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Abstract

Imitation learning enables high-fidelity, vision-based learning of policies within
rich, photorealistic environments. However, such techniques often rely on tradi-
tional discrete-time neural models and face difficulties in generalizing to domain
shifts by failing to account for the causal relationships between the agent and the
environment. In this paper, we propose a theoretical and experimental framework
for learning causal representations using continuous-time neural networks, specifi-
cally over their discrete-time counterparts. We evaluate our method in the context
of visual-control learning of drones over a series of complex tasks, ranging from
short- and long-term navigation, to chasing static and dynamic objects through
photorealistic environments. Our results demonstrate that causal continuous-time
deep models can perform robust navigation tasks, where advanced recurrent models
fail. These models learn complex causal control representations directly from raw
visual inputs and scale to solve a variety of tasks using imitation learning.
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Figure 1: Causal navigation from raw visual inputs. Given a
sequence of raw RGB inputs (left) a drone is trained to navigate
towards the red-cube target. We visualize the saliency maps (right)
for each model. Neural circuit policies (Lechner et al., 2020a)
(a specific representation of CT-RNNs) can learn causal relation-
ships (i.e., attend to the red-cube) directly from data while other
models fail to do so. ODE-RNNs (Rubanova et al., 2019b), LSTM
(Hochreiter and Schmidhuber, 1997) and CT- Gated Recurrent
Units (Mozer et al., 2017). Saliency maps are computed by the
visual backprop algorithm (Bojarski et al., 2016).

Unlike machine learning sys-
tems, natural learning systems
excel at generalizing learned
skills beyond the original data
distribution (Hasani et al., 2020,
Hassabis et al., 2017, Sarma
et al., 2018). This is due to the
mechanisms they deploy during
their learning process, such as
active use of closed-loop inter-
ventions, accounting for distri-
bution shifts, and the temporal
structures (de Haan et al., 2019,
Schölkopf, 2019). These factors
are largely disregarded or are en-
gineered away in the develop-
ment of modern ML systems.

To take the first steps towards re-
solving these issues, we can in-
vestigate the spectrum of causal
modeling (Peters et al., 2017). At
one end of the spectrum, there
are physical models of agents
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and environments described by differential equations. These physical models allow us to inves-
tigate interventions, predict future events using past information, and can describe the statistical
dependencies in the system.
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Figure 2: Taxonomy of models in the spec-
trum of causality. Figure data is taken from
(Peters et al., 2017).

On the other end of the spectrum, statistical models
allow us to construct dependencies and make predic-
tions given independent and identically distributed
(i.i.d.) (see Fig. 2). While physical models provide
complete descriptions, it is intractable to define the
differential equation systems that effectively model
high-dimensional and complex sensory data. For
long, causal modeling frameworks aims at bridging
this gap to extract statistical dependencies while con-
structing causal graphs (Pearl, 2009, Spirtes et al.,
2000) or structural causal models(Schölkopf, 2019)
to intervene and explain relationships.

In this paper, we aim to use continuous-time (CT)
neural networks (Chen et al., 2018b, Funahashi and
Nakamura, 1993, Hasani et al., 2021b) equipped with
causal structures in order to get closer to the properties of physical models. In particular, we look
into different representations of CT networks to see under what conditions and formulation they can
form a causal model. We discover that the class of liquid time-constant networks (LTCs) (Hasani
et al., 2021b) which are expressive continuous-time models constructed by bilinear approximation of
neural ordinary differential equations (Chen et al., 2018b), satisfy the properties of a causal model.
The uniqueness of their solution and their ability to capture both internal and external interventions
make their forward- and backward- mode causal. Therefore, they can impose inductive biases on
their architectures to learn causal representations.

We analyze how certain continuous-time (CT) neural networks are dynamical causal models. Fur-
thermore, to justify the theoretical results, we empirically validate that these properties scale to
high-dimensional visual input data in complex learning environments. We propose a series of control
and navigation tasks for an end-to-end autonomous flight across various levels of complexity and
temporal reasoning. We observe that traditional deep-learning models are capable of solving this task
on offline, passive datasets but fail when deployed in closed-loop, active testing settings (de Haan
et al., 2019, Wen et al., 2020). On the other hand, we find that only LTC-based models are able to
complete the tasks in closed-loop interaction with the environments.

Specifically, consider a visual navigation task wherein a drone agent should learn to fly from point A
to a target fixated at a point B, given only a sequence of raw visual inputs. The mapping between
incoming pixels to the temporal and physical structure of the navigation is causal if we can explain
and intervene at each step to observe how navigation decisions are decided based on the input pixels.
We observe that in a neighborhood environment, agents based on LTCs (such as Neural Circuit
Policies (Lechner et al., 2020a)) learn to stably (Lechner et al., 2020b) attend to the target at point
B throughout the task’s time horizon (Fig. 1). Therefore, causes of navigation to point B at a next
time step is the agent’s learned attention profile on the input images. These causal mappings are not
present in other deep models (Fig. 1). Here, we show how LTCs’ ability to capture causal structures
directly from visual inputs results in improved robustness as well as interpretable decision making.

Summary of Contributions. i) We show theoretical evidence for the capability of CT neural net-
works in learning causal structures; ii) we perform extensive experiments supporting the effectiveness
of causal CT models in visual drone navigation tasks with varying memory-horizons; and iii) we
conduct robustness analysis of CT models in closed loop-testing within real-world scenarios.

2 Related Works

In this section, we describe research works that are closely related to the core findings of the paper.

