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Abstract
In the realm of autonomous driving, achieving precise 3D recon-
struction of the driving environment is critical for ensuring safety
and effective navigation. Neural Radiance Fields (NeRF) have shown
promise in creating highly detailed and accurate models of complex
environments. However, the application of NeRF in autonomous
driving scenarios encounters several challenges, primarily due to
the sparsity of viewpoints inherent in camera trajectories and the
constraints on data collection in unbounded outdoor scenes, which
typically occur along predetermined paths. This limitation not only
reduces the available scene information but also poses significant
challenges for NeRF training, as the sparse and path-distributed
observational data leads to under-representation of the scene’s
geometry. In this paper, we introduce HarmonicNeRF, a novel ap-
proach for outdoor self-supervised monocular scene reconstruc-
tion. HarmonicNeRF capitalizes on the strengths of NeRF and en-
hances surface reconstruction accuracy by augmenting the input
space with geometry-informed synthetic views. This is achieved
through the application of spherical harmonics to generate novel
radiance values, taking into careful consideration the color obser-
vations from the limited available real-world views. Additionally,
our method incorporates proxy geometry to effectively manage
occlusion, generating radiance pseudo-labels that circumvent the
limitations of traditional image-warping techniques, which often
fail in sparse data conditions typical of autonomous driving environ-
ments. Extensive experiments conducted on the KITTI, Argoverse,
and NuScenes datasets demonstrate our approach establishes new
benchmarks in synthesizing novel depth views and reconstructing
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1 Introduction
In recent years, with the rapid advancement of autonomous driving
technology, 3D reconstruction has become a crucial component for
ensuring precision in navigation and overall safety. Amidst this
technological evolution, Neural Radiance Fields (NeRF) [30] have
emerged as a groundbreaking 3D reconstruction technique, gaining
widespread attention for their ability to generate highly detailed
and accurate models of complex environments. Unlike traditional
Multi-View Stereo (MVS) [7, 14, 52] methods, NeRF utilizes deep
learning [9, 10] to model environments, capable of synthesizing con-
tinuous and photorealistic images, thereby significantly enhancing
reconstruction quality and visual fidelity. Furthermore, NeRF’s ca-
pability to synthesize intricate autonomous driving scenes [18, 23]
enriches training datasets for autonomous systems, aiding in the
improvement of their generalizability and decision-making quality.

Despite the remarkable performance of NeRF and its derivatives
in targeted synthetic rendering datasets, their scene reconstruction
performance significantly diminishes when applied to specific au-
tonomous driving datasets such as KITTI [16] and NuScenes [4].
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（a）Comparison of camera trajectories in different scenes.

（b）Comparison of reconstruction metrics across different scenes. （c）Comparison of 3D reconstruction visualization in different scenes.
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Figure 1: (a) illustrates the differing camera paths in both general surrounding scenes and specific driving scenarios. The
camera trajectories in driving scenes are depicted as more linear and path-constrained, indicative of the typical movement
patterns in autonomous driving data collection, as opposed to the more varied viewpoints found in general scenes. (b) shows
our method’s effectiveness in dealing with the challenges of sparse and dynamic driving environments. Our reconstruction in
(c) demonstrates significantly clearer and more accurate geometries

This decline is primarily attributed to the limited viewpoints pro-
vided by autonomous driving scenarios, failing to offer sufficient
perspective information for high-quality synthesis. Additionally,
the camera trajectories in autonomous driving are characterized by
sparse viewpoints of single self-motion, differing from the object-
centered forms previously encountered. The presence of moving
objects in autonomous driving scenes introduces variations in light-
ing and geometry over time, resulting in artifacts in synthesized
images and a decrease in reconstruction effectiveness. The origi-
nal NeRF model does not account for moving objects, limiting its
application in autonomous driving contexts.

To address the limitations of NeRF in modeling dynamic scenes
undergoing motion, several scholars have proposed extensions to
the NeRF network architecture. Innovations such as D-NeRF [37]
and NRNeRF [43] for scenes with non-rigid deformations, and time-
variable dynamic radiance fields like NSFF [24] , NeRFlow [12], Dy-
namicNeRF [15], and RoDynRF [25] have been introduced. These
adaptations incorporate temporal dimensions or consider non-rigid
transformations to accommodate scene dynamics. Moreover, con-
cerns regarding the original NeRF model’s size and its direct ap-
plication to autonomous driving scenarios leading to significant
artifacts and reduced visual fidelity have led to the development of
solutions like Mip-NeRF [1], which considers positions as conical
sections of a light ray rather than points to mitigate aliasing effects
on NeRF performance. NeRF in the Wild [27] addresses varying
environmental conditions by encoding appearances.

