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Abstract

Text-to-image (T2I) models generate images
by encoding text prompts into token represen-
tations, which then guide the diffusion pro-
cess. While prior work has largely focused
on improving alignment by refining the diffu-
sion process, we focus on the textual encod-
ing stage. Specifically, we investigate how
semantic information is distributed across to-
ken representations within and between lexical
items (i.e., words or expressions conveying a
single concept) in the prompt. We analyze in-
formation flow at two levels: (1) in-item rep-
resentation—whether individual tokens repre-
sent their lexical item, and (2) cross-item in-
teraction—whether information flows across
the tokens of different lexical items. We use
patching techniques to uncover surprising en-
coding patterns. We find information is usually
concentrated in only one or two of the item’s
tokens—For example, in the item “San Fran-
cisco’s Golden Gate Bridge”, the token “Gate”
sufficiently captures the entire expression while
the other tokens could effectively be discarded.
Lexical items also tend to remain isolated; for
instance, the token “dog” encodes no visual in-
formation about “green” in the prompt “a green
dog”. However, in some cases, items do influ-
ence each other’s representation, often leading
to misinterpretations—e.g., in the prompt “a
pool by a table”, the token pool represents a
pool table after contextualization. Our find-
ings highlight the critical role of token-level
encoding in image generation, suggesting that
misalignment issues may originate already dur-
ing the textual encoding.

1 Introduction

Text-to-image (T2I) models typically consist of
two main components: a text encoder and a dif-
fusion model (Ho et al., 2020; Song and Ermon,
2019). The former processes the user’s prompt,
transforming it into a representation that guides
the latter in generating the image. Though widely

used, T2I models often exhibit prompt-image mis-
alignment, where generated images fail to capture
key concepts from the user’s prompt (Chefer et al.,
2023a; Rassin et al., 2022; Huang et al., 2023a).
Prior work has attempted to address these issues
by modifying the diffusion stage, and particularly
the cross-attention mechanism (Rassin et al., 2023;
Chefer et al., 2023a; Dahary et al., 2024), under
the implicit assumption that each textual token reli-
ably encodes the item it is intended to convey. This
raises two fundamental questions: First, is the infor-
mation for an intended concept distributed evenly
across the concept tokens after textual encoding, or
concentrated in just a few tokens? Second, does
each token exclusively encode that concept?

In this work, we examine this assumption and
study how visual information is distributed across
tokens during the textual encoding stage. We focus
our analysis on lexical items—words or phrases
that convey a single concept. We trace how item
information is distributed both within the tokens
of a single item (in-item), and across tokens of dif-
ferent items (cross-item) (see Fig. 1 for examples
of the different cases). Using a causal intervention
framework (Toker et al., 2025), we systematically
assess what information is encoded in each contex-
tual token representation at the encoder’s output,
using prompts from widely used T2I benchmarks
as our evaluation setting (Section 2.2).!

For in-item representation (Section 3), we find
that a lexical item’s meaning is typically concen-
trated in one or two representative tokens. Sur-
prisingly, ablating the non-representative tokens
reduces generation error by 21% in FLUX (black-
forest labs, 2024). In contrast, when no represen-
tative tokens exist for a particular item, it is often
omitted entirely from the image—an instance of
item negligence (Chang et al., 2024a; Chefer et al.,

'Throughout this work, we study token representations at
the output of the text encoder. For brevity, we sometimes omit
the word “representation”.
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Figure 1: Our main findings. Left: Information within a lexical item is unevenly distributed across its tokens’

contextualized representations. In this example, one token carries the meaning of the entire item (e.g.,
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example, the representation of runway is influenced by the context of “a businesswoman” (vs. “businessman”).

2023a).

For cross-item interactions (Section 4), we as-
sess whether information flows between different
lexical items in a prompt. We observe such cross-
item flow in 11% of cases. Interestingly, the flow of
information does not always follow sentence syn-
tax, which can result in misrepresentation of items
within specific contexts—especially with polyse-
mous words. For instance, in the prompt “a pool by
a table”, “pool” can wrongly suggest “table” refers
to a billiard table.

In summary, we study the fextual encoding and
identify two main insights. First, Lexical items
have concentrated representation—the meaning of
the item is often concentrated in a single represen-
tative token. Second, while items in a sentence do
not typically encode information regarding other
items in the sentence, in some cases, often when
polysemous are involved, semantic leakage (Da-
hary et al., 2024; Gonen et al., 2024; Rassin et al.,
2022) occurs during the textual encoding phase,
causing miss-interpretations of items.

Together, these insights suggest practical av-
enues for improving token-level intervention tech-
niques, enhancing evaluation benchmarks, and
guiding future encoder-aware T2I generation ap-
proaches.

2 Methodology
2.1 Intervention on the Text Encoder

Our goal in this paper is to evaluate the effect of
information flow between textual token represen-

tations, that subsequently condition the diffusion
process. In Section 3, we are interested in analyz-
ing how information is distributed across tokens
within a lexical item . To do so, we seek to inter-
pret the information encoded in individual tokens.
In Section 4, we are interested in measuring how
different lexical items influence one another. To
this end, we seek to isolate a subset of tokens and
evaluate their joint representation in the context
of another item. For these purposes, we adjust a
method for fext intervention in diffusion models
proposed by Toker et al. (2025), allowing us to gen-
erate images from arbitrary subsets of contextual
token representations by masking the rest of the
tokens in the sequence.