Causal Learning – The dominant approach toward learning causal models are graphical methods
(Ruggeri et al., 2007, Russell and Norvig, 2002), which try to model cause-effect relationships as a
directed graph (Pearl, 2009, Pearl et al., 2009). Bayesian networks further combine graphical models
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with Bayesian methods (Kemp et al., 2010, Ruggeri et al., 2007) to decompose the learning problem
into a set of Bayesian inference sub-problems. (Weichwald et al., 2020) showed the effectiveness of
such an approach for learning causal structures in nonlinear time-series via a set of linear models.
Continuous-time Bayesian networks further adapted the idea to modeling cause-effect relationships
in time-continuous processes (Gopalratnam et al., 2005, Nodelman et al., 2002, 2003, Nodelman,
2007). A different approach for causal modeling of time-continuous processes is to learn ODEs,
which under certain conditions imply a structured causal model (Rubenstein et al., 2016). zIn this
work, we describe a class of continuous models that has the ability to account for interventions and
therefore captures the causal structures from data.

Continuous-time Models – CT models manifest a large range of benefits compared to discretized
deep models. They can perform adaptive computations through continuous vector fields realized by
advanced ODE solvers (Chen et al., 2018b). They are strong in modeling time-series data and realize
memory and parameter efficiency (Chen et al., 2018b, Lechner et al., 2020a). A large number of
alternative approaches have tried to improve and stabilize their training, namely the adjoint method
(Gholami et al., 2019), use neural ODEs in complex time-series prediction tasks (Hasani et al., 2021a,
Lechner and Hasani, 2020, Lechner et al., 2019, Rubanova et al., 2019b), characterize them better for
inference and density estimation tasks (Dupont et al., 2019, Durkan et al., 2019, Hanshu et al., 2020,
Holl et al., 2020, Jia and Benson, 2019, Liebenwein et al., 2021, Massaroli et al., 2020, Quaglino
et al., 2020), and to verify them (Gruenbacher et al., 2021, Grunbacher et al., 2021). In this work, we
prove an important property of the CT network: We show that a bilinear approximation of Neural
ODEs can give rise to expressive causal models.

Imitation Learning (IL) – Imitation learning describes the task of learning an observation-action
mapping from human demonstrations (Schaal, 1999). This objective can either be achieved via
behavior cloning, which directly learns from observation-action pairs (Lechner et al., 2019, 2021),
or indirectly via inverse reinforcement learning (Brunnbauer et al., 2021, Ng and Russell, 2000)
which first constructs a reward function from an optimal policy. The most dominant behavior cloning
paradigm is based on the DAgger framework (Ross et al., 2011), which iterates over the steps of
expert data collection, supervised learning, and cloned policy evaluation. State-aware IL (Schroecker
and Isbell, 2017) further adds a secondary objective to the learning task to bias the policy towards
states where more training data is available. Recently, IL methods have been adapted to domains
where the environment dynamics of the expert and learned policy mismatch (Desai et al., 2020).

More recent imitation learning one-shot methods pre-train policies via meta-learning to adapt to a
task, such that task-specific behavior can be cloned with as little as a single demonstration (Duan et al.,
2017, Yu et al., 2018). Alternatively, generative adversarial imitation learning phrases the behavior
cloning problem as a min-max optimization problem between a generator policy and discriminator
classifier (Ho and Ermon, 2016). Baram et al. (2017) extended the method by making the human
expert policy end-to-end differentiable. The method has been further adapted to imperfect (Wu et al.,
2019) and incomplete demonstrations (Sun and Ma, 2019).

Visual Navigation – Cognitive mapping and planning (Gupta et al., 2017a,b) addresses the problem
of learning to navigate from visual input streams by constructing a map of the environment and plan
the agent’s actions to achieve a given goal. Chen et al. (2018a) adapted the approach for the goal
of exploring and mapping the environment. An alternative method represents the map in the form
of a graph (Savinov et al., 2018). Neural SLAM (simultaneous location and mapping) shares many
characteristics of cognitive mapping and planning (Chaplot et al., 2019) but takes one step further in
separating mapping, pose estimation, and goal-oriented navigation. Target driven navigation, where
the agent must find a target in an unknown environment, has seen successes using both semantic
segmentation (Mousavian et al., 2019), and neural SLAM (Chaplot et al., 2020).

Moreover, visual navigation for learning-to-drive context, have extensively studied the causal con-
fusion problem (de Haan et al., 2019), and the generalization of the imitation learning problems,
through using modules to extract useful priors from pixel inputs (Chen et al., 2020, Filos et al., 2020,
Park et al., 2020, Rhinehart et al., 2019, Sauer et al., 2018). These methods can benefit from the
LTC-based networks designed in our present study, to enhance their knowledge distillation pipelines.

3 Problem Setup

In this section, we describe necessary concepts to formally derive the main results of our report.
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3.1 Causal Structures

In a structural causal model (SCM), given a set of observable random variables X1, X2, . . . , Xn,
as vertices of a directed acyclic graph (DAG), we can compute each variable from the following
assignment (Schölkopf, 2019):

Xi := fi(PAi, Ui), i = 1, . . . , n. (1)

Here, fi is a deterministic function of the parents of the event, Xi, in the graph (PAi) and of the
stochastic variable, Ui. One can intuitively think of the causal structure framework as a function
estimation problem rather than in terms of probability distributions (Spirtes et al., 2000). Direct
causation is implied by direct edges in the graph through the assignment described in Eq. 1. The
stochastic variables U1, . . . , Un ensure that a joint distribution P (Xi|PAi) is constructed as a general
objective (Pearl, 2014, Schölkopf, 2019).

The SCM framework enables us to explore through the known physical mechanisms and functions to
build flexible probabilistic models with interventions, replacing the "slippery epistemic probabilities,
P (Xi,PAi), with which we had been working so long" in the study of machine learning systems
(Pearl, 2009, Schölkopf, 2019). Interventions can be formalized by the SCM framework, as operations
that alter a subset of properties of Eq. 1. For instance, modifying Ui, or replacing fi (and as a result
Xi) (Karimi et al., 2020). Moreover, by assuming joint independence of Uis, we can construct causal
conditionals known as causal (disentangled) factorization, as follows (Schölkopf, 2019):

p(X1, . . . , Xn) =

n∏
i=1

p(Xi|PAi). (2)

Eq. 2 stands for the causal mechanisms by which we can model all statistical dependencies of given
observables. Accordingly, Causal learning involves the identification of the causal conditionals, the
function fi, and the distribution of Uis in assignment Eq. 1.