Although these methods have somewhat enhanced NeRF’s capa-
bility in dynamic scene reconstruction, they generally fail to fully
address the challenges posed by the sparse viewpoints and path-
distributed data collection inherent in autonomous driving scenes.
In response to these issues, this paper introduces a novel geometry-
guided ray augmentation technique specifically designed for sparse
view scene reconstruction in driving scenarios. Our approach not
only effectively manages challenges presented by dynamic objects

and sparse viewpoints but also significantly improves scene re-
construction accuracy from sparse views through the innovative
application of proxy geometry and spherical harmonics. Experi-
ments conducted on challenging autonomous driving datasets such
as KITTI, Argoverse [5], and NuScenes validate the superiority
of our method, establishing new benchmarks in 3D scene recon-
struction for the domain of autonomous driving. In summary, our
contributions are as follows:

• We leverage spherical harmonics to comprehensively inte-
grate all color observations at a 3D point. This approach
enables the generation of pseudo-labels that align with the
natural distribution of radiance, enhancing the consistency
and accuracy of scene illumination and texture.

• We introduce a novel use of proxy geometry to address occlu-
sion challenges during the ray augmentation process. This
strategy ensures that point radiance is unconfounded, facil-
itating the reconstruction of more accurate surfaces from
sparse viewpoints, a common scenario in autonomous driv-
ing environments.

• Our method is designed as a versatile, plug-and-play solu-
tion, compatible with existing sparse implicit neural sur-
face reconstruction techniques. It demonstrates exceptional
performance in sparse view reconstruction tasks, achiev-
ing superior results in driving scenarios without requiring
additional data or extensive pre-training.

2 Related Work
Neural Surface Reconstruction. Recently, neural implicit rep-
resentations have demonstrated superior effectiveness in various
tasks such as 3D object [8, 28, 36] and scene representation [30,
39, 40], novel view synthesis [2, 30, 47] and multi-view 3D recon-
struction [33, 34, 48, 54]. Among them, NeRF and its variants [2, 30]
demonstrated state-of-the-art performance for novel view synthesis
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with differentiable volumetric rendering. However, they require
dense images for input and it is hard to extract high-quality geom-
etry because the predicted density field lacks sufficient constraints.
Other works utilizing surface rendering [33] produce more accurate
modeling but require additional constraints such as ground truth
masks or depth priors for supervision [54, 56]. Several later stud-
ies combine the advantages of surface and volume representation,
generating satisfying surfaces with only image inputs [34, 48, 53].
For example, NeuS [48] combined volume rendering with signed
distance functions to circumvent the problem of insufficient surface
constraint in the original NeRF. The sampling efficiency was fur-
ther improved to allow for reconstructing in the wild scenes [41].
UNISURF [34] also unifies surface and volume rendering but with
occupancy fields. Similar to them, our work also only requires
multi-view images for 3D reconstruction.

Large-Scale Scene Reconstruction. NeRF’s static assumptions
falter in the dynamic, expansive scenes of autonomous driving,
where direct application incurs artifacts and fidelity loss due to
lighting and occlusion changes. Tackling NeRF’s capacity limita-
tions, methods like Mega-NeRF [45] and Block-NeRF [42] divide
scenes into smaller, manageable NeRF segments, improving training
efficiency and computational feasibility. Mip-NeRF [1] addresses
aliasing by representing positions as conical sections rather than
points, enhancing rendering quality. Approaches like Block-NeRF’s
adaptation of NeRF in theWild [27] encode varying appearances for
realistic lighting condition reconstructions. Recent extensions such
as LocalRF [29], READ [23], and S-NeRF [50] further NeRF’s appli-
cability in autonomous driving, dealing with changing geometries
and appearances characteristic of these environments.

Implicit Representation with Sparse Views. In the realm of au-
tonomous driving, reconstructing environments from sparse views
is a pressing challenge due to the sporadic nature of data acquisition
on the road. Two primary strategies have emerged to adapt NeRF
for sparse input: leveraging pre-trained CNNs to extract image
features from multi-view inputs or using sparse point clouds from
Structure-from-Motion (SfM) for additional supervision.

