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Abstract
Mental disorders are among the most widespread
diseases globally. Analyzing functional brain
networks through functional magnetic resonance
imaging (fMRI) is crucial for understanding men-
tal disorder behaviors. Although existing fMRI-
based graph neural networks (GNNs) have demon-
strated significant potential in brain network fea-
ture extraction, they often fail to characterize com-
plex relationships between brain regions and de-
mographic information in mental disorders. To
overcome these limitations, we propose a learn-
able NeuroTree framework that integrates a k-hop
AGE-GCN with neural ordinary differential equa-
tions (ODEs) and contrastive masked functional
connectivity (CMFC) to enhance similarities and
dissimilarities of brain region distance. Further-
more, NeuroTree effectively decodes fMRI net-
work features into tree structures, which improves
the capture of high-order brain regional pathway
features and enables the identification of hierarchi-
cal neural behavioral patterns essential for under-
standing disease-related brain subnetworks. Our
empirical evaluations demonstrate that NeuroTree
achieves state-of-the-art performance across two
distinct mental disorder datasets. It provides valu-
able insights into age-related deterioration pat-
terns, elucidating their underlying neural mech-
anisms. The code and datasets are available at
https://github.com/Ding1119/NeuroTree.
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Figure 1. Overview of NEUROTREE framework.

1. Introduction
In recent years, neuropsychiatric disorders and addiction
have emerged as substantial public health challenges, with
their impact on brain function becoming a critical research
focus in neuroscience (Sahakian et al., 2015; Hollander
et al., 2020; Borumandnia et al., 2022). Substance use
disorder (SUD) is widely studied in the field of mental disor-
ders, enabling the investigation of structural brain alterations
among SUD users across various factors (e.g., age or gen-
der) (Niklason et al., 2022; Ding et al., 2024b). The develop-
ment of brain imaging modalities, such functional magnetic
resonance imaging (fMRI), which measures blood oxygen
level-dependent (BOLD) signals, and electroencephalogram
(EEG), which measures the electrical potentials of the brain
(Jiao et al., 2024; Yang et al., 2024; Yang & Liu, 2024)
has provided a means to analyze brain network activities in
mental disorders (Zhang et al., 2016; Li et al., 2022a; Nikla-
son et al., 2022; Pan et al., 2025). Moreover, research on
the clustering of connectivity in brain regions using fMRI
has demonstrated that the brain does not operate statically
but instead exhibits a dynamic, multi-level hierarchical or-
ganization (Meunier et al., 2009; Betzel et al., 2023). In
particular, hierarchical network analysis has been shown to
effectively distinguish these abnormal patterns and identify
brain regions associated with specific pathological mecha-
nisms in psychiatric disorders (Boisvert et al., 2024; Segal
et al., 2023; Wen et al., 2023b).

Currently, traditional brain network analysis has success-
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fully represented regions of interest (ROIs) as nodes with
functional connectivity (FC) as edges (Kulkarni et al., 2023;
Xu et al., 2024; 2016). Specifically, research on graph neu-
ral networks (GNNs) has shown promising results, demon-
strating strong predictive capabilities for neuropsychiatric
disorders by learning patterns across brain networks (Tong
et al., 2023; Kazi et al., 2019).

Differential equations can capture the dynamic processes
underlying changes in brain activity over time. CortexODE
further advances these approaches by combining ordinary
differential equations (ODEs) with deep learning methods
to model MRI images as point trajectories, thereby enabling
the reconstruction of complex cortical surfaces (Ma et al.,
2022). Moreover, STE-ODE (Tang et al., 2024) combines
the advantages of ODEs with continuous-time fMRI and
structural MRI to model dynamic brain networks while
leveraging GNN architectures for embedding learning. Cur-
rently, the existing methods have several limitations. First,
although GNNs demonstrate excellent node feature learn-
ing capabilities in graph structures, they are generally con-
strained by limited interpretability—particularly regarding
the explicability of auxiliary factors underlying mental dis-
orders. Second, graph-based networks for human brain FC
are restricted to feature learning from dynamic graph se-
quences, overlooking the brain’s hierarchical clustering of
network activity. Consequently, there is a lack of effective
methodologies for predicting functional brain alterations
across different age stages in psychiatric disorders.

To address these limitations, we leverage the properties of
ODEs for fMRI modeling similar to STE-ODE and extend
continuous-time dynamics methods. In this study, we pro-
pose NEUROTREE, a framework designed to characterize
brain network patterns through hierarchical analysis and rep-
resent the fMRI network as tree-structured pathways. This
approach decodes brain network features and facilitates vi-
sualization of disorder propagation through brain pathways.
Additionally, we develop a k-hop ODE-based AGE-GCN to
capture complex interactions between adjacent and distant
brain regions and to measure the convergence of various
mental disorder subtypes. We incorporate demographic
features like age into model learning and message passing
to enhance interpretability. Moreover, we implement con-
trastive masking optimization to identify key FC patterns.
Our main contributions are as follows:

• We integrate demographic information into Neural
ODEs for modeling both static and dynamic brain net-
works via k-hop graph convolution.

• We investigate two types of brain disorder datasets
to decode fMRI signals, constructing disease-specific
brain trees while employing trainable framework to
identify hierarchical functional subnetwork regions.

• Our research not only achieves state-of-the-art graph

classification performance but also effectively inter-
prets how addiction and schizophrenia disorders cause
changes in FC related to brain age.

2. Related Work
Neural ODEs for Dynamic BOLD fMRI Signal Model-
ing. The BOLD fMRI signal is an indirect and delayed
reflection of neural activity. Traditional approaches like
DCM use ordinary differential equations (ODEs) to infer
connectivity, but they are computationally intensive and
rely on prior assumptions (Cao et al., 2019). Recent work
has demonstrated the effectiveness of ODEs in modeling
continuous-time neural dynamics (Han et al., 2024; Tang
et al., 2024). The evolution of brain states can be described
by the equation dX(t)

dt = f(X(t), t), where X(t) represents
the brain state at time t, and f(·) is a neural network that
learns the rules governing state transitions. This frame-
work provides a natural way to model the continuous nature
of brain dynamics while maintaining biological plausibil-
ity (Havlicek et al., 2015).

Path-Aware Learning in GNNs. GCKN computes node
distances using kernel functions along vertex-connected
paths (Chen et al., 2020). Additionally, PathNNs enhance
the expressive power of GNNs by aggregating information
from multiple paths between nodes to improve performance
across multiple graph classification and regression tasks and
capturing complex graph structures (Michel et al., 2023).
The HEmoN model (Huang et al., 2025) has provided pre-
liminary insights into human emotions through tree path
analysis; however, it lacks aggregation of higher-order brain
pathways in complex brain region interactions, as well as
consideration of different demographic factors between in-
dividuals. In this study, we propose a weighted higher-order
brain tree pathway framework that enhances pathway repre-
sentation and effectively explains the predictions of changes
in FC networks associated with mental disorders across
different age groups.

3. The Proposed Architecture
The proposed NEUROTREE framework, illustrated in Fig. 1,
constructs dynamic FC graphs from subjects’ time-series
data. It encodes dynamic graph fMRI features using a k-
hop ODE-Based AGE-GCN incorporate demographics for
graph embedding learning for downstream tasks (e.g., graph
classification, brain age prediction). Subsequently, a CMFC
optimization is performed to adjust the FC strength between
similar and dissimilar brain regions distance. Then, we
build the hierarchical brain tree by reranking predicted brain
regions of interest (ROIs) scores and high-order tree path
weights, followed by tree pruning to create anatomically
meaningful hierarchical brain network structures. The re-
sulting brain tree structures are then employed to interpret
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disease cohorts, where functional networks primarily affect-
ing mental disorders manifest at different tree levels.

4. Preliminaries
Problem Formulation and Notations. In this section, we
formulate the classification of mental disorders using both
static and sequential segmented instance brain networks
constructed from fMRI as a supervised graph classification
task for each patient. Let temporal brain activity measure-
ments from N patients, Xi ∈ Rv×T , represent the complete
BOLD fMRI signals with v regions of interest (ROIs) and a
total length of T time series. We denote Xi(t) ∈ Rv×T ′

is
segmented time points with dimension T ′ for the ith subject.
For each subject, we construct a static or dynamic FC graph
G(V, E), where V represents the set of vertices (i.e., brain
regions) and E denotes the set of edges (i.e., functional con-
nections). The FC between regions is typically computed
using Pearson correlation methods. Based on these tempo-
ral correlation patterns, we derive both a static adjacency
matrix As ∈ Rv×v from the complete time sequence and
time-varying dynamic FC matrices Ad(t) ∈ Rv×v. The
static matrices capture averaged temporal dependencies,
while the dynamic matrices preserve the temporal evolution
of neural interactions (Zhang et al., 2016; Li et al., 2022a).

