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Abstract

Students’ academic performance is influenced001
by various demographic factors, with socioeco-002
nomic class being a prominently researched003
and debated factor. Computer Science re-004
search traditionally prioritizes computationally005
definable problems, yet challenges such as the006
scarcity of high-quality labeled data and ethical007
concerns surrounding the mining of personal008
information can pose barriers to exploring top-009
ics like the impact of SES on students’ educa-010
tion. Overcoming these barriers may involve011
automating the collection and annotation of012
high-quality language data from diverse social013
groups through human collaboration. There-014
fore, our focus is on gathering unstructured nar-015
ratives from Internet forums written by students016
with low socioeconomic status (SES) using ma-017
chine learning models and human insights. We018
developed a hybrid data collection model that019
semi-automatically retrieved narratives from020
the Reddit website and created a dataset five021
times larger than the seed dataset. Additionally,022
we compared the performance of traditional023
ML models with recent large language mod-024
els (LLMs) in classifying narratives written by025
low-SES students, and analyzed the collected026
data to extract valuable insights into the socioe-027
conomic challenges these students encounter028
and the solutions they pursue.029

1 Introduction030

Low socioeconomic status (SES) refers to a dis-031

advantaged position in society determined by fac-032

tors such as income, education, and occupation.033

Individuals with low SES typically have limited034

financial resources (Scott-Clayton, 2015), lower035

educational attainment (Titus, 2006), and reduced036

access to quality healthcare and academic oppor-037

tunities (Adler and Newman, 2017). These dis-038

parities profoundly impact students’ educational039

experiences, shaping their academic performance,040

career prospects, and long-term well-being. Stu-041

dents from low socioeconomic backgrounds often042

struggle with financial barriers, making it difficult 043

to afford tuition and educational resources (Brown 044

and Carr, 2013). They also have limited access to 045

academic support and technology, which can im- 046

pede their academic success. Additionally, these 047

students may experience social isolation and psy- 048

chological stress due to the pressure of competing 049

with peers from more privileged backgrounds (Lee 050

et al., 2008). 051

Research on students from low socioeconomic 052

backgrounds is crucial for identifying and address- 053

ing the unique challenges they face in education. 054

Understanding these struggles can inform policies 055

and interventions that promote equity, ensuring that 056

students receive the necessary support to succeed. 057

Despite this importance, NLP research has largely 058

overlooked socioeconomic status. A survey by 059

(Curry et al., 2024) found only 20 papers in the 060

ACL Anthology explicitly mentioning SES, high- 061

lighting a substantial gap in computational research. 062

This lack of attention limits our understanding of 063

how SES affects student life and contributes to 064

the development of educational technologies that 065

may not adequately address the needs of low-SES 066

students, potentially widening the digital divide 067

(Kelbessa et al., 2024). 068

A major challenge in computational research on 069

low-SES students is the scarcity of high-quality 070

labeled data. Most existing datasets rely on struc- 071

tured survey responses, which fail to fully capture 072

the complexity of students’ experiences. To address 073

this, we analyze a dataset published by (Kelbessa 074

et al., 2024), containing 74 narratives written by 075

low-SES students on Reddit. These narratives of- 076

fer valuable firsthand insights into the struggles 077

and coping mechanisms of low-SES students, mak- 078

ing them an important resource for NLP research. 079

However, as the dataset was annotated by only two 080

individuals and lacks gold-standard validation, it 081

presents both an opportunity and a challenge for 082

refinement and further analysis. 083
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The remainder of this paper is structured as fol-084

lows: In §2, we review previous research on085

SES and NLP. In §3, we describe our dataset, in-086

cluding its source and key attributes. In §4, we087

present our data evaluation and analysis methodol-088

ogy, which involves assessing data quality, filter-089

ing high-quality narratives, and applying linguistic090

metrics, sentiment analysis, and topic modeling.091

Finally, we summarize our findings (§5), discuss092

our key contributions (§6), explore the ethical and093

societal implications of our research (§7).094

2 Related Work095

Socioeconomic status (SES) influences various as-096

pects of life, including education, health, and social097

mobility. Understanding SES disparities requires098

high-quality datasets that capture linguistic, behav-099

ioral, and demographic patterns. However, acquir-100

ing such datasets poses significant challenges, in-101

cluding ethical concerns, accessibility restrictions,102

and issues of representativeness.103

Several datasets have been developed for SES re-104

search, particularly leveraging online sources and105

social media platforms. Twitter has been widely106

used due to its accessibility and large user base. For107

instance, (Lampos et al., 2014) used UK Twitter108

data to analyze how user-generated content predicts109

SES. Similarly, (Mentink, 2016) collected a dataset110

of 2.5 million Dutch Twitter users to infer their111

socioeconomic backgrounds. While Twitter data112

provides valuable large-scale insights, its brevity113

and informal nature limit its usefulness for in-depth114

socioeconomic analysis.115

Beyond social media, narrative-based data pro-116

vides rich contextual insights into SES struggles.117

(Kelbessa et al., 2024) compiled a dataset of 74118

SES-related narratives as a foundation for further119

research. Unlike social media posts, these narra-120

tives offer longer, structured reflections on lived121

experiences, making them more informative for un-122

derstanding the personal and systemic challenges123

faced by individuals from low-SES backgrounds.124

Despite advancements in SES-related data collec-125

tion, several challenges persist. Ethical concerns126

arise when gathering data from social media, as it127

raises privacy and consent issues (Stieglitz et al.,128

2018). Data accessibility is another major barrier,129

as many relevant datasets are either proprietary130

or require restrictive permissions. Additionally,131

existing SES datasets often overrepresent specific132

demographics, reducing their generalizability and133

limiting their applicability across diverse popula- 134

tions. 135

In this work, we aim to address these challenges 136

by expanding SES-related narrative datasets with a 137

focus on depth and representativeness. Our dataset 138

mitigates the limitations of short-form social media 139

text by collecting and analyzing longer, structured 140

narratives. This work contributes to the growing 141

body of research on SES in computational linguis- 142

tics and provides a valuable resource for future 143

studies examining socioeconomic barriers in edu- 144

cation. 145

3 Data 146

Unlabeled Reddit Posts: This data is publicly 147

available and was collected on 2019 for the 148

ThinkPlayHack event hosted in July 2019 in Taos 149

for Dr. Jo Guldi (Southern Methodist University 150

(SMU), 2019). It contains over 1 terabyte of Red- 151

dit posts published from 2005 to 2013. To manage 152

the extensive data, measured in terabytes, we ini- 153

tially selected posts exclusively from subreddits 154

associated with low-SES, such as ‘college’, ‘Apply- 155

ingToCollege’, ‘depression’, ‘askReddit’, ‘broke’, 156

‘financialaid’, and ‘fafsa’. After filtering for rel- 157

evant subreddits and eliminating duplicates, the 158

resulting dataset comprised 799,032 Reddit posts 159

(total 106859972 words) with 7 average sentences 160

and 134 average words per post. 161

Labeled Reddit Posts: (Kelbessa et al., 2024) gath- 162

ered 74 low-SES narratives from Reddit. To ensure 163

the validity of these narratives as data points, the 164

following criteria were applied: 1) The narratives 165

needed to shed light on the experience of being a 166

low-SES student and attending higher education, 167

focusing on financial, psychological, physical, or 168

social struggles. 2) The narratives should describe 169

the challenges faced by individuals with low-SES 170

backgrounds, their efforts to improve their situa- 171

tion, and the outcomes of those efforts. 3) Narra- 172

tives that primarily offered general commentary, 173

described a condition, or provided advice were ex- 174

cluded, as they did not qualify as valid data points. 175

Each narrative had to meet at least one of the first 176

two criteria and also satisfy the third qualification 177

to be included in the dataset. The narratives were 178

doubly annotated by two annotators to ensure the 179

consistency and quality of the data. To ensure the 180

quality of this publicly available data (Kelbessa 181

et al., 2024), we thoroughly applied the above cri- 182

teria on the 74 narratives and identified 64 of them 183
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met the criteria (background of low-SES).184