3.2 Differential Equations Can form Causal Structures

Physical dynamics can be modeled by a set of differential equations (DEs). DEs allow us to predict
the future evolution of a dynamical system and describe its behavior as a result of interventions.
Their coupled time-evolution enables us to define averaging mechanisms for computing statistical
dependencies (Peters et al., 2017). A system of differential equations enhances our understanding of
the underlying physical phenomenon, explains its behavior, and dissects its causal structure.

For instance, consider the following system of DEs: dx
dt = g(x), x ∈ Rd, with initial values at

x0, where g is a nonlinear function. The Picard-Lindelöf theorem (Nevanlinna, 1989) states that
a differential equation of the form above would have a unique solution as long as g is Lipschitz.
Therefore, if we unroll the system to infinitesimal differentials using the explicit Euler method, we
get: x(t+ δt) = x(t) + dtf(x). This representation under the uniqueness condition shows that the
near future events of x are predicted using its past information, thus, forming a causal structure.

Thus, a DE system is a causal structure that allows us to process the effect of interventions on the
system. On the other side of the spectrum of causal modeling (Peters et al., 2017), pure statistical
models allow us to learn structures from data with little insight about causation and associations
between epiphenomena. Since causality aims to bridge this gap, in this paper, we propose to construct
causal models with continuous-time neural networks.

3.3 Continuous-time Neural Networks

CT networks are a class of deep learning models with their hidden states being represented by
ordinary differential equations (ODEs) (Funahashi and Nakamura, 1993). The hidden state x(t) of a
neural network f is computed by the solution of the initial value problem below (Chen et al., 2018b):

dx

dt
= f(x(t), t, θ), x ∈ Rd, (3)

where f is parametrized by θ. CT models enable approximation of a class of functions which we
did not know how to generate otherwise (Chen et al., 2018b, Hasani et al., 2021b). They can be
used in both inference and density estimation with constructing a continuous flow to model data,
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efficiently (Dupont et al., 2019, Grathwohl et al., 2018, Rubanova et al., 2019a). CT models can
be formulated in different representations. For instance, to achieve stability, CT recurrent neural
networks (CT-RNNs) were introduced in the following form (Funahashi and Nakamura, 1993):

dx(t)
dt

= −x(t)
τ

+ f(x(t), t, θ), (4)

where the term − x(t)
τ derives the system to equilibrium with a time-constant τ . To increase expressiv-

ity (Raghu et al., 2017), liquid time-constant networks (LTCs) with the following representation can
be used (Hasani et al., 2021b):

dx(t)
dt

= −
[1
τ
+ f(x(t), I(t), t, θ)

]
� x(t) + f(x(t), I(t), t, θ)�A. (5)

In Eq. 5, x(D×1)(t) is the hidden state of an LTC layer with D cells, I(m×1)(t) is the input to the
system, τ (D×1) is the fixed internal time-constant vector), A(D×1) is an output control bias vector,
and � is the Hadamard product. Here, the ODE system follows a bilinear dynamical system (Penny
et al., 2005) approximation of Eq. 3 to construct an input-dependent nonlinearity in the time-constant
of the differential equation. This was shown to significantly enhance the expressive power of CT
models in robotics and time-series prediction tasks (Hasani et al., 2021b, Lechner et al., 2020a).
In the following, we show how CT models can be designed as causal structures to perform more
interpretable real-world applications.

4 Results

In this section, we first explain how a continuous-time model identified by Eq. 3, standalone, cannot
satisfy the causal structure properties (Peters et al., 2017) even under Lipschitzness of its network.
We then show that the class of liquid time-constant networks can enable causal modeling.

4.1 Causal Modeling with Continuous-time Networks

Neural ODEs cannot account for external interventions. Let f be the nonlinearity of a continuous-
time neural network. Then the learning system defined by Eq. 3, form temporal causation, however
cannot account for external interventions (change of the environment conditions), and therefore does
not form a causal structure even when f is Lipschitz-continuous.

To describe this in detail, we unfold the ODE by infinitesimal differentials as follows:

x(t+ δt) = x(t) + dtf(x, θ). (6)

If f is Lipschitz continuous, based on Picard-Lindelöf’s existence theorem, the trajectories of this
ODE system are unique and thus invertible. This means that, at least locally, the future events of the
system can be predicted by its past values. Since the transformation is invertible, this setting is also
true if we run the ODE backward in time (e.g., during the training process).

When the ODE system is trained by maximum likelihood estimation, given an initial weight distri-
bution, the statistical dependencies between the system’s variables might emerge from data. The
resulting statistical model can predict in i.i.d. setting and learn from data, but it cannot predict under
distribution shift or implicit/explicit interventions, simply because the system’s semantics does not
have input-dependent terms. Thus, the system cannot answer counterfactual questions (Mooij et al.,
2013).2 Although Neural ODEs in their generic representation cannot account for interventions, their
other forms can help design a causal model.

LTCs are Dynamic Causal Models. LTCs described by Eq. 5 resemble the representation of a
simple Dynamic Causal Model (DCM) (Friston et al., 2003) with a bilinear Taylor approximation
(Penny et al., 2005). DCMs aim to extracting the causal architecture of a given dynamical systems.
DCMs represent the dynamics of the hidden nodes of a graphical model by ODEs, and allow for
feedback connectivity structures unlike Bayesian Networks (Friston et al., 2003). A simple DCM

2A counterfactual question describe a causal relationship of the form: "If X had not occurred, Y would not
have occurred (Molnar, 2020)"
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can be designed by a second-order approximation (bilinear) of a given system such as dx/dt =
F (x(t), I(t), θ), as follows (Friston et al., 2003):

dx/dt = (A+ I(t)B)x(t) + CI(t) (7)

A =
∂F

∂x(t)

∣∣∣
I=0

, B =
∂2F

∂x(t)∂I(t)
, C =

∂F

∂I(t)

∣∣∣
x=0

,

where I(t) is the inputs to the system, and x(t) is the nodes’ hidden states. A key property of a DCM
representation is its ability to capture both internal and external causes on the system (interventions).
Matrix A is a fixed internal coupling of the system. Matrix B controls the impact of the inputs on
the coupling sensitivity among the network’s nodes (controlling internal interventions). Matrix C
embodies the external inputs’ influence on the state of the system (controlling external interventions).