4.1. Graph Convolutional Networks

Traditional GCNs operate through neighborhood aggrega-
tion, whereby each node’s representation is updated by ag-
gregating features from its adjacent nodes. The classical
GCN layer is formulated as

H(l) = σ(D− 1
2AD− 1

2H(l−1)W (l−1)). (1)

where A is the adjacency matrix, D is the degree matrix,
H(l) represents the node features at layer l, and W (l) con-
tains learnable parameters. However, this formulation is
limited to first-order neighborhoods and may not effec-
tively capture the complex interactions among brain re-
gion (Veličković et al., 2017).

4.2. K-hop ODE-Based Graph Embedding

The ODE effectively captures the long-term dependencies of
dynamic changes in effective connectivity between different
ROIs (Sanchez-Romero et al., 2019). Inspired by existing
studies (Cao et al., 2019; Wen et al., 2024; Tang et al., 2024)
that utilize ODEs to model BOLD signals or biomarkers
in Alzheimer’s disease (AD) research, we extend the ODE
modeling framework by incorporating a scalar parameter,
θ ∈ R+ (i.e., age) , representing the chronological age of
subjects. This enhancement aims to improve the prediction
and interpretability of mental disorders in fMRI analysis.

Ẋ = f(X(t), u(t), θ) (2)

where u(t) denotes the external experimental stimuli. We
consider the influence of an external parameter, θ, on FC
across the entire temporal time series X(t), which is repre-
sented by adjacency matrix Ad. The following ODE models
this relationship:

dX(t)

dt
= ηAd(t)X(t) + ρ · θX(t) + Cu(t), (3)

where the matrix C ∈ Rv×v encodes the reception of exter-
nal stimuli u(t) ∈ Rv and parameters η, ρ ∈ R. To simplify
the analysis, we assume that Cu(t) = 0, indicating the
absence of additional external stimuli due to resting-state
fMRI task. By discretizing Eq. 3, we can derive the effec-
tive connectivity matrix Ad(t). Its discrete representation is
given by:

Ad(t) =
1

η

(
dX(t)

dt

1

X(t)
− ρ · θ

)
(4)

∆t=1
≈ φ

(
X(t+ 1)−X(t)

X(t)
− ρ · θ

)
(5)

where φ = 1
η and ρ are scale factors ranging from 0 to

1. To address the limitations of first-order feature convo-
lution filters in traditional GCNs, we propose an extended
spatial feature filter that operates over a k-hop connectivity
operator. This approach enables the spatial k-order brain
network representation to be learned via a generalized graph
convolution, as defined in definition 4.1.
Definition 4.1 (k-hop graph convolution). The spatial k-
order brain network representation can be learned through a
generalized graph convolution as follows:

H(l+1)(t) = σ
(K−1∑

k=0

Φk(t)H
(l)(t)W

(l)
k

)
(6)

where σ denotes the ReLU function, and Φk(t) =

D̂− 1
2 Âk(t)D̂

− 1
2 represents the normalized k-hop connec-

tivity adjacency operator. The adjacency operator can be
defined as:

Âk(t) = Γ⊙As ⊙ [λAd(t) + (1− λ)(Ad(t))T ]k︸ ︷︷ ︸
k-hop connectivity

. (7)

where Γ is a learnable parameter, the k-hop connectivity
operator retains directional information, as evidenced by
the fact that Âk(t) ̸= (Âk(t))

T when λ ̸= 1
2 . This result is

derived using the binomial theorem, as detailed in Appendix
A. Intuitively, Eq. 7 considers that As provides connectivity
information for the entire static fMRI sequence, while Ad

can regulate the bidirectional combination of dynamic fMRI
in the brain through the parameter λ.
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Theorem 4.2. Suppose the l2-norm of the k-hop connec-
tivity adjacency operator ∥Âk(t)∥2 can be derived from
Eq. (7). Then, as the k-hop approaches infinity (k →∞ ),
the ∥Âk(t)∥2 is bounded by the following inequality:

lim
k→∞

∥Âk(t)∥2 ≤ ∥Γ∥2 · ∥As∥2 ·max(λ, 1− λ)k (8)

The detailed proof of Eq. 8 is provided in Appendix B.
To ensure numerical stability when computing powers of
Âk(t), we establish the bounded condition: ∥Φk(t)∥2 ≤
1, which holds for all values of k and t. In proposition
4.3, we demonstrate that Φk(t) exhibits smooth temporal
evolution of the graph structure while maintaining a well-
defined upper bound.
Proposition 4.3 (Convergence and Uniqueness). Let Φk(t)
be the normalized adjacency operator that satisfies the Lip-
schitz condition (Coddington & Levinson, 1955) ∥Φk(t1)−
Φk(t2)∥2 ≤ L∥t1−t2∥2 for some constant L ≥ 0. Then, for
a Lipschitz continuous activation function σ and bounded
weights W (l)

k , the k-hop ODE-GCN admits a unique solu-
tion.

The proof from Picard’s existence theorem can be found in
Appendix C.
Theorem 4.4 (Discretization of Age-Aware Continuous–
Time Graph Convolution (Tang et al., 2024)). Consider a
series of brain networks {G(t; θ)}Tt=0 parameterized by an
age variable θ. Let Z(t) denote the embedding (or feature
representation) of the STE-ODE network at time t. The
continuous temporal evolution of the brain network can be
expressed through the following age-modulated ODE-based
graph convolution representation:

Z(t+∆t) = Z(t) +

∫ t+∆t

t

F (Z(τ), τ, θ) dτ, (9)

where F (·) is the graph embedding function that captures
the spatiotemporal and age-related information within the
network.

Specifically, the temporal evolution function is defined as:

F (Z(t), t, θ) =

L∑
l=1

H(l)(t, θ), (10)

where H(l)(t, θ) representing the age-modulated layer-wise
transformation at time t. Using a first-order approximation,
the temporal dynamics described in Eq. 6 and theorem 4.4
can be discretized into the following form:

Z(t+∆t) ≈ Z(t) + ∆t · Fθ(Z(t))

= Z(t) + ∆t

L∑
l=1

σ
(K−1∑

k=0

Φk(t)X
(l)
θ (t)W

(l)
k

)
,

(11)

Here, X(l)
θ (t) = X(l)(t)⊙(β ·θ) denotes the age-modulated

feature matrix with learnable parameter β ∈ (0, 1) for age
modulation strength at layer l, and W

(l)
k represents the learn-

able weights associated with the k-th hop filter weight at
layer l.

For t ≥ 1, the temporal age-modulated graph embedding
update is expressed as:

Z(t+ 1) = Z(t) + AGE-GCNk(Gf (t+ 1), θ)

= Z(t) + σ
(K−1∑

k=0

Φk(t+ 1)X
(L)
θ (t+ 1)W

(L)
k

)
(12)

where AGE-GCNk(Gf (t+1), θ) denotes the age-modulated
k-hop graph convolution applied to the graph Gf (t+ 1) at
the final layer L.

4.3. Optimization of Objective Function

To enhance the distinction between brain regions, we de-
veloped a node-wise contrastive masked functional connec-
tivity (CMFC) loss function that simultaneously minimizes
similarities and maximizes dissimilarities. This loss effec-
tively amplifies the distances between intra-FCstrengths.
For each node i, we calculate the FC strength Ci(t) =
1
|V|
∑|V|

j=1 |Ad
j (t)| at timestamp t, where |V| represents the

total number of nodes in the network. We then map this
FC strength to the latent space using a multilayer percep-
tron hi(t) = MLP(Ci(t)). Subsequently, we generate posi-
tive and negative masks for connectivity pairs according to
M±

ij (t) = I
(
(Cd

i (t) ≷ µC(t)) ∧ (Cd
j (t) ≷ µC(t))

)
, where

µC(t) is the mean value of FC and I(·) is the indicator func-
tion. The positive and negative sample sets are then defined
as A±(t) = {(i, j) |M±

ij (t) = 1}. Finally, the CMFC loss
is expressed as:

Lpos = −
1

|A+|
∑

(i,j)∈A+

log

(
exp(Sij(t))∑

k∈V exp(Sik(t)) + ϵ

)
,

Lneg = − 1

|A−|
∑

(i,j)∈A−

log

(
1− exp(Sij(t))∑

k∈V exp(Sik(t)) + ϵ

)
.

