g., underlying
reward distributions, and adapts its strategies to maximize
the cumulative reward. These tasks differ fundamentally
from classic prediction tasks where LLM is used to pre-
dict a target. A decision making LLM only receives partial
feedback, i.e., the reward for its own actions, but not for
others. Thus, it requires the LLM to effectively interact
with the environment and explore to discover the optimal
action. Meanwhile, exploring an unknown action that turns
out to have lower reward than the known ones incurs an
opportunity cost. The agent, therefore, needs to strike a
balance between exploration and exploitation. While the
exploration-exploitation tradeoff has been extensively stud-
ied in the pre-LLM era, particularly in the fields of ban-
dits (Li et al., 2010; Slivkins et al., 2019) and reinforcement
learning (Mnih, 2013; Osband et al., 2013; Sutton, 2018),
it remains unclear how LLMs approach this tradeoff when
faced with uncertainty.

We study LLMs’ in-context exploration capabilities under
the simplified framework of bandits — a stateless form of
reinforcement learning that is highly applicable to many do-
mains. We set up the LLM to interact with the environment
over T rounds. In each round, it receives the full history
of its past interactions, the current state (if provided), and
a set of actions, and it is tasked with selecting an action to
maximize the cumulative reward. Ideally, the LLM should
adaptively choose an action in each round to learn the reward
distributions of different actions and eventually converge to
consistently selecting the optimal one. We study LLM’s abil-
ity to do so in-context, without the need to re-train, which
we dubbed as in-context exploration. Unlike using LLM
for reward-free or curiosity-driven exploration, in-context
exploration is in-context self-improvement, where the LLM
builds up context through interactions to solve a task.
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We introduce BanditBench1, a comprehensive suite of multi-
armed bandit (MAB) (Slivkins et al., 2019) and contex-
tual bandit (CB) (Li et al., 2010) environments in natural
language to rigorously evaluate the decision-making ca-
pabilities of LLMs. Building on the pioneering work of
Krishnamurthy et al. (2024), we significantly expand the
benchmark by incorporating a broader range of tasks with
varying complexities, including variations in the number of
arms, reward distributions, exploration difficulty, and tex-
tual descriptions of environments. Additionally, we extend
it to CB environments, where rewards across arms depend
on contextual features, to assess generalization in LLM
exploration.

To enhance LLMs for in-context exploration, we leverage
known bandit algorithms such as Upper-Confidence Bound
(UCB) algorithm, which have been proven "optimal" un-
der mild conditions. We investigate two approaches: (1)
inference-time algorithm-guided support, where summary
statistics on interaction history, along with descriptions of
bandit algorithms, are provided in context for LLMs to
choose actions, and (2) algorithm distillation via optimal
demonstration data, where “oracle” trajectories from op-
timal bandit algorithms are provided as either in-context
few-shot demonstrations or optimal behavior fine-tuning.
We benchmark off-the-shelf LLMs of different sizes - both
open-sourced and proprietary - and those enhanced by our
approaches on BanditBench. Both approaches demonstrate
promising improvements over baseline methods that rely
solely on raw interaction histories presented as sequences
of (action, reward) tuples. Furthermore, our results show
that fine-tuning to distill optimal exploration behavior leads
to strong generalization across domains, enabling smaller
models to achieve superior exploration performance com-
pared to larger models. We also perform extensive ablation
studies that reveal how training task difficulty, textual rep-
resentation and Algorithm-Guided Support impact model
performance. To gain deeper insights into the exploration
efficiency of different methods, we fit a parametric function
to the observed regret patterns, allowing for a more rigor-
ous interpretation of the exploration efficiencies of various
LLMs and our proposed approaches.

2. Related Work
Several prior works have investigated the use of LLMs for
decision-making. In one category, numerous studies have
deployed LLMs directly as agents in decision-making prob-
lems such as games (Yao et al., 2023; Brooks et al., 2024;
Shinn et al., 2024; Wang et al., 2023a; Xi et al., 2023).
However, fewer works have systematically evaluated LLMs’
capabilities in general decision-making setup, especially in

1Github: https://github.com/allenanie/EVOLvE. You
can install the code with: pip install banditbench

relation to classical concepts in decision-making like explo-
ration. Our work extends the research of Krishnamurthy
et al. (2024), who examined LLMs’ exploration capabilities
in small-scale MAB tasks. Their findings, which showed
positive results only with substantial intervention, are con-
sistent with our broader analysis across both MAB and CB
tasks at various scales. Mirchandani et al. (2023); Rahn
et al. (2024); Felicioni et al. (2024) also evaluated the ability
of LLMs to learn in-context and solve bandit-like decision-
making problems.

Another relevant line of research focuses on in-context learn-
ing for decision-making and reinforcement learning (RL)
with domain-specific transformers. Laskin et al. (2022)
distilled demonstrations from RL algorithms into a trans-
former and showed that it learns to imitate the RL process
to solve new RL tasks. Similarly, Lee et al. (2024) trained
transformers with optimal action labels, showing that the
model learns to execute posterior sampling for RL (Osband
et al., 2013) in-context. This area has been further stud-
ied by Raparthy et al. (2023); Lin et al. (2023); Bai et al.
(2023). However, these studies focus on domain-specific
decision-making, whereas our paper examines general-
purpose decision-making capabilities in language models.
Our inference-time algorithm-guided support shares a simi-
lar conceptual framework with recent efforts to align LLMs
at inference time. These include employing explicit value
functions as prefix scorers (Mudgal et al., 2023), and lever-
aging both implicit and explicit value functions to guide
decoding (Liu et al., 2024b). In the realm of algorithm dis-
tillation, much of the research on LLMs has concentrated
on chain-of-thought (CoT) reasoning (Wang et al., 2023b;
Li et al., 2023b), while (Gandhi et al., 2024) focused on
search and backtracking. Our work focuses on distilling a
more complex class of algorithms that involve uncertainty
estimation and linear regression.

The motivation of our work is also inspired by the cognitive
science literature on human. Prior studies have found that
humans balance exploration and exploitation through a mix
of directed and random exploration (Wilson et al., 2014),
and that these behaviors are supported by distinct neural
mechanisms (Daw et al., 2006). Gershman (2018) further
decomposes human exploration into algorithmic compo-
nents. These works provide future directions for evaluating
LLM’s behavior in addition to reward (Pan et al., 2025).
Additionally, efficient exploration also benefits other areas
of RL, such as multi-agent collboration (Qu et al., 2024)
and preference optimization (Bai et al., 2025).

3. In-Context Exploration
In this section, we define the problem of In-Context Explo-
ration (ICE), following the setup in (Krishnamurthy et al.,
2024). An agent interacts with an environment by observing
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Figure 1: The best achieved performance within each category of method in both MAB and CB. Note that we took the max over different
methodology setups within each category. For contextual bandit, OFT enabled a small fine-tuned model (Gemini-1.5 Flash) to approach
the performance of the optimal classical algorithm (UCB).

state information, selecting actions, and collecting feedback.
The goal of the agent is to maximize its cumulative reward
through multiple rounds of interactions. Specifically for
ICE, the agent is an LLM that keeps a history of observa-
tions and interactions with the environment in its context.
The agent determines its actions based on this context, rather
than by updating its weights or executing hand-designed
exploration strategies.

Notation and Definitions. We primarily consider bandits,
a simple class of environments that still incorporates many
fundamental challenges in decision-making. Here, we de-
scribe a framework that encompasses both multi-armed ban-
dits (MAB) and contextual bandits (CB). A bandit environ-
ment T is defined as T = (X ,A, R), where A defines
a set of valid actions. X is the set of state information
(if any), and R represents the underlying reward distribu-
tions of actions, which are unknown to the agent. MAB
and CB tasks differ in whether the context x is provided
and used: in MAB, the reward depends solely on the ac-
tion, whereas in CB it depends on both the action and the
context. The interaction between the agent and the environ-
ment occurs over T ∈ N steps. At each time step t ∈ [T ],
the environment reveals a new observation2 xt ∈ X , the
agent selects an action at ∈ A following its policy π, and
then a reward ratt ∼ Rat(xt) is revealed. Given an LLM
agent with policy π, it determines its action at ∼ π(Hπ

t ),
where Hπ

t = (x1, a1, r
a1
1 , . . . , xt) stores the historical ac-

tions taken by the agent and the corresponding environment
feedback, which is sent as input context to the LLM.

Over T rounds, we measure the performance of an agent

2In CB, context x is exogenous and independently sampled
from a stationary distribution; it is not affected by action a, as in
the full RL setting.

π on task T as its expected cumulative reward, given by
JT (π) = ET ,π

[∑T
t=1 r

at
t

]
. The optimal policy π∗ rep-

resents the agent that selects the action with the highest
average reward, defined as π∗(x) = arg maxa ET [ra | x].
A commonly used metric to measure the performance of an
agent or algorithm is regret.

Definition 1 (Cumulative Regret). The expected re-
gret of a policy π under task T is: REG(π) =

ET ,π
[∑T

t=1(r
a∗t
t − r

at
t )
]

= JT (π∗)−JT (π), where a∗t =

π∗(xt).

We expect good agents to have average regret that con-
verges to zero (i.e. 1

T REG T→ 0), demonstrating that they
eventually learn to perform as good as the optimal policy.
UCB and Thompson Sampling are two such examples with
sublinear regret. Examples of cumulative regret curves are
shown in Figure A4c.

Representing Histories in Context. Developing an LLM
agent suited for in-context decision-making tasks also re-
quires designing a robust contextualization function φ that
translates histories Hπ

t for the LLM to consume. The ob-
vious baseline for φ is to simply record the Raw History
(RH) from the environments as a list of (context, action,
reward) tuples directly as the context. In this representation,
the context length of φ(Hπ

t ) grows linearly with t, and RH
contains all information. While RH is a general contextu-
alization function applicable to any task T , more advanced
task-specific contextualization functions may exist and yield
better performance. For example, (Krishnamurthy et al.,
2024) proposed a Summarized History function (SH) that
compresses the history while still containing sufficient in-
formation for a given task T . RH and SH differ in how past
interaction histories are represented to the LLM agent, as
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shown in Figure A2. At time step t, RH provides a com-
plete list of past interactions as (Time t′, Action Name at′ ,
Reward rt′) for t′ = 0 · · · t. In contrast, SH provides suffi-
cient statistics of the past interactions. Specifically, under
MAB, SH utilizes the empirical mean over each arm (i.e.,
Ê[ra],∀a ∈ A), the number of times each arm has been
pulled up to time t, Nt(a), and the current horizon t. In this
paper, we consider good contextualization to be those that
satisfy “sufficiency”, which we define as:

Definition 2 (Sufficient Contextualization). Given a policy
class Π, let Πφ ⊂ Π and Πraw ⊂ Π be the sets of policies
that take a history representation φ(Ht) using the contex-
tualization function φ and the raw history Ht, respectively.
Then the contextualization function φ is sufficient if

lim
T→∞

[
inf

πφ∈Πφ

1

T
REG(πφ)− inf

πraw∈Πraw

1

T
REG(πraw)

]
= 0.

In other words, the best agent that uses the history represen-
tation can asymptotically achieve the same average regret
as one with the full raw history, meaning that the contextu-
alization preserves all the essential information needed for
effective decision-making.

4. BanditBench
We present BanditBench, an extensive suite of
MAB (Slivkins et al., 2019) and CB (Li et al., 2010)
environments in natural language to benchmark the
in-context exploration capabilities of LLMs. We show
two examples in Figure A1. A wide range of real-world
problems are modeled as bandit, across United Nation
Refugee Agency assistance program (Caria et al., 2024),
government assistance to reduce incarceration (Chohlas-
Wood et al., 2023), education app push notification (Yancey
& Settles, 2020), news (Li et al., 2010) and movie
recommendations (Bibaut et al., 2021).

Multi-Armed Bandit In (stochastic) multi-armed bandit
problems, we vary our environment configurations primar-
ily along two key dimensions: 1) action space, where we
change the number of actionsK and the textual descriptions
associated with each action; 2) reward distributions, where
we change the parametric distribution of the reward, i.e., the
types of reward distributions, and the exploration difficulty,
characterized by the gap between the best-performing arm
and the second-best arm (∆min). A smaller gap makes it
harder for the agent to distinguish between optimal and sub-
optimal actions, thereby increasing the exploration difficulty.
In contrast to the setup in Krishnamurthy et al. (2024), which
focuses solely on MAB instances with Bernoulli reward dis-
tribution, our expanded setup allows us to systematically
analyze LLMs’ performance across diverse environments

with different action spaces and reward structures. We dif-
ferentiate between sizes of actions as well as action descrip-
tions: Videos such as “Video AA”, and Clothes, described
using semantically meaningful phrases, such as “Supreme
Sylvan Sandals”. Regarding reward distributions, we evalu-
ate two types: Bernoulli and Gaussian Bandit. The detailed
configurations are shown in Appendix A.2.