DCMs have shown promise in learning the causal structure of the brain regions in complex time-
series data (Breakspear, 2017, Ju and Bassett, 2020, Penny et al., 2005). DCMs can be extended to a
universal framework for causal function approximation by neural networks through the LTC neural
representations (Hasani et al., 2021b).
Proposition 1. Let f be the nonlinearity of a given LTC network identified by Eq. 5. Then the
learning system identified by Eq. 5 can account for internal and external interventions by its weight
parameters θ = {W (D×D)

r ,W (D×m), b(D×1)}, for D LTC cells, and input size m and A(D×1), and
therefore, forms a dynamical causal model, if f is Lipschitz-continuous.

Proof. To prove this, we need to show two properties for the LTC networks: 1) Uniqueness of their
solution 2) Existence of internal and external intervention coefficients:

Uniqueness. By using the Picard-Lindelöf theorem (Nevanlinna, 1989), it was previously shown that
for an F : RD → RD, bounded C1-mapping, the differential equation:

ẋ = −(1/τ + F (x))x+AF (x),

has a unique solution on [0,∞). (Full proof in Lemma 5 of (Hasani et al., 2021b)).

Interventions Coefficients. Let f be a Lipschitz-continuous activation function such as tanh, then
f(x(t), I(t), t, θ) = tanh(Wrx +W I + b). If we set x = 0, in Eq. 5, then the external intervention
coefficients C in Eq. 7 for LTCs can be obtained by:

∂F

∂I

∣∣∣
x=0

=W (1− f2)�A

The corresponding internal intervention coefficients B of Eq. 7, for LTC networks becomes:

∂2F

∂x(t)∂I(t)
=W (f2 − 1)�

[
2Wrf � (A− x) + 1

]
This shows that by manipulating matrices W , Wr, and A one can control internal and external
interventions to an LTC system which gives the statement of the proposition.

Proposition 1 shows that LTCs are causal models in their forward pass, and by manipulation of their
parameters, one can gain insights into the underlying systems. We next show that LTCs’ backward
path also gives rise to a causal model. This implies that LTCs trained from demonstration via
reverse-mode automatic differentiation (Rumelhart et al., 1986) can give rise to a causal model.

4.2 Training LTCs via Gradient Descent Yields Causal Models

The uniqueness of the solution of LTCs allows any ODE solver to reproduce a forward pass trajectory
with backward computations from the end point of the forward pass. This property enables us to use
the backpropagation algorithm, either by using the adjoint sensitivity (Pontryagin, 2018) method or
backpropagation through time (BPTT) to train an LTC system. Formally, for a forward pass trajectory
of the system states x(t) of an LTC from t0 to tn, we can compute a scalar value loss, L at tn by:

L(x(tn)) = L
(

x(t0) +
∫ tn

t0

dx
dt
dt
)
. (8)
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Suppose we use the adjoint method for training the network, then the augmented state is computed
by a(t) = ∂L

∂x(t) , whose kinetics are determined by da
dt = −aT (t)∂LTCrhs

∂x(t) (Chen et al., 2018b). To
compute the loss gradients in respect to the parameters, we run the adjoint dynamics backwards
from gradients dL

dx(tn) and states x(tn), while solving a third integral in reverse as follows: dL
dθ =

−
∫ t0
tn
aT (t)∂LTCrhs

∂θ dt. All integrals can be solved in reverse-mode by a call to the ODE solver.

Based on Proposition 1, for an LTC network at each training iteration, the internal and external
interventions not only help the system learn statistical dependencies from data but also facilitate
the learning of the causal mapping. These results bridge the gap between pure physical models and
causal structural models to obtain better learning systems.

Real-world implications. Consider a simple drone navigation task in which the objective is for the
drone to navigate from position A to a target position B while simultaneously avoiding obstacles.
In this setting, the agent is asked to infer high-level control signals directly from visual inputs to
reach the target goal. Even the simplest vision-based deep model can accomplish this task in passive
open-loop settings (Lechner et al., 2020a). However, completion in a closed-loop environment while
inferring the true causal structure of the task is significantly more challenging. For instance, where
should the agent attend to for taking the next action? With what mechanisms does the system infer
the objective of the task? And accordingly, how robust are the decisions of the learned policy?

In the next section, we perform an extensive experimental evaluation to find answers to the above
questions. We also aim to validate our theoretical results on the capability of LTC models to capture
the true causal structure of a high-dimensional visual reasoning task, where other models fail.

5 Experiments

We designed photorealistic visual navigation tasks with varying memory horizons including (1)
navigating to a static target, (2) chasing a moving target, and (3) hiking with guide markers (Fig. 3).

Visual navigation to 
static targets

𝑡!

𝑡"

𝑡#

tim
e

start position

Target

Chasing a moving target HikingA B C

What the drone sees What the drone seesTask perspective in the environment

Figure 3: Visual drone navigation tasks. A) Navigation
to a static target, B) Chasing a moving target, C) Hiking
with a set of markers in the environment

Experimental setup. We designed tasks
in Microsoft’s AirSim (Madaan et al.,
2020) and Unreal Engine. To create data
for imitation learning, we use greedy
path search with a Euclidean heuris-
tic over unoccupied voxels to obtain
knot points for cubic spline interpolation,
which is then followed via a pure pursuit
controller. This strategy is modified for
each task (details in the supplements).

