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Abstract001

Text-to-image (T2I) models generate images002
by encoding text prompts into token represen-003
tations, which then guide the diffusion pro-004
cess. While prior work has largely focused005
on improving alignment by refining the diffu-006
sion process, we focus on the textual encod-007
ing stage. Specifically, we investigate how008
semantic information is distributed across to-009
ken representations within and between lexical010
items (i.e., words or expressions conveying a011
single concept) in the prompt. We analyze in-012
formation flow at two levels: (1) in-item rep-013
resentation—whether individual tokens repre-014
sent their lexical item, and (2) cross-item in-015
teraction—whether information flows across016
the tokens of different lexical items. We use017
patching techniques to uncover surprising en-018
coding patterns. We find information is usually019
concentrated in only one or two of the item’s020
tokens—For example, in the item “San Fran-021
cisco’s Golden Gate Bridge”, the token “Gate”022
sufficiently captures the entire expression while023
the other tokens could effectively be discarded.024
Lexical items also tend to remain isolated; for025
instance, the token “dog” encodes no visual in-026
formation about “green” in the prompt “a green027
dog”. However, in some cases, items do influ-028
ence each other’s representation, often leading029
to misinterpretations—e.g., in the prompt “a030
pool by a table”, the token pool represents a031
pool table after contextualization. Our find-032
ings highlight the critical role of token-level033
encoding in image generation, suggesting that034
misalignment issues may originate already dur-035
ing the textual encoding.036

1 Introduction037

Text-to-image (T2I) models typically consist of038

two main components: a text encoder and a dif-039

fusion model (Ho et al., 2020; Song and Ermon,040

2019). The former processes the user’s prompt,041

transforming it into a representation that guides042

the latter in generating the image. Though widely043

used, T2I models often exhibit prompt-image mis- 044

alignment, where generated images fail to capture 045

key concepts from the user’s prompt (Chefer et al., 046

2023a; Rassin et al., 2022; Huang et al., 2023a). 047

Prior work has attempted to address these issues 048

by modifying the diffusion stage, and particularly 049

the cross-attention mechanism (Rassin et al., 2023; 050

Chefer et al., 2023a; Dahary et al., 2024), under 051

the implicit assumption that each textual token reli- 052

ably encodes the item it is intended to convey. This 053

raises two fundamental questions: First, is the infor- 054

mation for an intended concept distributed evenly 055

across the concept tokens after textual encoding, or 056

concentrated in just a few tokens? Second, does 057

each token exclusively encode that concept? 058

In this work, we examine this assumption and 059

study how visual information is distributed across 060

tokens during the textual encoding stage. We focus 061

our analysis on lexical items—words or phrases 062

that convey a single concept. We trace how item 063

information is distributed both within the tokens 064

of a single item (in-item), and across tokens of dif- 065

ferent items (cross-item) (see Fig. 1 for examples 066

of the different cases). Using a causal intervention 067

framework (Toker et al., 2025), we systematically 068

assess what information is encoded in each contex- 069

tual token representation at the encoder’s output, 070

using prompts from widely used T2I benchmarks 071

as our evaluation setting (Section 2.2).1 072

For in-item representation (Section 3), we find 073

that a lexical item’s meaning is typically concen- 074

trated in one or two representative tokens. Sur- 075

prisingly, ablating the non-representative tokens 076

reduces generation error by 21% in FLUX (black- 077

forest labs, 2024). In contrast, when no represen- 078

tative tokens exist for a particular item, it is often 079

omitted entirely from the image—an instance of 080

item negligence (Chang et al., 2024a; Chefer et al., 081

1Throughout this work, we study token representations at
the output of the text encoder. For brevity, we sometimes omit
the word “representation”.
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Figure 1: Our main findings. Left: Information within a lexical item is unevenly distributed across its tokens’
contextualized representations. In this example, one token carries the meaning of the entire item (e.g., lic represents
a pelican, while pe and an do not). Right: Context may cause incorrect information flow between items. In the
example, the representation of runway is influenced by the context of “a businesswoman” (vs. “businessman”).