To process 64 non-low-SES data points, we applied185

semantic textual similarity to determine which186

posts in the unlabeled Reddit Posts (mentioned187

above) had the weakest correlation with the ground188

truth 64 low-SES narratives. We explored sev-189

eral similarity measures, such as the Negative Eu-190

clidean Distance, Negative Manhattan Distance,191

and Cosine Similarity, using the top-ranked Sen-192

tence Transformer model from the Massive Text193

Embedding Benchmark (Muennighoff et al., 2022)194

leaderboard on Hugging Face. We identified the195

64 posts and manually evaluated them that had the196

lowest similarity to the ground truth data points,197

treating these as the non-low-SES ground truth. An198

example for illustration is provided in the appendix199

A.1. The final dataset comprised 64 non-low-SES200

Reddit posts with 15 average sentences and 299201

average words per post.202

4 Empirical Study203

We started with the labeled dataset of 128 Reddit204

posts, consisting of 64 narratives from low-SES205

students and 64 from non-low-SES students. Over206

the course of three iterations, we curated and ex-207

panded this dataset, ultimately building a larger208

collection of narratives. Our primary goal is to col-209

lect enough data for future training and automation210

of the model. In each iteration, we added narra-211

tives in the training data that are newly labeled in212

the previous iteration as low-SES and then try to213

label the remaining unlabeled narratives. Every214

iteration followed a three-step process: first, we215

applied traditional binary ML classifiers and LLMs216

to categorize the unlabeled Reddit posts as either217

low-SES or non-low-SES; second, we used clus-218

tering techniques to identify and remove outliers219

from the dataset. Third, we manually annotated220

the narratives to perform the final evaluation. The221

numbers of the resulted labeled narratives at each222

step are shown at Table 2.223

4.1 Step 1: Classification224

We evaluated the performance of 22 traditional ML225

models and LLMs to distinguish between low-SES226

and non-low-SES texts. All the models we used227

are from scikit-learn (Pedregosa et al., 2011) and228

Hugging Face Transformers (Wolf et al., 2020).229

The evaluation followed a 5-fold cross-validation230

approach, with 70% of the dataset allocated for231

training, 15% for validation, and 15% for reporting232

the results. We conducted our experiments over 233

three iterations, each with increasing complexity. 234

In the first iteration, the dataset consisted of 64 235

low-SES narratives and 64 non-low-SES narratives, 236

which were easily separable. This was due to our 237

careful selection of the non-low-SES narratives, en- 238

suring they were clearly distinguishable from the 239

low-SES narratives. By the second iteration, the 240

dataset had nearly doubled in size, and the classi- 241

fication task became more challenging. This time, 242

the non-low-SES narratives were selected from the 243

false positives of the first iteration, resulting in less 244

clear separation between the classes. In the third 245

iteration, the challenge intensified further as the 246

dataset again doubled, with non-low-SES narra- 247

tives chosen from the false positives of the second 248

iteration. Consequently, the classes were signifi- 249

cantly harder to separate, reflecting the increasing 250

difficulty of the classification task. To address these 251

increasingly complex classification tasks, we uti- 252

lized a variety of fine-tuned pre-trained language 253

models, models with few-shot capabilities, and tra- 254

ditional ML models. The overall results in three 255

different iterations are shown at Table 1 and de- 256

tailed parameters for all models are provided in 257

Table 3 in Section A.2. 258

The Traditional models included Random Forest 259

(RF), Multinomial Naive Bayes (MNB), Support 260

Vector Machine (SVM), Logistic Regression (LR), 261

and Gradient Boosting (XGBoost). Overall, MNB, 262

SVM, and LR demonstrated effective performance 263

across the iterations, while RF and XGBoost strug- 264

gled, particularly in the more challenging contexts. 265

The fine-tuned pre-trained language models in- 266

cluded Robustly Optimized BERT (RoBERTa), Ro- 267

bustly Optimized BERT-Large (RoBERTa-Large), 268

Decoding-Enhanced BERT (DeBERTa), Efficiently 269

Learning an Encoder that Classifies Token Re- 270

placements Accurately (ELECTRA), A Lite BERT 271

(ALBERT), eXtreme Language Model (XLNet), 272

Text-to-Text Transfer Transformer (T5), Distilled 273

BERT (DistilBERT), and Bidirectional Encoder 274

Representations from Transformers (BERT). Over- 275

all, RoBERTa, RoBERTa-Large, and ELECTRA 276

demonstrated strong and consistent performance 277

across iterations, while ALBERT and XLNet 278

had difficulty handling the increasing complex- 279

ity of the task. The few-shot models included 280

Open Pre-trained Transformer (OPT-13B), Claudia, 281

LLM Meta AI (LLaMA-7B), and LLM Meta AI 282

(LLaMA-1.3B). Few-shot models were not as ef- 283
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Model 1st iteration 2nd iteration 3rd iteration Model 1st iteration 2nd iteration 3rd iteration

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

RF 0.55 0.55 0.54 0.74 0.74 0.74 0.61 0.61 0.61 BERT 0.71 0.70 0.70 0.71 0.69 0.68 0.56 0.56 0.56
MNB 0.81 0.70 0.67 0.79 0.76 0.75 0.65 0.63 0.62 OPT-13B few 0.50 0.50 0.40 0.52 0.52 0.52 0.51 0.50 0.49
SVM 0.60 0.60 0.60 0.87 0.87 0.87 0.60 0.60 0.60 Claudia few 0.60 0.55 0.49 0.49 0.50 0.47 0.50 0.50 0.46
LR 0.60 0.60 0.60 0.87 0.87 0.87 0.64 0.64 0.64 LLamA-7B few 0.34 0.35 0.34 0.69 0.64 0.66 0.47 0.48 0.46
XGBoost 0.66 0.65 0.64 0.74 0.74 0.74 0.55 0.54 0.54 LLaMA-1.3B few 0.50 0.50 0.45 0.38 0.41 0.38 0.55 0.54 0.53
RoBERTa 0.75 0.75 0.75 0.76 0.76 0.76 0.73 0.67 0.65 LoRA DistillGPT 0.25 0.50 0.33 0.27 0.52 0.35 0.25 0.50 0.33
RoBERTa-large 0.75 0.75 0.75 0.74 0.74 0.74 0.72 0.72 0.72 LoRA LLaMA-1.3B 0.25 0.50 0.33 0.30 0.41 0.32 0.25 0.50 0.33
DeBERTa 0.77 0.75 0.74 0.74 0.74 0.74 0.56 0.55 0.55 LoRA GPT-2 0.25 0.50 0.33 0.27 0.52 0.35 0.25 0.50 0.33
ELECTRA 0.77 0.75 0.74 0.83 0.80 0.79 0.59 0.56 0.53 bart-large-mnli Zero 0.80 0.80 0.80 0.22 0.43 0.29 0.46 0.46 0.46
ALBERT 0.66 0.65 0.64 0.65 0.65 0.65 0.55 0.55 0.55 DistilBert 0.75 0.75 0.75 0.77 0.74 0.74 0.63 0.62 0.62
XLNet 0.60 0.55 0.49 0.63 0.61 0.60 0.66 0.65 0.65 T5 0.50 0.50 0.48 0.75 0.72 0.72 0.55 0.55 0.55