Baselines. We evaluate NCP networks
(Lechner et al., 2020a) against a set of
baseline models. This includes ODE-
RNNs (Rubanova et al., 2019b) which
are the recurrent network version of Neu-
ral ODEs (Chen et al., 2018b), long short-
term memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997), and CT-GRU networks (Mozer
et al., 2017), which are the continuous equivalent of GRUs (Chung et al., 2014). These baselines are
chosen to validate our theoretical results: Not all CT models are causal models. Similarly, discretized
RNN models, such as LSTMs, perform well on tasks with long-term dependencies, yet they are not
causal models. In Section 4, we showed that NCPs, which are sparse neural networks built based on
LTC neurons (Hasani et al., 2021b), are dynamical causal models. Therefore, they can learn the true
causation of a given task. In our experiments, camera images are perceived by convolutional layers
and are fed into the RNN networks which act as a controller. For a fair comparison, the number
of trainable parameters of all models is within the same range, and they are all trained by Adam
optimizer (Kingma and Ba, 2014) with a cosine similarity loss (See more details in the supplements).

5.1 Navigation to Static Target with Occlusion

In this task, the drone navigates to a target marker that is less than 25 meters away and visible to
it. We place a red cube on a random unoccupied voxel in the environment to function as the target
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Figure 4: Navigation to a static target in closed-loop environments. NCPs are the only models that
can capture the causal structure of the tasks directly from visual data.

marker. We constrain the target marker to appear in the drone’s viewing frustum for most cases.
Though there may be occlusion of the target upon random respond of the drone in the environment
(more details in the supplements). Occlusions create temporal dependencies. We tested static CNN
networks and observed that they fail to perform scenarios in which the target is occluded. Table 1
shows that in both neighborhood and forest environments, all agents learn the task with a reasonable
validation loss in a passive imitation learning setting. However, once these agents are deployed with
closed-loop control, we observed that the success rates for LSTM and ODE-RNNs drop to only 24%
and 18% of 50 attempted runs. CT-GRU managed to complete this task in 40% of the runs, whereas
NCPs completed the tasks in 48% of the runs. Why is this the case?

Table 1: Validation on short-term navigation. Co-
sine similarity loss [-1, 1] (smaller is better), n=5.

Algorithms Environments

RedWood Forest Neighborhood

LSTM -0.823 ± 0.006 -0.838 ± 0.019
ODE-RNN -0.815 ± 0.043 -0.855 ± 0.019
CT-GRU -0.855 ± 0.001 -0.877 ± 0.002
NCP (ours) -0.859 ± 0.035 -0.855 ± 0.008

To understand these results better, we used
the Visual-Backprop algorithm (Bojarski et al.,
2016) to compute the saliency maps of the
learned features in the input space. Saliency
maps would show us where the attention of the
network was when taking the next navigation
decision. As shown in Fig. 4, we observe that
NCP has learned to attend to the static target
within its field of view to make a future deci-
sion. This attention profile was not present in
the saliency maps of the other agents. LSTM agents are sensitive to lighting conditions compared to
the CT models. This experiment supports our theoretical results on the ability of LTC-based models
to learn causal representations.

NCP ODE-RNN LSTM CT-GRU

Ti
m
e

Figure 5: Chasing a moving target in closed-loop environments. NCPs are the only models that can
capture the causal structure of the tasks directly from visual data.

8



Table 2: Chasing objects, Validation performance
with co-sine similarity loss (smaller is better), n=5

Algorithms Environments

RedWood Forest Neighborhood

LSTM -0.943 ± 0.028 -0.947 ± 0.008
ODE-RNN -0.967 ± 0.009 -0.953 ± 0.011
CT-GRU -0.958 ± 0.017 -0.979 ± 0.003
NCP (ours) -0.936 ± 0.022 -0.975 ± 0.012

Table 3: Hiking, Validation performance with co-
sine similarity loss (smaller is better), n=5

Algorithms Environments

RedWood Forest Neighborhood

LSTM -0.273 ± 0.388 -0.781 ± 0.030
ODE-RNN -0.896 ± 0.026 -0.710 ± 0.003
CT-GRU -0.359 ± 0.073 -0.725 ± 0.086
NCP (ours) -0.676 ± 0.192 -0.711 ± 0.013

5.2 Chasing a Moving Target

In this task, the drone follows a target marker along a smooth spline path. Using a generate and test
method, we create a path for the drone to follow by using a random walk with momentum to find
knot points for fitting a spline (details in the supplements). Table 2 shows that all agents were able to
learn to follow their targets in a passive open-loop case. However, similar to the previous experiment,
we witnessed that not all models can successfully complete the task in a closed-loop setting where
interventions play a big role. NCPs were 78% successful at completing their task, while LSTM in
66%, ODE-RNNs in 52%, and CT-GRU in 38% were successful. Once again, we looked into the
attention maps of the models, illustrated in Fig. 5. We see that CT-GRU networks did not learn to
attend to the target they follow. LSTMs again show sensitivity to lighting conditions. ODE-RNNs
keep a close distance to the target, but they occasionally lose the target. In contrast, NCPs have
learned to attend to the target and follow them as they move in the environment.

5.3 Hiking Through an Environment

In this task, the drone follows multiple target markers which are placed on the surface of obstacles
within the environment (Fig. 3C) (Experimental details in Supplements). This task is significantly
more complex than the previous tasks, especially when agents are deployed directly in the environ-
ment. This is because the agents have to learn to follow a much longer time-horizon task, by visual
cues, in a hierarchical fashion.

Interestingly, we see most agents learn a reasonable degree of validation loss during the learning
process as depicted by Table 3. Even ODE-RNNs realize excellent performance in the passive setting.
However, when deployed in the environment, none of the models other than NCP could perform the
task completely in 50 runs. NCPs could perform 30% successfully thanks to their causal structure.

How to improve the performance of models in the hiking task? In order to improve the perfor-
mance on a purely visually-navigated hiking task, an agent must be supplied with a long-term memory
component (much longer than that of LSTMs). All ODE-based models including NCPs require a
gradient wrapper to be able to perform well on tasks with very long-term dependencies. For instance,
mixed memory architectures such as ODE-LSTM (Lechner and Hasani, 2020) can use NCPs as their
continuous-time memory wrapped together with gradient propagation mechanisms enabled by an
LSTM network, to perform better on the hiking task.