Contextual Bandit For contextual bandit, at each round
t ∈ [T ], the agent is presented with some contextual feature
x (which may consist of both textual descriptions and nu-
meric values) describing the state (and action). The LLM
agent π chooses an action a ∈ A, and then a reward r(x, a)
is received, which depends on both the context and the cho-
sen action. We design the semi-synthetic contextual bandit
task based on the MovieLens dataset (Harper & Konstan,
2015), which consists of approximately 6,000 real users’
movie ratings. The goal of the agent is to recommend a
personalized movie that a specific user is likely to enjoy. In
particular, the observations x include user-specific features
such as age, gender, occupation, and geographical location
(county and state), as well as features of the movies. The
action space is limited to the top-K most-watched movies
in the dataset, withK = 10 for the easy setting andK = 30
for the more challenging setting. At each time step, we pro-
vide textual contextual features alongside a 5-dimensional
user preference vector. The task can easily be scaled up to
include more movies (a larger K). Further details can be
found in Appendix A.3.

5. Teaching Optimal Exploration
Motivated by the existence of optimal algorithms for ban-
dits, we aim to leverage these algorithms to improve LLMs
for exploration by: 1) incorporating algorithmic guidance
during inference (Section 5.1), 2) teaching optimal explo-
ration through algorithm distillation (Section 5.2). We show
that smaller models trained using algorithm distillation can
even outperform larger models, offering a promising way to
efficiently explore with lower inference costs.

Numerous algorithms have been developed to enable effi-
cient exploration in both MAB (Auer, 2002) and CB (Lang-
ford & Zhang, 2007; Li et al., 2010) settings. Among
these, the Upper Confidence Bound (UCB) algorithm—also
known as optimism in the face of uncertainty—stands
out for its simplicity and theoretical guarantees. Its clear
and interpretable representation of uncertainty and explo-
ration strategy also makes it well-suited for integration
with existing LLMs. Our method can generalize to dif-
ferent algorithms easily, such as deep neural network ban-
dits (Riquelme et al., 2018).

UCB for Multi-Armed Bandit For MAB, at time step
t, given the history {at′ , rt′}tt′=1, we define Nt(a) as the
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number of times that action a has been selected up to time
t. The empirical mean reward of arm a up to time t, de-
noted as µ̂t(a) :=

∑t
t′=1

1{a
t′=a}

rt′

Nt(a) , represents the ex-
ploitation value V exploit(a, t). The high-probability confi-
dence interval, also known as the exploration bonus, is given

by V explore(a, t) := α
√

log(t)
Nt(a) , where α is the hyperparam-

eter controlling the exploration-exploitation trade-off. At
each time step, UCB selects the arm that maximizes the
sum of the exploitation value and the exploration bonus,
thereby choosing the arm with the highest upper confidence
bound.

UCB for Contextual Bandit In CB, we consider the case
of linear payoffs (Li et al., 2010; Chu et al., 2011), where
the expected reward E[rat ] is assumed to be linear w.r.t
a d-dimensional feature vector xat , with some unknown
coefficient vector θ∗, i.e., E[rat |xat ] = (xat )T θ∗. At each
time step, for any arm a, the algorithm maintains the de-
sign matrix Da ∈ RNt(a)×d, which represents the feature
data for arm a up to time t, as well as the correspond-
ing reward vector ra ∈ RNt(a). It then estimates θ̂ us-
ing ridge regression. Moreover, the high-probability con-
fidence interval of the reward estimate (xat )T θ̂ is given by
α
√

(xat )T (DT
aDa + λId)−1xat , with Id being the identity

matrix. Following MAB, the exploitation value is the re-
ward estimate, and the exploration bonus is the confidence
bound around it.

5.1. Inference-Time Algorithm-Guided Support
As discussed above, UCB-type algorithms operate by explic-
itly calculating the exploitation value V Exploit along with the
exploration bonus V Explore for each arm, and by selecting the
arm that maximizes the sum of the two. These components,
V Exploit and V Explore, therefore provide the sufficient context
for LLMs to make optimal decisions. Specifically, in the
MAB setup, during inference time at time step t, we provide
the LLM with a list of tuples

(
V exploit(a, t), V explore(a, t)

)
for each arm a ∈ [K]. For CB, during inference-time, we
explicitly maintain the design matrix Da and response vec-
tor ra for each arm, incorporating past interactions from the
LLM up to that time t, using this to obtain the exploitation
value and exploration bonus. We then provide the LLM
with a list of exploitation values and exploration bonus
for each arm a at current context x, similar to the MAB
setup. Compared with SH, which only provides the empiri-
cal mean and the number of times each arm has been pulled,
Algorithm-Guided Support (AG) directly supplies seman-
tically understandable exploitation values and exploration
bonuses. Theoretically, the LLM only needs to perform
addition and argmax, rather than manipulating raw histories
to discern the underlying reward distribution (or parameter θ
in CB). Another advantage is that AG is a type of inference-
time support that works seamlessly for both MAB and CB,

while SH only works on MAB setup. We discuss why this
is the case in Appendix A.5.

5.2. Algorithm Distillation
We further investigate the possibility of enhancing LLM
exploration by leveraging a set of trajectories generated
by an oracle exploration algorithm in the BanditBench en-
vironment. This approach, called algorithm distillation,
aims to distill the optimal exploration behavior from the
oracle algorithm to the LLM. In particular, we consider
two approaches: in-context few-shot demonstration and
oracle behavior fine-tuning, both utilizing expert trajecto-
ries generated by the oracle algorithm. Compared with
Algorithm-Guided Support (AG), these approaches do not
require an understanding of the oracle algorithms, nor do
they require generating sufficient statistics based on ora-
cle algorithms; thus, they can also be applied to black-box
algorithms.

Oracle Trajectory Generation We use UCB as the or-
acle algorithm to generate the trajectories. Following the
notations defined in Section 3, the trajectories are in the
form of tuples of (φ(HUCB

t ), aUCB
t ), where each tuple pairs

the transformed representation of the history at time t and
the action aUCB

t from UCB. For MAB, we create trajecto-
ries from reward distributions that differ from those used in
evaluation. This assesses the LLM’s ability to generalize
across different bandit instances with the same underlying
scenario but varying action descriptions and action-reward
mappings. We further control the data generation process by
varying instance difficulty (e.g., ∆min) and trajectory contex-
tualization (e.g., RH or AG). For CB, we use a fixed dataset
and evaluate the LLM’s performance on a held-out set of
users. While these users are unseen during training, their
profiles and preferences remain within the distribution of the
training data. In both MAB and CB, each trajectory consists
of a sequence of exploration steps: 300 steps for MAB with
5 arms, 1000 steps for MAB with 20 arms, and 200 steps
for CB. We generate 50 trajectories for 2 MAB domain
configurations (the easiest and the hardest configuration)
with 2 trajectory contextualizations, and 200 trajectories for
CB with 2 trajectory contextualizations . This results in 4
distillation datasets for MAB and 2 for CB.

Few-Shot Demonstration We first study whether demon-
strating oracle exploration trajectories from UCB as few-
shot examples can improve the LLM’s ability to perform
robust exploration in bandit tasks. A key challenge in apply-
ing few-shot learning to decision-making tasks like MAB is
the increasing context length. Unlike supervised learning,
where context is typically fixed, bandit actions depend on
the entire past history or condensed history, which either
grows linearly with T (steps) or K (actions). This poses
a challenge for LLMs, as their ability to effectively utilize

5



EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration

information can degrade with longer contexts. We sample 5
oracle trajectories from UCB into the LLM context window
as demonstrations. Our goal is to see whether the optimal ex-
ploration demonstrations can lead to improved exploration
performance. Detailed demonstrations are provided in Ap-
pendix A.16.

Oracle Behavior Fine-Tuning (OFT) While in-context
few-shot demonstrations offers an inference-time approach
to guide the LLM’s exploration strategy, fine-tuning allows
us to directly optimize the model’s parameters for the task.
In this approach, we utilize the UCB-generated trajectories
as training data to adjust the LLM’s internal representations
and decision-making mechanisms. Specifically, we fine-
tune the LLM by framing the exploration problem as a
language modeling task, where the goal is to predict the
next action in the sequence. This is achieved by maximizing
the log-likelihood of the UCB actions given the history of
interactions:

LOFT(π) = −E(φ(HUCB
t ),aUCB

t )∼DOFT
[log π(aUCB

t |φ(HUCB
t ))],

where π represents the LLM’s policy that we aim to opti-
mize. This formulation encourages the LLM to learn the
underlying patterns and decision-making logic embedded
within the UCB trajectories. By predicting the next action in
the sequence, the LLM effectively internalizes the optimal
exploration strategy demonstrated by the UCB algorithm.
OFT is different from behavior cloning (BC) (Pomerleau,
1991) by learning to encode a dynamic, iterative refinement
process, while BC focuses on replicating static behavior of
another policy (See Appendix A.7).

6. Empirical Evaluations
In this section, we empirically evaluate LLMs’ in-context
exploration capabilities, using BanditBench. We begin
with introducing the setup, baselines and metrics in Sec-
tion 6.1. Following this, in Section 6.2, we analyze the per-
formance of inference-time guided support, in-context few-
shot demonstration and oracle behavior fine-tuning across
various experimental settings, as well as models of different
sizes. Additionally, we perform extensive ablation studies
on the impact of task difficulty, textual representation of the
oracle trajectories, and easy-to-hard generalization of the
distillation methods. We also analyze the types of failures
encountered by LLMs in in-context exploration, thereby
demonstrating the necessity of developing more advanced
algorithms.

6.1. Setup
Baselines We evaluate the in-context exploration capabili-
ties of various LLMs: Gemma-2B, Gemma-9B (Team et al.,
2024), Gemini 1.5 Flash, and Gemini 1.5 Pro (Reid et al.,
2024), on 16 MAB tasks (Table A1) and 2 CB tasks. For

MAB tasks, the interaction horizon (T ) differs based on the
size of the action space (K): we use T = 1000 for K = 30
and T = 200 for K = 10. All CB tasks use a constant
horizon of 200 steps. To ensure statistical significance of
the results, we conduct 30 independent runs for each ex-
perimental setup. We consider two baselines: Raw History
(RH) and Summarized History (SH), as suggested in Kr-
ishnamurthy et al. (2024). For CB, as we discussed before,
there is no trivial analogue of SH; thus, we focus solely on
RH for CB tasks in this study as the baseline.

Metrics We report the relative performance of each model,
aggregated across all environment configurations. Simply
averaging cumulative rewards across environments of dif-
ferent reward distributions and horizons however, obscures
the comparison. We instead use the pairwise win-rate to
compare the performances. We have 16 configurations for
MAB and evaluate 32 models and 2 configurations for CB
with 14 models. The list of all the models is provided in
Appendix A.14. For each configuration, we compute the
cumulative reward over T steps and collect their distribution
from 30 independent trials. We then calculate the pairwise
win-rate by applying a Student’s t-test on the reward distri-
butions of any pair of configurations to determine if they
are statistically significantly different, with a significance
level of p < 0.05. The overall win-rate for a model is then
the percentage of superior performance over all models,
crossed with methods and configurations. Details are given
in Appendix A.8.

6.2. Results and Ablations
Overall Performance Comparison Figure 1 presents a
comparative overview of in-context few-shot demonstra-
tion, oracle behavior fine-tuning, and inference-time algo-
rithmic guidance performance across various model sizes
and training configurations. Detailed numbers are reported
in Table A4 and A5. Few-shot demonstrations exhibited
contrasting effects on Gemini-1.5 Flash and Pro. While
few-shot learning boosts the performance of Flash beyond
the best history contextualization setup, it hurts Pro’s perfor-
mance in both MAB and CB. Aligned with the observations
in Zheng et al. (2024); Guo et al. (2025), our hypothesis
is that few shot examples we manually crafted could dis-
rupt the CoT structure in larger models, which requires the
few-shot examples to be carefully tuned in order to be help-
ful. Further analysis reveals the remarkable effectiveness
of oracle behavior fine-tuning. It significantly outperforms
both few-shot and baseline approaches in both MAB and
CB across all model sizes, even larger ones. This robust
improvement highlights the effectiveness of directly optimiz-
ing model parameters for the exploration task. Notably, the
best fine-tuned Gemini-1.5 Flash model surpasses even the
Gemini-1.5 Pro model, highlights its potential as a key tech-
nique for enhancing LLM exploration capabilities.
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Figure 2: Impact of task difficulty and history representation on algorithm distillation. This figure examines how different factors,
such as task difficulty and history representation of oracle trajectories, influence the effectiveness of algorithm distillation on the LLM’s
exploration capabilities. All results are based on Gemini-1.5 Flash model. The numbers represent the best model in that setting. Same
number indicates the same model.