Table 1: Comparison of average Precision (P), Recall (R), and F1 scores for both classes across three iterations for various classification models.

Iteration
No.

Unlabeled
Texts

Labeled
(Classifier)

Labeled
(Cluster)

Labeled
(Human)

Iteration 1 799,032 13,635 289 110
Iteration 2 798,743 390 381 167
Iteration 3 798,362 5195 444 121

Table 2: Summary of the annotated narratives at three different steps- Classifi-
cation, Clustering, and Human Annotation.

fective in distinguishing between increasingly sim-284

ilar narratives as the dataset complexity grew. The285

LoRA fine-tuning models included Distilled Gener-286

ative Pre-trained Transformer (DistillGPT), LLM287

Meta AI (LLaMA-7B), and Generative Pre-trained288

Transformer (GPT-2). The results suggest that the289

LoRA fine-tuning models were not well-suited for290

the increasing complexity of the classification task,291

possibly due to their limited adaptation to more292

challenging data. The zero-shot model used was293

bart-large-mnli Zero (Yin et al., 2019). The sharp294

decline in performance in the second and third it-295

erations suggests that the zero-shot model strug-296

gled to handle the increasing similarity between297

the low-SES and non-low-SES texts, as it lacked298

the fine-tuning capabilities of other models.299

In the first iteration, the BART-large-mnli zero-shot300

model showed superior performance in terms of301

balanced metrics. We applied a confidence thresh-302

old of 0.7, meaning a text was classified as low-303

SES only if the model predicted it with confidence304

greater than 0.7. As a result, this model filtered the305

data, yielding 13,635 low-SES texts out of 799,032306

unlabelled texts. In the second iteration, we em-307

ployed an ensemble approach using SVM and LR,308

the two models that perform best in the first phase.309

Both models were trained separately and combined310

to improve classification accuracy. The SVM pro-311

vided decision scores, and LR produced class prob-312

abilities, with a confidence threshold of 0.7 applied313

to both models. This approach ensured that a text314

was classified as low-SES only if both classifiers315

predicted low-SES with high confidence, resulting 316

in 390 low-SES texts. In the third iteration, we 317

applied RoBERTa-large, the best performer in this 318

phase. A confidence threshold of 0.7 was used, 319

yielding 5,195 low-SES texts out of 799,032 unla- 320

belled texts. 321

Traditional ML Models Versus LLMs: In it- 322

eration 1, traditional models, such as SVM and 323

LR, achieved balanced performance, with macro- 324

averaged F1 scores of 0.60. These models demon- 325

strated robust precision and recall across both 326

classes, although they did not outperform more ad- 327

vanced models. XGBoost performed slightly better, 328

with an F1 score of 0.66, particularly excelling in 329

classifying non-low-SES texts. 330

Among LLMs, RoBERTa achieved an F1 score of 331

0.75, showcasing strong performance with a bal- 332

anced precision and recall across both SES classes. 333

Similarly, DeBERTa and ELECTRA performed 334

well, both achieving F1 scores of 0.74. These 335

models demonstrated better balance than some tra- 336

ditional models in classifying both low-SES and 337

non-low-SES texts. However, other LLMs, such as 338

ALBERT and XLNet, underperformed compared 339

to their counterparts, with F1 scores of 0.64 and 340

0.60, respectively. XLNet particularly struggled 341

with the low-SES class, achieving an F1 score of 342

0.31, highlighting its difficulty in accurately identi- 343

fying low-SES narratives. Interestingly, zero-shot 344

models like bart-large-mnli demonstrated strong 345

performance, with an F1 score of 0.80, matching 346

the best-performing models in this iteration. In con- 347

trast, few-shot models, such as LoRA Fine-Tuned 348

LLaMA and DistilGPT, performed poorly, indi- 349

cating that few-shot learning in this context was 350

less effective than fine-tuning. Detailed results are 351

shown in section A.3 at Table 4. 352

In iteration 2, the comparison between traditional 353
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ML and LLMs highlights the distinct strengths and354