Given a prompt with N tokens t1,%a,...,tN,
our goal is to isolate and interpret the informa-
tion encoded by a subset of these tokens. Let
S c {1,..., N} be the index set of selected to-
kens, where 0 < |S| < N. We begin by encoding
the full prompt using the text encoder F, yielding
the final hidden states hq, ..., hy. Separately, we
encode a sequence consisting entirely of pad to-
kens to obtain pad embeddings pi,...,pn. We
then construct a patched prompt by replacing all
hidden states outside .S’ with the corresponding pad
embeddings:

- h, ifieS
ti=< " 7 fori=1,...,N.
p; otherwise

The patched sequence t1, ...,y is then used to
guide the diffusion model. Generating an image
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Figure 2: Evaluating in-item information flow. Our proposed framework interprets the information flow within
a lexical item. We generate images from each token comprising the lexical item (left) and analyze them with a
VLM (right). In this example, only the token lic represents the concept “pelican”, whereas pe and an do not.

from this patched representation allows us to vi-
sualize and isolate the individual contributions of
the selected tokens as interpreted by the diffusion
model. To evaluate the information in the generated
images, we use a vision-language model (VLM):
For the in-item representation experiments, we as-
sess whether the generated image represents the
full lexical item, while for the cross-item interac-
tions experiments, we measure whether informa-
tion from other lexical items is present in the gen-
erated image. See Fig. 2 for an illustration of the
method on the in-item representation experiment.

2.2 Experimental Setup

Models. Our main results are reported for FLUX-
schnell (black-forest labs, 2024), a recent state-
of-the-art T2I model. We repeat all experiments
with FLUX-dev, SDXL-Turbo (Sauer et al., 2023)
and SANA (Xie et al., 2024a). FLUX models em-
ploy T5-XXL (Raffel et al., 2019) as their text en-
coder, enabling bidirectional information flow be-
tween tokens. Unlike Flux, SDXL used CLIP (Rad-
ford et al., 2021), and SANA uses Gemma (Team
et al., 2024). These text encoders are unidirectional,
meaning the tokens are only influence by the to-
kens that came before. These changes cause some
differences in the information flow between tokens,
elaborated in Section 6 and in Appendix A.3.2

Data. We use a subset of 1,053 prompts from
DrawBench (Saharia et al., 2022) and PartiPrompts
(Yu et al., 2022b) datasets, filtered to include 4-20
words prompts and exclude cases with added com-

plexity unrelated to our focus (e.g., misspellings,
written text, rare words). For each prompt, we gen-
erate five images using different random seeds. To
extract the lexical items, we prompt GPT-40 (Ope-
nAl et al., 2024), resulting in 4,864 unique items
across prompts. See Appendix A.1.1 for further
technical details. We then use spaCy (Honnibal
et al., 2020) to determine the part of speech of
each lexical item, and retain only nouns, proper
nouns, and adjectives, as these are typically con-
crete and can be identified in their visual represen-
tation. We end up with 3,891 unique lexical items
and use them to evaluate both in-item representa-
tion and cross-item interactions.

Evaluation. To evaluate the content of gen-
erated images, we employ Qwen2-VL-72B-
Instruct (Wang et al., 2024), a model with strong
general vision capabilities. We restrict our eval-
uation to binary (yes/no) questions and use the
model to assess prompt-image alignment and the
presence of specific items in the image (see Ap-
pendix A.1.3 for additional details). To validate
Qwen2-VL’s reliability, we also conducted a hu-
man evaluation on 100 randomly sampled cases,
evenly split between in-ifem representation (Sec-
tion 3) and cross-item interactions (Section 4) set-
tings. The results indicate substantial agreement,
with a Cohen’s Kappa values of 0.868 for in-item
representation and 0.764 for cross-item interac-
tions. Next, we determined the majority agreement
among the human annotators and compared it to the
model predictions. For cross-item interactions, the



Acc.

Relative %

Tokens
Removed # Prompts  Before = After  Unaffected Degraded Improved Accuracy A (pp)
1 144 81.25  83.33 98.29 0.85 14.83 +2.08
2 98 82.65  88.78 100.00 0.00 35.27 +6.13
3 45 9333 9333 97.62 2.38 33.28 +0.00
4 24 87.50 91.67 100.00 0.00 33.36 +4.17
5+ 28 78.57  85.71 100.00 0.00 33.32 +7.14
Overall 339 83.48  87.02 98.90 0.71 25.00 +3.54

Table 1: Effect of removing non-representative tokens on prompt-level accuracy. The table reports: (i) accuracy
before and after token removal, (ii) the percentage of originally successful prompts that remained successful
(Unaffected) or became failures (Degraded), and (iii) the percentage of originally failed prompts that were corrected
(Improved). Overall, removing non-representative tokens rarely harms generation and often improves it.

accuracy (F1) is 0.927 (0.933), and for cross-item
interactions, the accuracy is 0.810 (0.740). These
results suggest that Qwen2-VL predictions align
well with human judgment for our tasks.