(13)
where Sij(t) =

⟨hi(t),hj(t)⟩
∥hi(t)∥∥hj(t)∥ computes the cosine similar-

ity of latent vectors of FC for nodes i and j at time t, and
ϵ = 10−6 is added to prevent division by zero. To opti-
mize the model, we minimize the combined CMFC loss
LCMFC = Lpos + Lneg and combine it with the binary loss
Lb for the overall loss function L = LCMFC + Lb.

Node Score Predictor

Different mental disorders exhibit distinct intrinsic FC pat-
terns between various brain regions (Gallo et al., 2023; Fu
et al., 2021). By analyzing these connectivity differences
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in specific brain areas, we can predict regional scores to
identify similar abnormal functional networks (Li et al.,
2020). We leverage FC strength latent vectors hi combined
with age-aware k-hop graph embeddings parameterized by
Θ = {Λ, θ,W (l)

k } to generate predictive scores for individ-
ual brain regions. The score for the ith node is expressed as
follows:

Si = hi·ζ
( 1

|V|
∑
j∈V

Zj(Θ)⊤Zi(Θ)
)
, i ∈ {1, 2, . . . , |V|}

(14)
where ζ(·) denotes a non-linear transformation function
and Z(Θ) ∈ R|V|×d represents the d-dimensional node
embeddings learned by AGE-GCN with the parameter set
Θ.

Definition 4.5 (MST algorithm). Given a weighted undi-
rected graph Gu = (V,E,wu), where wu(eij) assigns a
weight to the edge eij ∈ E between vertices i and j, we
define the pruned weighted graph T (Gu) = (V, ET , wu),
where ET ⊆ E, |ET | ≪ |E| represents the set of edges
retained in the minimum spanning tree (MST) after prun-
ing. Our goal is to find the minimum spanning tree while
satisfying:

min
T∈T (Gu)

∑
eij∈ET

wu(eij). (15)

where T is a spanning tree with edges ET ⊆ E and diameter
upper bound diam(T ) ≤ (|V|−1)(|V|−2)

2 (Spira & Pan, 1975).
In practice, we can apply Kruskal’s algorithm (Kruskal,
1956) to find the minimum spanning tree.

5. Hierarchical Brain Tree Construction
To characterize the hierarchical levels of FC in brain net-
works associated with mental illness, we construct a tree
structure from a weighted undirected FC graph Gu based on
predicted node scores and weighted edges (i.e., FC strength),
which contributes to identifying the most significant func-
tional pathways. Note that Eq. 7 represents a model trained
on directional graphs to investigate complex asymmetric
connection patterns for graph embedding. The constructed
tree of edge weights wu(eij) is derived from the model’s
learnable FC strengths measured for each ROI connectome.
Following Definition 4.5, the pruning process ensures that
the set ET retains only the significant edges that satisfy the
optimization criterion.

5.1. Optimal Weighted Tree Path

Given the pruned graph T (G), we examine paths that inte-
grate node importance and high-order FC across multiple
tree depths. Let P = {v0, v1, . . . , vk} represent a path of
length k− 1 in T (G), where each node v ∈ P is associated
with a scalar score S(v;Θ) ∈ R, computed from Eq. 14.
The edge set of P is denoted by E(P ) = {(vi, vj) | vi, vj ∈

Figure 2. Aggregation for hierarchical neighborhood paths. Fig.
(a) illustrates the original graph structure with weighted connec-
tivity before pruning, providing subnetworks that represent the
differences between brain regions. In Fig. (b), the zero-order path
is depicted; here, aggregation initiates at the highest-scoring node,
which integrates its immediate neighborhood by combining edges
eab and ead, i.e., two direct paths connecting the highest-scoring
node to its neighbors. Fig. (c) shows the aggregation of higher-
order paths, where isolated nodes are connected along the shortest
weighted paths, thereby capturing more complex connectivity pat-
terns beyond immediate neighbors.

P, (vi, vj) ∈ T (G)}, where each edge evivj ∈ E(P ) repre-
sent the path of neighbor connectivity. The composite path
weight is expressed as:

W(P ) = α
∑
v∈P

S(v;Θ)︸ ︷︷ ︸
Node Score Contribution

+(1− α)

S∑
s=1

∑
(vi,vj)∈E(P )

F (s)
vivj︸ ︷︷ ︸

High-Order FC Contribution

.

(16)
Here, F (s)

vivj ∈ R represents the s-th order FC strength
between nodes vi and vj along the tree path. To solve Eq.
16, we identify the path that minimizesW(P ) by adjusting
the parameter α ∈ [0, 1] to balance the contributions of
the scoring function S(v;Θ) and the connectivity strengths
along the weighted path. Additional experimental results
can be found in Fig. 7. According to theorem D.1 in the
Appendix, the optimal path can be determined when α∗

exist in the interval [αL, αU ] (Xue, 2000).

5.2. High-Order Tree Path Aggregation

In high-order tree path traversal, our objective is to aggregate
information of direct and indirect about the connectivity of
tree paths within the pruned graph T (G). In practice, we
aggregate connectivity information from neighboring edges
at each node, forming a weighted tree path. We define the
second term in Eq. 16, which represents the high-order FC
contribution for an s-order connectivity along the p-th path,
as follows:

F (s)
vivj = F (0)

vivj
+

∑
p∈Ps(vi,vj)

Ps(p) (17)

where F (0)
vivj = F(vi) + F(vj) represents the FC of a 0-

th order path, and Ps(vi, vj) denotes the set of all possi-
ble s-order paths between nodes i and j in T (G). For
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Algorithm 1 Hierarchical Tree Trunk Extraction with
Weighted Tree Path Learning

1: Input: Node scores {S(v;Θ)}v∈V , pruned graph
T (G) with nodes V and edges ET , maximum levels
Lmax, scaling factor α.

2: Output: Hierarchical trunks T = {T1, T2, . . . , TLmax
}

3: Initialize T ← ∅.
4: Let G(V, ET ) be the pruned graph using MST.
5: for l← 1 to Lmax do
6: Identify connected components {K1,K2, . . . ,Km}

in G.
7: for each component Kj do
8: Find vstart = argmaxv∈Kj

S(v).
9: Compute shortest paths P(vstart, v) for all v ∈ Kj

with weighted path:

W(P ) = α
∑
v∈P

S(v;Θ)+(1−α)
S∑

s=1

∑
(vi,vj)∈E(P )

F (s)
vivj ,

10: Let vend maximize W(P ), and define P ∗ =
P(vstart, vend).

11: Append P ∗ to Tl.
12: end for
13: Remove edges in Tl from G and update the graph.
14: Combine paths: T ← T ∪ Tl.
15: end for
16: Return T .

each s-order path index p = (i, k1, k2, . . . , ks, j), where
all intermediate nodes are distinct (km ̸= kn ∀m ̸=
n), its contribution is calculated as Ps(p) =

∑
v∈p F

(s)
v .

For a path of order s, its extended connectivity at order
s + 1-th through the neighboring node k can be com-
puted as F (s+1)

vivj =
∑

k∈N (vi,vj)

(
F (s)

vivk + F (s)
vkvj

)
, where

N (vi, vj) represents the set of common neighbors between
nodes i and j, and F (s)

vivk denotes the s-th order path connec-
tivity from node i to node k. This formulation allows us to
capture direct connections and higher-order structural rela-
tionships within the brain network, as illustrated in Fig. 2.

Fine-Grained Tree Trunk

We aim to construct a hierarchical tree structure com-
prising a trunk and branches distributed across different
levels in T (G). Our method groups nodes with simi-
lar scores into the same hierarchical level integrates the
most relevant paths into the l-th trunk Tl and excludes
unrelated paths. For the l-th level connected component
G∗ = (Vl, El), the numbers of nodes and edges decrease
monotonically as the level increases—that is, |Vl| ≤ |Vl−1|
and |El| ≤ |El−1|. Following Section 5.1, we identify the
shortest path set P (vstart, vend) = {vstart, v2, . . . , vend}
that incorporates the weighted tree path and the optimal
trunk set T ′ = {T1, T2, . . . , Tk}, as presented in algorithm
1.