weaknesses of each group. Traditional models,355

such as SVM and LR, outperformed most LLMs,356

achieving the highest F1 scores of 0.87 across both357

low-SES and non-low-SES categories. These mod-358

els demonstrated strong precision and recall, partic-359

ularly in the non-low-SES class, underscoring their360

robustness in effectively balancing both classes.361

For example, SVM achieved a precision of 0.88362

and recall of 0.85 for low-SES, while LR displayed363

a precision of 0.91 for low-SES and a recall of 0.93364

for non-low-SES, making them reliable in these365

classification tasks.366

In contrast, fine-tuned LLMs, such as RoBERTa367

and ELECTRA, also performed well but fell368

slightly behind the top traditional models.369

RoBERTa achieved a weighted F1 score of 0.76,370

showing a strong balance between precision (0.74)371

and recall (0.82) for the non-low-SES class. How-372

ever, its recall for low-SES (0.69) was lower com-373

pared to traditional models, meaning it missed374

more low-SES texts. ELECTRA achieved a higher375

F1 score of 0.79 and performed exceptionally well376

in identifying non-low-SES texts, with a precision377

of 0.73 and recall of 0.96. Nevertheless, ELECTRA378

struggled with low-SES classification, showing a379

precision of 0.94 but a much lower recall of 0.62,380

indicating it missed more low-SES examples. De-381

BERTa displayed performance similar to traditional382

models like RF and XGBoost, with an F1 score of383

0.74. Its precision and recall were balanced across384

both classes but did not achieve the standout per-385

formance of models like RoBERTa or ELECTRA.386

Other LLMs, including ALBERT and XLNet, sig-387

nificantly underperformed compared to both tra-388

ditional models and other LLMs, with F1 scores389

of 0.65 and 0.60, respectively. XLNet particularly390

struggled with the non-low-SES class, achieving391

a recall of only 0.46, indicating significant diffi-392

culty in identifying non-low-SES texts accurately.393

ALBERT exhibited more balanced but lower per-394

formance across both classes.395

These results for iteration 2 indicate that while396

LLMs have shown potential—particularly models397

like RoBERTa and ELECTRA—traditional models398

such as SVM and LR remain more reliable for tasks399

involving both low-SES and non-low-SES classifi-400

cation. Their superior balance between precision401

and recall across both categories demonstrates their402

robustness, whereas LLMs, though effective in cer-403

tain areas such as precision for non-low-SES, may404

require further fine-tuning to achieve the same com- 405

prehensive balance seen in traditional models. De- 406

tailed results are shown in section A.3 at Table 5. 407

A further evaluation of traditional ML models and 408

LLMs reveals interesting trends in model perfor- 409

mance as the dataset complexity increases. While 410

traditional models like SVM and LR continued to 411

show stability, their dominance observed in ear- 412

lier iterations has now been matched or exceeded 413

by fine-tuned LLMs in certain aspects. Among 414

the traditional models, LR demonstrated consis- 415

tency, achieving an average 0.64 F1 across both 416

SES classes. While it excelled in the non-low-SES 417

class, with a precision of 0.84 and recall of 0.93, it 418

showed less robustness in the low-SES class, with 419

precision and recall hovering around 0.64. Simi- 420

larly, RF maintained stable performance, with an 421

F1 score of 0.61, although it underperformed com- 422

pared to LR, particularly in the non-low-SES class 423

(precision: 0.63, recall: 0.53). 424

Fine-tuned LLMs displayed notable improvements. 425

RoBERTa-large emerged as one of the top perform- 426

ers, achieving the highest average F1 score of 0.72 427

across both classes, surpassing traditional models 428

like SVM and LR. This model exhibited a well- 429

balanced performance with precision, recall, and 430

F1 scores closely aligned (precision: 0.70, recall: 431

0.76 for non-low-SES; precision: 0.74, recall: 0.67 432

for low-SES), indicating its capability to handle 433

both classes. DeBERTa also showcased a solid per- 434

formance, with an average F1 of 0.55, though it 435

struggled with the low-SES class (F1: 0.49) com- 436

pared to RoBERTa-large. Similarly, ELECTRA 437

achieved an average F1 of 0.53 but encountered 438

challenges in classifying low-SES examples, where 439

recall dropped to 0.31. These results suggest that 440

while LLMs like RoBERTa-large are emerging as 441

strong contenders, certain models such as ELEC- 442

TRA and DeBERTa still require fine-tuning to han- 443

dle the low-SES class. Few-shot models, such as 444

Claudia and LLaMA-1.3B, presented mixed results. 445

Claudia, in its few-shot configuration, achieved an 446

average F1 of 0.46, highlighting difficulties in iden- 447

tifying low-SES narratives (F1: 0.32). On the other 448

hand, LLaMA-1.3B fared slightly better, with an 449

average F1 score of 0.53, performing consistently 450

across both SES classes. However, neither of these 451

models surpassed fine-tuned LLMs or traditional 452

models in overall performance. Fine-tuned models 453

with LoRA (Low-Rank Adaptation), such as LoRA 454

GPT-2 and LoRA LLaMA-1.3B, delivered uneven 455
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outcomes. Both models demonstrated high preci-456

sion for the non-low-SES class (0.50) but struggled457

significantly with the low-SES class, where they458

failed to capture any true positive examples (recall:459

0.00, F1: 0.00).460

Iteration 3 reveals a growing strength of fine-tuned461

LLMs, particularly RoBERTa-large, which outper-462

forms traditional models. This model’s balanced463

precision and recall across SES classes emphasize464

its versatility. Models like DeBERTa and ELEC-465

TRA show that while LLMs are improving, they466

can still struggle with the low-SES class. Few-467

shot models and LoRA fine-tuned models exhibited468

less consistent results, often failing to achieve the469

comprehensive balance required for SES classifica-470

tion. This highlights the continued importance of471

fully fine-tuning LLMs for this task, as parameter-472

efficient models and few-shot learning may not yet473

match the robustness of more thoroughly fine-tuned474

counterparts like RoBERTa-large. Detailed results475

are shown in section A.3 at Table 6.476

4.2 Step 2: Clustering477

Once the classification step was completed, we478

used clustering to group similar texts and remove479

outliers. In the first iteration, we analyzed 13,635480

posts identified as low-SES by the classifier. To481

compare the similarity between the ground truth482

samples and the collected posts, we applied PCA483

for dimensionality reduction using a tf-idf Vector-484

izer with a maximum of 1,000 features, visualizing485

the clusters in 2D space. Some outliers were de-486

tected in the ground truth data. These outliers were487

removed by applying the interquartile range (IQR)488

method, reducing the dataset to 55 points (Fig. 1a).489

Next, we computed cosine similarity between the490

normalized vectors of the collected data and the491

outlier-free ground truth data. A threshold of 0.9492

was set to classify data points as similar or dis-493

similar. This process revealed that 289 from the494

collected data points met or exceeded the total sim-495

ilarity score(where the summation of the classified496

data is similar to ground truth data points) of 35,497

940 data points had a similarity score of at least 34,498

and 10,821 data points had a score of 33 or less.499

In the second iteration, after applying PCA to the500

collected data and the ground truth data, visualizing501

the results in a 2D space (see Fig. 1b). The col-502

lected data points and ground truth data were plot-503

ted to observe clustering patterns, allowing us to504

assess the similarity between the two datasets. Out-505

liers were removed using the Interquartile Range 506

(IQR) method, where values outside 1.5 times the 507

IQR from the first (Q1) and third quartiles (Q3) 508

were identified and excluded from both datasets. 509

This process reduced the total number of collected 510

data points from 390 to 381. 511

In the Third iteration, we analyzed 5195 posts iden- 512

tified as low-SES. To compare the similarity be- 513

tween the ground truth samples and the collected 514

posts, we applied PCA for dimensionality reduc- 515

tion using a tf-idf Vectorizer with a maximum of 516

1,000 features, visualizing the clusters in 2D space. 517

Some outliers were detected in the ground truth 518

data. These outliers were removed by applying 519

the interquartile range (IQR) method, reducing the 520

dataset to 331 points (Figure 1c). Next, we com- 521

puted cosine similarity between the normalized 522

vectors of the collected data and the outlier-free 523

ground truth data. We used the same threshold of 524

0.9 to classify data points as similar or dissimilar. 525

This process revealed that 121 from the collected 526

data points met or exceeded the total similarity 527

score of 86, 260 data points with similarity score 528

of at least 85, and 444 data points had a score of 84 529

or less. 530

In iteration 1, the collected data predominantly cov- 531

ers the central portion of the ground truth spectrum, 532

indicating that the initial classification managed to 533

capture a concentrated part of the low-SES class but 534

left much of the outer spectrum of the ground truth 535

unexplored. Moving to iteration 2, the collected 536

data begins to diverge, covering less of the ground 537

truth spectrum compared to Iteration 1. This sug- 538

gests that the classification in this iteration was 539

more selective but also less comprehensive in cap- 540

turing the full range of the low-SES data. Finally, 541

in iteration 3, we see a significant improvement, 542

with the collected data covering over 70% of the 543

ground truth spectrum. This indicates a better align- 544

ment between the collected and ground truth data, 545

suggesting that the classification in this iteration 546

successfully captured a much broader range of the 547

ground truth low-SES examples, resulting in a more 548

balanced and comprehensive dataset. 549

5 Data Annotation 550

Human Annotation: The first three authors fol- 551

lowed the criteria described in Section 3 to annotate 552

the 289 texts from the clustering step at iteration 1 553

and getting the data points with a similarity score 554

of at least 35. This process resulted in 110 texts 555
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(a) Iteration 1 Clustering Without Outliers