3 In-Item Representation

In this section, we analyze information flow within
lexical items at the token level. We first show se-
mantic information is unevenly distributed across
tokens, with typically one or two representing the
item (3.1). We then show non-representative tokens
are largely redundant and may even harm gener-
ation (3.2). Finally, we examine items neglected
from the generated image, tracing failures to poor
textual encoding or gaps in visual grounding (3.3).

3.1 How is Information Distributed Across
Tokens?

We begin by exploring how information is dis-
tributed across the token representations within
a lexical item. We focus on two key questions:
Do all tokens encode the same semantic informa-
tion? And is the information evenly distributed
across tokens, or rather concentrated in specific
tokens? These issues are crucial as many T2I ap-
plications (Chefer et al., 2023a; Rassin et al., 2023;
Dahary et al., 2024) treat all tokens of a lexical item
in a given prompt equally. Uncovering an asym-
metrical distribution of information could improve
the effectiveness of such applications by focusing
on the most informative tokens.

Given a prompt and a lexical item, we feed the
prompt to the text encoder, obtaining contextual-
ized token representations. We then identify the
tokens comprising the item and apply our inter-
vention method (Section 2.1) to generate an image
conditioned on each token’s contextualized repre-
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Figure 3: Distribution of representative tokens per lex-
ical item length. “Rep.” denotes the number of rep-
resentative tokens; the bottom row aggregates over all
lexical items. In most cases, one or two tokens sufficient
to represent the entire lexical item. As item length in-
creases, the number of non-representative tokens grows
accordingly.

sentation (i.e., without letting other tokens in the
prompt influence the diffusion process). Finally, we
use Qwen2-VL to assess whether the image repre-
sents the overall lexical item it is part of. We define
a representative token as one whose isolated repre-
sentation results in an image containing its corre-
sponding lexical item. Tokens that do not meet this
criterion are considered non-representative. We
repeat this analysis for each lexical item and for
each prompt in our dataset (Section 2.2).

Our results (Fig. 3, bottom row) show that in
most cases (89%), there is (at least) one representa-
tive token. Interestingly, in the remaining instances
where no representative tokens exist, we find the
item is also absent from an image generated from
the full item (allowing all of the item’s tokens to
guide generation) in 88% of instances.
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Figure 4: Examples illustrating the effect of removing non-representative tokens. Top row: Images generated after
removing non-representative tokens (Representative tokens are shown in bold; non-representative tokens are in
gray.). Bottom row: Images generated from the full prompt. Left: In most cases, removal results in no noticeable
effect on the generation. Right: In some cases, removal improves alignment with the prompt.

We next focus on instances where at least one
token represents the lexical item, and examine the
number of representative- and non-representative
tokens across lexical items of different lengths,
averaged across items. Our results (Fig. 3, top
rows) show that typically one or two tokens repre-
sent the concept, while the remaining tokens are
non-representative. Further, as the token length
of the lexical item becomes longer, the number of
non-representative tokens increases (Fig. 3, right-
most column). Inspecting all lexical items in our
data composed of two or more tokens, these non-
representative tokens account for 52% of their to-
kens. Therefore, we next examine the effect of
removing non-representative tokens altogether.

3.2 Tokens: Are They All Necessary?

We now examine whether non-representative to-
kens—tokens that do not result in an image repre-
senting the item—have any effect on image gen-
eration. To answer this question, we apply our
intervention method to each prompt, this time
generating an image after masking all the non-
representative tokens. We use Qwen-VL to mea-
sure whether this image aligns with the prompt,
and compare it to an image generated from the full
prompt without intervention.

Non-representative tokens are redundant. Our
results (Table 1) show that removing non-
representative tokens generally does not harm gen-
eration (see Fig. 4, left-hand side). When the origi-
nal generation is aligned with the prompt, the gener-
ated image after non-representative token removal

remains aligned in 98% of cases, suggesting these
tokens are largely redundant. Surprisingly, in cases
where the original image fails to align with the
prompt, we observe a 21% improvement in align-
ment after removing non-representative tokens (see
Fig. 4, right-hand side). We attribute this improve-
ment to the model relying exclusively on the re-
maining representative tokens, which encode the
correct semantics of the item.?

3.3 Item Negligence

So far, we have explored scenarios where an item
lacks a representative token, often leading to its
omission from the final generated output, i.e., itfem
negligence (Chang et al., 2024b; Chefer et al.,
2023a). We next investigate why this omission oc-
curs. We examine two potential causes: either the
text encoder poorly represents the concept; or the
concept is well-encoded, but the diffusion model
isn’t familiar with its visual appearance.

To study an item’s encoding without relying on
the diffusion model, we use Patchscopes (Ghande-
harioun et al., 2024), which decodes token repre-
sentations into their natural language descriptions,
using the full encoder-decoder architecture of TS
for text generation. Specifically, we patch an item’s
encoding into the template “describe <item>”
and evaluate whether the output indeed describes
the item using GPT-40 (OpenAl et al. 2024; see
Appendix A.1.4 for prompt details). We apply this
process to all neglected lexical items found in Sec-

2We measure improvement rates with Qwen2-VL be-

fore and after masking non-representative tokens. See Ap-
pendix A.1.3 for further details.
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Figure 5: Comparing Patchscopes to image generation
with token-level patching in cases of item negligence.
We assess whether a token’s concept is preserved by
comparing images generated from its contextual repre-
sentation, Patchscopes’ textual interpretation, and the
full prompt image. Left: “tub” (from “tuba”) is cor-
rectly described by Patchscopes but fails to ground vi-
sually. Right: “paw” (from “pawn”) has missing de-
tails by both interpretations, suggesting a gap in the
encoder’s conceptual knowledge.

tion 3.1, and examine whether the encoder is famil-
iar with these items.