2023a).082

For cross-item interactions (Section 4), we as-083

sess whether information flows between different084

lexical items in a prompt. We observe such cross-085

item flow in 11% of cases. Interestingly, the flow of086

information does not always follow sentence syn-087

tax, which can result in misrepresentation of items088

within specific contexts—especially with polyse-089

mous words. For instance, in the prompt “a pool by090

a table”, “pool” can wrongly suggest “table” refers091

to a billiard table.092

In summary, we study the textual encoding and093

identify two main insights. First, Lexical items094

have concentrated representation—the meaning of095

the item is often concentrated in a single represen-096

tative token. Second, while items in a sentence do097

not typically encode information regarding other098

items in the sentence, in some cases, often when099

polysemous are involved, semantic leakage (Da-100

hary et al., 2024; Gonen et al., 2024; Rassin et al.,101

2022) occurs during the textual encoding phase,102

causing miss-interpretations of items.103

Together, these insights suggest practical av-104

enues for improving token-level intervention tech-105

niques, enhancing evaluation benchmarks, and106

guiding future encoder-aware T2I generation ap-107

proaches.108

2 Methodology109

2.1 Intervention on the Text Encoder110

Our goal in this paper is to evaluate the effect of111

information flow between textual token represen-112

tations, that subsequently condition the diffusion 113

process. In Section 3, we are interested in analyz- 114

ing how information is distributed across tokens 115

within a lexical item . To do so, we seek to inter- 116

pret the information encoded in individual tokens. 117

In Section 4, we are interested in measuring how 118

different lexical items influence one another. To 119

this end, we seek to isolate a subset of tokens and 120

evaluate their joint representation in the context 121

of another item. For these purposes, we adjust a 122

method for text intervention in diffusion models 123

proposed by Toker et al. (2025), allowing us to gen- 124

erate images from arbitrary subsets of contextual 125

token representations by masking the rest of the 126

tokens in the sequence. 127

Given a prompt with N tokens t1, t2, . . . , tN , 128

our goal is to isolate and interpret the informa- 129

tion encoded by a subset of these tokens. Let 130

S ⊂ {1, . . . , N} be the index set of selected to- 131

kens, where 0 < |S| < N . We begin by encoding 132

the full prompt using the text encoder E, yielding 133

the final hidden states h1, . . . , hN . Separately, we 134

encode a sequence consisting entirely of pad to- 135

kens to obtain pad embeddings p1, . . . , pN . We 136

then construct a patched prompt by replacing all 137

hidden states outside S with the corresponding pad 138

embeddings: 139

t̃i =

{
hi if i ∈ S,

pi otherwise
for i = 1, . . . , N. 140

The patched sequence t̃1, . . . , t̃N is then used to 141

guide the diffusion model. Generating an image 142
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Figure 2: Evaluating in-item information flow. Our proposed framework interprets the information flow within
a lexical item. We generate images from each token comprising the lexical item (left) and analyze them with a
VLM (right). In this example, only the token lic represents the concept “pelican”, whereas pe and an do not.

from this patched representation allows us to vi-143

sualize and isolate the individual contributions of144

the selected tokens as interpreted by the diffusion145

model. To evaluate the information in the generated146

images, we use a vision-language model (VLM):147

For the in-item representation experiments, we as-148

sess whether the generated image represents the149

full lexical item, while for the cross-item interac-150

tions experiments, we measure whether informa-151

tion from other lexical items is present in the gen-152

erated image. See Fig. 2 for an illustration of the153

method on the in-item representation experiment.154

2.2 Experimental Setup155

Models. Our main results are reported for FLUX-156

schnell (black-forest labs, 2024), a recent state-157

of-the-art T2I model. We repeat all experiments158

with FLUX-dev, SDXL-Turbo (Sauer et al., 2023)159

and SANA (Xie et al., 2024a). FLUX models em-160

ploy T5-XXL (Raffel et al., 2019) as their text en-161

coder, enabling bidirectional information flow be-162

tween tokens. Unlike Flux, SDXL used CLIP (Rad-163

ford et al., 2021), and SANA uses Gemma (Team164

et al., 2024). These text encoders are unidirectional,165

meaning the tokens are only influence by the to-166

kens that came before. These changes cause some167

differences in the information flow between tokens,168

elaborated in Section 6 and in Appendix A.3.2169

Data. We use a subset of 1,053 prompts from170

DrawBench (Saharia et al., 2022) and PartiPrompts171

(Yu et al., 2022b) datasets, filtered to include 4–20172

words prompts and exclude cases with added com-173

plexity unrelated to our focus (e.g., misspellings, 174

written text, rare words). For each prompt, we gen- 175

erate five images using different random seeds. To 176

extract the lexical items, we prompt GPT-4o (Ope- 177

nAI et al., 2024), resulting in 4,864 unique items 178

across prompts. See Appendix A.1.1 for further 179

technical details. We then use spaCy (Honnibal 180

et al., 2020) to determine the part of speech of 181

each lexical item, and retain only nouns, proper 182

nouns, and adjectives, as these are typically con- 183

crete and can be identified in their visual represen- 184

tation. We end up with 3,891 unique lexical items 185

and use them to evaluate both in-item representa- 186

tion and cross-item interactions. 187

Evaluation. To evaluate the content of gen- 188

erated images, we employ Qwen2-VL-72B- 189

Instruct (Wang et al., 2024), a model with strong 190

general vision capabilities. We restrict our eval- 191

uation to binary (yes/no) questions and use the 192

model to assess prompt-image alignment and the 193

presence of specific items in the image (see Ap- 194

pendix A.1.3 for additional details). To validate 195

Qwen2-VL’s reliability, we also conducted a hu- 196

man evaluation on 100 randomly sampled cases, 197

evenly split between in-item representation (Sec- 198

tion 3) and cross-item interactions (Section 4) set- 199

tings. The results indicate substantial agreement, 200

with a Cohen’s Kappa values of 0.868 for in-item 201

representation and 0.764 for cross-item interac- 202

tions. Next, we determined the majority agreement 203

among the human annotators and compared it to the 204

model predictions. For cross-item interactions, the 205
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Acc. Relative %

Tokens
Removed # Prompts Before After Unaffected Degraded Improved Accuracy ∆ (pp)

1 144 81.25 83.33 98.29 0.85 14.83 +2.08
2 98 82.65 88.78 100.00 0.00 35.27 +6.13
3 45 93.33 93.33 97.62 2.38 33.28 +0.00
4 24 87.50 91.67 100.00 0.00 33.36 +4.17
5+ 28 78.57 85.71 100.00 0.00 33.32 +7.14

Overall 339 83.48 87.02 98.90 0.71 25.00 +3.54

Table 1: Effect of removing non-representative tokens on prompt-level accuracy. The table reports: (i) accuracy
before and after token removal, (ii) the percentage of originally successful prompts that remained successful
(Unaffected) or became failures (Degraded), and (iii) the percentage of originally failed prompts that were corrected
(Improved). Overall, removing non-representative tokens rarely harms generation and often improves it.