(b) Iteration 2 Clustering Without Outliers

(c) Iteration 3 Clustering Without Outliers

Figure 1: Clustering of Ground Truth and Collected Data Using PCA Across
Three Iterations Without Outliers

being annotated as low-SES out of 289. In the sec-556

ond iteration, we annotated 381 texts, of which 167557

were classified as low-SES and in the third itera-558

tion, we annotated 121 texts that has a similarity559

score of at least 86, we got 46 low-SES Text.560

In iteration 1, most of the texts annotated as not561

low-SES contained general advice and lacked the562

background indicative of being from a low-SES563

perspective. These texts often focused on provid-564

ing broad recommendations rather than sharing565

personal experiences tied to financial difficulties.566

The absence of key indicators, such as struggles567

with income, debt, or reliance on social services,568

made it clear that these individuals did not face569

the same economic constraints typical of low-SES570

situations. As a result, their narratives were more571

aligned with middle or higher SES backgrounds,572

where financial stability was not a central concern.573

In iteration 2, as the task became more challeng-574

ing, some of the texts annotated as not low-SES575

included background information and challenges576

but lacked personal experience that would vali-577

date them as low-SES. Upon further analysis, clear578

patterns emerged from the texts classified as low-579

SES. Many highlighted the need for financial aid, 580

with individuals working multiple jobs or living in 581

single-parent households with little to no income. 582

Debt, particularly from educational loans or basic 583

expenses, was a recurring theme, as was the lack of 584

family support, indicating broader financial insta- 585

bility. These socio-economic markers—multiple 586

jobs, debt, and minimal family support—are cru- 587

cial for refining the model to better detect low-SES 588

cases in future iterations. In iteration 3, after ex- 589

tracting 277 low-SES texts, some of the texts an- 590

notated as not low-SES described challenges and 591

solutions but appeared to originate from individuals 592

of medium SES rather than low-SES. We noticed 593

that some texts annotated as not low-SES described 594

challenges like juggling multiple jobs or balancing 595

full-time work and studies. These individuals of- 596

ten discussed FAFSA loans or supporting a family 597

due to a relative’s disability. However, many of 598

these cases appeared to stem from medium SES 599

backgrounds, as they had access to basic loans or 600

even an inheritance. This suggests that while these 601

individuals faced financial difficulties, their situa- 602

tions were distinct from those typically associated 603

with low-SES, highlighting the nuanced differences 604

between SES classifications. 605

LLM Annotation: We used a pre-trained LLaMA 606

model with 7 billion parameters (Touvron et al., 607

2023) to annotate the dataset of low-SES student 608

narratives. The model was configured with a maxi- 609

mum of 200 tokens, a temperature of 0.5 for less 610

randomness, and deterministic sampling. The goal 611

was to extract information about students’ back- 612

ground, struggles, and solutions related to finan- 613

cial, psychological, physical, or social challenges. 614

Comprehensive descriptions of the prompts are pro- 615

vided in Section A.4. Although LLM was effective, 616

the extraction of structured data was a challenge. 617

The model occasionally produced extraneous text 618

or improperly formatted outputs, requiring post- 619

processing. 620

For visualization, we applied Principal Component 621

Analysis (PCA) to reduce high-dimensional sen- 622

tence embeddings on extracted background infor- 623

mation from ground truth and collected datasets for 624

visualization. K-means clustering was then used to 625

group semantically similar sentences, identifying 626

key thematic clusters. The resulting scatter plot 627

(Figure 2) shows how the collected data expands 628

the thematic coverage by displaying cluster distri- 629

butions for both datasets. Collected data cluster 0 630
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(Work Struggles) shows an expansion of themes631

around work experience and internships, academic632

support systems, and mental health or emotional633

struggles, which are less represented in the original634

data. Data cluster 1 (Family Dynamics) has more635

diverse and specific family backgrounds, strug-636

gles with independence and support, and impact637

of wider social and economic systems. Data clus-638

ter 2 (Mental Health) introduces more detailed re-639

flections on emotional struggles and mental health640

challenges. Data cluster 3 (Societal Challenges)641

significantly enriches the thematic representation642

of challenges faced by low-SES students, particu-643

larly by introducing broader societal and personal644

insights that were underrepresented in the original645

dataset. Data cluster 4 (Systemic Critiques) reflects646

more detailed critiques of systemic issues affecting647

students, such as the cost of education, the student648

debt crisis, and the unrealistic promises of higher649

education as a golden ticket to success.650

Figure 2: Ground Truth and Collected Data Clusters of Background Information

The final dataset began with a seed of 64 data651

points and, through the application of the proposed652

methodology, expanded to include 323 new data653

points. Both the ground truth and collected datasets654

were processed using prompt engineering with the655

LLaMA model to extract background information,656

struggles during higher education, and solutions657

students devised to improve their situations. While658

some data points have missing background, strug-659

gle, or solution information due to limitations in660

LLM extraction, we are actively working on re-661

fining the dataset through a rigorous gold-standard662

validation process. Additionally, we performed sen-663

timent analysis on the entire text of both datasets664

using a sentiment fine-tuned model (Camacho-665

collados et al.). In the ground truth dataset, the666

sentiment distribution consisted of 10 positive, 29667

neutral, and 25 negative texts. For the collected668

data, the distribution shifted to 37 positive, 138669

neutral, and 148 negative texts. This significant670

increase in both neutral and negative sentiments in671

the collected dataset provides a broader scope for672

future exploration of the emotional landscape of 673

low-SES students. 674

6 Contributions 675

First, we developed a dataset of unstructured narra- 676

tives from low-SES students by semi-automatically 677

collecting and expanding data from Reddit, produc- 678

ing a dataset five times larger than the initial seed. 679

We will make our code and data public for the com- 680

munity. Second, we designed a hybrid model that 681

combines ML and human insights to classify low- 682

SES student narratives, comparing the performance 683

of traditional ML models with recent LLMs. Third, 684

given the challenges associated with data collec- 685

tion in this underexplored area, our work paves the 686

way for fully automating this process, encouraging 687

future research to focus on the educational barriers 688

faced by low-SES students. 689

7 Ethical and Societal Impact 690

First, while we strive for fairness, it is challenging 691

to ensure equal representation across geographic 692

regions and genders in our dataset. This could 693

lead to unintentional biases that affect the results 694

and interpretations of our work. Second, although 695

we will release the model under the appropriate 696

license to ensure compliance with legal and ethical 697

standards, there remains a risk of misuse. Specifi- 698

cally, the model could be used to classify low-SES 699

individuals from publicly available narratives, po- 700

tentially exposing them to harmful activities such 701

as discrimination or exploitation. To mitigate this, 702

we will enforce user agreements that explicitly pro- 703

hibit harmful uses. Finally, although the data we 704

collected is anonymous, it was sourced from public 705

online forums, and we, as authors, cannot edit or 706

delete this data once retrieved. This raises privacy 707

concerns, as individuals may not have anticipated 708

their posts being used for research purposes, even 709

in an anonymized form. Additionally, although the 710

narratives are public and anonymous, we still make 711

sure we have IRB exempt status before publishing 712

our collected narratives. Despite these concerns, 713

we believe our work will have a positive societal 714

impact. By providing a deeper understanding of the 715

challenges faced by low-SES students, our findings 716

could inform educational policies and initiatives 717

aimed at addressing socioeconomic disparities. Ul- 718

timately, our research could contribute to greater 719

equity and inclusion for marginalized communities. 720
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A Appendix800