We observe that in 67% of all instances of negli-
gence, Patchscopes returns correct descriptions (for
example, as demonstrated in Fig. 5, “tuba” yields
“a musical instrument played by blowing into the
mouthpiece”). This suggests that, in such cases,
item negligence is caused by a failure in the diffu-
sion model. In the remaining 33%, the Patchscopes
outputs are incorrect, indicating a gap in the en-
coder’s semantic understanding or knowledge.

This points to two distinct sources of item-level
negligence: Representational gaps within the text
encoder itself—consistent with findings that aug-
menting text-side item descriptions improves fac-
tual generation (Huang et al., 2025)—and visual
grounding failures despite sufficient text encodings.

4 Cross-Item Interactions

In Section 3, we demonstrated that a single token
can effectively encapsulate the semantics of an en-
tire lexical item. This raises a broader question:
What defines the segmentation boundaries of a lex-

Category Count  Percentage
# pairs 15,950 100.00%
No Information Flow 14,251 89.35%
Information Flow 1,699 10.65%
— Source before Reference 835 49.15%
— Reference before Source 823 48.44%

Table 2: Distribution of information flow between lexi-
cal item pairs. Subcategories under “With Information
Flow” indicate the order of source and reference.

ical item? Can its tokens further encode adjacent
items, or even the general surrounding context?

To this end, we isolate each lexical item in a
prompt and assess whether it encodes information
about other items in the prompt. For each item,
we generate images from its contextualized repre-
sentation (encoded within the full prompt), and its
uncontextualized representation (using the item’s
text by itself as a prompt). We then use Qwen2-
VL to evaluate whether any other item from the
prompt appears in the contextualized image, but
not in the uncontextualized one—indicating infor-
mation flow introduced by the surrounding context.
See Appendix A.4 for implementation details.

Our results (Table 2) show that in 89% of the
cases, lexical items do not encode information
from other items in the prompt. In the remain-
ing 11%, one lexical item incorporates information
about another item (see Fig. 6 for qualitative exam-
ples). Interestingly, information flow can emerge
between items with no direct syntactic relation in
the prompt.

To better understand the nature of information
flow, we analyzed the cases where lexical items
appeared to influence one another. We categorize
these prompt into 2 groups, based on whether this
influence aligns with the prompt’s syntactic struc-
ture or not. The first category involves items with a
direct syntactic relationship, such as the adjective
“black” modifying the noun “bear” in the prompt
“a black bear”. The second category includes items
that are syntactically unrelated, such as the adjec-
tive “red” influencing the noun “building” in “a red
car next to a building”. Using GPT-4o to classify
between these cases (see Appendix A.1.5), we find
that 31% of these information flow instances occur
between syntactically unrelated items.

Wrong information flow leads to misinterpreta-
tion. Our analysis reveals a recurring theme of
semantic influence between items within a prompt,
a pattern not prominent in most of the prompts. In
these cases, the interpretation of one item is skewed
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Figure 6: Examples of information flow between
items. Top: Images generated from a lexical item
encoded alongside another item that alters its repre-
sentation. Bottom: Images generated from the uncon-
textualized representation of the same lexical item. The
first three images (from the left) demonstrate correct
information flow, while the last image (far right) demon-
strates incorrect information flow.

by another semantically related, but syntactically
distant, item. For instance, in the prompt “A stand-
ing zebra to the right of a city bus station”, the
strong semantic connection between “bus station”
and “zebra” leads the model to generate a “zebra
crossing” instead of the animal (see Fig. 7). We
refer to this outcome, where contextual associa-
tion overrides the prompt-intended meaning, as an
incorrect item resolution.

We note that such failures typically occur in
cases of polysemous words. For example, the
item bats is interpreted as wooden baseball bats
in the prompt “bats fly around a baseball stadium”,
whereas the intended meaning is obviously the fly-
ing animal. In such cases, the context overrides
the correct sense of the item, leading to inaccu-
rate generation. We hypothesize that these cases
of incorrect item resolution are caused by infor-
mation flow from the context to the misinterpreted
lexical item. To validate this, We use the dataset
from Rassin et al. (2022), which includes prompts
known to induce semantic leakage due to implicit
lexical associations (e.g., “bat” and “baseball sta-
dium”). Unlike standard T2I benchmarks such as
Huang et al. (2023b), which focus on spatial or
visual challenges, these prompts highlight failures
rooted in the encoding process itself. Since the
original set includes only 30 examples, we expand
it to 110 prompts using GPT-40. See Appendix A.2
for augmentation details and the full prompt list.

To evaluate our hypothesis, we conduct a sim-
ple causal test. We generate three images for each
prompt: an image from the full prompt; another

from the item without any context; and one from
the full prompt, but with the lexical item’s tokens
replaced by their uncontextualized representations
(see Fig. 7). For each image, we assess if the im-
age depicts the intended interpretation of the item
within the prompt (see A.1.6 for more details on
this evaluation process). Our findings show that
in 93% of the evaluated prompts, the item is mis-
interpreted in the original full-prompt image but
correctly interpreted in the patched versions. This
suggests that the failure stems from incorrect item
resolution during the textual encoding phase: the
language model misrepresents the intended mean-
ing of the item due to contextual interference, re-
trieving its incorrect sense. Importantly, this indi-
cates a failure in semantic resolution that originates
entirely within the text encoder, and cannot be mit-
igated during image generation.