Flash (RH) Flash (AG) Pro (RH) Pro (AG)

MAB, K=5 33.6 26.6 48.0 67.6
MAB, K=20 21.9 37.9 43.0 51.6

CB, K=10 0.0 35.7 7.1 57.1
CB, K=30 0.0 57.1 7.1 71.4

Table 1: Situations where Algorithm-Guided Support significantly
outperforms Raw History during inference.

Algorithm-Guided Support Helps on Complex Environ-
ments We observe consistent improvements when transi-
tioning from RH to AG in two scenarios: (1) larger models
like Flash and Pro, and (2) more complex scenarios, such
as contextual bandits. Table 1 shows that AG provided con-
sistent help when the number of actions is large for both
Flash and Pro models. We hypothesize that providing AG
is crucial when the action space is large or when decision
scenarios are complex.

Impact of Task Difficulty We examine whether the
choice of oracle trajectories used in both few-shot demon-
stration and oracle behavior fine-tuning affects the model’s
performance during inference. To investigate this, we select
trajectories from two extreme setups. The easiest setup in-
volves (Bernoulli, Video, Large ∆min, K = 5), denoted as
Deasy, with AG. Conversely, the hardest setup, denoted as
Dhard utilizes (Bernoulli, Clothes, Small ∆min, K = 20),
with RH. Figure 2a illustrates that the choice of oracle trajec-
tories significantly impacts the model’s performance, with
a surprising contrast between the two algorithm distillation
methods. Few-shot demonstration achieves a higher win-
rate when using Deasy as demonstration (50.2) compared to
when using Dhard (43.0). This suggests that the limited ex-
amples provided in the demonstrations may be insufficient
for the model to effectively utilize them under the higher
complexity and subtle reward signals of the harder task.

Conversely, fine-tuning exhibits the opposite trend, with a
higher win-rate when trained on Dhard (65.6) compared to
Deasy (54.5). This implies that fine-tuning, with its extensive
training data, might be overfitting to the specific nuances
of the training distribution, leading to poor generalization
when faced with a different task structure.

Impact of Contextualization We further investigate the
effect of contextualization in oracle trajectories. We con-
sider two representations in MAB: RH and SH. Results in
Figure 2b reveal a clear contrast in how these representations
affect the two algorithm distillation methods. For few-shot
demonstration, SH leads to significantly better performance
(50.2% win-rate) compared to RH (27.5% win-rate). This
suggests that providing concise, informative summaries of
optimal exploration behavior is more effective for few-shot
learning than presenting the complete raw history. On the
other hand, fine-tuning exhibits the opposite trend. RH
has a substantially higher win-rate (65.6) compared to SH
(28.3). This indicates that fine-tuning benefits from the
richer information present in complete action-reward se-
quences, allowing it to learn more nuanced patterns of the
optimal exploration strategy. These contrasting preferences
for textual representation in oracle trajectories highlight the
nuanced ways in which fine-tuning and few-shot learning
interact with different types of information. Furthermore, in
CB, we observe a significant impact of incorporating AG
information into the oracle trajectories for fine-tuning, lead-
ing a dramatic improvement in win-rate, rising from 28.6 to
89.3 (Figure 2c). This suggests that providing LLMs with
explicit insights, in addition to the complete action-reward
sequence, enhances its ability to learn and generalize the
optimal exploration strategy in the CB environment.

Algorithm Distillation Generalizes We also conducted
experiments to evaluate the distillation algorithm’s ability to
generalize from smaller to larger action spaces (i.e., easy-to-
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Figure 3: Bernoulli MAB in Hard (K=20, ∆min=0.2): We plot the estimated parameters α and β. Smaller α and β indicate more
efficient exploration to find the best arm. Algorithms with strong in-context exploration should have α as small as possible and have β=0.
We can see for MAB Hard setup, lesser models achieved sublinear regret. We show the rest of MAB setups in Table A5, A6.

hard domain generalization). This analysis offers insights
into the scalability and adaptability of our approach to more
complex domains, such as real-world recommendation sys-
tems and other complex decision-making problems. We
report this in Table 2. Using few-shot demonstrations or
doing oracle behavior fine-tuning from simple-domain tra-
jectories collected (Bernoulli, Easy, K=5) can indeed learn
exploration strategies that generalize to a harder domain
(Bernoulli, Hard, K=20).

MAB
Hard

Flash
(SH)

Flash + Few-Shot (SH)
(Deasy on K=5)

Flash + OFT (RH)
(Deasy on K=5)

K=20 34.0% 43.0% 48.4%

Table 2: Easy-to-Hard Generalization: We collect distillation
data from easy bandit tasks to learn the exploration behavior and
evaluate on hard bandit tasks. History representation during evalu-
ation is in parentheses.

Optimality Analysis of Exploration We use two metrics
to capture high-level exploration behaviors: (1) MinFrac,
proposed by Krishnamurthy et al. (2024), captures the frac-
tion of pulls allocated to the least-selected arm. An ideal
algorithm should exhibit high MinFrac during early explo-
ration and gets lower as t increases, indicating effective
exploration; (2) OptFrac, tracks the percentage of times
the optimal arm is pulled. Ideally, this percentage should
increase as the process progresses, indicating the model’s
ability to self-improve. Using Flash model and Bernoulli
bandit configurations as an example in Table 3, we see that
with AG, the Flash model on average explores more com-
pared to SH and have higher success at identifying the best
arm.

While a model might achieve high performance by
chance—e.g., consistently selecting the optimal arm with-
out deliberate exploration—we examine its behavior more
closely using two metrics. OptFrac measures how often the
optimal arm is chosen, revealing whether the model increas-
ingly favors the best option. As shown in Table 3, UCB’s

OptFrac steadily rises over time (32.7%→ 65.0%), while
Gemini-1.5 Flash remains nearly flat (9.3%→ 10.7%), sug-
gesting limited adaptation. To assess directed exploration,
we use MinFrac, the fraction of pulls allocated to the least-
selected arm. UCB shows a desirable decline (82.3% →
15.3%), indicating early broad exploration followed by ex-
ploitation. In contrast, Gemini-1.5 Flash starts low and
drops quickly (11.3%→ 1.1%), implying minimal directed
exploration throughout. Together, these metrics demonstrate
that Gemini’s performance is not driven by meaningful ex-
ploration. More discussion in Appendix A.11.

MinFrac / t Step 100-th 250-th 500-th 750-th 1000-th

UCB 82.3% 48.6% 27.8% 19.6% 15.3%
Flash (SH) 10.2% 4.2% 2.1% 1.4% 1.1%
Flash (AG) 11.3% 4.5% 2.3% 1.5% 1.1%

OptFrac

UCB 32.7% 49.4% 58.7% 62.6% 65.0%
Flash (SH) 9.3% 10.1% 10.4% 10.6% 10.7%
Flash (AG) 14.4% 15.6% 16.3% 16.6% 16.8%

Table 3: Optimality of Exploration: We show the measures on
the t-th step along the progression of exploration, averaged across
Bernoulli MAB configurations. Full version with more models in
Table A6 and A7.

7. Regret Analysis of LLM Exploration
In this section, we propose a new and more rigorous anal-
ysis of the LLM’s exploration efficiency using the concept
of regret, REG(π). Most bandit algorithms are evaluated
by the behavior of REG(π) as a function of T (i.e., the
number of interactions), either theoretically or empirically.
Motivated by this, our goal is to understand the exploration
behaviors of various LLMs by characterizing their regret as
a function of T . We adopt the following functional form
to analyze the regret: f(T ) = λ1 log(T )α

∆min
+ βT + λ2. The

parameters α, β, λ1 in the equation are all positive real num-
bers. λ2 is unconstrained. This functional form provides in-
tuitive interpretations for the underlying parameters. Specif-
ically, α represents sublinear scaling of the regret, which

8



EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration

is known to be achieved by only the best bandit algorithms
(e.g. UCB). The β scaling describes a linear growth or the
inability of an agent to match the optimal policy π∗. This
means a strong algorithm should have α as small as possible,
and have β = 0. This functional form also allows us to see
some growth behaviors in-between with both positive α and
β. Details of fitting is in Appendix A.12. We use the curve
fit function in Scikit-learn (Pedregosa et al., 2011) to fit the
cumulative regret curve of UCB and LLMs coupled with
different methods. The results of the fitted α and β values
are presented in Figure 3. For the largest Pro models, ap-
plying effective inference-time support, such as AG and SH
can achieve nearly sub-linear regret. More intriguingly, for
Flash models, fine-tuning for optimal behavior significantly
boosts performance, enabling them to attain sub-linear re-
gret with a lower α. In contrast, weaker models such as
Gemma 2B and 9B appear to remain in the linear regret
regime across nearly all methods.

8. Conclusion
In this work, we explored the in-context exploration capabil-
ities of LLMs in bandit environments, introducing Bandit-
Bench, a comprehensive benchmark designed to rigorously
evaluate LLM’s performance. Our evaluation reveals that
LLMs struggle with in-context exploration when relying
solely on raw interaction history, while inference-time sup-
port significantly improves performance. Motivated by the
presence of optimal algorithms in this domain, we inves-
tigated methods to integrate these algorithms into LLMs
through both algorithm-guided support and algorithm distil-
lation via synthesized demonstration data. Notably, these ap-
proaches enable smaller models to outperform larger ones in
decision-making tasks. However, an optimality gap remains
between LLMs and classical optimal algorithms, highlight-
ing the need for further research to bridge this gap.

Software and Data
BanditBench and the inference code have been provided in
this GitHub repo and will be updated/monitored regularly:
https://github.com/allenanie/EVOLvE. You can in-
stall the code with: pip install banditbench.
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A. Appendix
Multi-Armed Bandit (Clothes)

You are an AI fashion assistant for an on-
line boutique powered by a bandit algo-
rithm that offers a variety of clothing op-
tions from different brands.
[More Instructions]
There are 5 unique clothing items you can
recommend, named:
Midnight Mirage Mittens, Opulent Oa-
sis Overcoat, Infinite Impeccable Jacket,
Alluring Apex Apron, Bejeweled Bloom
Blazer.
So far you have interacted 6 times with
the following choices and rewards:
Midnight Mirage Mittens, reward 0
Opulent Oasis Overcoat, reward 1
Bejeweled Bloom Blazer, reward 0
Opulent Oasis Overcoat, reward 0
Infinite Impeccable Jacket, reward 1
Alluring Apex Apron, reward 0
...
Which item will you choose next?

Contextual Bandit (Movies)

You are an AI movie recommendation assistant for a streaming platform
powered by a bandit algorithm that offers a wide variety of films from different
studios and genres.
[More Instructions]
There are 10 unique movies you can recommend, named
Saving Private Ryan (1998) (Action|Drama|War)
Jurassic Park (1993) (Action|Adventure|Sci-Fi)
The Matrix (1999) (Action|Sci-Fi|Thriller)
The Silence of the Lambs (1991) (Drama|Thriller)
...
So far you have interacted 4 times with the following choices and rewards:
Context: This person is an 18-year-old college/grad student living in Pulaski
county, AR. The user has some numerical values that represent their true
implicit preference or true taste for all movies: [-0.011, 0.027, -0.020, -0.002,
-0.003].
Action: Saving Private Ryan (1998)
Reward: 4.74 out of 5
...
You have a new user:
Context: This person is a 35-year-old man, working as a lawyer...
Action:

Figure A1: The problem representation of in-context exploration is represented in text. Detailed prompts for both MAB and CB are
provided in Appendix A.15.

Raw History

[Scenario Description]
[Instructions]
[List of Actions]
Past Raw History:
Time 1, Action Name, reward r1
Time 2, Action Name, reward r2
Time 3, Action Name, reward r3
Time 4, Action Name, reward r4
...
Which [Action] will you choose next?

Summarized History with Algorithm-Guided Support

[Scenario Description]
[Instructions]
[List of Actions]
Summarized History:
Action 1 Name, chosen n times, average reward µ̂1, exploration
bonus v1, exploitation bonus e1.
Action 2 Name, chosen n times, average reward µ̂2, exploration
bonus v2, exploitation bonus e2..
...
Which [Action] will you choose next?

Figure A2: The problem representation of in-context exploration in text. For Summarized History (SH), the text in gray is presented. For
Algorithm-Guided Support (AG), the text in pink and yellow are presented along with the text in gray. This schema works for any general
algorithm that explicitly compute exploration and exploitation bonus. For UCB, e1 = µ̂1. Detailed prompts for both MAB and CB are
provided in Appendix A.15.