accuracy (F1) is 0.927 (0.933), and for cross-item206

interactions, the accuracy is 0.810 (0.740). These207

results suggest that Qwen2-VL predictions align208

well with human judgment for our tasks.209

3 In-Item Representation210

In this section, we analyze information flow within211

lexical items at the token level. We first show se-212

mantic information is unevenly distributed across213

tokens, with typically one or two representing the214

item (3.1). We then show non-representative tokens215

are largely redundant and may even harm gener-216

ation (3.2). Finally, we examine items neglected217

from the generated image, tracing failures to poor218

textual encoding or gaps in visual grounding (3.3).219

3.1 How is Information Distributed Across220

Tokens?221

We begin by exploring how information is dis-222

tributed across the token representations within223

a lexical item. We focus on two key questions:224

Do all tokens encode the same semantic informa-225

tion? And is the information evenly distributed226

across tokens, or rather concentrated in specific227

tokens? These issues are crucial as many T2I ap-228

plications (Chefer et al., 2023a; Rassin et al., 2023;229

Dahary et al., 2024) treat all tokens of a lexical item230

in a given prompt equally. Uncovering an asym-231

metrical distribution of information could improve232

the effectiveness of such applications by focusing233

on the most informative tokens.234

Given a prompt and a lexical item, we feed the235

prompt to the text encoder, obtaining contextual-236

ized token representations. We then identify the237

tokens comprising the item and apply our inter-238

vention method (Section 2.1) to generate an image239

conditioned on each token’s contextualized repre-240

Figure 3: Distribution of representative tokens per lex-
ical item length. “Rep.” denotes the number of rep-
resentative tokens; the bottom row aggregates over all
lexical items. In most cases, one or two tokens sufficient
to represent the entire lexical item. As item length in-
creases, the number of non-representative tokens grows
accordingly.

sentation (i.e., without letting other tokens in the 241

prompt influence the diffusion process). Finally, we 242

use Qwen2-VL to assess whether the image repre- 243

sents the overall lexical item it is part of. We define 244

a representative token as one whose isolated repre- 245

sentation results in an image containing its corre- 246

sponding lexical item. Tokens that do not meet this 247

criterion are considered non-representative. We 248

repeat this analysis for each lexical item and for 249

each prompt in our dataset (Section 2.2). 250

Our results (Fig. 3, bottom row) show that in 251

most cases (89%), there is (at least) one representa- 252

tive token. Interestingly, in the remaining instances 253

where no representative tokens exist, we find the 254

item is also absent from an image generated from 255

the full item (allowing all of the item’s tokens to 256

guide generation) in 88% of instances. 257
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Figure 4: Examples illustrating the effect of removing non-representative tokens. Top row: Images generated after
removing non-representative tokens (Representative tokens are shown in bold; non-representative tokens are in
gray.). Bottom row: Images generated from the full prompt. Left: In most cases, removal results in no noticeable
effect on the generation. Right: In some cases, removal improves alignment with the prompt.

We next focus on instances where at least one258

token represents the lexical item, and examine the259

number of representative- and non-representative260

tokens across lexical items of different lengths,261

averaged across items. Our results (Fig. 3, top262

rows) show that typically one or two tokens repre-263

sent the concept, while the remaining tokens are264

non-representative. Further, as the token length265

of the lexical item becomes longer, the number of266

non-representative tokens increases (Fig. 3, right-267

most column). Inspecting all lexical items in our268

data composed of two or more tokens, these non-269

representative tokens account for 52% of their to-270

kens. Therefore, we next examine the effect of271

removing non-representative tokens altogether.272

3.2 Tokens: Are They All Necessary?273

We now examine whether non-representative to-274

kens—tokens that do not result in an image repre-275

senting the item—have any effect on image gen-276

eration. To answer this question, we apply our277

intervention method to each prompt, this time278

generating an image after masking all the non-279

representative tokens. We use Qwen-VL to mea-280

sure whether this image aligns with the prompt,281

and compare it to an image generated from the full282

prompt without intervention.283

Non-representative tokens are redundant. Our284

results (Table 1) show that removing non-285

representative tokens generally does not harm gen-286

eration (see Fig. 4, left-hand side). When the origi-287

nal generation is aligned with the prompt, the gener-288

ated image after non-representative token removal289

remains aligned in 98% of cases, suggesting these 290

tokens are largely redundant. Surprisingly, in cases 291

where the original image fails to align with the 292

prompt, we observe a 21% improvement in align- 293

ment after removing non-representative tokens (see 294

Fig. 4, right-hand side). We attribute this improve- 295

ment to the model relying exclusively on the re- 296

maining representative tokens, which encode the 297

correct semantics of the item.2 298

3.3 Item Negligence 299

So far, we have explored scenarios where an item 300

lacks a representative token, often leading to its 301

omission from the final generated output, i.e., item 302

negligence (Chang et al., 2024b; Chefer et al., 303

2023a). We next investigate why this omission oc- 304

curs. We examine two potential causes: either the 305

text encoder poorly represents the concept; or the 306

concept is well-encoded, but the diffusion model 307

isn’t familiar with its visual appearance. 308

To study an item’s encoding without relying on 309

the diffusion model, we use Patchscopes (Ghande- 310

harioun et al., 2024), which decodes token repre- 311

sentations into their natural language descriptions, 312

using the full encoder-decoder architecture of T5 313

for text generation. Specifically, we patch an item’s 314

encoding into the template “describe <item>” 315

and evaluate whether the output indeed describes 316

the item using GPT-4o (OpenAI et al. 2024; see 317

Appendix A.1.4 for prompt details). We apply this 318

process to all neglected lexical items found in Sec- 319

2We measure improvement rates with Qwen2-VL be-
fore and after masking non-representative tokens. See Ap-
pendix A.1.3 for further details.
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Figure 5: Comparing Patchscopes to image generation
with token-level patching in cases of item negligence.
We assess whether a token’s concept is preserved by
comparing images generated from its contextual repre-
sentation, Patchscopes’ textual interpretation, and the
full prompt image. Left: “tub” (from “tuba”) is cor-
rectly described by Patchscopes but fails to ground vi-
sually. Right: “paw” (from “pawn”) has missing de-
tails by both interpretations, suggesting a gap in the
encoder’s conceptual knowledge.