6. Experiments
In this section, we first evaluate the proposed NEUROTREE
performance in brain disease classification (section 6.2) and
its application to predicting chronological age (section 8).
In section 6.4, we analyze the convergence of the spectral
norm for k-hop connectivity. Finally, we examine how hi-
erarchical brain trees interpret FC patterns between brain
regions and their corresponding seven subnetworks in sec-
tion 7. Detailed experimental settings for NEUROTREE are
provided in Appendix H.

6.1. Datasets

We validated two publicly available fMRI datasets —one fo-
cusing on cannabis use disorder and the other on schizophre-
nia. ① Cannabis (Kulkarni et al., 2023): The cannabis
dataset comprises fMRI data from two distinct sources. The
data were preprocessed from 3-Tesla fMRI acquisitions,
and the mean time series for each subject was computed
across 90 ROIs using the Stanford atlas parcellation (Shirer
et al., 2012). ② COBRE (Calhoun et al., 2012): The Cen-
ter for Biomedical Research Excellence (COBRE) dataset
includes resting-state fMRI data collected from healthy con-
trols and individuals diagnosed with schizophrenia. All
MRI data were parcellated into 118 ROI regions using the
Harvard-Oxford atlas. We summarized the statistics and
demographics of both datasets in Appendix Table 5.

6.2. Qualitative Results
This section is dedicated to evaluating the performance
of NEUROTREE against state-of-the-art (SOTA) GCN ar-
chitectures including 1) Pearson GCN 2) k-NN GCN 3)
GAT (Veličković et al., 2017) 4) BrainGNN (Li et al., 2021)
5) BrainUSL (Zhang et al., 2023) and BrainGSL (Wen et al.,
2023a) for graph classification tasks. Additionally, we in-
clude the tree path-based model PathNN (Michel et al.,
2023). The comparative analysis was conducted using 5-
fold cross-validation on two distinct datasets, benchmark-
ing NEUROTREE against both baseline models and SOTA
approaches. The comprehensive experimental results are
presented in Table 1.

Compare with Brain GCN Models. We quantitatively
assessed brain network construction using various metrics,
employing Pearson correlation and KNN as connectivity
measures. As shown in Table 1, the GAT model effec-
tively integrates attention mechanisms into fMRI node fea-
tures, achieving mean AUC scores of 0.72 and 0.67. In
contrast, the conventional GCN is limited to learning solely
from topological structures. Furthermore, NEUROTREE en-
hances ACC performance in fMRI-based models, improving
BrainGNN (ACC ↑ 23.72%), BrainUSL (ACC ↑ 12.30%),
and BrainGSL (ACC ↑ 12.30%) on the cannabis dataset. On
the COBRE dataset, BrainGNN, BrainUSL, and BrainGSL
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Table 1. Evaluating graph classification performance with five-fold cross-validation. We computed the most competitive baseline for each
method. We compared the second-best methods denoted by blue color and calculated the improvement rate, denoted as ”Improv. (%)”.

Cannabis COBRE
Model AUC Acc. Prec. Rec. AUC Acc. Prec. Rec.
Pearson GCN 0.67±0.06 0.55±0.07 0.59±0.13 0.55±0.06 0.54±0.11 0.55±0.10 0.61±0.12 0.55±0.10

k-NN GCN 0.64±0.03 0.62±0.03 0.63±0.03 0.63±0.03 0.66±0.07 0.62±0.08 0.63±0.08 0.63±0.08

GAT (Veličković et al., 2017) 0.72±0.05 0.67±0.04 0.70±0.06 0.67±0.04 0.67±0.08 0.60±0.11 0.57±0.21 0.60±0.11

BrainGNN (Li et al., 2021) 0.67±0.13 0.59±0.16 0.51±0.28 0.59±0.12 0.55±0.11 0.50±0.02 0.31±0.11 0.50±0.02

BrainUSL (Zhang et al., 2023) 0.63±0.11 0.65±0.06 0.62±0.13 0.63±0.11 0.57±0.10 0.54±0.04 0.41±0.18 0.57±0.11

BrainGSL (Wen et al., 2023a) 0.59±0.11 0.65±0.02 0.67±0.17 0.65±0.02 0.55±0.12 0.51±0.04 0.45±0.11 0.51±0.04

MixHop (Abu-El-Haija et al., 2019) 0.73±0.05 0.69±0.03 0.70±0.04 0.69±0.03 0.69±0.05 0.61±0.06 0.62±0.07 0.61±0.06

GPC-GCN (Li et al., 2022b) 0.53±0.05 0.60±0.06 0.37±0.08 0.60±0.06 0.50±0.00 0.47±0.04 0.22±0.04 0.47±0.04

PathNN (Michel et al., 2023) 0.70±0.10 0.67±0.04 0.72±0.12 0.83±0.16 0.49±0.01 0.51±0.05 0.32±0.27 0.43±0.46

Ours (w/o θ) 0.49±0.01 0.60±0.06 0.37±0.08 0.60±0.06 0.50±0.00 0.47±0.04 0.22±0.01 0.47±0.04

Ours (w/o LCMFC ) 0.74±0.08 0.73±0.05 0.73±0.04 0.73±0.05 0.69±0.10 0.63±0.10 0.64±0.10 0.63±0.10

NEUROTREE 0.80±0.05 0.73±0.04 0.73±0.04 0.74±0.04 0.71±0.10 0.65±0.08 0.66±0.08 0.65±0.08

Improv. (%) 8.11% - - 1.37% 2.89% 3.17% 3.12% 3.17%

Figure 3. Convergence analysis of Φk(t) over k-hop The spectral norm of Φk(t) reveals differential convergence rates across varying
k-orders among distinct mental disorders, notably demonstrating that cannabis exhibits a steeper convergence gradient compared to
COBRE as λ increases.

further improve ACC by 30.00%, 20.37%, and 27.45%,
respectively.

Compare with Path-Based Models. As shown in Table 1,
NEUROTREE outperforms existing high-connectivity view
field-aware graph GCN models, such as the high-order con-
catenation layer-based MixHop, achieving over 6% average
performance improvement in AUC across all metrics on
the cannabis dataset. Furthermore, compared to MixHop
on the COBRE dataset, NEUROTREE not only achieved a
2% increase in AUC, but also demonstrated a mean perfor-
mance improvement of 6.3% to 6.5% in ACC, Precision, and
Recall. Notably, although GPC-GCN can aggregate multi-
level connectivity information by considering the concept of
paths, it does not significantly improve classification perfor-
mance on critical connectivity paths. Similarly, the PathNN
framework aggregates path information starting from nodes
to generate node representations but shows only limited im-
provements. In contrast, our NEUROTREE achieves a 14%
improvement in AUC on the cannabis dataset, while PathNN
underperforms compared to MixHop on the COBRE dataset.
The experimental results indicate that NEUROTREE is su-
perior in capturing temporal FC patterns and predicting
outcomes in addiction and psychiatric disorders.

6.3. Ablation Study

The Impact of Objective Function and Demographics.
In our experiments, we evaluate the efficacy of CMFC loss
integration within our proposed NEUROTREE. The quantita-
tive analysis presented in Table 1 indicates modest improve-
ments in the cannabis dataset; however, its implementation
in the COBRE dataset achieved an AUC of 0.71, with con-
sistent performance gains exceeding 3% across metrics, par-
ticularly in the characterization of mental disorder features.
This enhancement stems from combining the loss function
with CMFC loss optimization framework that simultane-
ously suppresses connectivity between dissimilar regions
while amplifying patterns among similar neurological areas.
Furthermore, our ablation experiments demonstrate that age
serves as a critical modulator in AGE-GCN by adapting
parameter θ, substantially influencing the classification of
changes in brain connectivity.