PixelNeRF [55] innovatively simulates continuous neural scenes
from a few input images, employing pre-trained layers of convo-
lutional neural networks (CNNs) and bilinear interpolation. This
method enhances the feature extraction process for each sampling
point, fully utilizing the characteristics of input images. It then
conveys the extracted feature points, spatial locations, and view-
ing directions to the NeRF network, enabling the construction of
continuous static scenes from sparse image sets [55]. The General
Radiance Field (GRF) [44] adopts a similar approach to PixelNeRF
but differs in that it operates in a standardized canonical space, offer-
ing more generality and versatility, particularly under the varying
conditions encountered in autonomous driving scenarios. Point-
NeRF [51] combines the explicit representation of point clouds
with the implicit NeRF technique. It harnesses the strengths of both
3D representation forms and adapts efficiently to the surfaces of
scenes, a crucial feature for capturing the complexities of driving
environments [6].

Other methods such as GeoNeRF [20] and DietNeRF [19] propose
novel supervision techniques that enrich the input data for NeRF

with semantic consistency or spatial geometry from unobserved
viewpoints. These methods mitigate issues like floating artifacts
that are common when dealing with sparse views but often re-
quire additional datasets for training, which may introduce domain
generalization challenges. HarmonicNeRF bypasses the need for
pre-training entirely, diverging from the aforementioned works.
Instead of regularization or relying on scene priors, we focus on
fitting the radiance distribution for each surface point, using it as
augmented information. We posit that the radiance distribution
at a point is a harmonic function, decomposable into a spherical
harmonic expansion. This insight leads us to develop a physically
grounded pipeline to generate precise pseudo labels for radiance
supervision, tailor-made for the dynamic and variable conditions
present in autonomous driving data collection [11, 22].

3 Preliminaries: NeuS
NeuS [48] represents a 3D scene as two continuous functions both
parametrized by a multi-layer perception (MLP). The first one is a
signed-distance function that takes as input 3D position x = (𝑥,𝑦, 𝑧)
and predicts its signed distance: 𝑓1 (x) → 𝑠 , and the other takes
both x and its viewing direction d and predicts its view-dependent
color: 𝑓2 (x, d) → c.

Similar to NeRF [30], the color of a pixel in NeuS [48] only
depends on the radiance along a ray with no other lighting factors.
For a camera ray r(𝑡) = o + 𝑡d with center o and direction d,
its color can be derived with volume rendering [21]. In practice,
NeuS samples 𝑁 points along r(𝑡) with 𝑡 = 𝑡1, ...𝑡𝑁 , 𝑡𝑖 < 𝑡𝑖+1 and
approximate the per-pixel color with the following:

Ĉ(r) =
𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖c𝑖 , (1)

𝑇𝑖 =

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ), (2)

where 𝛼𝑖 is the discrete opacity value that is a function of the proba-
bility density function of 𝑓1, and𝑇𝑖 is the accumulated transmittance
which indicates the probability that a ray traverses from 𝑡1 to 𝑡𝑖
without hitting any particle. NeuS exploits volume rendering to
minimize the mean-squared error (MSE) between the predicted ray
color Ĉ(r) and the ground truth C(r):

LMSE =
∑︁
r

∥Ĉ(r) − C(r)∥22 . (3)

Besides color loss, it also leverages an L1 regularization and a mask
loss if available. With successful minimization, the formulation of
NeuS enables the network to learn a signed-distance function that
represents an accurately reconstructed surface.

4 Methods
When limited images and corresponding training rays are given,
from Section 3, only a small proportion of the 3D space has su-
pervision, while the results of the rest space purely rely on the
interpolation ability of the network. Therefore, the main goal of
our paper is to augment the supervision signal of Implicit Neural
Representation (INR) by inferring rays from unseen viewpoints
based on limited inputs and the reconstructed INR in an accurate
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Figure 2: Method Overview. We exploit the coarse geometry in radiance field training to guide its augmentation with sparse
inputs. (left) For a surface point v, we aggregate the color observations from all inputs to fit a spherical harmonics expansion,
thus the pseudo labels for all the augmented rays passing through v can be obtained through querying the SH, (right) when
generating augmented rays, we check their visibility and exclude those cannot be actually observed.
way. Particularly, we found that model the problem of inferring
unseen radiance as fitting the radiance maps for spatial points, and
the radiance map of each point could be estimated from the known
radiance of that point based on our prior radiance map function.

In this work, we introduce HarmonicNeRF: Enhancing Neural
Radiance Fields with Visibility-Driven Spherical Harmonics, a novel
approach that significantly advances the capabilities of neural ra-
diance fields by incorporating spherical harmonics for accurate
radiance map estimation and employing visibility checks alongside
surface ray casting for improved scene reconstruction from sparse
viewpoints.

