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Abstract. While neural networks achieve strong performance in med-
ical image analysis, effectively combining their predictions with human
expertise remains a critical challenge for clinical deployment. We exam-
ine how different choices of stochastic parameter subsets used in approx-
imate Bayesian inference impact the posterior predictive distributions
and, consequently, the performance of a combined human-Al decision
model. Using two medical classification tasks, we analyze the relation-
ship between the resulting model and human uncertainty. We demon-
strate that uncertainty estimates correlate differently with human uncer-
tainty depending on the stochastic subsets. Building on these findings,
we propose a framework that optimizes the choice of stochastic sub-
sets to improve a final decision model that considers human uncertainty,
enabling more reliable and interpretable integration of human and Al
predictions in clinical settings. Our implementation is publicly available
at https://github.com/mkreimann /uncertainty-guided-classification.
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1 Introduction

Medical image classification systems enhanced by artificial intelligence (AI) have
demonstrated remarkable diagnostic accuracy in recent years. Deep learning
models, trained on large datasets, can now rival or even surpass human physi-
cians in specific diagnostic tasks [2, 21]. However, Al models have shown a lack
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of reliability as stand-alone systems in clinical settings [20]. Recent research sug-
gests that AT may be best utilized not as a replacement for physicians but as a
support tool [2,18]. Across multiple fields, augmenting human decision-making
with AT has been shown to increase predictive performance [2]|. For example, Re-
verberi et al. [18] show that Al-augmented clinical decision-making in the subject
of colon lesion diagnostics results in higher performance than humans or Al alone.
Humans can interact with Al systems through the combination of the models’
decision and the uncertainty of that decision [1]. However, for optimal interac-
tion, the uncertainty estimates must be calibrated towards optimized combined
performance. Bayesian methodology has been widely used to improve model cal-
ibration and uncertainty estimation [24]. However, accurate Bayesian inference
over all model weights is often computationally infeasible. Consequently, studies
have investigated how the application of Bayesian inference over different subsets
of model weights affects the posterior predictive distribution and the calibration
of the model [6,19]. Partially stochastic models have been shown to alleviate
computational limitations while retaining the added properties of improved un-
certainty estimation [11]. In this work, we investigate the relation between the
posterior predictive distribution elicited by different choices of stochastic subsets
and their relation to the uncertainty of human annotators, particularly towards
optimizing the potential AI-human interaction.

Our contributions are as follows: First, we demonstrate that applying Bayesian
inference over certain subsets of the model improves calibration. Simultaneously,
it leads to improved alignment with human annotator uncertainty, as Bayesian
inference primarily affects the probabilities of uncertain samples. Secondly, we
are the first to propose a framework for combining (partially) stochastic mod-
els and human uncertainty into a Final Decision Model (FDM). We find this
combination to consistently yield better performance than the already-known
benefits of combining an uncalibrated model and humans. Finally, we demon-
strate that our method requires very few samples with uncertainty annotations
to significantly improve classification performance, making deployment feasible.

1.1 Related work

The approach of treating only a subset of model parameters as stochastic has
gained traction in recent years [6,19]. In Daxberger et al. [5], the linearized
Laplace approximation (LA) [9] is extended to subnetworks and made more
practical for neural networks by leveraging the generalized Gauss-Newton Hes-
sian approximation. Sharma et al. [19] argue that partially stochastic models
are theoretically as sound as fully Bayesian models and can even, at times, lead
to better performance. Kampen et al. [11] show that various choices of stochas-
tic subnetworks lead to significant performance increases, particularly in terms
of calibration. Bansal et al. [1] optimized the model predictive distribution to
maximize utility as a team member with simulated human interactions and un-
certainty. This methodology has since been extended to include actual human
annotations in a post-hoc final training procedure [12,16]. Ju et al. [10] utilize



A Human-Guided Bayesian Deep Learning Framework 3

10

o

10

Density

-1
10 0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

Posterior predictive probabilitv of the true class

Fig. 1: Histogram of the posterior predictive probability of the true class (-
axis) on the skin lesion test set, showcasing the predictive distribution change
elicited by different stochastic subsets. The posterior distribution is estimated
using the Laplace approximation of a ViT for 3 different choices of stochastic
subsets (blocks: 0-1, 13-14, and 19-20 from left).

model calibration in combination with human uncertainty labels to improve the
selection of samples for training on noisy datasets.