6.4. Convergence Analysis
The intuition for analyzing the rate of spectral norm decay
with increasing k-hop allows us to examine how rapidly
information from distant nodes attenuates across the dy-
namic brain network structure. More detalil explanation
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The Brain Tree Structure of Addiction(a-1) (b-1) The Brain Tree Structure of of SchizophreniaLevel 1
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Figure 4. The visualization of the brain tree illustrates psychiatric disorders structured into three hierarchical trunk levels. Panels (a-1) and
(b-1) mark the most significant nodes along the tree path. The l-1 pathways represent regional connectivity, corresponding to the level
three brain maps on the right. Panels (a-2) and (b-2) depict the number of connections using color gradients across the hierarchical levels.

can be found in Appendix I. To further examine the con-
vergence speed of k-hop FC in various brain disorders, we
analyze the spectral norm under the k = 1 setting for the
convergence of Φk(t) in Fig. 3 (left). Although the COBRE
dataset initially exhibits slower convergence, particularly
with the boundary defined around order 15, the overall con-
vergence in the cannabis dataset is faster than in COBRE
across different k-hop values. Furthermore, when analyzing
the convergence of Φk(t) under varying λ values, as shown
in Fig. 3 (middle) and (right), the λ values for cannabis are
more concentrated and stable. In contrast, COBRE requires
larger λ values to achieve convergence. The empirical find-
ings demonstrate that examining the spectral norm of Φk(t)
across various k values effectively reveals the relationship
between high-order patterns and decay characteristics of FC
in different mental disorders.

7. Brain Tree Analysis
This section investigates brain disorders by analyzing hier-
archical brain networks using decoded fMRI-derived con-
nectomes. NEUROTREE deconstructs the fMRI brain net-
work into a tree-structured component graph consisting of
a main trunk and radial branches. We identify key regions
associated with brain disorders within each trunk by analyz-
ing optimal weighted high-order tree paths. Our analysis
highlights the most relevant functional network regions de-
termining critical pathways within the brain connectome
tree.

Exploring Hierarchical Regional Patterns in Brain Disor-
ders. To better understand how embedded brain features

vary across different hierarchical levels of brain subnet-
works, NEUROTREE predicts each ROI score and performs
reranking, as illustrated in Fig. 1. Higher levels represent
trunk pathways of high-scoring nodes, strongly connected
edges, and their associated brain ROIs. We mapped the atlas
parcellations of both datasets (i.e., 90 ROIs and 118 ROIs) to
Yeo’s seven-network parcellation (Yeo et al., 2011), which
includes the Visual Network (VN), Somatomotor Network
(SMN), Dorsal Attention Network (DAN), Ventral Attention
Network (VAN), Frontoparietal Network (FPN), and De-
fault Mode Network (DMN). Additionally, we incorporated
the Subcortical System (SUB) in our analysis to examine
the subcortical structures. Atlas regions not belonging to
these networks were classified as ’Others.’ More details can
be found at Appendix L.2.

Next, we discuss the addiction brain tree illustrated in Fig.
4 (a-1) and (a-2), which features three trunk levels. At the
primary trunk level (red pathway), the addiction brain tree
predominantly exhibits connectivity among DMN (red) and
VN (purple) nodes; similarly, in Fig. 4 (b-1) and (b-2), the
schizophrenia brain tree at the main trunk level primarily
involves SUB (pink) nodes and partial VN nodes. At the
second hierarchical level (pink pathways), the addiction co-
hort exhibits predominant connections within DAN, DMN,
and VN nodes. In contrast, the schizophrenia group at this
level demonstrates connectivity primarily among VN nodes
and some FPN (light blue) nodes. At the third hierarchical
level (yellow pathways), the terminal branches in the addic-
tion group show minimal connections with the SMN nodes
(green) and DAN nodes, whereas the schizophrenia cohort
displays several connections among DMN nodes.
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Figure 5. The scatterplot shows the gaps between fMRI-predicted
brain age and chronological age for healthy control and mental
disorder groups.

8. Brain Age Estimation
Comparing estimated fMRI brain age against actual chrono-
logical age in individuals with mental disorders can provide
valuable insights into the severity and progression of these
conditions (Stankevičiūtė et al., 2020). The physiological
actual age of the human brain is unknown and cannot be di-
rectly measured; however, we can predict brain age through
regression tasks on fMRI data using NeuroTree learned
fMRI graph embeddings. We hypothesize that there exist
certain gaps between the actual chronological age of healthy
individuals and the brain age of those with mental disorders.
For example, when the gap between model-predicted brain
age and actual chronological age is positive, it indicates
accelerated brain aging.

To validate model prediction in brain age, we trained Neu-
roTree on a healthy control cohort and predicted non-healthy
subjects to better measure brain age gaps. In Table 2, we
demonstrate NeuroTree’s predictive performance across dif-
ferent age groups in two datasets. Notably, the younger
age group (18-25 years) exhibited markedly lower Mean
Squared Error (MSE) values of 9.51 in the Cannabis dataset
and 4.48 in the COBRE dataset compared to other age
groups, indicating greater accuracy in brain age prediction
for younger individuals. Compared to younger age groups,
NeuroTree’s prediction MSE across both mental disorder
datasets provides valuable insight, showing that brain age
estimation for older individuals may be affected by greater
individual variability in brain changes associated with men-
tal disorders after middle age, while younger groups likely
exhibit more consistent patterns of FC during neurodevelop-
ment.

9. Discussion
In section 7, our analysis of the tree-structured topology
revealed distinct patterns of brain subnetwork alterations
associated with addiction and schizophrenia. These changes

Table 2. NEUROTREE prediction for different age groups.
Datasets Age Group MSE Pearson (r)

Cannabis
18-25 (n=150) 9.51±1.67 0.27±0.02

25-40 (n=127) 27.32±3.15 0.18±0.01

40-54 (n=41) 25.12±1.40 0.18±0.00

COBRE
18-25 (n=35) 4.48±0.42 -
25-40 (n=56) 37.64±2.02 0.10±0.01

40-66 (n=61) 32.64±3.43 0.49±0.13

were primarily concentrated in networks governing cogni-
tive functions, including the DMN, the visual task VN and
the decision-making FPN. This network-specific disruption
pattern aligns with previous findings (Kleinhans et al., 2020;
Kulkarni et al., 2023; Ding et al., 2024b).

Prior studies have established disrupted connectivity pat-
terns in schizophrenia, particularly within the DMN (Ishida
et al., 2024; Yang et al., 2022). We identified intermittent ab-
normal coupling between subcortical regions, especially the
connections with the prefrontal cortex and cerebellum (Ding
et al., 2024a; Hancock et al., 2023). Furthermore, areas of
the visual cortex were correlated with impaired motor coor-
dination and sensorimotor integration (Verma et al., 2023;
Zhao et al., 2022), consistent with the high FC regions illus-
trated in Fig. 4. Additionally, our analysis revealed distinct
age-related differences in brain FC between addiction and
schizophrenia (Table 2). We further verify our finding in
Fig. 5, which illustrates the relationship between predicted
brain age and chronological age. The predicted brain age
for both mental disorders is lower than the chronological
age, particularly in the higher age group. Both conditions
appear to affect age-related brain characteristics, leading to
an abnormal relationship between brain age and chronologi-
cal age. Notably, addiction demonstrates a more significant
impact on brain development and aging than schizophrenia,
which is consistent with our observations in section 8.

10. Conclusion
This study proposed NEUROTREE, a novel hierarchical
brain tree framework that integrates k-hop AGE-GCN with
neural ODEs and a contrastive mask FC loss to decode
functional brain pathways in psychiatric disorders. NEU-
ROTREE effectively incorporates demographic to improve
brain disease classification and enhances interpretability
in predicting brain age while revealing distinct hierarchi-
cal connectivity patterns within the DMN, FPN, and VN
across different mental disorders. Additionally, these find-
ings demonstrate that different subtypes of mental disor-
ders exhibit varying trajectories of FC changes across age
periods. These insights contribute to the neuroscientific
understanding of functional alterations induced by mental
disorders, potentially informing therapeutic interventions
and pharmacological treatments.
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Impact Statement
In this study, we examine the increasing societal impact of
mental illness and addiction, highlighting the critical im-
portance of understanding the underlying mechanisms of
brain disorders. Traditional GNNs designed for fMRI data
have proven effective in capturing network-based features;
however, many of these approaches lack interpretability and
fail to incorporate external demographic information within
a deep learning framework. To address these limitations, we
introduce NEUROTREE, a novel framework that establishes
a robust foundation for advancing neuroscience research,
identifies influential brain network regions associated with
disorders, and elucidates potential therapeutic targets for
future drug development and intervention strategies in spe-
cific brain regions. In future work, our NeurTree framework
can be extended to related research fields such as EEG and
social networks.