In the following of this section, we introduce the details of our
method. Our radiance augmentation algorithm is composed of three
steps: Surface Ray Casting in Section 4.1, Visibility Checking in
Section 4.2, and Radiance Map Estimation in Section 4.3.

4.1 Surface Ray Casting
Same to NeRF, the input to our method is a set of posed images
{𝐼𝑖 }𝑁𝑖=1, where 𝑁 is the number of images. The original training set
is denoted by R = {(r, c)}, in which r and c are the ray directions
and ray color. Since our method relies on the rough scene geometry,
we first train a radiance field for a few thousand steps and construct
the mesh with marching cubes [26]. The vertices of this rough
mesh are regarded as points lying on the surface. Then starting
from these surface points v, we shoot a number of rays r𝑟𝑎𝑛𝑑 ∈ R
in random directions. We denote the ray casted as R̃v. We ensure
that the angle between new rays and the surface normal of v is less
than 𝜋

2 , so these candidates for augmented rays are confident.

4.2 Visibility Check
However, some rays in R̃v might not actually be observed from
a valid viewport since they will hit the mesh and get occluded.
Figure 2 shows an example of this case. To filter out those invalid
rays, we include an additional visibility check step to exclude those
invalid rays. Specifically, for each ray r𝑎𝑢𝑔 , we march from the

starting point v according to the scene signed-distance field (SDF)
and terminate when the surface is reached or achieve the maximum
number of steps. Since the ray marching method is efficient, we
integrate it directly into the training pipeline without any offline
computation.

Algorithm 1 Ray Marching for Visibility Check
Input: pos (starting point), 𝑠𝑑 𝑓 (signed-distance function)
Output: visible or not

1: step := 0
2: d := 𝑠𝑑 𝑓 (pos)
3: while d > 𝜖 and step < max_steps do
4: pos = pos + dir * d
5: d = 𝑠𝑑 𝑓 (pos)
6: step = step + 1
7: end while
8: if step < max_steps then
9: return true // visible
10: else
11: return false // invisible
12: end if

4.3 Radiance Map
After the visibility check, rays in R̃v are ensured to be observed
from at least one camera viewpoint. The next question is what’s the
proper radiance value of rays in R̃v? In previous ray augmentation
methods [57], a surface ray has only one known radiance value,
since the source view visibility check is not performed, thus they
simply assign a color from one input view, which neglects the view-
dependent effect and leads to inconsistent pseudo label. However,
as shown in the previous discussion, a point in the scene surface
could be seen from multiple views and we actually have more
information regarding the radiance of surface point v. Thus, a main
contribution of our method illustrated as follows is that we utilize
all reasonably credible information to reconstruct the radiance
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distribution of surface point v to infer the radiance of novel rays.
Actually, not only did we fit the radiance distribution but also we
achieved extrapolation using spherical harmonics expansion fitting.

Our method handles the inference of radiance in two situations.
Firstly in the simpler case, if the point can only be seen from less
than 𝑁𝑣 views (𝑁𝑣 is empirically 10 in our experiment), we think
that we don’t have enough information to reconstruct the radiance
distribution. Thus, the radiance value of a randomly chosen view
is assigned to all new rays origin from point v. This is basically in
accordance with the previous method.

If the point v under processing can be viewed from more than
𝑁𝑣 views, then in this case we try to infer a distribution of radiance
over all viewing directions. Our solution to this problem is to fit a
spherical harmonic expansion, which is widely used in precompute
radiance transfer and environment maps in computer graphics. We
represent the radiance distribution using spherical harmonics:

cv (d) =
ℓmax∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑘𝑚ℓ 𝑌
𝑚
ℓ (d), (4)

where cv (d) is the radiance of point v viewing from d. Namely,
for vertice v, we back-project it to {𝐼𝑖 }𝑁𝑖=1 and filter views that
according to visibility (use the same visibility check function as in
4.2). The color observations for v can thus be represented by:

Sv = {(c𝑗 , d𝑗 )} = {(cv, 𝑗 ,Norm(o𝑗 − v))}𝑁vis
𝑗=1 , (5)

where 𝑁vis is the number of views from where v can be seen and o𝑗
is the corresponding camera center. These radiance sample points
are used to fit a radiance map by computing the coefficients for the
SH expansion via least squares fitting:

argmin
𝑘𝑚ℓ

𝑁𝑣𝑖𝑠∑︁
𝑗=1

|cv (d𝑗 ) − c𝑗 |2, (6)

where 𝑘𝑚
ℓ

∈ R3 is a set of 3 coefficients for RGB components. Then,
for each ray in R̃v, color is determined by querying the SH functions
𝑌𝑚
ℓ

given its viewing direction d. Using such an SH expansion to fit
the radiance distribution can provide extrapolation for novel view
direction.