2 Methods

Our Final Decision Model (FDM) improves human-AT collaboration by optimiz-
ing model uncertainty and including human uncertainty estimates. Let m(x) be
a measure of the human uncertainty of image x and g(x) = p (t|f(x)) be the
posterior predictive distribution of a neural network f on the same input with
target t. Based on this, we define h : (g(z),7(x)) — R® as the FDM. On the
surface, two factors affect the performance of the FDM, namely the choice of
parameterization of kA and the posterior predictive distribution g. We choose to
focus on the latter, and select h to be a logistic regression because it requires
few samples and is easy to interpret.

Partial Bayesian inference is widely used to alter the posterior predictive dis-
tribution of a neural network to improve calibration while maintaining compu-
tational feasibility [11, 19]. In the partially stochastic setting, posterior inference
is performed over a subset of the model weights wg, while keeping the remain-
ing parameters deterministic. As seen in Fig. 1, different choices of stochastic
subsets can significantly alter the posterior predictive distribution. Therefore,
we explore the problem of maximizing the predictive performance of the FDM
over the computationally feasible choices of stochastic subsets and the resulting
posterior predictive distributions gg. For each choice of .S, the parameters in the
logistic regression hg are estimated using the maximum a posteriori estimate
with a Gaussian prior.

FDM = arg max/ Utility (¢, hs(gs(x), m(x))) dadt. (1)
S p(D)
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Table 1: Calibration metrics on both datasets for the deterministic model (Base
model), LA, and SWAG. The best value over model depth is reported for LA
and SWAG = 1 standard deviation. Best performance in bold, lower is better.

Fundus Dataset Skin Lesion Dataset
Base model LA SWAG Base model LA SWAG

NLL 0.15+£0.01 0.15£0.01 0.13+0.01 1.24+0.21 0.89 +£0.03 1.09 £0.19
WNLL 0.22 £0.01 0.20 £0.01 0.22 +0.01 1.82+£0.29 1.12+0.12 1.52 £ 0.42
MCE 0.534+0.02 0.49+0.02 0.42£0.05 0.20+0.03 0.15+0.03 0.16 £ 0.05

As exact posterior inference even over a subset of weights remains computa-
tionally infeasible, we rely on approximate inference, and thus gg also depends
on the choice of inference method. We explore the optimization in Eq. (1) for
the two widely used approximate inference methods, the LA [5] and Stochastic
Weight Averaging Gaussian (SWAG) [14]. Both methods are applied post-hoc
and rely on a maximum likelihood estimate (MLE) of the model weights and
approximate the posterior distribution using a Gaussian distribution p(ws|D) =~
q(ws) = N(wg|p, X). We use the linearized Laplace approximation with Kro-
necker factorization as described by Immer et al. [9] and implemented in [5]. This
version does not alter the decision given by the argmax of the MLE model’s pre-
dictions. Instead, it computes an input-dependent temperature 77, 4 () such that

the predictive distribution becomes p(t|xz) ~ Softmax ([f“”(w)l ..., fele ] ) In

Tra(z)’ ' Tra(x)
contrast, the posterior mean in SWAG is not equal to the MLE estimate. Con-
sequently, predictions can change significantly from the MLE model, leading to
some variance in model performance depending on initialization, hyperparam-
eter configuration, and the number of samples used in the posterior predictive
estimate. We refer to [6, 9, 14] for a more comprehensive understanding of the two
methods. We also explore the performance of the FDM using a deep ensemble
as a fully Bayesian model, and the widely used baseline Monte-Carlo Dropout
[7]. Finally, we include Platt-scaling [8] to compare with an input "independent"
method that only seeks to improve the calibration of the models.

We explore the relation between human uncertainty and posterior predictive
distribution of the partially stochastic models, and how these correlate with the
calibration measures on the backbone neural network. Finally, we correlate all
three measures to the performance of the resulting FDM. We choose the negative
log-likelihood (NLL) and the Maximum Calibration Error (MCE) with adaptive
bin placement [17] as MCE is robust toward imbalanced datasets commonly
found in the medical domain [15]. For the same reason, we choose balanced
accuracy as a measure of the performance of the final decision function.