CNN network’s performance in all scenarios. In Table 4, we summarized the success rate of
CNNs in all tasks when deployed in closed-loop. As expected, we observe that when temporal
dependencies in the tasks appear (such as Occlusion, or Hiking) as well as when the input images are
highly perturbed (such as heavy rain and Fog) the performance of CNNs drastically decreases. This
observation validates that having a memory component, in all tasks is essential.

Table 4: Closed-loop evaluation of trained policies on various navigation and interaction tasks. Agents
and policies are reinitialized randomly at the beginning of each trial (n=50). Values correspond to
success rates (higher is better).

Static Target Chasing Hiking
Model Clear Fog Light Rain Heavy Rain Occlusion Clear Fog Light Rain Heavy Rain Clear
CNN 36% 6% 32% 2% 4% 50% 42% 54% 28% 0%
LSTM 24% 22% 22% 4% 20% 66% 62% 56% 44% 2%
ODE-RNN 18% 10% 18% 2% 24% 52% 42% 62% 44% 4%
CT-GRU 40% 8% 60% 32% 28% 38% 36% 48% 42% 0%
NCP (ours) 48% 40% 52% 60% 32% 78% 52% 84% 54% 30%

9



6 Discussions, Scope and Conclusions

We provided theoretical evidence for the capability of different representations of continuous-time
neural networks in learning causal structures. We then performed a set of experiments to confirm the
effectiveness of continuous-time causal models in high-dimensional and visual drone navigation tasks
with different memory-horizons compared to other methods. We conclude that the class of liquid
time-constant networks has the great potential of learning causal structures in closed-loop reasoning
tasks where other advanced RNN models cannot perform well.

Model performances drop significantly in closed-loop. Table 4 shows a summary of success
episodes when the agents were deployed in various navigation tasks. As the memory-horizon and
the complexity of the task increases, models that are not causal struggle with close-loop interactions
with the environment. Continuous-time models with causal structures, such as NCPs, considerably
improve the real-world performance of agents.

Rain FogClear

Figure 6: Sample input images from the forest
environment. While agents are trained on offline,
passive datasets from the Clear environment, test-
ing is performed in an active control setup under
various levels of environmental perturbations.

Robustness to environmental perturbations.
We next investigated how robust are these mod-
els under heavy environmental perturbations
such as rain. We used the AirSim weather API to
include heavy rain and fog in closed-loop tests
of the static target and chasing a moving target
task (Fig. 6).

We observed that under high-intensity rain, all
models have a performance drop, but NCPs
show more resiliency to these perturbations.
High-intensity rain and fog (Table 4) confuses
LSTM and ODE RNNs the most where they are
not able to complete the task.

When shall we use temporal convolutions and attention-based methods? Both temporal con-
volution (Bai et al., 2018) and attention-based architectures (Vaswani et al., 2017) are reasonable
choices for many spatiotemporal tasks (Kaufmann et al., 2020, Lee et al., 2020). However, they
require the user to explicitly set the temporal horizon of the observation memory, whereas RNNs
learn the temporal memory component, implicitly. Consequently, RNNs are usually the preferred
choice when the temporal horizon is not known or varies, which is the case in our experiments.

Handling Occlusions and temporal dependencies. All tasks discussed require temporal depen-
dencies because of environmental line-of-sight occlusions between the drone and the target. We
specifically observed that NCPs are capable of handling more complex runs (where occlusions are
maximal) and other models fail. We have also tested these scenarios with (single frame) CNNs and
observed that the model could not complete the task successfully in all cases where the marker is
occluded. CNNs achieved only a 14% success rate in static target runs with an occlusion which is at
least 50% lower than the results of the other recurrent models shown in Table 4.

If temporal samples arrive at a constant rate, why a continuous-time model performs better?
The use of continuous models (implemented by ODEs) for continuous problems can potentially lead
to the design of better causal mechanisms (getting closer to physical modeling in the taxonomy of
causal models). Moreover, many recent works show advanced CT models can outperform advanced
discretized RNNs even when the incoming samples are equidistant (Erichson et al., 2021, Rusch
and Mishra, 2021). Also, CT-models realize a novel category of functions which was not possible
to realize otherwise (i.e., the vector fields realized by complex ODE solvers cannot be achieved by
discretized models) (Chen et al., 2018b).

It is not trivial to show causal properties for gated RNNs. In gated recurrent networks (e.g.,
LSTMs), the gating mechanisms can be counted as an implicit intervention to the state representation.
However, a direct theoretical framework to prove this is not feasible as there is no direct relation
between dynamic causal models and LSTMs, for instance. Besides, our empirical study in visual
navigation tasks suggests that the gating mechanism does not help causality (See for instance the
attention maps presented in Figures. 1, 4, and 5.)

In summary, we showed that special presentation of CT models realize causal models and can
significantly enhance decision making in real-world applications.

10



Acknowledgments

C.V., R.H. A.A. and D.R. are partially supported by Boeing and MIT. A.A. is supported by the
National Science Foundation (NSF) Graduate Research Fellowship Program. M.L. is supported in
part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). Research
was sponsored by the United States Air Force Research Laboratory and the United States Air Force
Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number
FA8750-19-2-1000. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the
United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Funding Transparency Statement

Authors declare no competing interests. Funding in direct support of this work: The Boeing Company
through the Explainable Control Project, National Science Foundation (NSF) Graduate Research
Fellowship Program, Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), the
United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence
Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

References
Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and

recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Nir Baram, Oron Anschel, Itai Caspi, and Shie Mannor. End-to-end differentiable adversarial
imitation learning. In International Conference on Machine Learning, pages 390–399. PMLR,
2017.

Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Bernhard Firner, Larry Jackel,
Urs Muller, and Karol Zieba. Visualbackprop: efficient visualization of cnns. arXiv preprint
arXiv:1611.05418, 2016.