To summarize, our method extends the training rays of NeRF
considering scene geometry. For each surface vertice v, we first
construct R̃v by shooting random ray directions from v and filter
invisible ones through visibility check. Since v can be observed at
multiple input viewpoints, we model it as an SH which thus can be
queried at any augmented ray direction going through v.

4.4 Depth Warping
To best utilize the available information in the known view, we
propose to propagate the depth information to other views through
image warping. For pixel 𝑝𝑖 (𝑥𝑖 , 𝑦𝑖 ) in reference view 𝐼𝑟𝑒 𝑓 , the cor-
responding pixel 𝑝 𝑗 (𝑥 𝑗 , 𝑦 𝑗 ) in the 𝑗𝑡ℎ unseen view 𝐼𝑢𝑛𝑠𝑒𝑒𝑛 can be
formulated as

𝑝 𝑗 = 𝐾𝑢𝑛𝑠𝑒𝑒𝑛𝑇

(
𝐾−1
𝑟𝑒 𝑓

𝑍𝑖𝑝𝑖

)
, (7)

where 𝑍𝑖 is the available depth of reference view, 𝑇 refers to the
relationship between camera extrinsic matrices from 𝐼𝑟𝑒 𝑓 to 𝐼𝑢𝑛𝑠𝑒𝑒𝑛 ,
and 𝐾𝑟𝑒 𝑓 and 𝐾𝑢𝑛𝑠𝑒𝑒𝑛 refer to the camera intrinsic matrices. We

further adopt the Painter’s Algorithm when multiple points in the
reference view are projected to the same point in the unseen view
and select the point with the smallest depth as the warping result.

Through image warping, we can obtain a depthmap of an unseen
view, which can serve as a pseudo ground truth. Nevertheless, there
is still an unavoidable gap between this pseudo ground truth and
the real correspondence, since small misalignment in the predicted
depth map can cause large errors when projected to other views.
Moreover, it is quite common that the projected results contain
some uncertain regions due to occlusion. To regularize the uncertain
regions in the warped results, we utilize the self-supervised inverse
depth smoothness loss, which uses the second-order gradients of
the RGB pixel value to encourage the smoothness of the predicted
depths:

L𝑠𝑚𝑜𝑜𝑡ℎ (𝑑𝑖 ) = 𝑒−∇
2I(x𝑖 ) (|𝜕𝑥𝑥𝑑𝑖 | + ��𝜕𝑥𝑦𝑑𝑖 �� + ��𝜕𝑦𝑦𝑑𝑖 ��) , (8)

where 𝑑𝑖 is the depth map, ∇2I (x𝑖 ) refers to the Laplacian of
pixel value at location 𝑥𝑖 .

5 Experiments
5.1 Novel Radiance Predicting from Spherical

Harmonics
Firstly, we conduct an experiment to validate the effective method
for generating radiance from unseen views. For predicting the novel
radiance, we compare our method with a naive baseline: spherical
linear interpolation, which interpolates the radiance of the unseen
view from the nearest two seen views in the spherical coordinate
system. Specifically, we implement the linear interpolation of radi-
ance using the geodesic distance as the weight:

ĉ = 𝑤c0 + (1 −𝑤)c1, (9)

𝑤 =
𝑑 (v̂, v1)

𝑑 (v1, v̂) + 𝑑 (v̂, v2)
, (10)

𝑑 (v1, v2) = arctan
|v1 × v2 |
v1 · v2

, (11)

while ĉ, v̂ are the radiance and view direction vector of novel
view, {c𝑖 , v𝑖 |𝑖 ∈ 1, 2} are these of the nearest two views, respectively.
Intuitively, the spherical harmonics fitting method can provide ex-
trapolation of radiance compared to the linear interpolation method
while preserving the smoothing variation under the prior of har-
monic function.

We generate a set of around 10, 000 points with all of their visible
colors from the KITTI dataset [17] for evaluating the two methods
for radiance prediction. The radiance from different views of each
point is divided into two training (known) and testing (unknown)
views with ratios from 8 : 2 to 5 : 5, in order to evaluate the perfor-
mance under the different number of novel views. We report the
average normalized Mean Square Error (MSE) in the novel views
in Table 2. The average MSE for SH fitting is less than that of inter-
polation, especially when the number of novel views exceeds the
number of known views. A visualization case is shown in Figure 3.