tion 3.1, and examine whether the encoder is famil-320

iar with these items.321

We observe that in 67% of all instances of negli-322

gence, Patchscopes returns correct descriptions (for323

example, as demonstrated in Fig. 5, “tuba” yields324

“a musical instrument played by blowing into the325

mouthpiece”). This suggests that, in such cases,326

item negligence is caused by a failure in the diffu-327

sion model. In the remaining 33%, the Patchscopes328

outputs are incorrect, indicating a gap in the en-329

coder’s semantic understanding or knowledge.330

This points to two distinct sources of item-level331

negligence: Representational gaps within the text332

encoder itself—consistent with findings that aug-333

menting text-side item descriptions improves fac-334

tual generation (Huang et al., 2025)—and visual335

grounding failures despite sufficient text encodings.336

4 Cross-Item Interactions337

In Section 3, we demonstrated that a single token338

can effectively encapsulate the semantics of an en-339

tire lexical item. This raises a broader question:340

What defines the segmentation boundaries of a lex-341

Category Count Percentage

# pairs 15,950 100.00%
No Information Flow 14,251 89.35%
Information Flow 1,699 10.65%

– Source before Reference 835 49.15%
– Reference before Source 823 48.44%

Table 2: Distribution of information flow between lexi-
cal item pairs. Subcategories under “With Information
Flow” indicate the order of source and reference.

ical item? Can its tokens further encode adjacent 342

items, or even the general surrounding context? 343

To this end, we isolate each lexical item in a 344

prompt and assess whether it encodes information 345

about other items in the prompt. For each item, 346

we generate images from its contextualized repre- 347

sentation (encoded within the full prompt), and its 348

uncontextualized representation (using the item’s 349

text by itself as a prompt). We then use Qwen2- 350

VL to evaluate whether any other item from the 351

prompt appears in the contextualized image, but 352

not in the uncontextualized one—indicating infor- 353

mation flow introduced by the surrounding context. 354

See Appendix A.4 for implementation details. 355

Our results (Table 2) show that in 89% of the 356

cases, lexical items do not encode information 357

from other items in the prompt. In the remain- 358

ing 11%, one lexical item incorporates information 359

about another item (see Fig. 6 for qualitative exam- 360

ples). Interestingly, information flow can emerge 361

between items with no direct syntactic relation in 362

the prompt. 363

To better understand the nature of information 364

flow, we analyzed the cases where lexical items 365

appeared to influence one another. We categorize 366

these prompt into 2 groups, based on whether this 367

influence aligns with the prompt’s syntactic struc- 368

ture or not. The first category involves items with a 369

direct syntactic relationship, such as the adjective 370

“black” modifying the noun “bear” in the prompt 371

“a black bear”. The second category includes items 372

that are syntactically unrelated, such as the adjec- 373

tive “red” influencing the noun “building” in “a red 374

car next to a building”. Using GPT-4o to classify 375

between these cases (see Appendix A.1.5), we find 376

that 31% of these information flow instances occur 377

between syntactically unrelated items. 378

Wrong information flow leads to misinterpreta- 379

tion. Our analysis reveals a recurring theme of 380

semantic influence between items within a prompt, 381

a pattern not prominent in most of the prompts. In 382

these cases, the interpretation of one item is skewed 383
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Figure 6: Examples of information flow between
items. Top: Images generated from a lexical item
encoded alongside another item that alters its repre-
sentation. Bottom: Images generated from the uncon-
textualized representation of the same lexical item. The
first three images (from the left) demonstrate correct
information flow, while the last image (far right) demon-
strates incorrect information flow.