A.1 Data801

You need to buy textbooks or find PDFs. Talk to your faculty adviser if you ever have questions, and make
sure you’re talking to the general university adviser too. Welcome, if you’ve ever been to the bank. Some
teachers might inflate grades, but in the end, don’t skip class or slack off on homework. Stop studying for
exams the night before—it’s a terrible habit. Get an internship as quickly as possible, and try to have a job
lined up before graduation. Well, go to the career center and make friends with people who are getting
jobs. Put together a serious resume and cover letter as soon as you can. No one is going to be impressed
with fancy colors or formatting in the professional world. The career center can help you critique them for
free. You’re also going to get wrecked by student loans in a few years, so prepare wisely unless you’re
Richie Rich.

802

A.2 Classification803

Model Parameter values

RF n_estimators = 100, random_state = 46. Random Forest model using 100 trees to ensure a balanced performance.

MNB Default parameters, suitable for text data with TF-IDF representation. The Multinomial Naive Bayes assumes feature independence
and is efficient for large-scale text data.

SVM kernel = linear, probability = True, random_state = 46. A linear kernel is efficient for text classification, with probability estimates
enabled for evaluation purposes.

LR max_iter = 500, random_state = 46. LR with a limit on the number of iterations to ensure convergence.

BERT Model = bert-base-uncased, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARN-
ING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification with early stopping, patience = 8.

DistilBERT Model = distilbert-base-uncased, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40,
LEARNING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification with early stopping, patience = 8.

ALBERT Model = albert-base-v2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARN-
ING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification with early stopping, patience = 8.

BART Model = facebook/bart-large-mnli, MAX_LEN = 512, TRAIN_BATCH_SIZE = 16, VALID_BATCH_SIZE = 16, EPOCHS = 40,
LEARNING_RATE = 1e-05, hidden size = 1024, dropout = 0.3. Fine-tuned BART with a binary classification head and early stopping,
patience = 8.

DeBERTa Model = microsoft/deberta-base, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40,
LEARNING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification using CLS token with early
stopping, patience = 8.

ELECTRA Model = google/electra-base-discriminator, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS =
40, LEARNING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned for binary classification using CLS token with early
stopping, patience = 8.

XLNet Model = xlnet-base-cased, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARN-
ING_RATE = 1e-05, hidden size = 768, dropout = 0.3. Fine-tuned XLNet model for binary classification with early stopping, patience
= 8.

T5 Model = t5-base, MAX_LEN = 512, TRAIN_BATCH_SIZE = 32, VALID_BATCH_SIZE = 32, EPOCHS = 40, LEARNING_RATE
= 1e-05, output = logits for binary classification with early stopping, patience = 8.

LLaMA Model = princeton-nlp/Sheared-LLaMA-1.3B, MAX_LEN = 512, TRAIN_BATCH_SIZE = 8, VALID_BATCH_SIZE = 8, EPOCHS
= 40, LEARNING_RATE = 1e-05, dropout = 0.3, with LoRA fine-tuning for binary classification with early stopping, patience = 8.

GPT-2 Model = gpt, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, early stopping, patience = 5.

DistilGPT-2 Model = distilgpt2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, early stopping, patience = 5.

OPT-13B Model = KoboldAI/OPT-13B-Erebus, MAX_LEN = 64, batch_size = 1, gradient checkpointing enabled, mixed precision used, early
stopping, patience = 5.

LoRA GPT-2 Model = gpt2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, with LoRA fine-tuning, early stopping, patience = 5.

LoRA LLaMA-
1.3B

Model = princeton-nlp/Sheared-LLaMA-1.3B, MAX_LEN = 512, TRAIN_BATCH_SIZE = 8, VALID_BATCH_SIZE = 8, EPOCHS
= 40, LEARNING_RATE = 1e-05, dropout = 0.3, with LoRA fine-tuning, early stopping, patience = 8.

LoRA Distill-
GPT

Model = distilgpt2, MAX_LEN = 512, TRAIN_BATCH_SIZE = 2, VALID_BATCH_SIZE = 2, EPOCHS = 10, LEARNING_RATE =
1e-04, dropout = 0.3, with LoRA fine-tuning, early stopping, patience = 5.

Claudia few-
shot

Model = Claudia few-shot, few-shot prompt-based learning, early stopping patience = 5, uses structured prompting with the dataset of
examples.

LLaMA-7B
few-shot

Model = LLaMA-7B, few-shot learning using a structured prompting with the dataset of examples.

Table 3: Summary of the architecture and parameters for each model used for classification.
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Model SES Precision Recall F1 Model SES Precision Recall F1

Random Forest
not-Low 0.57 0.40 0.47 Multinomial

Naive Bayes
not-Low 1.00 0.40 0.57

Low 0.54 0.70 0.61 Low 0.62 1.00 0.77

Avg. 0.55 0.55 0.54 Avg. 0.81 0.70 0.67

Support Vector
Machine (SVM)