Reproducibility
All of our experiments are reproducible, with results pre-
sented in Table 1 and Table 2. We will upload the prepro-
cessed data to Google Drive and release our code on GitHub
upon acceptance of the paper. Please note that, based on
our experience, there may be some variations in the results
shown in Table 1 and Table 2 due to differing GPU config-
urations. For accurate results, please refer to our released
checkpoints.
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A. Appendix: Proof Formula 7 for K-hop Connectivity
Theorem A.1 (K-hop Connectivity). Given the k-hop connectivity adjacency operator:

Âk(t) = Γ⊙As ⊙
[
λAd(t) + (1− λ)(Ad(t))T

]k
, (18)

the k-hop connectivity can be expressed as:

[
λAd(t) + (1− λ)(Ad(t))T

]k
=

k∑
i=0

(
k

i

)
λi(1− λ)k−i

(
Ad(t)

)i(
(Ad(t))T

)k−i
. (19)

Proof. For k = 1, the formula holds trivially:[
λAd(t) + (1− λ)(Ad(t))T

]1
= λAd(t) + (1− λ)(Ad(t))T .

Assume the formula holds for k = n:[
λAd(t) + (1− λ)(Ad(t))T

]n
=

n∑
i=0

(
n

i

)
λi(1− λ)n−i

(
Ad(t)

)i(
(Ad(t))T

)n−i
.

For k = n+ 1, expand:[
λAd(t) + (1− λ)(Ad(t))T

]n+1
=
[
λAd(t) + (1− λ)(Ad(t))T

]n[
λAd(t) + (1− λ)(Ad(t))T

]
.

Substituting the inductive hypothesis and applying Pascal’s identity:(
n+ 1

i

)
=

(
n

i− 1

)
+

(
n

i

)
,

We obtain:

[
λAd(t) + (1− λ)(Ad(t))T

]n+1
=

n+1∑
i=0

(
n+ 1

i

)
λi(1− λ)n+1−i

(
Ad(t)

)i(
(Ad(t))T

)n+1−i
.

Thus, by induction, the formula holds for all k. And we have following corollary in A.2

Corollary A.2 (Asymmetric Property of K-hop Operator). The k-hop operator preserves directional information:

Âk(t) ̸= (Âk(t))
T ,∀λ ̸= 1

2
(20)

Proof. By the definition of the k-hop connectivity operator:

Âk(t) = γ ⊙As ⊙
[
λAd(t) + (1− λ)(Ad(t))T

]k
(21)

Applying the binomial expansion from A.1:

Âk(t) = Γ⊙As ⊙
k∑

i=0

(
k

i

)
λi(1− λ)k−i(Ad(t))i((Ad(t))T )k−i (22)

Taking the transpose of Âk(t):

(Âk(t))
T = ΓT ⊙ (As)T ⊙

k∑
i=0

(
k

i

)
λi(1− λ)k−i((Ad(t))i)T (((Ad(t))T )k−i)T

= Γ⊙As ⊙
k∑

i=0

(
k

i

)
λi(1− λ)k−i((Ad(t))T )i(Ad(t))k−i

(23)
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When λ ̸= 1
2 , the weights λi and (1− λ)k−i are asymmetric, meaning:

λi(1− λ)k−i ̸= λk−i(1− λ)i (24)

Therefore, Âk(t) ̸= (Âk(t))
T unless all terms in the expansion are zero.

B. Appendix: Proof of Theorem 4.2
We prove the ∥Âk(t)∥2 has an upper bound as k-hop approaches infinity:

lim
k→∞

∥Âk(t)∥2 ≤ ∥Γ∥2 · ∥As∥2 ·max(λ, 1− λ)k (25)

Proof. Using matrix norm properties:

∥A⊙B∥2 ≤ ∥A∥2 · ∥B∥2 (26)

Applying the triangle inequality when λ ∈ [0, 1], we obtain:

∥λA+ (1− λ)B∥2 ≤ max(λ, 1− λ)(∥A∥2 + ∥B∥2) (27)

Applying the l2-norm to Âk(t):

∥Âk(t)∥2 = ∥Γ⊙As ⊙ [λAd(t) + (1− λ)(Ad(t))T ]k∥2 (28)

And we have:

∥Âk(t)∥2 ≤ ∥Γ∥2 · ∥As∥2 · ∥[λAd(t) + (1− λ)(Ad(t))T ]k∥2 (29)

Using Eq. 27, we further bound:

∥[λAd(t) + (1− λ)(Ad(t))T ]∥2 ≤ max(λ, 1− λ)(∥Ad(t)∥2 + ∥(Ad(t))T ∥2) (30)

Since ∥(Ad(t))T ∥2 = ∥Ad(t)∥2, we obtain:

∥[λAd(t) + (1− λ)(Ad(t))T ]∥2 ≤ 2max(λ, 1− λ)∥Ad(t)∥2 (31)

Taking the power of k on both sides of Eq. 31, we have ∥Âk(t)∥2 ≤ ∥Â(t)∥k2 and the following inequality holds:

∥[λAd(t) + (1− λ)(Ad(t))T ]k∥2 ≤ max(λ, 1− λ)k (32)

Substituting into equation 29, we get:

∥Âk(t)∥2 ≤ ∥Γ∥2 · ∥As∥2 ·max(λ, 1− λ)k. (33)

Since max(λ, 1− λ) < 1 for λ ∈ (0, 1), the series converges geometrically. This result indicates that ∥Âk(t)∥ converges to
zero as k →∞, provided the spectral radius of A, denoted by λ, satisfies max(λ, 1− λ) < 1. Consequently, the rate of
decay of ∥Âk(t)∥ is governed by max(λ, 1− λ)k, which demonstrates the dependence on the spectral properties of A and
ensures convergence for sufficiently small λ.
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C. Appendix: Proof for Proposition 4.3
To prove the proposition 4.3, we express the neural ODE system as:

dH(l)(t)

dt
= F (H(l)(t), t) (34)

where

F (H(l)(t), t) = σ

(
K−1∑
k=0

Φk(t)H
(l)(t)W

(l)
k

)
(35)

Proof. Assume σ is a differentiable function and continuous in t. We show that F satisfies Lipschitz continuity in H(l) and
continuity in t. Let H(l)

1 and H
(l)
2 be two output states:

∥F (H
(l)
1 , t)− F (H

(l)
2 , t)∥2

=

∥∥∥∥∥σ
(

K−1∑
k=0

Φk(t)H
(l)
1 W

(l)
k

)
− σ

(
K−1∑
k=0

Φk(t)H
(l)
2 W

(l)
k

)∥∥∥∥∥
2

(36)

since ∥F (H
(l)
1 , t)− F (H

(l)
2 , t)∥2 is bounded by the Lipschitz constant of σ, denoted by Lσ , we obtain:

∥F (H
(l)
1 , t)− F (H

(l)
2 , t)∥2 ≤ Lσ

∥∥∥∥∥
K−1∑
k=0

Φk(t)(H
(l)
1 −H

(l)
2 )W

(l)
k

∥∥∥∥∥
2

(37)

Using matrix norm properties and ∥Φk(t)∥2 ≤ 1 and W
(l)
k are bounding the norms. The bound equation can be written as:

∥F (H
(l)
1 , t)− F (H

(l)
2 , t)∥2 ≤ Lσ

K−1∑
k=0

∥W (l)
k ∥2∥H

(l)
1 −H

(l)
2 ∥2 (38)

Let M = maxk ∥W (l)
k ∥2. Then:

∥F (H
(l)
1 , t)− F (H

(l)
2 , t)∥2 ≤ LσKM∥H(l)

1 −H
(l)
2 ∥2 (39)

Thus, F is Lipschitz continuous in H(l) with Lipschitz constant LF = LσKM . For continuity in t, we use the Lipschitz
condition of Φk(t):

∥Φk(t1)− Φk(t2)∥2 ≤ L∥t1 − t2∥2 (40)

Thus, Eq. 40 ensures that F is continuous in t. According to Picard’s existence theorem, the k-hop ODE-GCN has a unique
solution.