A.1. Extended Related Work
Several prior works have investigated the use of LLMs for decision-making. In one category, numerous studies have
deployed LLMs directly as agents in decision-making problems such as games (Yao et al., 2023; Brooks et al., 2024; Shinn
et al., 2024; Wang et al., 2023a; Xi et al., 2023). However, fewer works have systematically evaluated LLMs’ capabilities in
general decision-making setup, especially in relation to classical concepts in decision-making like exploration. Our work
extends the research of Krishnamurthy et al. (2024), who examined LLMs’ exploration capabilities in small-scale MAB
tasks. Their findings, which showed positive results only with substantial intervention, are consistent with our broader
analysis across both MAB and CB tasks at various scales. Mirchandani et al. (2023); Rahn et al. (2024); Felicioni et al.
(2024) also evaluated the ability of LLMs to learn in-context and solve bandit-like decision-making problems.

The line of research on using LLMs as optimizers faces many similar challenges to in-context decision making, although
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applied to different tasks. Yang et al. (2024) explored the use of language models as general-purpose optimizers for
simple black-box optimization problems, such as prompt optimization, highlighting that a careful balance of exploration
and exploitation is critical. Another relevant line of research focuses on in-context learning for decision-making and
reinforcement learning (RL) with domain-specific transformers. Laskin et al. (2022) distilled demonstrations from RL
algorithms into a transformer and showed that the transformer learns to imitate the RL process to solve new RL tasks.
Similarly, Lee et al. (2024) trained transformers with optimal action labels, showing that the model learns to execute posterior
sampling for RL (Osband et al., 2013) in-context, which tailors exploration to the underlying distribution of RL tasks. This
area has been further studied by Raparthy et al. (2023); Lin et al. (2023). However, these studies focus on domain-specific
decision-making, whereas our paper examines general-purpose decision-making capabilities in language models.

Our inference-time algorithm-guided support shares a similar conceptual framework with recent efforts to align LLMs
at inference time. These include employing explicit value functions as prefix scorers that trained via KL-regularized
RL (Mudgal et al., 2023), and leveraging both implicit and explicit value functions to guide decoding at the token and
chunk levels at inference time (Liu et al., 2024b). In the realm of algorithm distillation, much of the research on LLMs
has concentrated on chain-of-thought (CoT) reasoning (Wang et al., 2023b; Li et al., 2023b), while (Gandhi et al., 2024)
focused on search and backtracking. Most methods involve distilling outputs from a "teacher" model—either a larger
model or a slower, system-2 variant of the same model that employs various inference-time techniques, such as search and
self-consistency—into a student model (Yu et al., 2024). Instead, our approach leverages diverse optimal trajectories directly
from classical algorithms, allowing for the efficient generation of abundant training data.

A.2. Details on Multi-Armed Bandit Task
In (stochastic) multi-armed bandit problems, we vary our environment configurations primarily along two key dimensions:
1) action space, where we change the number of actions K and the textual descriptions associated with each action; 2)
reward distributions, where we change the parametric distribution of the reward, i.e., the types of reward distributions, and
the exploration difficulty, characterized by the gap between the best-performing arm and the second-best arm. A smaller gap
makes it harder for the agent to distinguish between optimal and sub-optimal actions, thereby increasing the exploration
difficulty. In contrast to the setup in Krishnamurthy et al. (2024), which focuses solely on MAB instances with Bernoulli
reward distribution, our expanded setup allows us to systematically analyze LLMs’ performance across diverse environments
with different action spaces and reward structures.

For the action space, we explore two different sizes: K = 5 for a small action space and K = 20 for a large action space.
We also differentiate between two types of action descriptions: Videos, represented as arbitrary two-letter combinations with
no semantic meaning such as “Video AA”, and Clothes, described using semantically meaningful phrases, such as “Supreme
Sylvan Sandals”. Regarding reward distributions, we evaluate two types: Bernoulli and Gaussian Bandit. For Bernoulli, the
reward r ∈ {0, 1} is binary with rak ∼ Bernoulli(pk), where pk is the mean for the k-th action. Following Krishnamurthy
et al. (2024), the best-performing arm has pk := 0.5 + ∆min/2, while the remaining arms have pk = 0.5−∆min/2.0 The
parameter ∆min captures the exploration difficulty, with a larger gap (∆min = 0.5) indicating easy tasks and smaller gap
(∆min = 0.2) representing hard tasks. For the Gaussian bandit, the rewards are continuous with rak ∼ N (µk, σ). Here
µk ∼ N (0, σ) represents the mean for each action, and the variance σ captures the difficulty of exploration. Following
Sutton (2018), we study both σ = 1 and σ = 3.

We have 16 configurations for the multi-armed bandit domain, shown in Table A1.

Parameters

Reward Type Bernoulli Gaussian

Exploration Difficulty Easy (∆min=0.5), Hard (∆min=0.2) Easy (σ = 1), Hard (σ = 3)

Number of Items/Actions Small (k = 5), Large (k = 20)

Action Description Videos, Clothes

Table A1: Configuration of the MAB setup.
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A.3. Details on Contextual Bandit Task
For contextual bandit, at each round t ∈ [T ], the agent is presented with some contextual feature x (which may consist of
both textual descriptions and numeric values) describing the state (and action). The LLM agent π chooses an action a ∈ A,
and then a reward r(x, a) is received, which depends on both the context and the chosen action. The goal of the agent is to
recommend a personalized movie that a specific user is likely to enjoy. In particular, the observations x include user-specific
features such as age, gender, occupation, and geographical location (county and state), as well as features of the movies.
The action space is limited to the top-K most-watched movies in the dataset, with K = 10 for the easy setting and K = 30
for the more challenging setting. At each time step, we provide textual contextual features alongside a 5-dimensional user
preference vector ui. The task can easily be scaled up to include more movies, i.e., a larger K.

We use the MovieLens-1M dataset (Harper & Konstan, 2015) to build the contextual bandit task. It contains 1,000,209
anonymous ratings of approximately 3,900 movies made by 6,040 MovieLens users who joined MovieLens in 2000. For
each user, we have the basic demographic information such as age, gender, occupation, and zip code. We further convert zip
code to the actual name of the county and state and add these into the user profile description text. Each movie has a title
and associated genres. We present these information in the prompt as well.

LinUCB assumes a linear reward model E[r|x, a] = θTa x, where θ ∈ Rd (Chu et al., 2011). Since we are trying to use
tasks to measure the performance of LLM against a theoretically optimal algorithm, we have to build the contextual bandit
task in a way that satisfies the LinUCB assumption. An additional issue is that the context window of an LLM is still
limited, and we want to restrict the number of movies for the LLM to 10 or 30. So, we first calculate the popular movies
by tracking how often users rate each. We sort the list and select the top K movies. Then, we build a user preference
matrix P ∈ RN×K , where N is the number of users and K is the number of movies. To construct the ground-truth reward
distribution, we perform low-rank approximation on P . This is done by approximating P with P̃ = UΣV T using singular
value decomposition (SVD), yielding a user embedding matrix U ∈ RN×d, a movie embedding matrix V ∈ RK×d, and a
diagonal matrix Σ ∈ Rd×d of the top singular values. In our case, we set d = 5 as the dimension of the embeddings. The
ground-truth reward for user i and movie j is then computed as ri,j = uTi Σvj .

In order to present the full information that was provided to LinUCB to LLM as well, we include the user preference vector
in the prompt space, represented by a list of 5 floating point numbers. We additionally add descriptions to indicate that this
is a user preference vector. We show our full prompt in Figure A13.

A.4. UCB and LinUCB
In Table A2, we provide a detailed comparison between the exploitation values and exploration bonus used in both UCB and
LinUCB.

Algorithm Task Value of Arm

UCB MAB Vt(a) = µ̂t(a)︸ ︷︷ ︸
V Exploit

+α
√

log(t)/Nt(a)︸ ︷︷ ︸
V Explore

LinUCB CB Vt(a, x) = xTt,aθ̂a︸ ︷︷ ︸
V Exploit

+α
√
xTt,a(DT

aDa + Id)−1xt,a︸ ︷︷ ︸
V Explore

Table A2: Calculation for the value of each arm/item. The decision rule is a∗ = arg maxa Vt(a, x).

A.5. History Representation in Contextual Bandit
While it is relatively clear-cut for multi-armed bandit what RH and SH correspond to, it is less so for contextual bandit.
If we were to perform a similar analysis with LinUCB, RH would correspond to retaining all (context, action, reward)
information to estimate the parameter and calculate the uncertainty, while one possibility to realize SH would be to construct
the sufficient statistics using running mean and running covariance matrix in LinUCB. However, these statistics are much
less interpretable for language models; thus, we do not investigate it.

A.6. Details on Oracle Trajectory Generation
We use UCB as the oracle algorithm to generate the trajectories. Following the notations defined in Section 3, the trajectories
are in the form of tuples of (φ(HUCB

t ), aUCB
t ), where each tuple pairs the transformed representation of the history at time t
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and the action aUCB
t from UCB. For MAB, we create trajectories from reward distributions that differ from those used in

evaluation. This assesses the LLM’s ability to generalize across different bandit instances with the same underlying scenario
but varying action descriptions and action-reward mappings. We further control the data generation process by varying:
(1). Action Description: trajectories are generated from either "Video" or "Clothes" action descriptions; (2). Difficulty: we
control the reward gap in the Bernoulli bandit to create "easy" and "hard" instances; (3). Trajectory Contextualization:
trajectories are represented either as RH or AG. For CB, we use a fixed dataset and evaluate the LLM’s performance on
a held-out set of users. While these users are unseen during training, their profiles and preferences remain within the
distribution of the training data. This evaluates the LLM’s ability to leverage prior knowledge for effective exploration. In
CB, we only vary the trajectory representation (RH or AG). In both MAB and CB, each trajectory consists of a sequence of
exploration steps: 300 steps for MAB with K = 5 arms, 1000 steps for MAB with K = 20 arms, and 200 steps for CB.
We generate 50 trajectories for 2 MAB domain configurations (the easiest and the hardest configuration) with 2 trajectory
contextualizations, and 200 trajectories for CB with 2 trajectory contextualizations . This results in 4 algorithm distillation
datasets for MAB and 2 datasets for CB.

A.7. Difference Between Algorithm Distillation and Behavior Cloning
Optimal Behavior Fine-tuning (OFT) and Behavior Cloning (Pomerleau, 1991) share many similarities. Although both
approaches rely on maximum-likelihood learning, their objectives are different: OFT seeks to encode a dynamic, iterative
refinement process, while BC focuses on replicating static behavior. OFT is designed for algorithm distillation, focusing on
capturing a sequence of self-improvement behaviors, and generalization across any new test domains. In contrast, BC aims
to learn a policy by mimicking a static policy, with no iterative improvement between trajectories.

This difference becomes very clear when we think of an example. We have a deterministic Markov policy π that we can use
to create this dataset. We call this the sampling policy. To create a behavior cloning dataset,DBC, during dataset construction,
for the same state s, the policy remains unchanged, which the means π(a|s) remains the same in the entire dataset. To
create an algorithm distillation dataset DOFT, the sampling policy is self-improving as the data collection continues, π(a|s)
changes even for the same s between early and late trajectories of this dataset.

A.8. Example of Win-Rate Calculation
We report the relative performance of each model, aggregated across all environment configurations. Simply averaging
cumulative rewards across environments of different reward distributions and horizons however, obscures the comparison.
We instead use the pairwise win-rate to compare the performances. We have 16 configurations for MAB and evaluate
32 models (4 LLMs crossed with different methods), and 2 configurations for CB with 14 models (2 LLMs crossed with
different methods). The list of all the models is provided in Appendix A.14. For each configuration, we compute the
cumulative reward over T steps and collect a distribution of cumulative rewards from 30 independent trials. We then
calculate the pairwise win-rate by applying a Student’s t-test on the reward distributions of any pair of configurations to
determine if they are statistically significantly different, with a significance level of p < 0.05. If one model has a significantly
higher reward than the other, we consider it a win. If the difference is not statistically significant, the result is deemed
inconclusive and not counted as a win. For each model, we calculate its win rate against every other model across all
configurations. The overall win-rate for a model is then the percentage of superior performance over all models, crossed
with methods and configurations.

In each configuration, we compute one model’s win-rate against all other models. For MAB, we have 16 configurations and
34 models. For CB, we have 2 configurations and 16 models. Finally, the model’s overall win-rate is then determined by
averaging its win-rates across all models. For example, in MAB, if we only have 3 models: Gemma-2B, Gemini-1.5 Flash,
and Pro. Gemini-1.5 Flash have higher expected cumulative reward than Gemma-2B in 12 out of 16 configurations (12/16),
but only higher than Gemini-1.5 Pro in 4 out of 16 configurations (4/16), Gemini-Flash 1.5 will have an overall win-rate, on
average, 8/16=0.5.