Addressing such failures requires solutions dur-
ing the textual encoding that target semantic dis-
ambiguation during encoding, rather than relying
on downstream interventions such as Chefer et al.
(2023a). Feng et al. (2023) offer one such solution,
encoding items separately according to structured
representations to improve attribute binding. While
this represents a promising first step, future work
must account for more complex interactions and
employ more sophisticated, semantically-informed
methods to achieve this separation.

5 Related Work

Interpretability in T2I models. Recent work
has explored how T2I models encode and align con-
cepts. Chefer et al. (2023b) studied CLIP’s latent
space, while Toker et al. (2024) interpreted repre-
sentations across the textual encoding process us-
ing the diffusion model as a lens. Others examined
text-to-image alignment via attention maps (Tang
et al., 2023). Another direction is to apply SAEs
(Cunningham et al., 2023) to interpret intermedi-
ate representations in T2I models (Cywinski and
Deja, 2025). We on the other hand, focus on token-
level information at the encoder’s final layer, which
directly conditions generation process.

Token representation and flow in LLMs. Stud-
ies have shown that token information in LLMs
is not uniformly distributed. Kaplan et al. (2025)
found that subwords fuse into word-level mean-
ing, while Feucht et al. (2024) documented how
later tokens can erase earlier ones. Attention-based
flow (Vig and Belinkov, 2019; Clark et al., 2019)
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can be misleading (Pruthi et al., 2020; Jain and
Wallace, 2019), prompting alternatives like Atten-
tion Rollout (Abnar and Zuidema, 2020). Methods
like Patchscopes (Ghandeharioun et al., 2024) and
logit lens (nostalgebraist, 2020) decode internal
representations, but do not test if downstream com-
ponents use them.

Probing and causal methods. Probing meth-
ods (Adi et al., 2016; Liu et al., 2019; Zhang and
Bowman, 2018; Brunner et al., 2019) reveal infor-
mation presence but are not fully reliable, as probes
can exploit spurious correlations (Belinkov, 2022).
We instead use causal interventions to test whether
token information is actually used during image
generation.

Challenges in T2I models. Semantic leak-
age—when context distorts word meaning—has
been observed in both LLMs (Gonen et al., 2024)
and T2I (Rassin et al., 2022; Dahary et al., 2024).
Another common issue is neglect, where key items
are omitted (Chefer et al., 2023a; Chang et al.,
2024b). While prior work focuses on solutions
during the diffusion process, we show that some of
these failures often originate in the text encoder.

6 Discussion

Improving generation via token-level interven-
tion. Our results suggest that generation can be
improved by removing non-representative tokens,
which enhances prompt-image alignment and re-
duces noise. This intervention can be automated
via a high-precision probe (see Appendix A.5), or
integrated into model design, as in MrT5 (Kallini

, without any context, results in the correct interpretation of the zebra as an animal. (3)
Generation using the original prompt, but with the leaked concept

replaced by it’s

et al., 2025), which omits uninformative tokens in
byte-level encoders (Xue et al., 2022). Similarly,
attention-based techniques (Chefer et al., 2023a)
may benefit from prioritizing representative tokens
over full lexical spans.

Developing textually challenging benchmarks.
Current T2I datasets focus primarily on visual or
spatial complexity (Huang et al., 2023a; Ghosh
et al., 2023; Saharia et al., 2022; Yu et al., 2022b).
Yet our findings show that even slight linguistic
ambiguity—particularly with polysemous or com-
positional phrases—can cause encoding failures.
This highlights the need for evaluation benchmarks
that probe textual difficulty more directly, which
may in turn drive improvements in encoder design.

Generalization across T2I architectures. We
repeat our main experiments on SDXL-Turbo and
Sana (see A.3.2 and A.3.3), which use unidirec-
tional text encoders, and on FLUX-dev (A.3.1), a
compute-intensive variant of FLUX. We observe
similar phenomena across models, indicating our
findings are not specific to a particular T2I design.

7 Conclusion

Our investigation of text encoding in T2I models
revealed two key properties: (1) lexical meaning
tends to concentrate in one or two representative
tokens rather than distributing evenly, and (2) con-
textual information can leak between lexical items,
resulting in misinterpretation. Our analysis further
indicates focused evaluation of the text encoder and
token-level interventions are promising avenues to-
wards more semantically aligned T2I generation.