Michael Breakspear. Dynamic models of large-scale brain activity. Nature neuroscience, 20(3):
340–352, 2017.

Axel Brunnbauer, Luigi Berducci, Andreas Brandstätter, Mathias Lechner, Ramin Hasani, Daniela
Rus, and Radu Grosu. Model-based versus model-free deep reinforcement learning for autonomous
racing cars. arXiv preprint arXiv:2103.04909, 2021.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdi-
nov. Learning to explore using active neural slam. In International Conference on Learning
Representations, 2019.

Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh Gupta. Neural
topological slam for visual navigation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12875–12884, 2020.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by cheating. In
Conference on Robot Learning, pages 66–75. PMLR, 2020.

Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for navigation. In
International Conference on Learning Representations, 2018a.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In Advances in neural information processing systems, pages 6571–6583,
2018b.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

11



Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. arXiv
preprint arXiv:1905.11979, 2019.

Siddharth Desai, Ishan Durugkar, Haresh Karnan, Garrett Warnell, Josiah Hanna, Peter Stone, and
AI Sony. An imitation from observation approach to transfer learning with dynamics mismatch.
Advances in Neural Information Processing Systems, 33, 2020.

Yan Duan, Marcin Andrychowicz, Bradly C Stadie, Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. arXiv preprint
arXiv:1703.07326, 2017.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In Advances in Neural
Information Processing Systems, pages 3134–3144, 2019.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In
Advances in Neural Information Processing Systems, pages 7509–7520, 2019.

N. Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W.
Mahoney. Lipschitz recurrent neural networks. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=-N7PBXqOUJZ.

Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart, Sergey Levine, and Yarin
Gal. Can autonomous vehicles identify, recover from, and adapt to distribution shifts? In
International Conference on Machine Learning, pages 3145–3153. PMLR, 2020.

Karl J Friston, Lee Harrison, and Will Penny. Dynamic causal modelling. Neuroimage, 19(4):
1273–1302, 2003.

Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time
recurrent neural networks. Neural networks, 6(6):801–806, 1993.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. arXiv preprint arXiv:1902.10298, 2019.

Karthik Gopalratnam, Henry Kautz, and Daniel S Weld. Extending continuous time bayesian
networks. In AAAI, pages 981–986, 2005.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Sophie Gruenbacher, Mathias Lechner, Ramin Hasani, Daniela Rus, Thomas A Henzinger, Scott
Smolka, and Radu Grosu. Gotube: Scalable stochastic verification of continuous-depth models.
arXiv preprint arXiv:2107.08467, 2021.

Sophie Grunbacher, Ramin Hasani, Mathias Lechner, Jacek Cyranka, Scott A. Smolka, and Radu
Grosu. On the verification of neural odes with stochastic guarantees. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(13):11525–11535, May 2021.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2616–2625, 2017a.

Saurabh Gupta, David Fouhey, Sergey Levine, and Jitendra Malik. Unifying map and landmark based
representations for visual navigation. arXiv preprint arXiv:1712.08125, 2017b.

YAN Hanshu, DU Jiawei, TAN Vincent, and FENG Jiashi. On robustness of neural ordinary
differential equations. In International Conference on Learning Representations, 2020.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. The natural
lottery ticket winner: Reinforcement learning with ordinary neural circuits. In Proceedings of the
International Conference on Machine Learning, 2020.

12

https://openreview.net/forum?id=-N7PBXqOUJZ


Ramin Hasani, Mathias Lechner, Alexander Amini, Lucas Liebenwein, Max Tschaikowski, Gerald
Teschl, and Daniela Rus. Closed-form continuous-depth models. arXiv preprint arXiv:2106.13898,
2021a.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid time-
constant networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(9):7657–7666,
May 2021b.

Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick.
Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. arXiv preprint
arXiv:1606.03476, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable physics.
arXiv preprint arXiv:2001.07457, 2020.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. In Advances in
Neural Information Processing Systems, pages 9843–9854, 2019.

Harang Ju and Danielle S Bassett. Dynamic representations in networked neural systems. Nature
Neuroscience, 23(8):908–917, 2020.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counter-
factual explanations to interventions. arXiv preprint arXiv:2002.06278, 2020.

Elia Kaufmann, Antonio Loquercio, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide
Scaramuzza. Deep drone acrobatics. arXiv preprint arXiv:2006.05768, 2020.

Charles Kemp, Noah D Goodman, and Joshua B Tenenbaum. Learning to learn causal models.
Cognitive Science, 34(7):1185–1243, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled time
series. arXiv preprint arXiv:2006.04418, 2020.

Mathias Lechner, Ramin Hasani, Manuel Zimmer, Thomas A Henzinger, and Radu Grosu. Designing
worm-inspired neural networks for interpretable robotic control. In International Conference on
Robotics and Automation (ICRA), pages 87–94, 2019.

Mathias Lechner, Ramin Hasani, Alexander Amini, Thomas A Henzinger, Daniela Rus, and Radu
Grosu. Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence, 2(10):
642–652, 2020a.

Mathias Lechner, Ramin Hasani, Daniela Rus, and Radu Grosu. Gershgorin loss stabilizes the
recurrent neural network compartment of an end-to-end robot learning scheme. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 5446–5452. IEEE, 2020b.

Mathias Lechner, Ramin Hasani, Radu Grosu, Daniela Rus, and Thomas A Henzinger. Adversarial
training is not ready for robot learning. arXiv preprint arXiv:2103.08187, 2021.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47), 2020.

Lucas Liebenwein, Ramin Hasani, Alexander Amini, and Daniela Rus. Sparse flows: Pruning
continuous-depth models. arXiv preprint arXiv:2106.12718, 2021.

Ratnesh Madaan, Nicholas Gyde, Sai Vemprala, Matthew Brown, Keiko Nagami, Tim Taubner, Eric
Cristofalo, Davide Scaramuzza, Mac Schwager, and Ashish Kapoor. Airsim drone racing lab. In
NeurIPS 2019 Competition and Demonstration Track, pages 177–191. PMLR, 2020.