A.9. Benchmark Evaluation Cost
We calculate and report the inference time cost for evaluating 30 trials for one agent with the longest contextual representation
(which incurs the highest cost). This means, for MAB tasks, we evaluate using Raw History (RH) and for CB tasks, we
evaluate using Algorithm-Guided Support (AG). The total cost for MAB Full (over 16 configurations and 32 models) is
$15897.6 for Gemini-1.5 Flash and for CB (2 configurations and 14 models) is $14491.12 for Gemini-1.5 Flash. We will
release all logged experiment data of all models for public analysis and comparison. We also recommend using a subset of
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Core HardCore HardCore+ Full MovieBench

Gemini-1.5 Flash $31.05 $14.91 $39.18 $83.44 $31.05
Gemini-1.5 Pro $517.54 $248.55 $652.98 $1390.69 $517.54

GPT-4o $1035.07 $497.11 $1305.96 $2781.38 $1035.07
Claude-3.5-sonnet $1243.00 $596.91 $1567.91 $3339.53 $1243.00

Table A3: Maximal inference cost for a single agent/task configuration over 30 trials. Price calculated on 1/30/2025. Core,
HardCore and HardCore+ refer to specific subset of the MAB configurations. The exact details are in the code included in
the supplementary material. In this paper, we used Full (MAB) and MovieBench (CB) of the benchmark.

our configurations for MAB (HardCore and HardCore+) to reduce evaluation cost.

A.10. Details Discussion of Results
Overall Performance Comparison Figure 1 presents a comparative overview of in-context few-shot demonstration,
oracle behavior fine-tuning, and inference-time algorithmic guidance performance across various model sizes and training
configurations. Few-shot demonstrations exhibited contrasting effects on Gemini-1.5 Flash and Pro. While few-shot learning
boosts the performance of Flash beyond the best inference-time setup, it surprisingly hurts Pro’s performance in both MAB
and CB. Aligned with the observations in Zheng et al. (2024), our hypothesis is that few shot examples we manually crafted
could disrupt the CoT structure in these larger models, which requires the few-shot examples to be carefully tuned in
order to be helpful. Further analysis reveals the remarkable effectiveness of oracle behavior fine-tuning. It significantly
outperforms both few-shot and baseline approaches in both MAB and CB across all model sizes, even larger ones. This
robust improvement highlights the effectiveness of directly optimizing model parameters for the exploration task. Notably,
the best fine-tuned Gemini-1.5 Flash model surpasses even the highest-performing Gemini-1.5 Pro model. The significant
advantage of fine-tuning over few-shot learning and baseline performance highlights its potential as a key technique for
enhancing LLM exploration capabilities.

Impact of History Representation in Context We examine how different contextualizations and inference-time support
techniques—namely RH, SH, and AG—influence model performance, each utilizing distinct history contextualization
functions φ, as introduced in Section 3. It is worth mentioning that in the MAB setup, both SH and AG significantly
reduce context length compared to RH, to O(K) instead of O(t). As illustrated in Table A4, leveraging inference-time
support (i.e., SH and AG) significantly enhances exploration performance across all models. This supports the intuition that
effective in-context exploration requires more than memorizing input-output pairs; it demands reasoning to extract sufficient
statistics from raw data and utilize them effectively for balancing exploration and exploitation. However, the exact benefit of
incorporating UCB-style information in the MAB setup remains uncertain. We hypothesize that under MAB, the exploitation
value and exploration bonus are straightforward transformations of the empirical mean and the number of times each arm has
been pulled Nt(a), and that the LLM has the capacity to learn the functional form efficiently. In CB, we compare AG to RH
and find a substantial improvement. This gap is particularly significant, as learning the exploitation value and exploration
bonus in this scenario requires the model to implicitly solve ridge regression and determine the appropriate functional form
of the high-probability confidence bound, making it a more complex reasoning task. The algorithmic guide approach can
thus be seen as LLMs calling external tools to compute sufficient statistics required for optimal exploration.

Inference-Time Support Multi-Armed Bandit Contextual Bandit

Gemma-2B Gemma-9B Flash Pro Flash Pro

Raw History (RH) 7.6 10.5 27.7 45.5 0.0 7.1
Summarized History (SH) 10.5 5.3 34.8 60.0 – –
Algorithm-Guided Support (AG) 4.9 4.1 32.2 59.6 46.4 64.3

UCB / LinUCB 90.6 96.4

Table A4: Inference-Time Support Results: Overall Win-Rate (%) of different inference support. Flash and Pro refer to Gemini-1.5
Flash and Pro respectively. Unlike SH, AG can work for both MAB and CB. Refer to Section 5.1 for details.
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(a) Few-shot Demonstrations

MAB CB

Flash Pro Flash Pro

Raw History (RH) 27.5 39.1 3.6 7.1
Algorithm-Guided Support (AG) 50.2 56.4 60.7 25.0

(b) Oracle Behavior Fine-Tuning

MAB CB

Flash Pro Flash Pro

Raw History (RH) 65.6 — 28.6 —
Algorithm-Guided Support (AG) 28.3 — 89.3 —

Table A5: Algorithm Distillation Results: Overall Win-Rate (%) of different algorithm distillation methods. Flash and Pro refer to
Gemini-1.5 Flash and Pro respectively. Best achieved performances are in bold. The history contextualization used in oracle trajectory
and inference-time support are the same. We conduct a few ablations in Figure A3.

Impact of Task Difficulty in Distillation Datasets We examine whether the choice of oracle trajectories used in both
in-context demonstration and oracle behavior fine-tuning significantly affects the model’s performance during inference.
To investigate this, we select trajectories from two extreme setups. The easiest setup involves (Bernoulli, Video, Large
∆min, K = 5), denoted as Deasy, with AG. Conversely, the hardest setup, denoted as Dhard utilizes (Bernoulli, Clothes,
Small ∆min, K = 20), with RH. Figure 2a illustrates that the choice of oracle trajectories significantly impacts the model’s
performance, with a surprising contrast between the two algorithm distillation methods. In-context demonstration achieves
a higher win-rate when using Deasy as demonstration (50.2) compared to when using Dhard (43.0). This suggests that the
limited examples provided in the demonstrations may be insufficient for the model to effectively utilize them under the
higher complexity and subtle reward signals of the harder task. Conversely, fine-tuning exhibits the opposite trend, with
a higher win-rate when trained on Dhard (65.6) compared to Deasy (54.5). This implies that fine-tuning, with its extensive
training data, might be overfitting to the specific nuances of the training distribution, leading to poor generalization when
faced with a different task structure.
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Figure A3: Context Rep-
resentation Alignment.

Impact of Contextualization We further investigate the effect of contextualization in the
oracle trajectories. We consider two representations in MAB: RH and SH. The results in
Figure 2b reveal a clear contrast in how these representations affect the two algorithm dis-
tillation methods. For few-shot demonstration, SH leads to significantly better performance
(50.2% win-rate) compared to RH (27.5% win-rate). This suggests that providing concise,
informative summaries of optimal exploration behavior is more effective for few-shot learning
than presenting the complete raw history. On the other hand, fine-tuning exhibits the opposite
trend. RH has a substantially higher win-rate (65.6) compared to SH (28.3). This indicates that
fine-tuning benefits from the richer information present in complete action-reward sequences,
allowing it to learn more nuanced patterns of the optimal exploration strategy. These contrasting
preferences for textual representation in oracle trajectories highlight the nuanced ways in which
fine-tuning and few-shot learning interact with different types of information. Furthermore,
in CB, we observe a significant impact of incorporating algorithm-guided (AG) information
into the oracle trajectories for fine-tuning. Augmenting RH with AG details, including the
exploitation value and exploration bonus, leads to a dramatic improvement in win-rate, rising
from 28.6 to 89.3 in Figure 2c. This suggests that providing the LLM with explicit insights
into the underlying decision-making process of the oracle algorithm (UCB, in this case), in
addition to the complete action-reward sequence, significantly enhances its ability to learn and
generalize the optimal exploration strategy in the CB environment.

Impact of Context Representation Alignment Our experiments also reveal an interesting interplay between the presence
of algorithm-guided information (AG) in both the oracle trajectories and inference. In the CB setting, providing AG
during inference consistently boosts performance, regardless of whether AG was used in oracle trajectories. This is
clearly demonstrated in Figure A3, where the right column (with AG at inference time) exhibits higher win-rates than
the corresponding left column across all training conditions. This suggests that the LLM can effectively leverage this
information even if it wasn’t explicitly trained on it, highlighting the inherent value of structured guidance for decision-
making. Furthermore, we observe that incorporating AG into few-shot demonstrations improves exploration even when AG
is absent during inference (e.g., Fewshot, RH 3.6 to RH +AG 10.7). This indicates that exposing the LLM to AG in oracle
trajectories, even in a limited capacity, can enhance its ability to extract relevant patterns from RH. We hypothesize that
AG helps the LLM learn to focus on the most informative aspects of the history, which generalizes even when AG is not
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provided during inference.

A.11. Details on Exploration Optimality Analysis
There are two types of failures one can expect in a bandit problem:

1. Over-exploration on suboptimal choices which results in lower exploration efficiency: over-exploration happens
when the algorithm spends too much time exploring suboptimal choices, reducing overall efficiency. This behavior can
be quantified using the MinFrac metric (Krishnamurthy et al., 2024), which measures the fraction of pulls allocated to
the least-selected arm. An ideal algorithm should exhibit high MinFrac during early exploration (when T is small)
and low MinFrac as T increases (indicating effective exploitation).

2. Failure to identify the optimal arm: this occurs when the algorithm struggles to converge on the best option over
time. To capture this, we compute the percentage of times an optimal arm is pulled at different time steps (OptFrac).
Ideally, this percentage should increase as the process progresses, indicating the model’s ability to self-improve.

We report these metrics at specific time steps over a total of T time steps. For convenience in visualizing the results in a
table, we select the 10%, 25%, 50%, 75%, and 100% (final) time steps. There are 1000 steps for the Bernoulli The reported
numbers are from Bernoulli Bandit, the metrics are averaged across different configurations.

MinFrac (%) / t Step 100-th 250-th 500-th 750-th 1000-th

UCB 82.3 48.6 27.8 19.6 15.3

Gemma-2B (SH) 0.0 1.0 0.5 0.4 0.3
Gemma-2B (AG) 0.0 0.6 1.1 1.9 2.7

Gemma-9B (SH) 6.9 11.2 16.9 15.4 16.5
Gemma-9B (AG) 5.8 11.8 17.3 19.6 22.9

Gemini-1.5 Flash (SH) 10.2 4.2 2.1 1.4 1.1
Gemini-1.5 Flash (AG) 11.3 4.5 2.3 1.5 1.1

Gemini-1.5 Pro (SH) 79.0 40.0 20.6 13.9 10.5
Gemini-1.5 Pro (AG) 73.8 37.1 18.9 12.7 9.5

Table A6: Over-exploration Rate (MinFrac): MinFrac measures the fraction of pulls allocated to the least-selected arm. We show the
measures on the t-th step along the progression of exploration.

OptFrac (%) / t Step 100-th 250-th 500-th 750-th 1000-th

UCB 32.7 49.4 58.7 62.6 65.0

Gemma-2B (SH) 10.1 10.3 10.2 10.1 10.1
Gemma-2B (AG) 12.8 12.3 12.4 12.2 12.2

Gemma-9B (SH) 5.8 6.7 7.4 7.8 8.0
Gemma-9B (AG) 6.6 7.3 6.7 6.6 6.6

Gemini-1.5 Flash (SH) 9.3 10.1 10.4 10.6 10.7
Gemini-1.5 Flash (AG) 14.4 15.6 16.3 16.6 16.8

Gemini-1.5 Pro (SH) 15.1 19.1 21.8 22.9 23.5
Gemini-1.5 Pro (AG) 11.9 17.7 21.6 23.1 23.9

Table A7: Fraction of Pulls on the Optimal Arm (OptFrac): OptFrac measures the fraction of pulls overall on the optimal arm over.
We show the measures on the t-th step along the progression of exploration.