Limitations

Evaluating token-level representations remains
challenging. While we rely on strong vision-
language models as judges and validate key find-
ings through human evaluation, these are still ap-
proximations of true semantic alignment. Our
prompt set focuses on object-centric, syntactically
simple cases, which may limit generalization to
prompts involving misspellings, rare words, or ab-
stract concepts. Further work is needed to explore
how information flow behaves under more linguis-
tically complex conditions.
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A Appendix
A.1 Technical Details
A.1.1 Lexical Item Classification

We define a lexical item as either a single word or
a compound expression of multiple words that, in
context, conveys a unified semantic meaning. A
compound expression is treated as a single item
when its words form a fixed lexical unit with cohe-
sive semantics rather than merely exhibiting a modi-
fier—head relationship. For example, while “broken
mirror” describes a mirror’s state, expressions like
“hot air balloon” or “teddy bear” denote entities
with distinct identities. Similarly, although phrases
such as “identical twins” or “baseball bat” might
be interpreted as separate concepts, conventional
usage supports their treatment as unified entities.
We employ the reasoning model @3-mini-high as
a classifier to tag multi-word lexical items in both
the target prompts and the dataset. The model re-
turns a list of identified multi-word expressions,
while the remaining untagged words are treated as
individual lexical items.

A.1.2 Redundant Token Classification

We propose a probing classifier to predict whether
a token is redundant (i.e., non-representative of its
lexical item) using solely its encoded representa-
tion, without the need to generate an image. For
this purpose, we extracted the 6,966 tokens corre-
sponding to 4,864 unique lexical items from our
dataset. Each token was annotated with a binary
label indicating whether it represents the lexical
item by the VLM (see A.1.3 for more details).

We split the data into training and validation sets
using an 80-20 ratio. A k-nearest neighbors (k-
NN) classifier with £ = 5 and Euclidean distance
as the similarity measure was then applied to pre-
dict token redundancy directly from the encoded
representations. The results on the evaluation set
are presented in Table 3. The high precision in-
dicates that, in practical settings, one can remove
tokens predicted as redundant with a high degree
of certainty that representative tokens will not be
inadvertently discarded.

A.1.3 Evaluation Visual Generations.

We evaluate whether an image matches a textual
description using Qwen2-VL-72B-Instruct (Wang
et al., 2024). The following prompt is used:

"In Yes, No and maybe. Does every
image match one of those descriptions:
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Table 3: Performance of k-NN classifier (k = 5) for predicting token redundancy

Metric

Accuracy Precision Recall

F1-score

Score 0.82

0.92

0.74 0.82

(description string)? Answer Yes if all
images match or relate to at least one
description, Maybe if only some match,
otherwise No."

Here, the fextual description can be either a single
lexical item or a complete textual prompt.

A.1.4 Evaluating Generated Textual
Descriptions.

We employ GPT-40 (OpenAl et al., 2024) to eval-
uate the textual interpretations produced by Patch-
scopes. We use the following prompt:

“In Yes, No and Maybe. Does every
image match the description: {Patch-
scopes_description} ? Answer Yes if all
images match or relate to the description,
Maybe if only some match, otherwise
No.”

A.1.5 Evaluating Relations Between Items.

We enhance our leakage validation by distinguish-
ing between cases where two lexical items ex-
hibiting semantic leakage are perceptually bound
together—for example, “old” and “man” in the
prompt “a portrait of an old man”—and cases
where they are not as “cone hat” and “eating” in
the prompt “A person searing a cone hat is eat-
ing” (see Fig. 6). To achieve this, we use a large
language model (LLM) as a judge. Specifically, we
use GPT-40 and employ the following prompt:

“In Yes or No: in this prompt: {in-
put_prompt}, are {item_1} and {item_2}
perceptually bound together?”

We then filter out all cases where the lexical items
are perceptually bound together and find that only
6.5% instances exhibit unintentional leakage.

A.1.6 Intended Item Evaluation

Foe each lexical-item, we manualy create two inter-
pretation - one in the intended interpretation in the
prompt, and another is a possible wrong interpre-
tation of the word in other contexts. For example,
given the prompt “A standing zebra to the right of a
city bus station”, the corrent interpretations would
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be “the animal zebra”, while the incorrect interpre-
tations would be “A zebra crossing”. We then ask
a VLM to evaluate the generated image, and asses
if the first or the latter interpretations exists in the
images.

To evaluate the model’s capacity for contextual
disambiguation, we manually define two interpreta-
tions for each lexical item in each prompt. The first
is the intended semantic meaning derived from the
prompt’s context, and the second is a alternative
interpretation, that is wrong in this context. For
instance, in the prompt “A standing zebra to the
right of a city bus station”, the intended meaning
of “zebra is the animal”, whereas the wrong inter-
pretation is a “zebra crossing”. Subsequently, a
VLM analyzes the generated image to determine if
it depicts the intended interpretation or the wrong
interpretation as we define it.

A.1.7 Resources

Our computational experiments involved inference
with four distinct text-to-image models: Flux-dev,
Flux-schnell, sdxI-turbo, and Sana. The parame-
ter sizes for these models are approximately 12
billion for Flux-dev and Flux-schnell, 3.1 billion
for sdxI-turbo, and a range of 0.6 to 4.8 billion for
the Sana models, with our experiments utilizing
a 1.6 billion parameter version. The total compu-
tational budget for these experiments is estimated
to be approximately 480 GPU hours. The com-
puting infrastructure consisted of a cluster of eight
NVIDIA A100 GPUs. This configuration provided
the necessary computational power for the large
number of inference tasks performed.

A.1.8 Use of AI Assistants.

We utilized Al assistants to support this research.
For coding the experiments, we used Microsoft’s
Copilot and Anthropic’s Claude 3; all generated
code was manually reviewed and validated by us
to ensure it aligned with our requirements. For the
paper, Google’s Gemini models (Pro and Flash)
were used to improve the writing and clarity. We
have carefully reviewed all content to ensure it
accurately reflects our intentions.