5.2 Implementation Details

Dataset In our experiments, we utilized three datasets known for
their extensive capture of real-world driving scenarios: KITTI [17],
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Table 1: Quantitative comparison with selected methods on the KITTI dataset. The best and the second best results are shown
in bold and underlined forms, respectively.

Dense Sparse
Methods PSNR↑ SSIM↑ LPIPS↓ ABSREL↓ PSNR↑ SSIM↑ LPIPS↓ ABSREL↓
NeRF [30] 20.03 0.652 0.502 0.203 15.07 0.552 0.603 0.253
NSG [35] 20.56 0.664 0.482 0.192 15.54 0.564 0.582 0.244
pixelNeRF [55] 19.48 0.631 0.518 0.213 14.56 0.534 0.614 0.261
SUDS [46] 20.14 0.643 0.493 0.198 15.12 0.547 0.598 0.248
MARS [49] 20.43 0.658 0.478 0.187 15.38 0.558 0.573 0.237
Urban-NeRF [38] 20.72 0.678 0.457 0.184 15.76 0.572 0.553 0.226
MipNeRF-360 [3] 21.99 0.692 0.437 0.088 16.93 0.589 0.498 0.144
NeRF++ [58] 20.29 0.520 0.585 3.917 17.60 0.535 0.562 4.960
Instant-NGP [31] 20.51 0.630 0.460 0.507 15.44 0.499 0.536 0.793
Ours 22.52 0.711 0.401 0.087 19.04 0.672 0.351 0.092

Figure 3: Visualization of radiance fitting. We project the
radiance value of points distributed on the upper hemisphere
into this circle to get a visualization of the fitted radiance
distribution. The first row of images depicts the SH fitting
results, while the second row showcases the outcomes of
interpolation. It reveals that the SH fitting provides more
informative radiance prediction results on the top line, while
preserving the smoothness of distribution.

Table 2: MSE in the novel views between interpolation and
SH fitting with different ratios between known rays and un-
known rays.

Known/Unknown 8:2 7:3 6:4 5:5
Interpolation 0.0652 0.0744 0.0835 0.0951
SH Fitting 0.0602 0.0686 0.0779 0.0881

Argoverse [5], and NuScenes [4]. These datasets are challenging
for 3D reconstruction due to their object movement and lighting
variations. From KITTI, we selected sequences with diverse driv-
ing conditions and reduced the data to simulate a 2.5 Hz capture
frequency, using 25% of available frames. This subset is henceforth
referred to as the ’sparse’ dataset. In contrast, utilizing the entirety
of the training set corresponds to a ’dense’ data scenario. Similarly,
for Argoverse, we halved the data to match its 5 Hz frequency.
NuScenes provided additional complexity with its annotated 3D
bounding boxes under various conditions. For each dataset, we
reserved every tenth frame for testing and used the rest for training
to assess our model’s ability to handle sparse viewpoints effec-
tively. The poses for image alignment were taken directly from
the datasets’ provided odometry and tracking data to maintain
consistency with the actual scale of the scenes.

Implementation Details In general, we implement our ray aug-
mentation strategy based on NeuS [48]. Previous work [32] has
shown that the input encoding scheme is important for reconstruct-
ing an implicit representation. Thus, we compare and choose the

frequency encoding [47] for the position input, and sphere har-
monics function encoding [13] for the direction. We find that by
replacing the frequency encoding with SH function encoding for
direct input, the rendered color can converge faster.

We train our model using the Adam optimizer with an initial
learning rate of 1𝑒 − 4 and a learning rate warm-up strategy. We
choose a batch size of 2048 and train our model for 150k steps,
and each scene is trained on one NVIDIA A100 GPU. To extract
mesh for ray augmentation, we run marching cubes for a spatial
resolution of 643 to get the vertices. The same algorithm is used for
extracting mesh when we evaluate the reconstruction result.
Evaluation Metrics. To validate the photorealism of our synthe-
sized views against the ground truth, we employ widely accepted
metrics from the field of novel view synthesis. Specifically, we
measure the Peak Signal-to-Noise Ratio (PSNR), which reflects the
reconstruction accuracy in terms of image pixel intensities. The
Structural Similarity Index Measure (SSIM) assesses the perceived
quality of the synthesized images, accounting for texture and struc-
tural integrity. Additionally, the Learned Perceptual Image Patch
Similarity (LPIPS) metric evaluates the similarity between synthe-
sized and ground truth images based on deep features, providing
an estimate of perceptual likeness.