13



Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asma. Dissecting
neural odes. In 34th Conference on Neural Information Processing Systems, NeurIPS 2020. The
Neural Information Processing Systems, 2020.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. From ordinary differential equations to
structural causal models: the deterministic case. In Proceedings of the Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence, pages 440–448, 2013.

Arsalan Mousavian, Alexander Toshev, Marek Fišer, Jana Košecká, Ayzaan Wahid, and James
Davidson. Visual representations for semantic target driven navigation. In 2019 International
Conference on Robotics and Automation (ICRA), pages 8846–8852. IEEE, 2019.

Michael C Mozer, Denis Kazakov, and Robert V Lindsey. Discrete event, continuous time rnns.
arXiv preprint arXiv:1710.04110, 2017.

Olavi Nevanlinna. Remarks on picard-lindelöf iteration. BIT Numerical Mathematics, 29(3):535–562,
1989.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In in Proc. 17th
International Conf. on Machine Learning. Citeseer, 2000.

Uri Nodelman, Christian R Shelton, and Daphne Koller. Learning continuous time bayesian networks.
In Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence, pages
451–458, 2002.

Uri Nodelman, Christian R Shelton, and Daphne Koller. Learning continuous time bayesian networks.
In Proceedings of the Nineteenth International Conference on Uncertainty in Artificial Intelligence,
2003.

Uri D Nodelman. Continuous time Bayesian networks. PhD thesis, Stanford University, 2007.

Seong Hyeon Park, Gyubok Lee, Jimin Seo, Manoj Bhat, Minseok Kang, Jonathan Francis, Ashwin
Jadhav, Paul Pu Liang, and Louis-Philippe Morency. Diverse and admissible trajectory forecasting
through multimodal context understanding. In European Conference on Computer Vision, pages
282–298. Springer, 2020.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier,
2014.

Judea Pearl et al. Causal inference in statistics: An overview. Statistics surveys, 3:96–146, 2009.

Will Penny, Zoubin Ghahramani, and Karl Friston. Bilinear dynamical systems. Philosophical
Transactions of the Royal Society B: Biological Sciences, 360(1457):983–993, 2005.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.

Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan KoutnÃk. Snode: Spectral discretization
of neural odes for system identification. In International Conference on Learning Representations,
2020.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning, pages
2847–2854. PMLR, 2017.

Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative models for flexible
inference, planning, and control. In International Conference on Learning Representations, 2019.

14



Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings,
2011.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32,
pages 5320–5330. Curran Associates, Inc., 2019a.

Yulia Rubanova, Ricky TQ Chen, and David Duvenaud. Latent odes for irregularly-sampled time
series. arXiv preprint arXiv:1907.03907, 2019b.

Paul K Rubenstein, Stephan Bongers, Bernhard Schölkopf, and Joris M Mooij. From deterministic
odes to dynamic structural causal models. arXiv preprint arXiv:1608.08028, 2016.

F Ruggeri, F Faltin, and R Kenett. Bayesian networks. encyclopedia of statistics in quality and
reliability, 2007.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

T. Konstantin Rusch and Siddhartha Mishra. Coupled oscillatory recurrent neural network (co{rnn}):
An accurate and (gradient) stable architecture for learning long time dependencies. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
F3s69XzWOia.

Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2002.

Gopal P Sarma, Chee Wai Lee, Tom Portegys, Vahid Ghayoomie, Travis Jacobs, Bradly Alicea,
Matteo Cantarelli, Michael Currie, Richard C Gerkin, Shane Gingell, et al. Openworm: overview
and recent advances in integrative biological simulation of caenorhabditis elegans. Philosophical
Transactions of the Royal Society B, 373(1758):20170382, 2018.

Axel Sauer, Nikolay Savinov, and Andreas Geiger. Conditional affordance learning for driving in
urban environments. In Conference on Robot Learning, pages 237–252. PMLR, 2018.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory for
navigation. In International Conference on Learning Representations, 2018.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):
233–242, 1999.

Bernhard Schölkopf. Causality for machine learning. arXiv preprint arXiv:1911.10500, 2019.

Yannick Schroecker and Charles Isbell. State aware imitation learning. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pages 2915–2924, 2017.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Mingfei Sun and Xiaojuan Ma. Adversarial imitation learning from incomplete demonstrations.
arXiv preprint arXiv:1905.12310, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

Sebastian Weichwald, Martin E Jakobsen, Phillip B Mogensen, Lasse Petersen, Nikolaj Thams, and
Gherardo Varando. Causal structure learning from time series: Large regression coefficients may
predict causal links better in practice than small p-values. In NeurIPS 2019 Competition and
Demonstration Track, pages 27–36. PMLR, 2020.

15

https://openreview.net/forum?id=F3s69XzWOia
https://openreview.net/forum?id=F3s69XzWOia


Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayaraman, and Yang Gao. Fighting copycat agents in
behavioral cloning from observation histories. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
2564–2575. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/file/1b113258af3968aaf3969ca67e744ff8-Paper.pdf.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imita-
tion learning from imperfect demonstration. In International Conference on Machine Learning,
pages 6818–6827. PMLR, 2019.

Tianhe Yu, Pieter Abbeel, Sergey Levine, and Chelsea Finn. One-shot hierarchical imitation learning
of compound visuomotor tasks. arXiv preprint arXiv:1810.11043, 2018.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

https://proceedings.neurips.cc/paper/2020/file/1b113258af3968aaf3969ca67e744ff8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1b113258af3968aaf3969ca67e744ff8-Paper.pdf

	Introduction
	Related Works
	Problem Setup
	Causal Structures
	Differential Equations Can form Causal Structures
	Continuous-time Neural Networks

	Results
	Causal Modeling with Continuous-time Networks
	Training LTCs via Gradient Descent Yields Causal Models

	Experiments
	Discussions, Scope and Conclusions