A.2 Data

DrawBench (Saharia et al., 2022): We include all
categories except for “misspelling”, “rare words”,
and “text”. Overall we extract 134 prompts from
DrawBench.

Parti Prompts (Yu et al., 2022a): We include
all categories except “Style & Format”, “Writing
& Symbols”, and “Arts”. Overall we extract 923
prompts from Parti Prompts. The dataset is released
under apache-2.0 license.

In total, we obtain 1,056 prompts.

Extended dataset of leakage prompts. Our aug-
mentation process incorporates two components.
First, we generate variations of existing prompts
from (Rassin et al., 2022) (e.g., modifying ’a gen-
tleman with a bow in the forest’ to a man wearing
a bow in the jungle’). Second, we introduce novel
prompts with potential semantic leakage. For these
prompts, we applied a one-lexical item change test
by generating an image from a similar prompt that
substitutes the affected or leaked item with an alter-
native term (e.g., replacing ’bishops’ with ’cardi-
nals’ or ’checkers’ in ’chess in ’2 bishops playing
chess’). This test ensures that minimal lexical mod-
ifications do not alter the intended semantic mean-
ing while producing a different image due to seman-
tic leakage from another item in the prompt (see
the first two columns in Fig. 8 for few visual exam-
ples). Together, these methods enrich the dataset
and provide a robust framework for analyzing se-
mantic leakage. The full list of prompts is available
in an anonymous Git repository.>

We split the data into training and validation sets
using an 80-20 ratio. A k-nearest neighbors (k-
NN) classifier with £ = 5 and Euclidean distance
as the similarity measure was then applied to pre-
dict token redundancy directly from the encoded
representations. The results on the evaluation set
are presented in Table 3. The high precision in-
dicates that, in practical settings, one can remove
tokens predicted as redundant with a high degree
of certainty that representative tokens will not be
inadvertently discarded.

A.3 Additional models
A.3.1 FLUX-Dev

In addition to our primary experiments with FLUX,
we repeated all analyses using the Flux-dev vari-
ant. The redundant versus representative token

3https ://anonymous. 4open.science/r/
TokenRole-3E19
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Figure 8: Examples from our semantic leakage method.
Left: standard generation of leakage contained prompt.
Second: generation using a one-lexical item change test
as part of the dataset creation (a minimal substitution
to verify that a slight lexical change yields a different
image). Third: image from the contextual represen-
tation (misinterpreted item). Forth: image from the
uncontextualized representation (correct interpretation).
Right: final generation after patching the correct, un-
contextualized representation into the prompt.

experiments yielded similar trends, with 55% of
tokens identified as representative and 45% as non-
representative—values closely matching those ob-
served with FLUX. Likewise, our inter-item flow
experiments confirmed that information flow oc-
curred in 11% of cases (and 3.1% miss intended
leakage), reinforcing the overall patterns reported
in the main text. Notably, while the aggregate
trends are consistent across models, the specific
lexical items resolved can differ between FLUX-
schnell and Flux-dev, indicating potential a slightly
different inner-lexicon (Kaplan et al., 2025). These
findings underscore the robustness of our approach
while highlighting model-dependent nuances in to-
ken representation and information flow dynamics.

A.3.2 SDXL-Turbo

Our analysis reveals that SDXL-Turbo, which uses
the CLIP text encoder, behaves markedly differ-
ently from FLUX, which relies on the encoder in
the encoder-decoder T5-XXL. In SDXL-Turbo, the
text encoder is a causal language model, meaning
each token’s encoding is influenced only by its pre-
ceding tokens during the encoding process.

We repeated our in-item representation experi-


https://anonymous.4open.science/r/TokenRole-3E19
https://anonymous.4open.science/r/TokenRole-3E19
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Figure 9: Images generated from individual subtokens
in SDXL-Turbo. We find that, in many cases, the repre-
sentation of an item is not clearly reflected in any of its
subtokens—for example, in the case of the token “skate-
board.” Another interesting observation is that the last
token of a lexical item often carries its representation,
as seen in the “square” token of “times square.” We also
observe that the EOT token incorporates information
from the full prompt.

ments using SDXL-Turbo. Our first observation is
that most generated images are either abstract or
unrelated to the intended lexical items. According
to our analysis, 55% of lexical items in SDXL-
Turbo lack any representative token (compared to
just 11% in FLUX). Moreover, when a represen-
tative token is present in CLIP, it is typically the
final token of the lexical item (see Fig. 9). This
is aligned with the unidirectional encoding of the
model.

Another phenomenon we observe—consistent
with CLIP’s training objective—is the unusually
dominant role of the end-of-sequence (EOS) token.
Images generated from the EOS token often en-
capsulate nearly the full semantic content of the
prompt. In our evaluation, 62% of EOS-generated
images matched the prompt ( compared to 73%
when using the full prompt). We believe this also
causes our intervention method to be less effective,
since when we interpret a single token, we patch
all other tokens, including the EOT token—which
usually contains a lot of information—with tokens
derived from an empty prompt (see Fig. 9).