by another semantically related, but syntactically384

distant, item. For instance, in the prompt “A stand-385

ing zebra to the right of a city bus station”, the386

strong semantic connection between “bus station”387

and “zebra” leads the model to generate a “zebra388

crossing” instead of the animal (see Fig. 7). We389

refer to this outcome, where contextual associa-390

tion overrides the prompt-intended meaning, as an391

incorrect item resolution.392

We note that such failures typically occur in393

cases of polysemous words. For example, the394

item bats is interpreted as wooden baseball bats395

in the prompt “bats fly around a baseball stadium”,396

whereas the intended meaning is obviously the fly-397

ing animal. In such cases, the context overrides398

the correct sense of the item, leading to inaccu-399

rate generation. We hypothesize that these cases400

of incorrect item resolution are caused by infor-401

mation flow from the context to the misinterpreted402

lexical item. To validate this, We use the dataset403

from Rassin et al. (2022), which includes prompts404

known to induce semantic leakage due to implicit405

lexical associations (e.g., “bat” and “baseball sta-406

dium”). Unlike standard T2I benchmarks such as407

Huang et al. (2023b), which focus on spatial or408

visual challenges, these prompts highlight failures409

rooted in the encoding process itself. Since the410

original set includes only 30 examples, we expand411

it to 110 prompts using GPT-4o. See Appendix A.2412

for augmentation details and the full prompt list.413

To evaluate our hypothesis, we conduct a sim-414

ple causal test. We generate three images for each415

prompt: an image from the full prompt; another416

from the item without any context; and one from 417

the full prompt, but with the lexical item’s tokens 418

replaced by their uncontextualized representations 419

(see Fig. 7). For each image, we assess if the im- 420

age depicts the intended interpretation of the item 421

within the prompt (see A.1.6 for more details on 422

this evaluation process). Our findings show that 423

in 93% of the evaluated prompts, the item is mis- 424

interpreted in the original full-prompt image but 425

correctly interpreted in the patched versions. This 426

suggests that the failure stems from incorrect item 427

resolution during the textual encoding phase: the 428

language model misrepresents the intended mean- 429

ing of the item due to contextual interference, re- 430

trieving its incorrect sense. Importantly, this indi- 431

cates a failure in semantic resolution that originates 432

entirely within the text encoder, and cannot be mit- 433

igated during image generation. 434

Addressing such failures requires solutions dur- 435

ing the textual encoding that target semantic dis- 436

ambiguation during encoding, rather than relying 437

on downstream interventions such as Chefer et al. 438

(2023a). Feng et al. (2023) offer one such solution, 439

encoding items separately according to structured 440

representations to improve attribute binding. While 441

this represents a promising first step, future work 442

must account for more complex interactions and 443

employ more sophisticated, semantically-informed 444

methods to achieve this separation. 445

5 Related Work 446

Interpretability in T2I models. Recent work 447

has explored how T2I models encode and align con- 448

cepts. Chefer et al. (2023b) studied CLIP’s latent 449

space, while Toker et al. (2024) interpreted repre- 450

sentations across the textual encoding process us- 451

ing the diffusion model as a lens. Others examined 452

text-to-image alignment via attention maps (Tang 453

et al., 2023). Another direction is to apply SAEs 454

(Cunningham et al., 2023) to interpret intermedi- 455

ate representations in T2I models (Cywiński and 456

Deja, 2025). We on the other hand, focus on token- 457

level information at the encoder’s final layer, which 458

directly conditions generation process. 459

Token representation and flow in LLMs. Stud- 460

ies have shown that token information in LLMs 461

is not uniformly distributed. Kaplan et al. (2025) 462

found that subwords fuse into word-level mean- 463

ing, while Feucht et al. (2024) documented how 464

later tokens can erase earlier ones. Attention-based 465

flow (Vig and Belinkov, 2019; Clark et al., 2019) 466
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Figure 7: Verifying textual semantic leakage by replacing the contextually leaked concept representation. (1)
Regular generation produces an image showing a crosswalk to the right of a bus station. (2) Generation from the
prompt “standing zebra”, without any context, results in the correct interpretation of the zebra as an animal. (3)
Generation using the original prompt, but with the leaked concept “standing zebra” replaced by it’s uncontextualized
representation, yields a correct image.

can be misleading (Pruthi et al., 2020; Jain and467

Wallace, 2019), prompting alternatives like Atten-468

tion Rollout (Abnar and Zuidema, 2020). Methods469

like Patchscopes (Ghandeharioun et al., 2024) and470

logit lens (nostalgebraist, 2020) decode internal471

representations, but do not test if downstream com-472

ponents use them.473

Probing and causal methods. Probing meth-474

ods (Adi et al., 2016; Liu et al., 2019; Zhang and475

Bowman, 2018; Brunner et al., 2019) reveal infor-476

mation presence but are not fully reliable, as probes477

can exploit spurious correlations (Belinkov, 2022).478

We instead use causal interventions to test whether479

token information is actually used during image480

generation.481

Challenges in T2I models. Semantic leak-482

age—when context distorts word meaning—has483

been observed in both LLMs (Gonen et al., 2024)484

and T2I (Rassin et al., 2022; Dahary et al., 2024).485

Another common issue is neglect, where key items486

are omitted (Chefer et al., 2023a; Chang et al.,487

2024b). While prior work focuses on solutions488

during the diffusion process, we show that some of489

these failures often originate in the text encoder.490

6 Discussion491

Improving generation via token-level interven-492

tion. Our results suggest that generation can be493

improved by removing non-representative tokens,494

which enhances prompt-image alignment and re-495

duces noise. This intervention can be automated496

via a high-precision probe (see Appendix A.5), or497

integrated into model design, as in MrT5 (Kallini498

et al., 2025), which omits uninformative tokens in 499

byte-level encoders (Xue et al., 2022). Similarly, 500

attention-based techniques (Chefer et al., 2023a) 501

may benefit from prioritizing representative tokens 502

over full lexical spans. 503

Developing textually challenging benchmarks. 504

Current T2I datasets focus primarily on visual or 505

spatial complexity (Huang et al., 2023a; Ghosh 506

et al., 2023; Saharia et al., 2022; Yu et al., 2022b). 507

Yet our findings show that even slight linguistic 508

ambiguity—particularly with polysemous or com- 509

positional phrases—can cause encoding failures. 510

This highlights the need for evaluation benchmarks 511

that probe textual difficulty more directly, which 512

may in turn drive improvements in encoder design. 513

Generalization across T2I architectures. We 514

repeat our main experiments on SDXL-Turbo and 515

Sana (see A.3.2 and A.3.3), which use unidirec- 516

tional text encoders, and on FLUX-dev (A.3.1), a 517

compute-intensive variant of FLUX. We observe 518

similar phenomena across models, indicating our 519

findings are not specific to a particular T2I design. 520

7 Conclusion 521

Our investigation of text encoding in T2I models 522

revealed two key properties: (1) lexical meaning 523

tends to concentrate in one or two representative 524

tokens rather than distributing evenly, and (2) con- 525

textual information can leak between lexical items, 526

resulting in misinterpretation. Our analysis further 527

indicates focused evaluation of the text encoder and 528

token-level interventions are promising avenues to- 529

wards more semantically aligned T2I generation. 530
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Limitations531

Evaluating token-level representations remains532

challenging. While we rely on strong vision-533

language models as judges and validate key find-534

ings through human evaluation, these are still ap-535

proximations of true semantic alignment. Our536

prompt set focuses on object-centric, syntactically537

simple cases, which may limit generalization to538

prompts involving misspellings, rare words, or ab-539

stract concepts. Further work is needed to explore540

how information flow behaves under more linguis-541

tically complex conditions.542
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A Appendix 806