3 Experimental setup

To demonstrate the general applicability of our methods, we present results on
two datasets from different medical domains: dermatology and ophthalmology.
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Each dataset is partitioned into certain and uncertain samples based on human
annotations. The dermatology, or skin lesion, dataset is a concatenation of the
ISIC 2019 challenge dataset [3,4,22] and additional proprietary data consist-
ing of 11,530 dermoscopic images with the same eight class labels as the ISIC
dataset. 3,030 of the additional images have been classified by 3,836 users of
a medical diagnosis training app. The ground truth labels are based on expert
diagnoses, usually supported by histopathological findings. The full dataset at-
tributes [15%, 54%, 12%, 3%, 12%, 1%, 1%, 2%)] of the total number of samples to
the respective classes, which are described in the ISIC dataset. The class la-
bel distribution for the 3,030 samples with human uncertainty information is
[15%,29%, 17%, 3%, 21%, 9%, 4%, 3%)]. We define certain samples as those with
an entropy of votes less than the 75th percentile of the entropy of votes over
the whole dataset, and the uncertain as the complement. Additionally, 7(x) is
a vector that holds the proportion of overall votes for the majority class and
zeros everywhere else. Importantly, the ground-truth labels are not given by the
votes, which enables this one-hot-like encoding of the uncertainty. We motivate
this definition by how clinicians might, in practice, be able to represent their un-
certainty, i.e, by providing a diagnosis and an associated uncertainty. We choose
the publicly available JustRAIGS dataset [13] as our ophthalmology dataset.
It contains approximately 101k fundus images of the ATROGS study [23] with
expert consensus labels for referable (RG) or non-referable glaucoma (NRG)
and the individual label from each of the two to three experts per image. The
class distribution exhibits 3% RG samples. The set of certain samples on the
fundus dataset is {&# € D|Entropy(n(x)) = 0}, thus 7(x) is defined as zero
if the annotators agree and 1 if they do not. On average, human annotators
are uncertain in 4% of NRG samples and 18% of RG samples. Contrary to the
skin lesion dataset, the ground truth labels are defined by a few annotations
per sample, therefore, we only allow the model to know if there is disagreement
or not. If the same procedure as for the skin lesion dataset were applied, the
model input would include a smoothed version of the ground truth. Training on
the fundus dataset utilizes the ophthalmology-specific ViT called RETFound [25]
with the recommended fine-tuning procedure. For the skin lesion dataset, we use
the same architecture with an ImageNet pretrained checkpoint. Additionally, we
compare to a convolutional neural network of similar architecture, namely the
ConvNeXt V2 Base model. Training details can be found in Section 6.2 and the
code repository. All models are trained with a weighted cross-entropy loss and
early stopping based on the macro-averaged accuracy on the validation set. The
selection of the subset of stochastic weights for SWAG and LA is based on the
block structure of ConvNeXt and ViT. We include two consecutive blocks in each
subset, resulting in 18 and 11 subsets for the ConvNeXt and ViT. This is moti-
vated by the results presented in [11], where the inclusion of 8 weight matrices in
the stochastic subset is shown to be near optimal for calibration, corresponding
to the number of weight matrices in two ViT blocks. The consecutive block struc-
ture was chosen to see if any tendencies emerged as a function of model depth.
The performance of LA and SWAG is influenced by the choice of prior precision
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Fig. 2: Average change in predicted probabilities by applying LA over the differ-
ent stochastic subsets of the ConvNeXt on the fundus dataset (left) and the ViT
on the skin lesion dataset (right). Distances are stratified by sample certainty
according to the human annotation. NLL is scaled linearly to the minimum and
maximum height of the corresponding bars for easier visualization.

for LA and, particularly, the learning rate used during the SGD iterations for
SWAG. We optimize these to minimize the NLL on the validation set. Search
parameters can be found in Table 5. Both datasets are split into multiple folds,
to allow benchmarking against a deep ensemble. For each fold, we train three
models with different seeds. An additional hold-out test set was created with at
least 10% of the total number of available images.

4 Results

We report our findings on the ViT for the skin lesions dataset and on the
ConvNeXt for the fundus dataset, as these obtained the best classification perfor-
mance. On the fundus dataset, we obtain balanced accuracy scores of 89.23% +
0.56% for the ViT and 90.92% 4 0.67% for the ConvNeXt. On the skin lesions
dataset, the balanced accuracy was 63.8%+1.05% and 61.8%+1.54% for the ViT
and ConvNeXt, respectively. The balanced accuracy of the human annotators on
the skin lesion dataset is 61.3% i.e, lower than the performance of the models.

Table 2: Pearson correlations for both LA and SWAG between the balanced
accuracy of the different stochastic subsets combined with human uncertainty
against RHD from Fig. 2, MCE, and NLL; and RHD against NLL and MCE
(fundus/skin lesion dataset). Bold denotes statistical significance at p < 0.05.

Balanced accuracy RHD
RHD NLL MCE NLL MCE

LA 0.40/ 0.13 -0.33/-0.66 -0.38/-0.02 -0.73/-0.32 -0.23/ 0.03
SWAG 0.11/-009 0.12/-0.65 0.28/-0.59 -0.72/-0.27 0.29/-0.27
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Fig. 3: Left: Fundus dataset, Right: Skin lesions dataset. Top: Mean FDM per-
formance for all methods for stochastic subsets at different depths. Bottom:
Balanced accuracy over the number of samples with uncertainty information
used to train the logistic regression. Error bars correspond to the interquartile
range across 400 random train set splits.