A model could, in theory, achieve high performance by consistently choosing the optimal arm—even if it rarely explores—by
chance. To address this, we include an analysis of the model’s exploration behavior using a metric called OptFrac, which
measures how often the optimal arms are selected. As shown in Table A7, UCB steadily increases its OptFrac over time
(32.7% → 49.4% → 58.7% → 62.6% → 65.0% over 1000 steps), indicating a growing focus on the optimal arm. In
contrast, Gemini-1.5 Flash remains largely flat (9.3%→ 10.1%→ 10.4%→ 10.6%→ 10.7%), suggesting that it does not
significantly shift its behavior toward the optimal arm. This supports our claim that the model does not accidentally achieve
optimal performance by randomly selecting the best arm without meaningful exploration.
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We then analyze exploration dynamics in more detail, such as whether the model engages in random or directed exploration.
In our analysis, we include a metric called MinFrac, which measures the fraction of pulls allocated to the least-selected arm.
This captures the extent to which the model explores less-visited options, which can be understood as a form of “directed
exploration.” Ideally, this value should be high early on (indicating strong directed exploration), and then decrease as the
model gains experience and focuses on better-performing arms. As shown in Table A6, UCB exhibits this expected trend,
with MinFrac values decreasing over time: 82.3%→ 48.6%→ 27.8%→ 19.6%→ 15.3%. In contrast, Gemini-1.5 Flash
starts with a much lower MinFrac and declines rapidly (11.3%→ 4.5%→ 2.3%→ 1.5%→ 1.1%), suggesting it lacks
meaningful directed exploration from the outset.

A.12. Details on Fitting Regret Function
In this section, we aim to conduct a more rigorous analysis of the LLM’s exploration efficiency using the concept of
regret, REG(π). Most bandit algorithms are evaluated by the behavior of REG(π) as a function of T (i.e., the number of
interactions), either theoretically or empirically. Motivated by this, our goal is to understand the exploration behaviors of
various LLMs by characterizing their regret as a function of T . To achieve this, we adopt the following functional form to
analyze the regret:

f(T ) =
λ1 log(T )α

∆min
+ βT + λ2

The three parameters α, β, λ1 in the equation are all positive real numbers. λ2 is unconstrained. ∆min captures the gap
between the best and second best arm. This functional form provides intuitive interpretations for the underlying parameters.
Specifically, log(T ) represents sublinear scaling of the regret, which is known to be achieved by only the best bandit
algorithms (e.g. UCB and Thompson Sampling). The T scaling describes a linear growth or the inability of an agent to
match the optimal policy π∗. This means a strong algorithm should have α as small as possible, and have β = 0. This
functional form also allows us to see some growth behaviors in-between with both positive α and β.

We use the curve fit function in Scikit-learn (Pedregosa et al., 2011) to fit the cumulative regret curve of UCB and LLMs
coupled with different methods (i.e., inference-time algorithm-guided support, in-context demonstration, and optimal
behavior fine-tuning). The results of the fitted α and β values are presented in Figure 3. For the largest Pro models, applying
effective inference-time support, such as AG and SH can achieve nearly sub-linear regret. More intriguingly, for Flash
models, fine-tuning for optimal behavior significantly boosts performance, enabling them to attain sub-linear regret with a
lower α. In contrast, weaker models such as Gemma 2B and 9B appear to remain in the linear regret regime across nearly
all methods.

We perform the same analysis with the cumulative regret function on MAB in the Hard Difficulty setting. We can see that in
Figure 3, a lot fewer LLM models achieved β = 0, which means achieving the desirable logarithmic sublinear regret that
algorithms like UCB and Thompson Sampling have.

In the MAB-Hard setting, we can see that more models are having non-zero β, meaning these models have linear cumulative
regret, which indicates lack of in-context self-improvement, because the model is not selecting the optimal arm more
and more frequently as T increases. However, we can see that generally Optimal Behavior Fine-Tuned models are doing
better.

To verify that our functional form fits the data (empirical cumulative regret curve) well, we show a few figures of our fitted
curve and actual data. In Figure A4, we show how the learned function f(T ) fit the actual empirical cumulative regret
curve.

In Figure A4, it is interesting to see that the function we choose exhibit the behavior of pushing either α or β to 0, if either
of the two describes the trend better. We note that although the fit is not perfect, the MSE is relatively small compared to the
data we are trying to fit. For a cumulative regret as large as 100 at some time step T , our fitted function ccan still maintain
an MSE of 0.22.

We additionally add the analysis for the MAB Gaussian bandit. The instance optimality gap ∆min is characterized by the
KL-divergence of the Gaussian reward distribution between the best arm and the second best arm. We show the result in
Figure A6. The trend is somewhat similar to Bernoulli bandits, where smaller models perform much worse than larger
models.
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(a) Example of Linear Cumulative Regret
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(b) Example of Sublinear Cumulative Regret
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(c) Example of Sublinear Cumulative Regret

Figure A4: Examples of how our function fits different empirical cumulative regret curves. T indicates number of times the
agent interacted with the task.

A.13. Evaluation Implementation Details
We run each model under each configuration for 30 trials. We set the random seed to be the same as trial id, starting from 0
to 29. This random seed determines the reward distribution for MAB and the sequence of users the algorithm encounters in
CB. For the LLM calls, we use standard API calls and set the sampling temperature to 1.0 (range=[0.0, 2.0]). The default
API (2024-08 to 2024-09) uses Top-P=0.95 sampling, and Top-K=40.

A.14. Full List of Models
We provide a full list of models evaluated for MAB and CB. The model is represented using A =⇒ B with A being the
model, with B being the inference-time technique.

MAB Models

1. Few-Shot Gemma-9B, (Bernoulli, Clothes, K = 20, Small ∆min) =⇒ RH 0.029

2. Few-Shot Gemma-2B, (Bernoulli, Clothes, K = 20, Small ∆min) =⇒ RH 0.029

3. Gemma-9B =⇒ AG 0.041

4. Fewshot Gemma-2B with (Bernoulli, Video, K = 5, Large ∆min) =⇒ SH 0.043

5. Fewshot Gemma-2B with (Bernoulli, Clothes, K = 20, Small ∆min) =⇒ SH 0.045

6. Fewshot Gemma-2B with (Bernoulli, Video, K = 5, Large ∆min) =⇒ RH 0.047

7. Gemma-2B =⇒ AG 0.049

8. Gemma-9B =⇒ SH 0.053

9. Fewshot Gemma-9B with (Bernoulli, Video, K = 5, Large ∆min) =⇒ RH 0.072

10. Gemma-2B =⇒ RH 0.076
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Figure A5: MAB in Easy (K=5, ∆min=0.5): We plot the estimated parameters α and β. Smaller α and β indicate more efficient
exploration to find the best arm. Algorithms with strong in-context exploration should have α as small as possible and have β=0.

11. Fewshot Gemma-9B with (Bernoulli, Clothes, K = 20, Small ∆min) =⇒ SH 0.088

12. Fewshot Gemma-9B with (Bernoulli, Video, K = 5, Large ∆min) =⇒ SH 0.092

13. OFT Flash with (Bernoulli, Video, K = 5, Large ∆min) AG =⇒ AG 0.104

14. Gemma-2B =⇒ SH 0.105

15. Gemma-9B =⇒ RH 0.105

16. Fewshot Flash with (Bernoulli, Clothes, K = 20, Small ∆min) =⇒ RH 0.152

17. Fewshot Flash with (Bernoulli, Video, K = 5, Large ∆min) =⇒ RH 0.275

18. Gemini-1.5 Flash =⇒ RH 0.277

19. OFT Flash with (Bernoulli, Clothes, K = 20, Small ∆min) AG =⇒ AG 0.283

20. Gemini-1.5 Flash =⇒ AG 0.322

21. Gemini-1.5 Flash =⇒ SH 0.348

22. Fewshot Pro with (Bernoulli, Video, K = 5, Large ∆min) =⇒ RH 0.381

23. Fewshot Pro with (Bernoulli, Clothes, K = 20, Small ∆min) =⇒ RH 0.391

24. Fewshot Flash with (Bernoulli, Clothes, K = 20, Small ∆min) =⇒ SH 0.430

25. Gemini-1.5 Pro =⇒ RH 0.455

26. Fewshot Flash with (Bernoulli, Video, K = 5, Large ∆min) =⇒ SH 0.502

27. Fewshot Pro with (Bernoulli, Clothes, K = 20, Small ∆min) =⇒ SH 0.525

28. OFT Flash with (Bernoulli, Video, K = 5, Large ∆min) RH =⇒ RH 0.545

29. Fewshot Pro with (Bernoulli, Video, K = 5, Large ∆min) =⇒ SH 0.564

30. Gemini-1.5 Pro =⇒ AG 0.596

31. Gemini-1.5 Pro =⇒ SH 0.600

32. OFT Flash with (Bernoulli, Clothes, K = 20, Small ∆min) RH =⇒ RH 0.656

33. UCB 0.906

CB Models

1. Gemini-1.5 Flash =⇒ RH 0.000

2. Fewshot Flash with RH =⇒ RH 0.036
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Figure A6: We plot the estimated parameters α and β. The difficulty level is determined by ∆min.

3. Fewshot Pro with RH =⇒ RH 0.071

4. Gemini-1.5 Pro =⇒ RH 0.071

5. Fewshot Flash with RH =⇒ RH 0.107

6. Fewshot Pro with RH =⇒ AG 0.250

7. OFT trained with RH =⇒ RH 0.286

8. OFT trained with AG =⇒ RH 0.286

9. Fewshot Flash with RH =⇒ AG 0.429

10. Gemini-1.5 Flash =⇒ AG 0.464

11. Fewshot Flash with AG =⇒ AG 0.607

12. OFT trained with RH =⇒ AG 0.643

13. Gemini-1.5 Pro =⇒ AG 0.643

14. OFT trained with AG =⇒ AG 0.893

15. LinUCB 0.964

A.15. Scenario Prompts
We provide a set of prompts that are used in each scenario. For Multi-Arm Bandit, we include the following prompts:

1. MAB, Bernoulli Bandit, K = 5, Raw History (RH), Video Action Description (Figure A7), Clothes Action Description
(Figure A8)

22



EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration

2. MAB, Bernoulli Bandit, K = 5, Algorithm-Guided Support (AG), Clothes Action Description (Figure A9), Video
Action Description (Figure A10)

3. MAB, Gaussian Bandit,K = 5, Raw History (RH), Video Action Description (Figure A11), Clothes Action Description
(Figure A12)

For Contextual Bandit, we include the following prompts:

1. CB, K = 10, Raw History (RH) (Figure A13)

2. CB, K = 10, Raw History (RH) with Algorithm-Guided Support (AG) (Prompt Part 1 Figure A14, Prompt Part 2
Figure A15).

For OFT, we use the same prompt as shown in the figures above. The LLM generates the next action token conditioned
on the entire prompt, and we compute the negative log-likelihood loss over the action tokens, with the action chosen by
UCB/LinUCB algorithm.

A.16. Examples of few-shot demonstrations
We provide examples of how few-shot prompt being used. We include few-shot demonstrations from optimal exploration
trajectories before past interaction history (without the task description and instruction). We show two examples to illustrate
that how few-shot demonstrations domain match with the evaluation domain:

1. MAB, Benoulli Bandit, Video Action Description, K = 5, Raw History (RH), with Few-shot Demonstrations from
Video Action Description, K = 5, Raw History (RH) (Figure A16)

2. MAB, Benoulli Bandit, Video Action Description, K = 5, Raw History (RH), ith Few-shot Demonstrations from
Clothes Action Description, K = 5, Raw History (RH) (Figure A17)

1 You are a video recommendation system powered by a bandit algorithm for an online streaming platform.
2 There are 5 videos available in your library , titled [A, B, AI, BS, E].
3 When a user logs into the platform , you select a video to recommend based on their viewing history and

preferences.
4 You aim to engage the user by recommending videos that they are likely to watch.
5 Each time a user watches a recommended video , you update your recommendation model to refine future

suggestions ,
6 enhancing user satisfaction and platform engagement.
7
8 A good strategy to optimize for reward in these situations requires balancing exploration
9 and exploitation. You need to explore to try out all of the videos and find those

10 with high rewards , but you also have to exploit the information that you have to
11 accumulate rewards.
12
13 So far you have played 6 times with the following choices and rewards:
14 A video , reward 1
15 B video , reward 1
16 AI video , reward 1
17 BS video , reward 0
18 E video , reward 0
19 A video , reward 0
20
21 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, AI, BS, E AND NO TEXT EXPLANATION.
22

Figure A7: Multi-Arm Bandit: Bernoulli, Video Action Description, K = 5, Raw History.
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1 You are an AI fashion assistant for an online boutique powered by a bandit algorithm that offers a variety of
clothing options from different brands.

2 There are 5 unique clothing items you can recommend , named [Midnight Mirage Trousers , Opulent Oasis Overcoat ,
Infinite Impeccable Jacket , Supreme Spectrum Slippers , Bejeweled Bloom Blazer ].

3 When a customer visits the online store , you assess their style preferences and shopping history to choose an
item to suggest.