A.1 Technical Details 807

A.1.1 Lexical Item Classification 808

We define a lexical item as either a single word or 809

a compound expression of multiple words that, in 810

context, conveys a unified semantic meaning. A 811

compound expression is treated as a single item 812

when its words form a fixed lexical unit with cohe- 813

sive semantics rather than merely exhibiting a modi- 814

fier–head relationship. For example, while “broken 815

mirror” describes a mirror’s state, expressions like 816

“hot air balloon” or “teddy bear” denote entities 817

with distinct identities. Similarly, although phrases 818

such as “identical twins” or “baseball bat” might 819

be interpreted as separate concepts, conventional 820

usage supports their treatment as unified entities. 821

We employ the reasoning model 03-mini-high as 822

a classifier to tag multi-word lexical items in both 823

the target prompts and the dataset. The model re- 824

turns a list of identified multi-word expressions, 825

while the remaining untagged words are treated as 826

individual lexical items. 827

A.1.2 Redundant Token Classification 828

We propose a probing classifier to predict whether 829

a token is redundant (i.e., non-representative of its 830

lexical item) using solely its encoded representa- 831

tion, without the need to generate an image. For 832

this purpose, we extracted the 6,966 tokens corre- 833

sponding to 4,864 unique lexical items from our 834

dataset. Each token was annotated with a binary 835

label indicating whether it represents the lexical 836

item by the VLM (see A.1.3 for more details). 837

We split the data into training and validation sets 838

using an 80-20 ratio. A k-nearest neighbors (k- 839

NN) classifier with k = 5 and Euclidean distance 840

as the similarity measure was then applied to pre- 841

dict token redundancy directly from the encoded 842

representations. The results on the evaluation set 843

are presented in Table 3. The high precision in- 844

dicates that, in practical settings, one can remove 845

tokens predicted as redundant with a high degree 846

of certainty that representative tokens will not be 847

inadvertently discarded. 848

A.1.3 Evaluation Visual Generations. 849

We evaluate whether an image matches a textual 850

description using Qwen2-VL-72B-Instruct (Wang 851

et al., 2024). The following prompt is used: 852

"In Yes, No and maybe. Does every 853

image match one of those descriptions: 854
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Table 3: Performance of k-NN classifier (k = 5) for predicting token redundancy

Metric Accuracy Precision Recall F1-score

Score 0.82 0.92 0.74 0.82

(description string)? Answer Yes if all855

images match or relate to at least one856

description, Maybe if only some match,857

otherwise No."858

Here, the textual description can be either a single859

lexical item or a complete textual prompt.860

A.1.4 Evaluating Generated Textual861

Descriptions.862

We employ GPT-4o (OpenAI et al., 2024) to eval-863

uate the textual interpretations produced by Patch-864

scopes. We use the following prompt:865

“In Yes, No and Maybe. Does every866

image match the description: {Patch-867

scopes_description} ? Answer Yes if all868

images match or relate to the description,869

Maybe if only some match, otherwise870

No.”871

A.1.5 Evaluating Relations Between Items.872

We enhance our leakage validation by distinguish-873

ing between cases where two lexical items ex-874

hibiting semantic leakage are perceptually bound875

together—for example, “old” and “man” in the876

prompt “a portrait of an old man”—and cases877

where they are not as “cone hat” and “eating” in878

the prompt “A person searing a cone hat is eat-879

ing” (see Fig. 6). To achieve this, we use a large880

language model (LLM) as a judge. Specifically, we881

use GPT-4o and employ the following prompt:882

“In Yes or No: in this prompt: {in-883

put_prompt}, are {item_1} and {item_2}884

perceptually bound together?”885

We then filter out all cases where the lexical items886

are perceptually bound together and find that only887

6.5% instances exhibit unintentional leakage.888

A.1.6 Intended Item Evaluation889

Foe each lexical-item, we manualy create two inter-890

pretation - one in the intended interpretation in the891

prompt, and another is a possible wrong interpre-892

tation of the word in other contexts. For example,893

given the prompt “A standing zebra to the right of a894

city bus station”, the corrent interpretations would895

be “the animal zebra”, while the incorrect interpre- 896

tations would be “A zebra crossing”. We then ask 897

a VLM to evaluate the generated image, and asses 898

if the first or the latter interpretations exists in the 899

images. 900

To evaluate the model’s capacity for contextual 901

disambiguation, we manually define two interpreta- 902

tions for each lexical item in each prompt. The first 903

is the intended semantic meaning derived from the 904

prompt’s context, and the second is a alternative 905

interpretation, that is wrong in this context. For 906

instance, in the prompt “A standing zebra to the 907

right of a city bus station”, the intended meaning 908

of “zebra is the animal”, whereas the wrong inter- 909

pretation is a “zebra crossing”. Subsequently, a 910

VLM analyzes the generated image to determine if 911

it depicts the intended interpretation or the wrong 912

interpretation as we define it. 913

A.1.7 Resources 914

Our computational experiments involved inference 915

with four distinct text-to-image models: Flux-dev, 916

Flux-schnell, sdxl-turbo, and Sana. The parame- 917

ter sizes for these models are approximately 12 918

billion for Flux-dev and Flux-schnell, 3.1 billion 919

for sdxl-turbo, and a range of 0.6 to 4.8 billion for 920

the Sana models, with our experiments utilizing 921

a 1.6 billion parameter version. The total compu- 922

tational budget for these experiments is estimated 923

to be approximately 480 GPU hours. The com- 924

puting infrastructure consisted of a cluster of eight 925

NVIDIA A100 GPUs. This configuration provided 926

the necessary computational power for the large 927

number of inference tasks performed. 928

A.1.8 Use of AI Assistants. 929

We utilized AI assistants to support this research. 930

For coding the experiments, we used Microsoft’s 931

Copilot and Anthropic’s Claude 3; all generated 932

code was manually reviewed and validated by us 933

to ensure it aligned with our requirements. For the 934

paper, Google’s Gemini models (Pro and Flash) 935

were used to improve the writing and clarity. We 936

have carefully reviewed all content to ensure it 937

accurately reflects our intentions. 938
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A.2 Data939