not-Low 0.58 0.70 0.64 Logistic
Regression

not-Low 0.58 0.70 0.64
Low 0.62 0.50 0.56 Low 0.62 0.50 0.56

Avg. 0.60 0.60 0.60 Avg. 0.60 0.60 0.60

Gradient Boosting
not-Low 0.62 0.80 0.70

RoBERTa
not-Low 0.78 0.70 0.74

Low 0.71 0.50 0.59 Low 0.73 0.80 0.76

Avg. 0.66 0.65 0.64 Avg. 0.75 0.75 0.75

DeBERTa
not-Low 0.69 0.90 0.78

ELECTRA
not-Low 0.69 0.90 0.78

Low 0.86 0.60 0.71 Low 0.86 0.60 0.71

Avg. 0.77 0.75 0.74 Avg. 0.77 0.75 0.74

ALBERT
not-Low 0.71 0.50 0.59

XLNet
not-Low 0.53 0.90 0.67

Low 0.62 0.80 0.70 Low 0.67 0.20 0.31

Avg. 0.66 0.65 0.64 Avg. 0.60 0.55 0.49

T5
not-Low 0.50 0.30 0.38

OPT-13B fewshot
not-Low 0.50 0.90 0.64

Low 0.50 0.70 0.58 Low 0.50 0.10 0.17

Avg. 0.50 0.50 0.48 Avg. 0.50 0.50 0.40

Claudia fewshot
not-Low 0.53 0.90 0.67 LLamA-1.3B

fewshot
not-Low 0.50 0.80 0.62

Low 0.67 0.20 0.31 Low 0.50 0.20 0.29

Avg. 0.60 0.55 0.49 Avg. 0.50 0.50 0.45

LoRA Fine-Tune
GPT-2

not-Low 0.50 1.00 0.67
LLaMA-7B fewshot

not-Low 0.38 0.50 0.43
Low 0.00 0.00 0.00 Low 0.29 0.20 0.24

Avg. 0.25 0.50 0.33 Avg. 0.34 0.35 0.34

LoRA Fine-Tune
DistilGPT

not-Low 0.50 1.00 0.67 LoRA Fine-Tune
LLaMA-1.3B

not-Low 0.50 1.00 0.67
Low 0.00 0.00 0.00 Low 0.00 0.00 0.00

Avg. 0.25 0.50 0.33 Avg. 0.25 0.50 0.33

bart-large-mnli
Zero Shot

not-Low 0.80 0.80 0.80
DistilBERT

not-Low 0.78 0.70 0.74
Low 0.80 0.80 0.80 Low 0.73 0.80 0.76

Avg. 0.80 0.80 0.80 Avg. 0.75 0.75 0.75

BERT
not-Low 0.75 0.60 0.67

RoBERTa-large
not-Low 0.78 0.70 0.74

Low 0.67 0.80 0.73 Low 0.73 0.80 0.76

Avg. 0.71 0.70 0.70 Avg. 0.75 0.75 0.75

Table 4: First Iteration Performance of different models for classifying socioeconomic classes. Avg. = Macro average.

A.3 Results 804

This Section has the results tables from the three iterations 805
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Model SES Precision Recall F1 Model SES Precision Recall F1

Random Forest
not-Low 0.72 0.82 0.77 Multinomial

Naive Bayes
not-Low 0.89 0.61 0.72

Low 0.77 0.65 0.71 Low 0.69 0.92 0.79

Avg. 0.74 0.74 0.74 Avg. 0.79 0.76 0.75

Support Vector
Machine (SVM)

not-Low 0.86 0.89 0.88 Logistic
Regression

not-Low 0.84 0.93 0.88
Low 0.88 0.85 0.86 Low 0.91 0.81 0.86

Avg. 0.87 0.87 0.87 Avg. 0.87 0.87 0.87

Gradient Boosting
not-Low 0.75 0.75 0.75

RoBERTa
not-Low 0.74 0.82 0.78

Low 0.73 0.73 0.73 Low 0.78 0.69 0.73

Avg. 0.74 0.74 0.74 Avg. 0.76 0.76 0.76

DeBERTa
not-Low 0.75 0.75 0.75

ELECTRA
not-Low 0.73 0.96 0.83

Low 0.73 0.73 0.73 Low 0.94 0.62 0.74

Avg. 0.74 0.74 0.74 Avg. 0.83 0.80 0.79

ALBERT
not-Low 0.66 0.68 0.67

XLNet
not-Low 0.68 0.46 0.55

Low 0.64 0.62 0.63 Low 0.57 0.77 0.66

Avg. 0.65 0.65 0.65 Avg. 0.63 0.61 0.60

T5
not-Low 0.84 0.57 0.68

OPT-13B fewshot
not-Low 0.53 0.57 0.55

Low 0.66 0.88 0.75 Low 0.50 0.46 0.48

Avg. 0.75 0.72 0.72 Avg. 0.52 0.52 0.52

Claudia fewshot
not-Low 0.51 0.71 0.60 LLamA-1.3B

fewshot
not-Low 0.45 0.61 0.52

Low 0.47 0.27 0.34 Low 0.31 0.19 0.24

Avg. 0.49 0.50 0.47 Avg. 0.38 0.41 0.38

Lora finetune GPT-2
not-Low 0.52 1.00 0.68

LLamA-7B fewshot
not-Low 0.79 0.33 0.46

Low 0.00 0.00 0.00 Low 0.74 0.78 0.76

Avg. 0.27 0.52 0.35 Avg. 0.69 0.64 0.66

Lora finetune
DistillGPT

not-Low 0.52 1.00 0.68 LoRA Fine-Tuning
LLaMA-1.3B

not-Low 0.46 0.75 0.57
Low 0.00 0.00 0.00 Low 0.12 0.04 0.06

Avg. 0.27 0.52 0.35 Avg. 0.30 0.41 0.32

bart-large-mnli
Zero Shot

not-Low 0.00 0.00 0.00
DistilBert

not-Low 0.85 0.61 0.71
Low 0.45 0.88 0.60 Low 0.68 0.88 0.77

Avg. 0.22 0.43 0.29 Avg. 0.77 0.74 0.74

BERT
not-Low 0.79 0.54 0.64

RoBERTa-large
not-Low 0 0.85 0.61 0.71

Low 0.63 0.85 0.72 Low 0.68 0.88 0.77

Avg. 0.71 0.69 0.68 Avg. 0.74 0.74 0.74

Table 5: Second Iteration Performance of different models for classifying socioeconomic classes on second iteration. Avg. = Weighted average by the number of
narratives.
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Model SES Precision Recall F1 Model SES Precision Recall F1

Random Forest
not-Low 0.63 0.53 0.57 Multinomial

Naive Bayes
not-Low 0.70 0.45 0.55

Low 0.60 0.69 0.64 Low 0.60 0.81 0.69

Avg. 0.61 0.61 0.61 Avg. 0.65 0.63 0.62

Support Vector
Machine (SVM)