D. Appendix: Finding the Shortest Paths in a Weighted Brain Tree
Theorem D.1 (Optimal Path Extremes). LetW(S) =

∑
v∈P S(v;Θ) represent the node score contribution andW(C) =∑

eij∈E(P ) Ci,j represent the connectivity strength contribution in the pruned graph T (G). For an arbitrary integer
threshold λ∗, the optimal path P ∗ satisfies the following interval constraintW(S) ≤ λ∗ ≤ W(C).

In practice, the minimum interval can be determined using the bisection method within [αL, αU ] using a bisection method
such thatW(S) ≤ WαL

(P ∗) ≤ α∗ ≤ WαU
(P ∗) ≤ W(C) (Xue, 2000).
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E. Prediction of FC Alterations in Brain Age Across Different Age Groups
This section presents our application of NEUROTREE for predicting mental disorders and examining their impact on brain
FC changes across various age cohorts. We utilized AGE-GCN embeddings to reconstruct FC values for different age
groups. Subsequently, we analyzed FC values for various age groups, as illustrated in Fig. 6. The results presented in Fig. 6
(a) and (b) reveal that significant within-group differences were observed exclusively among cannabis users in the 18–25 age
group. We observe significant changes in FC values associated with cannabis use disorder and schizophrenia across various
age groups, indicating age-dependent variations in FC patterns among individuals with these psychiatric disorders.

(a) Cannabis

(b) COBRE

Figure 6. Age-related changes in predicted FC values across different groups. (a) cannabis users versus healthy controls (HC) and (b)
schizophrenia patients versus HC using the COBRE dataset. Note that asterisks indicate statistical significance (∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001). Error bars represent standard error of the mean.
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F. High-Order Tree Path Influence
In further examining the characterization of fMRI in the tree path, we investigated the contribution of FC strength through
Eq. 16 across two distinct subtypes of fMRI representations, as illustrated in Fig. 7 Our observations revealed that
cannabis-related pathways exhibited relatively higher average FC weights compared to the COBRE dataset. Notably,
both the addiction and schizophrenia groups demonstrated significant decreases following an increase in α, while the HC
cohort maintained relatively stable patterns. These findings provide compelling evidence that higher-order brain tree paths
effectively capture the differential contributions of FC strength arising from alterations related to addiction or schizophrenia.

Figure 7. Average FC value weights versus α in high-order tree paths, comparing (a) HC vs cannabis users and (b) HC versus schizophrenia
patients. The results indicate reduced connectivity patterns with increasing α in both clinical groups compared to the control group.

G. More Related Work
Schizophrenia (SCZ) and substance abuse (SA) both profoundly impact brain structure and function, with a particularly high
comorbidity rate observed among younger populations. Research indicates that SCZ patients frequently exhibit functional
abnormalities in critical brain regions, including the DMN, central executive network (CEN), and visual pathways (Ma
et al., 2023). However, findings remain inconsistent regarding whether comorbid SA history in SCZ patients exacerbates
these neural impairments. (Wojtalik & Barch, 2014) conducted fMRI scans during working memory tasks and discovered
significantly enhanced activation in frontal-parietal-thalamic regions among control subjects with SA history. Interestingly,
SCZ patients showed no significant activation differences regardless of SA history, suggesting that pre-existing neural
deficits in SCZ may obscure the additional effects of SA (Wojtalik & Barch, 2014). In addition, (Passiatore et al., 2023)
further demonstrated that FC alterations associated with SCZ risk emerge during adolescence, particularly in cerebellum-
occipitoparietal and prefrontal-sensorimotor regions, strongly correlating with polygenic risk scores (PRS).

Beyond network abnormalities, SCZ and SA patients commonly exhibit accelerated brain aging, where their brain-predicted
age significantly exceeds their chronological age, indicating heightened functional deterioration of the brain—a phenomenon
with critical implications for understanding cognitive decline and disease risk (Cole & Franke, 2017; Lombardi et al., 2021).
With the emergence of GNN applications to fMRI data, researchers can now model and analyze brain regions as nodes
and functional connections as edges in graph structures. The Pooling Regularized GNN (PR-GNN) proposed by (Li et al.,
2020). Applying this methodology to SCZ with comorbid SA may simultaneously facilitate classification and biomarker
identification, while incorporating demographic variables such as age, gender, and SA history enables individualized
modeling. In summary, SCZ and SA have age-related and highly intertwined effects on brain functional networks. GNN
methodologies provide technical tools with both explanatory and predictive capabilities, offering promise for deepening our
understanding of the neural mechanisms underlying psychiatric disorders and their potential clinical applications.
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H. Experiments Detail
Experiments Setting

Baseline Models. The classical methods for constructing brain networks include Pearson correlation and k-nearest
neighbor approaches combined with GCN, such as:These methods are as follows:1) Pearson GCN: This model constructs
an fMRI graph using Pearson correlation coefficients to represent relationships between ROIs. 2) k-NN GCN: This model
builds brain networks by connecting k-nearest neighbors based on similar input features within brain regions in the graph.
3) GAT (Veličković et al., 2017): This model extends the GCN framework by incorporating an attention mechanism that
enhances the aggregation and learning of features from neighboring nodes. 4) BrainGNN (Li et al., 2021): BrainGNN is an
interpretable GNN framework designed for analyzing fMRI data. This framework effectively identifies and characterizes
significant brain regions and community patterns associated with specific neurological conditions. 5) BrainUSL (Zhang
et al., 2023): BrainUSL learns the graph structure directly from BOLD signals while incorporating sparsity constraints and
contrastive learning to capture meaningful connections between brain regions. Finally, we compare NEUROTREE with
other methods that incorporate higher-order node information, specifically MixHop (Abu-El-Haija et al., 2019) and graph
path-based models such as GPC-GCN (Li et al., 2022b) and PathNN (Michel et al., 2023).

Evaluation Metrics In our fMRI graph classification experiments (Section 6.2), we evaluate NEUROTREE using Area
Under the Curve (AUC), Accuracy (Acc.), Precision (Prec.), and Recall (Rec.). In brain age prediction (Section 8), we
evaluate NEUROTREE predicted age and chronological age using MSE metric.

Parameters Setting In this study, two datasets were trained with a batch size of 16 for 100 epochs using a learning rate of
0.001.

Table 3. Training Parameters.
Notation Meaning Value

ρ Scale parameter 0.5
T Number of time segment 2
λ k-hop connectivity balance between dynamic FC matrices Ad(t) (0,1)
β Learnable age-modulated parameter (0,1)
Γ Learnable graph weight parameter -

W
(l)
k Learnable weight matrix in lth layer -

Additional Ablation Study In this subsection, we conduct ablation experiments on the performance of brain networks
classification with respect to two parameters λ and Γ on two mental disorders dataset. The experimental results demonstrate
that for Cannabis, the model achieves optimal accuracy (0.8) and AUC value (0.87) at λ = 0.2, with performance decreasing
as λ increases to 0.4, followed by a recovery at λ = 0.6. In contrast, COBRE exhibits a different parameter sensitivity
pattern, with accuracy showing a decreasing-then-increasing trend as λ increases from 0.2 to 0.8, ultimately reaching peak
accuracy (0.8) at λ = 0.8. Regarding the Γ parameter, Cannabis shows an overall decline in accuracy as Γ increases. On
the other hand, COBRE reaches its optimal accuracy (0.8) and AUC value (0.79) at Γ = 0.6, but experiences a sharp
performance drop at Γ = 0.8. These findings suggest that Cannabis-related brain network structures are more effectively
captured at lower λ values, whereas COBRE-related brain functional abnormalities are more efficiently identified at higher
λ and moderate Γ values.
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Figure 8. Evaluation of brain network classification performance based on model parameters λ and Γ.

Environment Setting In our experiments, we follow the environment setting:

Table 4. Experiment Environment Details
Component Details
GPU NVIDIA GeForce RTX 3070
Python Version 3.7.6
Numpy Version 1.21.6
Pandas Version 1.3.5
Torch Version 1.13.1
Operating System Linux
Processor x86 64
Architecture 64-bit
Logical CPU Cores 32
Physical CPU Cores 24
Total Memory (GB) 62.44

I. Biological Interpretation of k-hop Convergence
A faster decay in the spectral norm implies that higher-order information becomes less influential, indicating a more localized
brain interaction pattern, while a slower decay suggests that longer-range dependencies are preserved in the FC network.
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As the k-value increases, more distant neural connections are considered, which may reflect the integration process of
long-distance FC in the brain. Thus, the spectral norm convergence analysis provides quantitative insights into the scale and
extent of connectivity alterations, complementing the interpretability of our tree-structured model.