For the evaluation of depth reconstruction quality, we follow
established precedents and include the Mean Absolute Relative
Error (ABSREL) and the Root Mean Squared Error (RMSE). These
depth accuracy metrics provide a quantitative measure of the dis-
parity between the estimated depth maps and the ground truth,
with ABSREL focusing on the relative difference and RMSE giving
the Euclidean distance error.
5.3 Experiment Results
Quantitative Analysis. We conduct quantitative comparisons
across the KITTI [17], NuScenes [4], and Argoverse [5] datasets
to evaluate the performance of our method against several estab-
lished baselines, including NeRF [30], NSG [35], pixelNeRF [55],
SUDS [46], MARS [49], Urban-NeRF [38], MipNeRF-360 [3], and
Instant-NGP [31]. In the dense scenario, our method consistently
outperforms all baselines, achieving the highest PSNR and SSIM
scores, while maintaining the lowest LPIPS and ABSREL scores
across almost all three datasets. This indicates our approach’s su-
perior capability in synthesizing photorealistic views and recon-
structing depth with high fidelity to the actual driving scenes.

The advantage of our method becomes even more pronounced in
the sparse setting, where the limitations of existing techniques are
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Table 3: Evaluation and comparison of various methods on the NuScenes dataset. The best and the second best results are
shown in bold and underlined forms, respectively.

Dense Sparse
Methods PSNR↑ SSIM↑ LPIPS↓ ABSREL↓ PSNR↑ SSIM↑ LPIPS↓ ABSREL↓
NeRF [30] 25.32 0.798 0.505 0.190 19.88 0.762 0.535 0.212
NSG [35] 26.10 0.810 0.498 0.185 20.34 0.770 0.528 0.208
pixelNeRF [55] 26.58 0.820 0.490 0.182 20.76 0.776 0.521 0.204
SUDS [46] 27.01 0.828 0.483 0.178 21.07 0.782 0.516 0.202
MARS [49] 27.45 0.835 0.475 0.173 21.50 0.790 0.510 0.198
Urban-NeRF [38] 27.92 0.843 0.461 0.169 20.09 0.802 0.504 0.195
MipNeRF-360 [3] 28.30 0.850 0.463 0.165 18.04 0.788 0.508 0.197
Instant-NGP [31] 27.80 0.840 0.472 0.170 16.42 0.780 0.512 0.243
Ours 29.50 0.862 0.430 0.160 26.92 0.868 0.450 0.182

Table 4: Evaluation and comparison of various methods on the Argoverse dataset. The best and the second best results are
shown in bold and underlined forms, respectively.

Dense Sparse
Methods PSNR↑ SSIM↑ LPIPS↓ ABSREL↓ PSNR↑ SSIM↑ LPIPS↓ ABSREL↓
NeRF [30] 26.54 0.812 0.491 0.185 21.44 0.785 0.521 0.205
NSG [35] 27.12 0.823 0.480 0.175 22.02 0.795 0.517 0.203
pixelNeRF [55] 27.64 0.831 0.477 0.175 22.63 0.805 0.502 0.196
SUDS [46] 27.88 0.835 0.462 0.165 23.01 0.814 0.495 0.190
MARS [49] 27.92 0.843 0.469 0.162 23.50 0.826 0.485 0.185
Urban-NeRF [38] 28.00 0.845 0.445 0.155 23.86 0.825 0.482 0.180
MipNeRF-360 [3] 29.35 0.855 0.446 0.120 25.81 0.829 0.468 0.139
Instant-NGP [31] 28.07 0.847 0.450 0.493 22.18 0.816 0.494 0.593
Ours 30.25 0.865 0.430 0.110 29.50 0.874 0.450 0.130

HarmonicNeRF MipNeRF-360

Figure 4: Visual comparison of scene reconstruction on
the NuScenes dataset, contrasting HarmonicNeRF with
MipNeRF-360 [3].

more apparent due to reduced input data. Specifically, on the KITTI
dataset, our method surpasses the second-best performing method,
MipNeRF-360, by a significant margin in terms of PSNR (19.04
vs. 16.93) and SSIM (0.672 vs. 0.589), highlighting its effectiveness
in dealing with sparse data. Similar trends are observed on the
NuScenes and Argoverse datasets, where our method demonstrates
exceptional performance, particularly in terms of PSNR and SSIM,
further underscoring its robustness and adaptability to various
driving scenarios. These results not only underscore the efficacy
of HarmonicNeRF in enhancing the quality of synthesized views
and the accuracy of depth reconstructions under both data-rich

and data-sparse conditions but also set a new benchmark for future
research in 3D scene reconstruction from sparse views.