We confirm that applying LA and SWAG improves the calibration of our
base models by reporting the NLL, class-weighted NLL (WNLL) and MCE
in Table 1. Figure 2 shows the effects of applying LA on different choices of
stochastic subsets. On both datasets, we observe larger changes in the model
outputs for uncertain samples than for certain samples when applying LA. On
the skin lesions dataset, the LA’s ability to capture samples with higher human
uncertainty is more dependent on the choice of the stochastic subset. For both
datasets, the calibration as measured by the NLL depends on the choice of the
stochastic subset. In Table 2 we report the partially stochastic models’ ability to
capture human uncertainty as measured by the correlation between the relative
height difference (RHD) between the bars in Fig. 2 and the resulting calibra-
tion metrics. There is a significant negative correlation between the RHD and
NLL of the models for both datasets. Hence, we observe that the best calibra-
tion is obtained when the stochastic model corrects samples with higher human
uncertainty the most.
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In our second experiment, we evaluate the performance of the FDM across
the various methods for posterior inference and over different choices of stochas-
tic subsets. Figure 3 shows a performance increase when combining any model
with human uncertainty in an FDM. However, the performance is highest when
using Bayesian methodology, either over the full model (MC dropout and en-
sembling) or over different subsets (SWAG and LA). Specifically, LA yields the
best performance across both datasets. In contrast, using SWAG as the FDM
backbone on the fundus dataset fails to improve performance, following the be-
havior of SWAG without human uncertainty information. The sample agnostic
calibration of Platt scaling shows to be inferior to the other methods, as well
as to the base model. Figure 3 demonstrates our framework’s low requirement
for human uncertainty labels. We vary the number of random samples with un-
certainty labels, drawn from the validation set, that are included in the logistic
regression training and present the balanced accuracy of the FDM. We choose
gs to be the LA with the best performing choice of S. The sampling process
was class-balanced; however, a minimum of one uncertain sample per class was
enforced. The results are averaged over three seeds. The most apparent increase
is observed for the fundus dataset, where only 5%, or 30 samples, are required to
achieve a mean performance that significantly exceeds that of the base model.
A decrease in performance until the inclusion of 100 samples can be observed
for the skin lesion dataset, which is most likely caused by eight times as many
classes the model has to differentiate. However, for both datasets, we observe
a significant improvement over the base model with less than 200 samples for
training.

5 Discussion & Conclusion

Our results indicate that improving the uncertainty estimation of the models
may simultaneously align the uncertainty distribution with that of humans. Fur-
thermore, we show that using the predictive posterior distribution of Bayesian
models in a Final Decision Model (FDM) rather than the base model consis-
tently increases performance, and using LA for posterior inference yielded the
best performance on both datasets. Crucially, we also observed a significant cor-
relation between the performance of the FDM and the NLL of the underlying
LA model. Hence, we find that NLL is indicative of the alignment between hu-
mans and Al models and the resulting diagnostic performance when combined.
This suggests that determining a near-optimal choice of stochastic subset can
be done independently of human annotations and, therefore, before estimating
the parameters of the FDM. The positive correlation coefficient between the
human /AT uncertainty alignment and the performance of the FDM is perhaps
counterintuitive, as it would seem to violate the notion that an optimal ensemble
consists of uncorrelated models. We argue that this is not the case because sam-
ples with high human uncertainty are likely to lie close to the decision boundary
in the FDM. Hence, when the average change in model predictive probabilities is
larger on those cases specifically, it is likely that a better separating hyperplane
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can be estimated. Although we could not attribute fine-grained uncertainty val-
ues to the fundus images, we were able to demonstrate that a simple indication
of an uncertain sample is beneficial for the FDM. The low sample requirement
necessary to outperform the base model demonstrates the usefulness of selecting
a ’simple’ model as the decision function h, see Fig. 3. The framework is suf-
ficiently general to support arbitrarily complex models; however, training such
models would require more data, reducing the framework’s overall applicability.
We consider the primary use case of this methodology to be integration into the
diagnostic pathway. If physicians can reliably assess their uncertainty, then the
model can balance the predictions of Al and physicians, potentially improving di-
agnostic accuracy. The white-box nature of logistic regression enables physicians
to understand the importance of their predictions and associated uncertainty,
fostering a transparent and strengthened human/AI collaboration.

In summary, we present a pipeline for combining partially stochastic Bayesian
models with human uncertainty through a simple classifier that achieves signif-
icantly better classification performance. Finally, integrating human expertise
directly into the decision takes another step towards improving reliability and
enhancing trust in deep learning models in medical applications.
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