4 You aim to match the customer with clothing they are most likely to purchase and enjoy.
5 Each time a customer buys a recommended item , you adjust your recommendation algorithms to better predict and

meet future customer preferences.
6
7 A good strategy to optimize for reward in these situations requires balancing exploration
8 and exploitation. You need to explore to try out all of the clothing brands and find those
9 with high rewards , but you also have to exploit the information that you have to

10 accumulate rewards.
11
12 So far you have played 6 times with the following choices and rewards:
13 Midnight Mirage Trousers item , reward 0
14 Opulent Oasis Overcoat item , reward 1
15 Infinite Impeccable Jacket item , reward 1
16 Supreme Spectrum Slippers item , reward 0
17 Bejeweled Bloom Blazer item , reward 0
18 Opulent Oasis Overcoat item , reward 1
19
20 Which item will you choose next? PLEASE RESPOND ONLY WITH Midnight Mirage Trousers , Opulent Oasis Overcoat ,

Infinite Impeccable Jacket , Supreme Spectrum Slippers , Bejeweled Bloom Blazer AND NO TEXT EXPLANATION.
21

Figure A8: Multi-Arm Bandit: Bernoulli, Clothing Action Description, K = 5, Raw History.

1 You are an AI fashion assistant for an online boutique that offers a variety of clothing options from
different brands.

2 There are 5 unique clothing items you can recommend , named
3 Stellar Sheen Shawl ,
4 Faithful Fantasy Frock ,
5 Supreme Sylvan Sandals ,
6 Bespoke Bliss Blouse item ,
7 Silk Spectrum Slip
8 When a customer visits the online store , you assess their style preferences and shopping history to choose an

item to suggest.
9 You aim to match the customer with clothing they are most likely to purchase and enjoy.

10 Each time a customer buys a recommended item , you adjust your recommendation algorithms to better predict and
meet future customer preferences.

11 A good strategy to optimize for reward in these situations requires balancing exploration
12 and exploitation. You need to explore to try out all of the clothing brands and find those
13 with high rewards , but you also have to exploit the information that you have to
14 accumulate rewards.
15 So far you have played 4 times with the following choices and rewards:
16 Stellar Sheen Shawl item , 1 time , avg reward 0, exploration bonus 1.00, exploitation value 0.00
17 Faithful Fantasy Frock item , 1 time , avg reward 1, exploration bonus 1.00, exploitation value 1.00
18 Supreme Sylvan Sandals item , 1 time , avg reward 0, exploration bonus 1.00, exploitation value 0.00
19 Bespoke Bliss Blouse item , avg reward 0, exploration bonus 1.00, exploitation value 0.00
20 Silk Spectrum Slip item , 1 time , avg reward 0, exploration bonus 1.00, exploitation value 0.00
21 Which clothes item will you choose next?
22 Action:
23

Figure A9: Multi-Arm Bandit: Bernoulli, Clothing Action Description, K = 5, Algorithmic Guide.
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1 You are a video recommendation system powered by a bandit algorithm for an online streaming platform.
2 There are 5 videos available in your library , titled
3 AA
4 BS
5 BW
6 CQ
7 CP
8 When a user logs into the platform , you select a video to recommend based on their viewing history and

preferences.
9 You aim to engage the user by recommending videos that they are likely to watch.

10 Each time a user watches a recommended video , you update your recommendation model to refine future
suggestions , enhancing user satisfaction and platform engagement.

11 A good strategy to optimize for reward in these situations requires balancing exploration
12 and exploitation. You need to explore to try out all of the videos and find those
13 with high rewards , but you also have to exploit the information that you have to
14 accumulate rewards.
15 So far you have played 4 times with the following choices and rewards:
16 AA video , 1 time , avg reward 0, exploration bonus 1.00, exploitation value 0.00
17 BS video , 1 time , avg reward 1, exploration bonus 1.00, exploitation value 1.00
18 BW video , 1 time , avg reward 0, exploration bonus 1.00, exploitation value 0.00
19 CQ video , avg reward 0, exploration bonus 1.00, exploitation value 0.00
20 CP video , 1 time , avg reward 0, exploration bonus 1.00, exploitation value 0.00
21 Which video will you choose next?
22 Action:
23

Figure A10: Multi-Arm Bandit: Beroulli, Video Action Description, K = 5, Algorithmic Guide.

1 You are a video recommendation system powered by a bandit algorithm for an online streaming platform.
2 There are 5 videos available in your library , titled [A, CX, AF, AQ, S].
3 When a user logs into the platform , you select a video to recommend based on their viewing history and

preferences.
4 You aim to engage the user by recommending videos that they are likely to watch.
5 Each time a user watches a recommended video , you update your recommendation model to refine future

suggestions ,
6 enhancing user satisfaction and platform engagement.
7
8 A good strategy to optimize for reward in these situations requires balancing exploration
9 and exploitation. You need to explore to try out all of the videos and find those

10 with high rewards , but you also have to exploit the information that you have to
11 accumulate rewards.
12
13 So far you have played 6 times with the following choices and rewards:
14 A video , reward 2.0205556227286694
15 CX video , reward 5.046038662976072
16 AF video , reward -4.043037070451992
17 AQ video , reward 5.937910707405409
18 S video , reward -4.856036829535051
19 AQ video , reward 6.2468398842187405
20
21 Which video will you choose next? PLEASE RESPOND ONLY WITH A, CX, AF, AQ, S AND NO TEXT EXPLANATION.
22

Figure A11: Multi-Arm Bandit: Gaussian, Video Action Description, K = 5, Raw History.
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1 You are an AI fashion assistant for an online boutique powered by a bandit algorithm that offers a variety of
clothing options from different brands.

2 There are 5 unique clothing items you can recommend , named [Midnight Mirage Trousers , Dapper Dreams Denim ,
Infinite Impeccable Jacket , Supreme Spectrum Slippers , Bejeweled Bloom Blazer ].

3 When a customer visits the online store , you assess their style preferences and shopping history to choose an
item to suggest.

4 You aim to match the customer with clothing they are most likely to purchase and enjoy.
5 Each time a customer buys a recommended item , you adjust your recommendation algorithms to better predict and

meet future customer preferences.
6
7 A good strategy to optimize for reward in these situations requires balancing exploration
8 and exploitation. You need to explore to try out all of the clothing brands and find those
9 with high rewards , but you also have to exploit the information that you have to

10 accumulate rewards.
11
12 So far you have played 6 times with the following choices and rewards:
13 Midnight Mirage Trousers item , reward -3.701605707528312
14 Dapper Dreams Denim item , reward 1.4965799995904072
15 Infinite Impeccable Jacket item , reward 4.576557137862691
16 Supreme Spectrum Slippers item , reward -0.32883145604929176
17 Bejeweled Bloom Blazer item , reward 1.5907554114707747
18 Infinite Impeccable Jacket item , reward 6.534020380965033
19
20 Which item will you choose next? PLEASE RESPOND ONLY WITH Midnight Mirage Trousers , Dapper Dreams Denim ,

Infinite Impeccable Jacket , Supreme Spectrum Slippers , Bejeweled Bloom Blazer AND NO TEXT EXPLANATION.
21

Figure A12: Multi-Arm Bandit: Gaussian, Clothes Action Description, K = 5, Raw History.
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1 You are an AI movie recommendation assistant for a streaming platform powered by a bandit algorithm that offers a
wide variety of films from different studios and genres.

2 There are 10 unique movies you can recommend , named
3 American Beauty (1999) (Comedy|Drama),
4 Star Wars: Episode IV - A New Hope (1977) (Action|Adventure|Fantasy|Sci -Fi),
5 Star Wars: Episode V - The Empire Strikes Back (1980) (Action|Adventure|Drama|Sci -Fi|War),
6 Star Wars: Episode VI - Return of the Jedi (1983) (Action|Adventure|Romance|Sci -Fi|War),
7 Jurassic Park (1993) (Action|Adventure|Sci -Fi),
8 Saving Private Ryan (1998) (Action|Drama|War),
9 Terminator 2: Judgment Day (1991) (Action|Sci -Fi|Thriller),

10 The Matrix (1999) (Action|Sci -Fi|Thriller),
11 Back to the Future (1985) (Comedy|Sci -Fi),
12 The Silence of the Lambs (1991) (Drama|Thriller)
13
14 When a user visits the streaming platform , you assess their demographic description to choose a movie to suggest.
15 You aim to match the user with movies they are most likely to watch and enjoy.
16 Each time a user watches a recommended movie , you adjust your recommendation algorithms to better predict and

meet future user preferences.
17 Your goal is to enhance the user ’s viewing experience by providing personalized and engaging movie suggestions.
18
19 A good strategy to optimize for reward in these situations requires balancing exploration
20 and exploitation. You need to explore to try out different movies and find those
21 with high rewards , but you also have to exploit the information that you have to
22 accumulate rewards.
23
24 So far you have interacted 4 times with the most recent following choices and rewards:
25 Context: a person who is a 18-year -old man with an occupation of college/grad student and live in Pulaski county ,

AR. The user has some numerical values that represent their true implicit preference or taste for all
movies: [ -0.011492758058011532 , 0.027099572122097015 , -0.020118921995162964 , -0.002230832353234291 ,
-0.003236030228435993].

26 Action: Saving Private Ryan (1998)
27 Reward: 4.735634 out of 5
28
29 Context: a person who is a 25-year -old man with an occupation of sales/marketing and live in Solano county , CA.

The user has some numerical values that represent their true implicit preference or taste for all movies:
[ -0.00312434253282845 , 0.0017211971571668983 , 0.0015880014980211854 , 0.012064018286764622 ,
0.009061760269105434].

30 Action: Jurassic Park (1993)
31 Reward: 0 out of 5
32
33 Context: a person who is a 56-year -old man with an occupation of sales/marketing and live in Jefferson county ,

KY. The user has some numerical values that represent their true implicit preference or taste for all
movies: [ -0.009686884470283985 , 0.028794225305318832 , -0.011435767635703087 , 0.006439171731472015 ,
-0.010343835689127445].

34 Action: Saving Private Ryan (1998)
35 Reward: 5 out of 5
36
37 Context: a person who is a 25-year -old man with an occupation of executive/managerial and live in Washington

county , DC. The user has some numerical values that represent their true implicit preference or taste for
all movies: [ -0.010095382109284401 , 0.010144174098968506 , -0.01811344549059868 , -0.009553882293403149 ,
-0.012143188156187534].

38 Action: Saving Private Ryan (1998)
39 Reward: 3.953174 out of 5
40
41
42 You have a new user: PLEASE RESPOND ONLY WITH A CHOICE of MOVIES LISTED ABOVE AND NO TEXT EXPLANATION.
43
44 Context: This person is a 35-year -old man , working as a lawyer and live in Camden county , NJ. The user has some

numerical values that represent their true implicit preference or taste for all movies:
[ -0.009149148128926754 , -0.00417252816259861 , 0.011747784912586212 , -0.012008273974061012 ,
-0.006486567202955484].

45 Action:
46

Figure A13: Contextual Bandit: Movie Recommendation for movies, Raw History.
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1 You are an AI movie recommendation assistant for a streaming platform powered by a bandit algorithm that offers a
wide variety of films from different studios and genres.

2 There are 10 unique movies you can recommend , named
3 American Beauty (1999) (Comedy|Drama),
4 Star Wars: Episode IV - A New Hope (1977) (Action|Adventure|Fantasy|Sci -Fi),
5 Star Wars: Episode V - The Empire Strikes Back (1980) (Action|Adventure|Drama|Sci -Fi|War),
6 Star Wars: Episode VI - Return of the Jedi (1983) (Action|Adventure|Romance|Sci -Fi|War),
7 Jurassic Park (1993) (Action|Adventure|Sci -Fi),
8 Saving Private Ryan (1998) (Action|Drama|War),
9 Terminator 2: Judgment Day (1991) (Action|Sci -Fi|Thriller),

10 The Matrix (1999) (Action|Sci -Fi|Thriller),
11 Back to the Future (1985) (Comedy|Sci -Fi),
12 The Silence of the Lambs (1991) (Drama|Thriller)
13
14 When a user visits the streaming platform , you assess their demographic description to choose a movie to suggest.
15 You aim to match the user with movies they are most likely to watch and enjoy.
16 Each time a user watches a recommended movie , you adjust your recommendation algorithms to better predict and

meet future user preferences.
17 Your goal is to enhance the user ’s viewing experience by providing personalized and engaging movie suggestions.
18
19 A good strategy to optimize for reward in these situations requires balancing exploration
20 and exploitation. You need to explore to try out different movies and find those
21 with high rewards , but you also have to exploit the information that you have to
22 accumulate rewards.
23
24 So far you have interacted 2 times with the most recent following choices and rewards:
25 Context: a person who is a 18-year -old man with an occupation of college/grad student and live in Pulaski county ,

AR. The user has some numerical values that represent their true implicit preference or taste for all
movies: [ -0.011492758058011532 , 0.027099572122097015 , -0.020118921995162964 , -0.002230832353234291 ,
-0.003236030228435993].