A.3.3 Sana (Gemma-based encoder)

We also evaluate our methodology on the Sana
model (Xie et al., 2024b), which uses a Gemma-
based autoregressive language model as the text
encoder. These results help validate the generality
of our findings across architectures with differing
encoding strategies.

For in-item information flow, we observe that
Sana produces fewer multi-token lexical items due
to its larger vocabulary relative to T5 and CLIP. In
cases where items do consist of multiple tokens,
we find that only the last token typically acts as a
representative token—a behavior aligned with the
unidirectional nature of autoregressive encoders.
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In our cross-item information flow analysis, we
find that 17.45% of item pairs in Sana exhibit con-
textual information flow, compared to 10.45% in
FLUX. This increase likely stems from the one-
sided (forward-only) nature of Sana’s encoding.
For example, in the prompt “a black baseball hat
with a flame decal on it”, we find contextual in-
fluence such as “black baseball” affecting “hat”
and “flame” affecting “‘decal”, but not the reverse.
See Fig. 10 for illustrations.

Overall, while Sana shows a slightly higher rate
of contextual influence than FLUX, it preserves
many of the key structural insights found in our pri-
mary analysis—particularly the sparsity and loca-
tion of representative tokens. Unlike CLIP, which
encodes substantial information in the EOS token,
Sana lacks such artifacts, suggesting that EOS-
related effects are not fundamental to autoregres-
sive models more generally.

A.4 Inter-Item Information Flow Framework

To assess whether one lexical item encodes infor-
mation about others in the same prompt, we con-
duct the following experiment.

Given a prompt, we isolate each lexical item one
at a time. First, we encode the full prompt using
the text encoder. Then, for a given lexical item, we
apply our patching method (Section 2.1) to mask
the representations of all other tokens—Ileaving
only the contextualized representation of the target
item intact. Formally, for a lexical item with token
indices S C {1,..., N}, we construct a patched
sequence ?1, ...,y in which only the tokens in S
retain their original contextualized representations.
We then generate an image from this modified se-
quence, capturing what information is encoded in
the selected item’s contextualized form.

We repeat this process for the same item in an
uncontextualized setting: we encode and generate
an image using only that lexical item in isolation,
without the rest of the prompt. This allows us to
distinguish between information inherently present
in the item’s encoding and information introduced
by context.

To measure influence between items, we use
Qwen2-VL to check whether a second item y ap-
pears in the image generated from a first item z,
both in the contextualized and uncontextualized
versions. Influence is considered True if y appears
in the image generated from contextualized x, but
not from uncontextualized x. This comparison en-
sures that the observed presence of y is attributable



back  basebal  hat : " ful
prompt

Figure 10: Token-level image generation using Sana on the prompt “a black baseball hat with a flame decal on it”.
Representative information often resides in the last token of each item (e.g., “hat”, “decal”), consistent with Sana’s
causal encoding. Contextual influence is one-directional, with earlier tokens shaping later ones.
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Figure 11: Evaluating inter-item information flow: Our proposed framework to interpret the information
flow between lexical items in the prompt. For each lexical item, we generate an image from its contextual
representations (left), and from it’s uncontextualized representation (right), and analyze the generated images using
a VLM (middle). In this example, we interpret the item “pool” and assess whether it is influenced by the item
“table”. To do so, we ask a VLM whether the image generated from the token “pool” contains a “table”. To ensure
this is the result of information flow, and not a natural correlation between a pool and tables, we generate the item
“pool” without context (right-hand side), and verify that “table” is not present in this image. If this is the case, we
conclude that there was information flow from “table” to “pool”.

to contextual information flow during encoding, Dabhary et al., 2024). However, our findings sug-
rather than coincidental co-occurrence or inherent ~ gest that only a subset of these tokens contribute
correlation. meaningfully to the representation.

This setup enables us to detect breaches of lex- Yet, identifying representative tokens via image
ical segmentation—i.e., cases where one lexical  generation is computationally expensive. To ad-
item encodes visual information belonging to an-  dress this, we explore alternatives for estimating to-
other—quantifying interdependence across items  ken importance without image-level interventions.

within the prompt. First, we compute the character-level edit dis-

See Fig. 11 for an illustration of the procedure. tance between a lexical item (e.g., “giraffe”) and its
constituent tokens (e.g., “gir”, “a”, “ffe”’). We ob-
serve a negative correlation between edit distance
and token representativeness (Pearson correlation
Identifying which tokens are representative can im- f’f _0'44)’ suggesting thaF t.oken.s more orthog‘raph-
prove image generation, as demonstrated in Fig. 4 ically distant from the original item are less likely
(right). Moreover, many existing T2I methods op- o be representative. While informative, this signal
erate at the token level, typically treating all of a  alone is insufficient for accurate prediction.

lexical item’s tokens equally (Chefer et al., 2023a; Instead, we train a k-Nearest Neighbors (k=5)

A.5 Predicting Redundant Tokens Without
Image Generation
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classifier using Euclidean distance over the to-
ken representations to predict redundancy. Using
6,966 token instances (spanning 4,864 unique lex-
ical items), each labeled for whether the token
is representative according to a VLM, our clas-
sifier achieves 92% precision in identifying non-
representative tokens. This result highlights the
feasibility of lightweight approaches for filtering
redundant tokens without resorting to costly gener-
ation procedures. See Appendix A.1.2 for classifier
details.
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