not-Low 0.59 0.63 0.61 Logistic
Regression

not-Low 0.84 0.93 0.88
Low 0.61 0.58 0.59 Low 0.64 0.65 0.65

Avg. 0.60 0.60 0.60 Avg. 0.64 0.64 0.64

Gradient Boosting
not-Low 0.53 0.65 0.58

RoBERTa
not-Low 0.61 0.92 0.73

Low 0.56 0.44 0.49 Low 0.85 0.42 0.56

Avg. 0.55 0.54 0.54 Avg. 0.73 0.67 0.65

DeBERTa
not-Low 0.54 0.69 0.60

ELECTRA
not-Low 0.54 0.82 0.65

Low 0.58 0.42 0.49 Low 0.64 0.31 0.42

Avg. 0.56 0.55 0.55 Avg. 0.59 0.56 0.53

ALBERT
not-Low 0.54 0.61 0.57

XLNet
not-Low 0.62 0.75 0.68

Low 0.57 0.50 0.53 Low 0.69 0.56 0.62

Avg. 0.55 0.55 0.55 Avg. 0.66 0.65 0.65

T5
not-Low 0.55 0.55 0.55

OPT-13B fewshot
not-Low 0.50 0.69 0.58

Low 0.56 0.56 0.56 Low 0.52 0.33 0.40

Avg. 0.55 0.55 0.55 Avg. 0.51 0.50 0.49

Claudia fewshot
not-Low 0.49 0.76 0.60 LLamA-1.3B

fewshot
not-Low 0.53 0.71 0.61

Low 0.50 0.23 0.32 Low 0.57 0.38 0.46

Avg. 0.50 0.50 0.46 Avg. 0.55 0.54 0.53

Lora finetune GPT-2
not-Low 0.50 1.00 0.66

LLamA-7B fewshot
not-Low 0.48 0.65 0.55

Low 0.00 0.00 0.00 Low 0.47 0.31 0.37

Avg. 0.25 0.50 0.33 Avg. 0.47 0.48 0.46

Lora finetune
DistillGPT

not-Low 0.50 1.00 0.66 LoRA Fine-Tuning
LLaMA-1.3B

not-Low 0.50 1.00 0.66
Low 0.00 0.00 0.00 Low 0.12 0.04 0.06

Avg. 0.25 0.50 0.33 Avg. 0.25 0.50 0.33

bart-large-mnli
Zero Shot

not-Low 0.45 0.45 0.45
DistilBert

not-Low 0.65 0.51 0.57
Low 0.46 0.46 0.46 Low 0.60 0.73 0.66

Avg. 0.46 0.46 0.46 Avg. 0.63 0.62 0.62

BERT
not-Low 0.56 0.55 0.55

RoBERTa-large
not-Low 0.70 0.76 0.73

Low 0.57 0.58 0.57 Low 0.74 0.67 0.71

Avg. 0.56 0.56 0.56 Avg. 0.72 0.72 0.72

Table 6: Third Iteration Performance of different models for classifying socioeconomic classes on second iteration. Avg. = Weighted average by the number of
narratives.
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A.4 Prompt Engineering for Extracting Background, Solutions, and Struggles Information806

This subsection provides a detailed explanation of the prompt engineering techniques used to extract807

background information, solutions, and struggles from the narratives of low-SES students. By constructing808

specific prompts and using the LLaMA model, we ensured the precise extraction of information in a struc-809

tured format, relying only on direct quotes from the texts. These prompts aim to assist in understanding810

the challenges and efforts described by low-SES students, ensuring that no additional information is added811

or altered during extraction.812

A.4.1 Model Pipeline Setup813

We utilized the transformers library from Hugging Face to create a pipeline for text generation and814

extraction. The LLaMA model was fine-tuned for generating outputs that align with our prompt design.815

The following configuration was applied to the pipeline for all tasks:816

• max_new_tokens=300: Sets the maximum number of tokens to generate during extraction. This817

ensures that the output is concise and focused.818

• do_sample=False: Sampling is disabled to provide deterministic and consistent outputs from the819

model.820

• temperature=0.5: A lower temperature value ensures less randomness in the output, resulting in821

more controlled and accurate text generation.822

• device: The model was configured to run on either GPU (if available) or CPU, ensuring flexibility in823

processing.824

The prompts were specifically designed to elicit structured information, such as family background,825

solutions, and struggles, from the students’ narratives. Below, we describe each function used to extract826

these key elements.827

A.4.2 Extracting Background Information828

The first step was to extract background information, particularly focusing on the family situations829

described in the narratives. The goal was to identify direct quotes that describe the family context of the830

students, such as financial hardships or living conditions.831

The following function was designed to handle this task:832

def extract_background(text):
prompt = f’’’
All the texts provided are written by low -SES (SES) students

who are writing about their struggles.
...
Important: Extract the following information exactly from the

text without adding or changing any words:
- background or any texts about family situations (directly

quoted from the text)

Text: {text}

valid JSON Output (only with direct quotes from the text):
’’’

output = llama_pipeline(prompt , max_new_tokens =200, do_sample=
False , temperature =0.5)

generated_text = output [0][’ generated_text ’]
# Process output for background quotes
...

833

This prompt ensures that only direct quotes describing the students’ family background are extracted and834

returned in a valid JSON format.835
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A.4.3 Extracting Solutions Information 836

In addition to background information, we extracted the solutions that students employed to address their 837

struggles. These solutions may involve actions taken to overcome financial or social barriers, as well as 838

any efforts to improve their academic or personal circumstances. 839

The function below is responsible for extracting the solutions from each text: 840

def extract_solutions(text):
prompt = f’’’
All the texts provided are written by low -SES (SES) students

who are writing about their struggles.
...
Important: Extract the following information exactly from the

text without adding or changing any words:
- Solutions or actions they took to address these struggles (

directly quoted from the text)

Text: {text}

valid JSON Output (only with direct quotes from the text):
’’’

output = llama_pipeline(prompt , max_new_tokens =200, do_sample=
False , temperature =0.5)

generated_text = output [0][’ generated_text ’]
# Process output for solutions quotes
...

841

This function captures the strategies or actions the students took to manage or overcome their struggles, 842

returning the data in a structured JSON format for analysis. 843

A.4.4 Extracting Struggles Information 844

The third aspect of our extraction was to focus on the specific struggles described by the students. These 845

struggles include financial, psychological, physical, or social hardships. The function uses a similar 846

approach, instructing the model to identify and extract direct quotes related to the students’ difficulties. 847

The function for extracting struggles is as follows: 848

def extract_struggles(text):
prompt = f’’’
All the texts provided are written by low -SES (SES) students

who are writing about their struggles.
...
Important: Extract the following information exactly from the

text without adding or changing any words:
- Struggles they faced (directly quoted from the text)

Text: {text}

Output valid JSON with only direct quotes related to struggles:
’’’

output = llama_pipeline(prompt , max_new_tokens =300, do_sample=
False , temperature =0.5)

generated_text = output [0][’ generated_text ’]

# Process and return the generated text as JSON
...

849

This function extracts the struggles faced by the students and returns them as direct quotes in a JSON 850

structure. 851

A.4.5 Post-processing and Valid JSON Output 852

In all cases, after the output is generated by the LLaMA model, the generated text is processed to extract 853

the relevant information in JSON format. The output is validated to ensure it contains the correct fields 854
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(e.g., background, solutions, or struggles), and any parsing errors are handled gracefully by returning a855

fallback structure if needed.856

The extracted data is then consolidated into a structured format for further analysis. This structured data857

helps in understanding the key themes and experiences described by the low-SES students.858

A.4.6 Conclusion859

By employing these prompt engineering techniques, we were able to extract detailed and structured infor-860

mation regarding the backgrounds, struggles, and solutions described by the students in their narratives.861

The use of precise prompts, alongside the LLaMA model, allowed for accurate extraction of direct quotes,862

preserving the authenticity of the students’ experiences. This extracted data provides valuable insights863

into the challenges faced by low-SES students and their efforts to overcome them.864

A.4.7 Limitations865

We acknowledge several limitations in our current research that we plan to address in future work. First,866

although our dataset offers valuable insights into the experiences of low-SES students, it is limited867

to narratives from a specific time frame. Expanding the dataset to include narratives from a broader868

range of years will provide a more comprehensive view of the evolving challenges faced by low-SES869

students. Second, while our data were annotated semi-automatically, it has not yet undergone a rigorous870

double-annotation or gold-standard validation process, which we are currently working on to enhance the871

dataset’s reliability. Implementing this more precise annotation method will improve the reliability of our872

results. Finally, although our semi-automatic data collection model showed promising results, future work873

will focus on refining this model to ensure it can operate independently and efficiently at scale and using874

active learning.875
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