26 Side Information for decision making:
27 {" American Beauty (1999) ": {" exploration value": 0.018} , {" exploitation value ":0.000}}
28 {"Star Wars: Episode IV - A New Hope (1977) ": {" exploration value": 0.018} , {" exploitation value ":0.000}}
29 {"Star Wars: Episode V - The Empire Strikes Back (1980) ": {" exploration value": 0.018} , {" exploitation

value ":0.000}}
30 {"Star Wars: Episode VI - Return of the Jedi (1983) ": {" exploration value": 0.018} , {" exploitation value ":0.000}}
31 {" Jurassic Park (1993) ": {" exploration value": 0.018} , {" exploitation value ":0.000}}
32 {" Saving Private Ryan (1998) ": {" exploration value": 0.018} , {" exploitation value ":0.000}}
33 {" Terminator 2: Judgment Day (1991) ": {" exploration value": 0.018} , {" exploitation value ":0.000}}
34 {"The Matrix (1999) ": {" exploration value": 0.018} , {" exploitation value ":0.000}}
35 {"Back to the Future (1985) ": {" exploration value": 0.018} , {" exploitation value ":0.000}}
36 {"The Silence of the Lambs (1991) ": {" exploration value": 0.018} , {" exploitation value ":0.000}}
37 Action: The Silence of the Lambs (1991)
38 Reward: 4.121133 out of 5
39
40 Context: a person who is a 25-year -old man with an occupation of sales/marketing and live in Solano county , CA.

The user has some numerical values that represent their true implicit preference or taste for all movies:
[ -0.00312434253282845 , 0.0017211971571668983 , 0.0015880014980211854 , 0.012064018286764622 ,
0.009061760269105434].

41 Side Information for decision making:
42 {" American Beauty (1999) ": {" exploration value": 0.008} , {" exploitation value ":0.000}}
43 {"Star Wars: Episode IV - A New Hope (1977) ": {" exploration value": 0.008} , {" exploitation value ":0.000}}
44 {"Star Wars: Episode V - The Empire Strikes Back (1980) ": {" exploration value": 0.008} , {" exploitation

value ":0.000}}
45 {"Star Wars: Episode VI - Return of the Jedi (1983) ": {" exploration value": 0.008} , {" exploitation value ":0.000}}
46 {" Jurassic Park (1993) ": {" exploration value": 0.008} , {" exploitation value ":0.000}}
47 {" Saving Private Ryan (1998) ": {" exploration value": 0.008} , {" exploitation value ":0.000}}
48 {" Terminator 2: Judgment Day (1991) ": {" exploration value": 0.008} , {" exploitation value ":0.000}}
49 {"The Matrix (1999) ": {" exploration value": 0.008} , {" exploitation value ":0.000}}
50 {"Back to the Future (1985) ": {" exploration value": 0.008} , {" exploitation value ":0.000}}
51 {"The Silence of the Lambs (1991) ": {" exploration value": 0.008} , {" exploitation value ": -0.000}}
52 Action: American Beauty (1999)
53 Reward: 0 out of 5
54

Figure A14: Contextual Bandit: Movie Recommendation for 10 movies, with Algorithm-Guided Support (Part 1)
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EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration

1 Context: a person who is a 56-year -old man with an occupation of sales/marketing and live in Jefferson county ,
KY. The user has some numerical values that represent their true implicit preference or taste for all
movies: [ -0.009686884470283985 , 0.028794225305318832 , -0.011435767635703087 , 0.006439171731472015 ,
-0.010343835689127445].

2 Side Information for decision making:
3 {" American Beauty (1999) ": {" exploration value": 0.017} , {" exploitation value ": -0.000}}
4 {"Star Wars: Episode IV - A New Hope (1977) ": {" exploration value": 0.017} , {" exploitation value ":0.000}}
5 {"Star Wars: Episode V - The Empire Strikes Back (1980) ": {" exploration value": 0.017} , {" exploitation

value ":0.000}}
6 {"Star Wars: Episode VI - Return of the Jedi (1983) ": {" exploration value": 0.017} , {" exploitation value ":0.000}}
7 {" Jurassic Park (1993) ": {" exploration value": 0.017} , {" exploitation value ":0.000}}
8 {" Saving Private Ryan (1998) ": {" exploration value": 0.017} , {" exploitation value ":0.000}}
9 {" Terminator 2: Judgment Day (1991) ": {" exploration value": 0.017} , {" exploitation value ":0.000}}

10 {"The Matrix (1999) ": {" exploration value": 0.017} , {" exploitation value ":0.000}}
11 {"Back to the Future (1985) ": {" exploration value": 0.017} , {" exploitation value ":0.000}}
12 {"The Silence of the Lambs (1991) ": {" exploration value": 0.017} , {" exploitation value ":0.005}}
13 Action: The Silence of the Lambs (1991)
14 Reward: 3.9708314 out of 5
15
16 Context: a person who is a 25-year -old man with an occupation of executive/managerial and live in Washington

county , DC. The user has some numerical values that represent their true implicit preference or taste for
all movies: [ -0.010095382109284401 , 0.010144174098968506 , -0.01811344549059868 , -0.009553882293403149 ,
-0.012143188156187534].

17 Side Information for decision making:
18 {" American Beauty (1999) ": {" exploration value": 0.014} , {" exploitation value ":0.000}}
19 {"Star Wars: Episode IV - A New Hope (1977) ": {" exploration value": 0.014} , {" exploitation value ":0.000}}
20 {"Star Wars: Episode V - The Empire Strikes Back (1980) ": {" exploration value": 0.014} , {" exploitation

value ":0.000}}
21 {"Star Wars: Episode VI - Return of the Jedi (1983) ": {" exploration value": 0.014} , {" exploitation value ":0.000}}
22 {" Jurassic Park (1993) ": {" exploration value": 0.014} , {" exploitation value ":0.000}}
23 {" Saving Private Ryan (1998) ": {" exploration value": 0.014} , {" exploitation value ":0.000}}
24 {" Terminator 2: Judgment Day (1991) ": {" exploration value": 0.014} , {" exploitation value ":0.000}}
25 {"The Matrix (1999) ": {" exploration value": 0.014} , {" exploitation value ":0.000}}
26 {"Back to the Future (1985) ": {" exploration value": 0.014} , {" exploitation value ":0.000}}
27 {"The Silence of the Lambs (1991) ": {" exploration value": 0.014} , {" exploitation value ":0.006}}
28 Action: The Silence of the Lambs (1991)
29 Reward: 1.0985798 out of 5
30
31
32 You have a new user: PLEASE RESPOND ONLY WITH A CHOICE of MOVIES LISTED ABOVE AND NO TEXT EXPLANATION.
33
34 Context: This person is a 35-year -old man , working as a lawyer and live in Camden county , NJ. The user has some

numerical values that represent their true implicit preference or taste for all movies:
[ -0.009149148128926754 , -0.00417252816259861 , 0.011747784912586212 , -0.012008273974061012 ,
-0.006486567202955484].

35 Side Information for decision making:
36 {" American Beauty (1999) ": {" exploration value": 0.010} , {" exploitation value ":0.000}}
37 {"Star Wars: Episode IV - A New Hope (1977) ": {" exploration value": 0.010} , {" exploitation value ":0.000}}
38 {"Star Wars: Episode V - The Empire Strikes Back (1980) ": {" exploration value": 0.010} , {" exploitation

value ":0.000}}
39 {"Star Wars: Episode VI - Return of the Jedi (1983) ": {" exploration value": 0.010} , {" exploitation value ":0.000}}
40 {" Jurassic Park (1993) ": {" exploration value": 0.010} , {" exploitation value ":0.000}}
41 {" Saving Private Ryan (1998) ": {" exploration value": 0.010} , {" exploitation value ":0.000}}
42 {" Terminator 2: Judgment Day (1991) ": {" exploration value": 0.010} , {" exploitation value ":0.000}}
43 {"The Matrix (1999) ": {" exploration value": 0.010} , {" exploitation value ":0.000}}
44 {"Back to the Future (1985) ": {" exploration value": 0.010} , {" exploitation value ":0.000}}
45 {"The Silence of the Lambs (1991) ": {" exploration value": 0.010} , {" exploitation value ": -0.001}}
46 Action:
47

Figure A15: Contextual Bandit: Movie Recommendation for 10 movies, with Algorithm-Guided Support (Part 2)
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EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration

1 You are a video recommendation system powered by a bandit algorithm for an online streaming platform.
2 There are 5 videos available in your library , titled [A, B, AI, BS, E].
3 When a user logs into the platform , you select a video to recommend based on their viewing history and

preferences.
4 You aim to engage the user by recommending videos that they are likely to watch.
5 Each time a user watches a recommended video , you update your recommendation model to refine future

suggestions ,
6 enhancing user satisfaction and platform engagement.
7
8 A good strategy to optimize for reward in these situations requires balancing exploration
9 and exploitation. You need to explore to try out all of the videos and find those

10 with high rewards , but you also have to exploit the information that you have to
11 accumulate rewards.
12
13 Here are some examples of optimal actions under different scenarios. Use them as hints to help you come up

with better actions.
14 ========================
15 A video , reward 1
16 B video , reward 1
17 AI video , reward 1
18 BS video , reward 0
19 E video , reward 0
20 A video , reward 0
21
22 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, C, D, E AND NO TEXT EXPLANATION.
23 B
24 ========================
25 A video , reward 1
26 B video , reward 1
27 AI video , reward 1
28 BS video , reward 0
29 E video , reward 0
30 A video , reward 0
31 B video , reward 0
32 AI video , reward 1
33 AI video , reward 0
34
35 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, C, D, E AND NO TEXT EXPLANATION.
36 AI
37 ========================
38
39 So far you have played 6 times with the following choices and rewards:
40 A video , reward 1
41 B video , reward 1
42 AI video , reward 1
43 BS video , reward 0
44 E video , reward 0
45 A video , reward 0
46
47 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, AI, BS, E AND NO TEXT EXPLANATION.
48

Figure A16: Multi-Arm Bandit: Bernoulli, Video Action Description, K = 5, Raw History, with In-context Few-shot
Demonstrations from Bernoulli, Video Action Description, K = 5, Raw History.
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EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration

1 You are a video recommendation system powered by a bandit algorithm for an online streaming platform.
2 There are 5 videos available in your library , titled [A, B, AI, BS, E].
3 When a user logs into the platform , you select a video to recommend based on their viewing history and

preferences.
4 You aim to engage the user by recommending videos that they are likely to watch.
5 Each time a user watches a recommended video , you update your recommendation model to refine future

suggestions ,
6 enhancing user satisfaction and platform engagement.
7
8 A good strategy to optimize for reward in these situations requires balancing exploration
9 and exploitation. You need to explore to try out all of the videos and find those

10 with high rewards , but you also have to exploit the information that you have to
11 accumulate rewards.
12
13 Here are some examples of optimal actions under different scenarios. Use them as hints to help you come up

with better actions.
14 ========================
15 Midnight Mirage Trousers item , reward 1
16 Titanic Tempest Tunic item , reward 0
17 Infinite Impeccable Jacket item , reward 1
18 Supreme Spectrum Slippers item , reward 0
19 Bejeweled Bloom Blazer item , reward 0
20 Midnight Mirage Trousers item , reward 0
21
22 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, C, D, E AND NO TEXT EXPLANATION.
23 Infinite Impeccable Jacket
24 ========================
25 Midnight Mirage Trousers item , reward 1
26 Titanic Tempest Tunic item , reward 0
27 Infinite Impeccable Jacket item , reward 1
28 Supreme Spectrum Slippers item , reward 0
29 Bejeweled Bloom Blazer item , reward 0
30 Midnight Mirage Trousers item , reward 0
31 Infinite Impeccable Jacket item , reward 0
32 Midnight Mirage Trousers item , reward 0
33 Infinite Impeccable Jacket item , reward 0
34
35 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, C, D, E AND NO TEXT EXPLANATION.
36 Titanic Tempest Tunic
37 ========================
38
39 So far you have played 6 times with the following choices and rewards:
40 A video , reward 1
41 B video , reward 1
42 AI video , reward 1
43 BS video , reward 0
44 E video , reward 0
45 A video , reward 0
46
47 Which video will you choose next? PLEASE RESPOND ONLY WITH A, B, AI, BS, E AND NO TEXT EXPLANATION.
48

Figure A17: Multi-Arm Bandit: Bernoulli, Video Action Description, K = 5, Raw History, with Few-shot Demonstrations
from Bernoulli, Clothes Action Description, K = 5, Raw History
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