Figure 9. The visualization of different decay meanings in spectral norm convergence. The left side of the curve (blue section)
demonstrates faster decay, which leads to more localized brain interaction patterns, visualized by a compact, hierarchical network structure
with blue nodes. The right side (orange section) shows slower decay, which preserves longer-range dependencies, illustrated by a more
distributed network with orange nodes connected across greater distances.

J. Age-Related Brain Network Changes in Addiction and Schizophrenia
In this section, we identified age-related FC subnetwork changes associated with mental disorders, as shown in Fig. 10. his
study reveals distinct patterns of brain network connectivity across different age groups in individuals with addiction and
schizophrenia through FC analysis. In addiction patients, age emerges as a critical variable significantly influencing brain
network organization. Young addiction patients (18-25 years) demonstrate strong connectivity between the DMN, VN, and
FPN, which may reflect the collective influence of these critical networks during the early stages of addiction development.
As age increases, middle-aged addiction patients (25-40 years) show connectivity extending to the DAN, indicating enhanced
attentional control mechanisms during persistent addiction. Notably, older addiction patients (40-55 years) predominantly
exhibit Somatomotor network connectivity, possibly representing specific effects of long-term addiction on motor control
systems. In contrast, schizophrenia patients display different age-related network change trajectories. Young schizophrenia
patients (18-25 years) are primarily characterized by strong connections between Somatomotor and VN, which may relate to
abnormal sensory-motor integration in early schizophrenia. Middle-aged schizophrenia patients (25-40 years) demonstrate
stronger FPN activity, suggesting the importance of higher-order cognitive control networks in disease progression. Older
schizophrenia patients (40-66 years) are mainly characterized by enhanced connectivity between DAN and VN, potentially
reflecting changes in attentional processing and visual integration mechanisms in late-stage disease. From our research
findings, we demonstrate significant heterogeneity across different age groups in various mental disorders, particularly in
the progression patterns of age-dependent network changes.

21



NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders

Figure 10. Predicted FC changes in different age groups and affiliated functional subnetworks.

K. Effects of Age and CMFC Loss on Brain Tree Structure
According to Fig. 11, without parameter age and CMFC loss, the tree branches appear disorganized and fragmented, with
paths lacking anatomical continuity and interpretability. However, with parameter that dynamically regulates FC based on
individual age, it presents more coherent branches and clearer hierarchical structure.
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Figure 11. Constructed brain Tree based on w/o θ and w/o CMFC loss. We present different modeling approaches for brain connectivity
networks and their robust in brain tree construct. (A) The left panel illustrates brain connectivity network models without age parameters,
while the right panel demonstrates models incorporating age parameters. (B) The left panel displays brain connectivity network models
without CMFS loss function, whereas the right panel shows models utilizing CMFC loss function.
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L. Dataset
We presents the summary statistic of two public fMRI dataset below:

Table 5. Summary statistics of demographics in Cannabis and COBRE

Dataset Sample size Age
(Mean ± SD)

Cannabis HC (n=128) 30.06 ± 10.47
Cannabis (n=195) 27.23 ± 7.73

COBRE HC (n=72) 38.31 ± 12.21
Schizophrenia (n=70) 36.04 ± 13.02

L.1. fMRI preprocessing in cannabis dataset

fMRI Data Processing Pipeline (Kulkarni et al., 2023) The fMRI data underwent a comprehensive preprocessing
pipeline. Raw data was acquired using 3T MRI scanners (Siemens Trio or Philips) with T2*-weighted and high-resolution
T1-weighted structural images. The preprocessing, implemented through FMRIPREP, included intensity non-uniformity
correction, skull stripping, and brain surface reconstruction using FreeSurfer. Spatial normalization to the ICBM 152
template was performed, followed by brain tissue segmentation into cerebrospinal fluid (CSF), white matter, and gray
matter. The functional data underwent slice-timing correction, motion correction, and co-registration to corresponding T1w
images using boundary-based registration. Physiological noise was addressed through CompCor regression. Additional
denoising steps included removing participants with framewise displacement > 3mm in over 5% of scan length and applying
ArtRepair for remaining high-motion volumes. Combined task/nuisance regression was performed using motion parameters
and aCompCor as covariates. The processed whole-brain time series were then parcellated using the Stanford functional
ROIs atlas, resulting in 90 regions of interest. Quality control analyses confirmed that motion metrics did not significantly
differ between groups (t-test p=0.86) and showed no correlation with classification accuracy (p=0.475).
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L.2. Different Atlases According to Seven Affiliated Functional Subnetworks

Table 6. Comparison of Brain Networks between Stanford (90 ROIs) and Harvard-Oxford (118 ROIs) Atlases
Network Stanford (90 ROIs) Harvard-Oxford (118 ROIs)
Default
Mode

bilateral mPFC, L/R lateral angular gyrus, R supe-
rior frontal gyrus, bilateral posterior/middle/mid-
posterior cingulate, bilateral anterior thalamus,
L/R parahippocampal gyrus, L/R inferior/mid-
temporal cortex, L medial angular gyrus, L crus
cerebellum (lang), L inferior parietal cortex, L/R
middle frontal gyrus (vent DMN), R inferior cere-
bellum (vent DMN)

Left/Right Frontal Pole, Superior Frontal Gyrus,
Middle Temporal Gyrus (anterior/posterior), Angu-
lar Gyrus, Precuneous Cortex

Visual L/R mid occipital cortex, L/R precuneus
(post sal), bilateral medial posterior/medial pre-
cuneus, R angular gyrus - precuneus, L/R ventral
precuneus, L/R fusiform gyrus, L/R mid-occipital
cortex

Left/Right Middle/Inferior Temporal Gyrus (tem-
porooccipital), Lateral Occipital Cortex (supe-
rior/inferior), Cuneal Cortex, Lingual Gyrus,
Temporal Occipital Fusiform Cortex, Occipital
Fusiform Gyrus, Occipital Pole

Dorsal
Attention

L/R superior frontal gyrus, L/R superior/inferior
parietal cortex, L/R precentral/fronto-opercular
region, L/R inferior temporal cortex, L/R cerebel-
lum (visuospatial), R crus cerebellum

Left/Right Middle Frontal Gyrus, Superior Parietal
Lobule, Supramarginal Gyrus (anterior/posterior)

Frontoparietal L/R middle frontal/dlPFC, L inferior frontal (tri-
angular), L/R inferior parietal/angular gyrus, L
inferior temporal gyrus, R/L crus cerebellum
(LECN/RECN), L posterior thalamus, R middle
orbito-frontal cortex, R superior medial frontal
gyrus, R caudate

Left/Right Inferior Frontal Gyrus (pars triangu-
laris/opercularis), Frontal Operculum Cortex

Somatomotor L/R superior temporal/auditory, R thalamus, L/R
pre/post-central gyri, bilateral supplementary mo-
tor area, L/R ventral posterior nucleus of thalamus,
cerebellar vermis

Left/Right Precentral Gyrus, Superior Temporal
Gyrus (anterior/posterior), Postcentral Gyrus, Jux-
tapositional Lobule Cortex, Central Opercular Cor-
tex

Subcortical R striatum/thalamus (2), L/R inferior frontal
gyrus, pons/dropout region

Left/Right Thalamus, Caudate, Putamen, Pallidum,
Brain-Stem, Hippocampus, Amygdala, Accum-
bens

Others L prefrontal cortex, L/R anterior insula, bilateral
ACC, L/R crus cerebellum (ant sal), L/R mid-
dle frontal gyrus, L/R supramarginal cortex, L/R
middle thalamus, L/R anterior cerebellum, L/R
superior temporal gyrus, bilateral calcarine cortex,
L LGN

Left/Right Insular Cortex, Temporal Pole, Frontal
Medial/Orbital Cortex, Subcallosal Cortex,
Paracingulate Gyrus, Cingulate Gyrus (ante-
rior/posterior), Parahippocampal Gyrus, Temporal
Fusiform Cortex, Parietal Operculum Cortex,
Planum regions, Cerebral White Matter/Cortex,
Lateral Ventricle
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