DrawBench (Saharia et al., 2022): We include all940

categories except for “misspelling”, “rare words”,941

and “text”. Overall we extract 134 prompts from942

DrawBench.943

Parti Prompts (Yu et al., 2022a): We include944

all categories except “Style & Format”, “Writing945

& Symbols”, and “Arts”. Overall we extract 923946

prompts from Parti Prompts. The dataset is released947

under apache-2.0 license.948

In total, we obtain 1,056 prompts.949

Extended dataset of leakage prompts. Our aug-950

mentation process incorporates two components.951

First, we generate variations of existing prompts952

from (Rassin et al., 2022) (e.g., modifying ’a gen-953

tleman with a bow in the forest’ to ’a man wearing954

a bow in the jungle’). Second, we introduce novel955

prompts with potential semantic leakage. For these956

prompts, we applied a one-lexical item change test957

by generating an image from a similar prompt that958

substitutes the affected or leaked item with an alter-959

native term (e.g., replacing ’bishops’ with ’cardi-960

nals’ or ’checkers’ in ’chess in ’2 bishops playing961

chess’). This test ensures that minimal lexical mod-962

ifications do not alter the intended semantic mean-963

ing while producing a different image due to seman-964

tic leakage from another item in the prompt (see965

the first two columns in Fig. 8 for few visual exam-966

ples). Together, these methods enrich the dataset967

and provide a robust framework for analyzing se-968

mantic leakage. The full list of prompts is available969

in an anonymous Git repository.3970

We split the data into training and validation sets971

using an 80-20 ratio. A k-nearest neighbors (k-972

NN) classifier with k = 5 and Euclidean distance973

as the similarity measure was then applied to pre-974

dict token redundancy directly from the encoded975

representations. The results on the evaluation set976

are presented in Table 3. The high precision in-977

dicates that, in practical settings, one can remove978

tokens predicted as redundant with a high degree979

of certainty that representative tokens will not be980

inadvertently discarded.981

A.3 Additional models982

A.3.1 FLUX-Dev983

In addition to our primary experiments with FLUX,984

we repeated all analyses using the Flux-dev vari-985

ant. The redundant versus representative token986

3https://anonymous.4open.science/r/
TokenRole-3E19

Figure 8: Examples from our semantic leakage method.
Left: standard generation of leakage contained prompt.
Second: generation using a one-lexical item change test
as part of the dataset creation (a minimal substitution
to verify that a slight lexical change yields a different
image). Third: image from the contextual represen-
tation (misinterpreted item). Forth: image from the
uncontextualized representation (correct interpretation).
Right: final generation after patching the correct, un-
contextualized representation into the prompt.

experiments yielded similar trends, with 55% of 987

tokens identified as representative and 45% as non- 988

representative—values closely matching those ob- 989

served with FLUX. Likewise, our inter-item flow 990

experiments confirmed that information flow oc- 991

curred in 11% of cases (and 3.1% miss intended 992

leakage), reinforcing the overall patterns reported 993

in the main text. Notably, while the aggregate 994

trends are consistent across models, the specific 995

lexical items resolved can differ between FLUX- 996

schnell and Flux-dev, indicating potential a slightly 997

different inner-lexicon (Kaplan et al., 2025). These 998

findings underscore the robustness of our approach 999

while highlighting model-dependent nuances in to- 1000

ken representation and information flow dynamics. 1001

A.3.2 SDXL-Turbo 1002

Our analysis reveals that SDXL-Turbo, which uses 1003

the CLIP text encoder, behaves markedly differ- 1004

ently from FLUX, which relies on the encoder in 1005

the encoder-decoder T5-XXL. In SDXL-Turbo, the 1006

text encoder is a causal language model, meaning 1007

each token’s encoding is influenced only by its pre- 1008

ceding tokens during the encoding process. 1009

We repeated our in-item representation experi- 1010
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Figure 9: Images generated from individual subtokens
in SDXL-Turbo. We find that, in many cases, the repre-
sentation of an item is not clearly reflected in any of its
subtokens—for example, in the case of the token “skate-
board.” Another interesting observation is that the last
token of a lexical item often carries its representation,
as seen in the “square” token of “times square.” We also
observe that the EOT token incorporates information
from the full prompt.