Qualitative Comparisons. In addition to quantitative bench-
marks, qualitative assessments on the KITTI dataset showcase the
visual enhancements achieved with HarmonicNeRF. The compari-
son in Figure 5 reveals that, while Instant-NGP and MipNeRF-360
grapple with artifacts and blurring, particularly in motion-affected
areas, HarmonicNeRF produces reconstructions with remarkable
clarity and detail. Our method demonstrates superior texture fi-
delity and depth accuracy, capturing the nuances of urban driving
scene complexity with greater photorealism.

On the NuScenes dataset, the superiority of HarmonicNeRF is
further evidenced through visualizations presented in Figure 4.
HarmonicNeRF excels in reconstructing densely populated urban
areas, preserving distinct boundaries between objects, as shown on
the left side of each comparison. In contrast, the right side displays
results fromMipNeRF-360, which, while competent, blends complex
structures together—noticeably, trees meld with vehicles, and the
finer architectural features are lost to blurring.

Ablation Study. We dissect the components of HarmonicNeRF
to understand their individual contributions, especially in sparse
data contexts where the intricacies of each module are crucial. The
ablation study results in Figure 6 highlight the impact of the key
features under both dense and sparse conditions.

Without Spherical Harmonics. Replacing spherical harmonics
with linear interpolation caused a noticeable performance drop. In
sparse scenarios, this led to a substantial decrease in PSNR (e.g.,
by 2.8) and SSIM (e.g., by 0.03), validating the efficacy of spherical
harmonics in handling limited data.
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Image

Instant-NGP

MipNeRF-360

 
HarmonicNeRF

Figure 5: Qualitative comparison of 3D scene reconstructions from the KITTI dataset using different neural radiance field
methods. The top row presents original images from diverse urban settings with varying levels of detail and complexity.
HarmonicNeRF, which consistently provides the clearest and most accurate depictions, with crisp textures and fine details,
effectively handling challenging lighting and occlusions, and showcasing a marked improvement in both the fidelity and
photorealism of the reconstructed scenes.

WithoutVisibilityChecking.Without this component, ourmodel
was unable to effectively handle occlusions, with a significant in-
crease in LPIPS (e.g., by 0.05) and a more pronounced decrease in
SSIM in sparse data (e.g., by 0.04), confirming the crucial role of
visibility checking in sparse view synthesis.

Alternative Ray Casting Methods. Substituting our surface-
guided ray casting with random ray casting resulted in less accurate
reconstructions, particularly under sparse conditions, where PSNR
dropped by 3.0 and LPIPS increased by 0.04.

Without Depth Warping. Removing depth warping adversely
affected depth estimation accuracy, especially in sparse setups,
with ABSREL rising by 0.1, which points to the depth warping’s
substantial role in enhancing depth precision.

6 Conclusion
In this paper, we presented HarmonicNeRF addressing the signifi-
cant challenge of sparse view reconstruction in the context of au-
tonomous driving. Our approach innovatively enhances NeRF by in-
tegrating a geometry-guided ray augmentation strategy. This strat-
egy not only employs a visibility check to filter out non-contributory
rays using coarse geometry but also leverages spherical harmonics
to model the natural distribution of radiance. This dual approach
ensures physically plausible augmentations and superior surface
reconstruction accuracy by effectively utilizing the limited obser-
vational data typical of unbounded outdoor scenes encountered in
autonomous driving.

Figure 6: Ablation study results on the KITTI dataset, illus-
trating the impact of each component under dense and sparse
conditions.

Our comprehensive experiments, spanning the KITTI, Argov-
erse, and NuScenes datasets, underscore HarmonicNeRF’s ability to
outperform existing methods significantly. By synthesizing novel
depth views and reconstructing scenes with unprecedented preci-
sion, our method demonstrates its potential to set new standards
for 3D scene reconstruction in autonomous driving applications.

However, limitations exist in our current framework. For in-
stance, regions occluded in all observational views, such as the
backside of objects, remain a challenge due to our visibility check’s
inability to augment such areas. Future endeavors could explore
the integration of global scene priors or learning-based methods to
infer these occluded regions.
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