ments using SDXL-Turbo. Our first observation is1011

that most generated images are either abstract or1012

unrelated to the intended lexical items. According1013

to our analysis, 55% of lexical items in SDXL-1014

Turbo lack any representative token (compared to1015

just 11% in FLUX). Moreover, when a represen-1016

tative token is present in CLIP, it is typically the1017

final token of the lexical item (see Fig. 9). This1018

is aligned with the unidirectional encoding of the1019

model.1020

Another phenomenon we observe—consistent1021

with CLIP’s training objective—is the unusually1022

dominant role of the end-of-sequence (EOS) token.1023

Images generated from the EOS token often en-1024

capsulate nearly the full semantic content of the1025

prompt. In our evaluation, 62% of EOS-generated1026

images matched the prompt ( compared to 73%1027

when using the full prompt). We believe this also1028

causes our intervention method to be less effective,1029

since when we interpret a single token, we patch1030

all other tokens, including the EOT token—which1031

usually contains a lot of information—with tokens1032

derived from an empty prompt (see Fig. 9).1033

A.3.3 Sana (Gemma-based encoder)1034

We also evaluate our methodology on the Sana1035

model (Xie et al., 2024b), which uses a Gemma-1036

based autoregressive language model as the text1037

encoder. These results help validate the generality1038

of our findings across architectures with differing1039

encoding strategies.1040

For in-item information flow, we observe that1041

Sana produces fewer multi-token lexical items due1042

to its larger vocabulary relative to T5 and CLIP. In1043

cases where items do consist of multiple tokens,1044

we find that only the last token typically acts as a1045

representative token—a behavior aligned with the1046

unidirectional nature of autoregressive encoders.1047

In our cross-item information flow analysis, we 1048

find that 17.45% of item pairs in Sana exhibit con- 1049

textual information flow, compared to 10.45% in 1050

FLUX. This increase likely stems from the one- 1051

sided (forward-only) nature of Sana’s encoding. 1052

For example, in the prompt “a black baseball hat 1053

with a flame decal on it”, we find contextual in- 1054

fluence such as “black baseball” affecting “hat” 1055

and “flame” affecting “decal”, but not the reverse. 1056

See Fig. 10 for illustrations. 1057

Overall, while Sana shows a slightly higher rate 1058

of contextual influence than FLUX, it preserves 1059

many of the key structural insights found in our pri- 1060

mary analysis—particularly the sparsity and loca- 1061

tion of representative tokens. Unlike CLIP, which 1062

encodes substantial information in the EOS token, 1063

Sana lacks such artifacts, suggesting that EOS- 1064

related effects are not fundamental to autoregres- 1065

sive models more generally. 1066

A.4 Inter-Item Information Flow Framework 1067

To assess whether one lexical item encodes infor- 1068

mation about others in the same prompt, we con- 1069

duct the following experiment. 1070

Given a prompt, we isolate each lexical item one 1071

at a time. First, we encode the full prompt using 1072

the text encoder. Then, for a given lexical item, we 1073

apply our patching method (Section 2.1) to mask 1074

the representations of all other tokens—leaving 1075

only the contextualized representation of the target 1076

item intact. Formally, for a lexical item with token 1077

indices S ⊂ {1, . . . , N}, we construct a patched 1078

sequence t̃1, . . . , t̃N in which only the tokens in S 1079

retain their original contextualized representations. 1080

We then generate an image from this modified se- 1081

quence, capturing what information is encoded in 1082

the selected item’s contextualized form. 1083

We repeat this process for the same item in an 1084

uncontextualized setting: we encode and generate 1085

an image using only that lexical item in isolation, 1086

without the rest of the prompt. This allows us to 1087

distinguish between information inherently present 1088

in the item’s encoding and information introduced 1089

by context. 1090

To measure influence between items, we use 1091

Qwen2-VL to check whether a second item y ap- 1092

pears in the image generated from a first item x, 1093

both in the contextualized and uncontextualized 1094

versions. Influence is considered True if y appears 1095

in the image generated from contextualized x, but 1096

not from uncontextualized x. This comparison en- 1097

sures that the observed presence of y is attributable 1098
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Figure 10: Token-level image generation using Sana on the prompt “a black baseball hat with a flame decal on it”.
Representative information often resides in the last token of each item (e.g., “hat”, “decal”), consistent with Sana’s
causal encoding. Contextual influence is one-directional, with earlier tokens shaping later ones.

Figure 11: Evaluating inter-item information flow: Our proposed framework to interpret the information
flow between lexical items in the prompt. For each lexical item, we generate an image from its contextual
representations (left), and from it’s uncontextualized representation (right), and analyze the generated images using
a VLM (middle). In this example, we interpret the item “pool” and assess whether it is influenced by the item
“table”. To do so, we ask a VLM whether the image generated from the token “pool” contains a “table”. To ensure
this is the result of information flow, and not a natural correlation between a pool and tables, we generate the item
“pool” without context (right-hand side), and verify that “table” is not present in this image. If this is the case, we
conclude that there was information flow from “table” to “pool”.

to contextual information flow during encoding,1099

rather than coincidental co-occurrence or inherent1100

correlation.1101

This setup enables us to detect breaches of lex-1102

ical segmentation—i.e., cases where one lexical1103

item encodes visual information belonging to an-1104

other—quantifying interdependence across items1105

within the prompt.1106

See Fig. 11 for an illustration of the procedure.1107

A.5 Predicting Redundant Tokens Without1108

Image Generation1109

Identifying which tokens are representative can im-1110

prove image generation, as demonstrated in Fig. 41111

(right). Moreover, many existing T2I methods op-1112

erate at the token level, typically treating all of a1113

lexical item’s tokens equally (Chefer et al., 2023a;1114

Dahary et al., 2024). However, our findings sug- 1115

gest that only a subset of these tokens contribute 1116

meaningfully to the representation. 1117

Yet, identifying representative tokens via image 1118

generation is computationally expensive. To ad- 1119

dress this, we explore alternatives for estimating to- 1120

ken importance without image-level interventions. 1121

First, we compute the character-level edit dis- 1122

tance between a lexical item (e.g., “giraffe”) and its 1123

constituent tokens (e.g., “gir”, “a”, “ffe”). We ob- 1124

serve a negative correlation between edit distance 1125

and token representativeness (Pearson correlation 1126

of −0.44), suggesting that tokens more orthograph- 1127

ically distant from the original item are less likely 1128

to be representative. While informative, this signal 1129

alone is insufficient for accurate prediction. 1130

Instead, we train a k-Nearest Neighbors (k=5) 1131
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classifier using Euclidean distance over the to-1132

ken representations to predict redundancy. Using1133

6,966 token instances (spanning 4,864 unique lex-1134

ical items), each labeled for whether the token1135

is representative according to a VLM, our clas-1136

sifier achieves 92% precision in identifying non-1137

representative tokens. This result highlights the1138

feasibility of lightweight approaches for filtering1139

redundant tokens without resorting to costly gener-1140

ation procedures. See Appendix A.1.2 for classifier1141

details.1142
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