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Abstract

While numerous work has been proposed to ad-
dress fairness in machine learning, existing meth-
ods do not guarantee fair predictions under im-
perceptible feature perturbation, and a seemingly
fair model can suffer from large group-wise dis-
parities under such perturbation. Moreover, while
adversarial training has been shown to be reli-
able in improving a model’s robustness to defend
against adversarial feature perturbation that dete-
riorates accuracy, it has not been properly studied
in the context of adversarial perturbation against
fairness. To tackle these challenges, in this paper,
we study the problem of adversarial attack and ad-
versarial robustness w.r.t. two terms: fairness and
accuracy. From the adversarial attack perspec-
tive, we propose a unified structure for adversar-
ial attacks against fairness which brings together
common notions in group fairness, and we theoret-
ically prove the equivalence of adversarial attacks
against different fairness notions. Further, we de-
rive the connections between adversarial attacks
against fairness and those against accuracy. From
the adversarial robustness perspective, we theo-
retically align robustness to adversarial attacks
against fairness and accuracy, where robustness
w.r.t. one term enhances robustness w.r.t. the
other term. Our study suggests a novel way to
unify adversarial training w.r.t. fairness and accu-
racy, and experiments show our proposed method
achieves better robustness w.r.t. both terms.

1. Introduction

As machine learning systems have been increasingly applied
in high-stake fields, it is imperative that machine learning
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models do not reflect real-world discrimination. However,
machine learning models have shown biased predictions
against disadvantaged groups on several real-world tasks
(Larson et al., 2016; Dressel & Farid, 2018; Mehrabi et al.,
2021a). In order to improve fairness and reduce discrimina-
tion of machine learning systems, a variety of work has been
proposed to quantify and rectify bias (Hardt et al., 2016;
Kleinberg et al., 2016; Mitchell et al., 2018). Despite the
emerging interest in fairness, fairness depreciation in the
context of adversarial perturbation and the corresponding
defense techniques have not been adequately discussed.

Previous work has demonstrated that by applying small
magnitude of adversarial perturbations to input features,
the performance (classification accuracy) of machine learn-
ing models can be severely deteriorated (Goodfellow et al.,
2014; Madry et al., 2017). Realizations of such pertur-
bations are generally referred to as the adversarial attack
and have been widely discussed in current literature (Croce
et al., 2020; Bai et al., 2021). Being the complementary
of adversarial attack, the adversarial robustness provides
reliable quantification regarding the statistical properties
of a machine learning model when subjected to such ad-
versarial perturbations, particularly concerning accuracy.
Methods that focus on improving adversarial robustness are
referred to as adversarial training (Chakraborty et al., 2018;
Wong et al., 2020; Sriramanan et al., 2021). However, such
discussion becomes troublesome when extended to the sta-
tistical parity of a model, i.e., the adversarial robustness in
the context of fairness. Regarding fairness, the adversarial
perturbations aim at exacerbating disparities between sen-
sitive groups, typically characterized by the group fairness
notions, including demographic parity (DP) and equalized
odds (EOd). Owing to the variations in the statistical charac-
teristics of fairness and accuracy, such perturbations may not
necessarily align with the adversarial attack. As shown in
Tab. 1, while the adversarial attack effectively approximates
the worst-case perturbations against the accuracy, it fails
to provide appropriate estimations regarding the worst-case
perturbations against fairness measures, especially in terms
of EOd. Under a successful adversarial attack, the difference
in group-wise classification errors vanishes, leading to zero
violation in EOd. Consequently, a successful adversarial
attack does not necessarily ensure fairness depreciation, and
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vice versa.
€ Acc DP EOd
0 84.25+1.17% 14.34+1.65% 28.45+2.27%
03 0 15.13+£0.17% O

Table 1. Comparison of changes in statistical measures (Acc for
accuracy, DP and EOd for fairness) under adversarial attacks on
Adult dataset. Lower DP and EOd indicates smaller disparities
between sensitive groups.

As discussed in (Solans et al., 2020; Mehrabi et al., 2021b;
Chhabra et al., 2022; Kang et al., 2023), similar to accuracy,
fairness can also be targeted by malicious adversarials, lead-
ing to biased outcomes against certain demographics. While
previous work has been focused on the poisoning attack
against fairness measures, the adversarial attack and adver-
sarial robustness in the context of fairness has been rarely
discussed. Given that current adversarial attack techniques
are not readily applicable to fairness depreciation through
adversarial perturbation, there is a pressing necessity to
develop tailored methods for formulating the adversarial
attacks, as well as the adversarial robustness, within the
context of fairness.

Black White
TPR TNR TPR TNR

€e=0 38.05% 86.88% | 34.54% 89.70%

€=0.05 ‘ 100% 0% 0% 100% ‘

Always predicted as high risk/recidivism
under adversarial perturbation

Always predicted as low risk/non-recidivism
under adversarial perturbation

Figure 1. Demonstration of adversarial attacks against fairness on
COMPAS dataset (Larson et al., 2016), where the statically fair
classifier is obtained by in-processing (Wang et al., 2022). Under
a small perturbation level ¢ = 0.05 (< 1.5% of input feature’s
norm), the disparities in true positive rates (TPR) and true negative
rates (TNR) between white and black people increase sharply to
100%, and the outcomes of classifier become solely dependent of
sensitive information, leading to destructive social injustice against
the disadvantaged group (where all the black individuals will be
considered as of high risk in this demonstration). Fairness shall
not be considered as a static measure, and a classifier with small
fairness gaps can show large disparities under fairness attacks.
Image credit: (Angwin et al., 2016).

For simplicity of discussion, with slight abuse of phraseol-
ogy we define the adversarial perturbations against accuracy
as the accuracy attack, i.e., the imperceptible perturbation
to deteriorate accuracy, and accuracy adversarial samples

as samples that are adversarially perturbed by the accuracy
attack. We leave the mathematical formulations in Sec. 3.1.
We define such robustness to the accuracy attack as accu-
racy robustness, i.e., a model’s ability to resist adversarial
perturbation by an accuracy attack and remain same pre-
dictions on clean and accuracy adversarial samples. Similar
to those of accuracy, we define the fairness attack as the
imperceptible perturbation to deteriorate fairness, and fair-
ness adversarial samples as samples that are adversarially
perturbed by the fairness attack. We show the mathemati-
cal formulations in Sec. 3.2. Specifically, while accuracy
attacks aim at exacerbating the classification error, fairness
attacks try to deteriorate group-wise parity between different
sensitive groups, leading to varied perturbations up to each
individual. Work including (Solans et al., 2020; Mehrabi
et al., 2021b) first proposed to generate fairness adversarial
samples taking into account fairness objectives to perturb
the training process and to exacerbate bias on clean testing
data. However, the detailed mechanism of fairness attacks
has not yet been properly discussed, as it remains unclear
how the instance-wise perturbations work, and the relation-
ship between fairness attacks and accuracy attacks remains
ambiguous. Moreover, the adversarial robustness regard-
ing fairness attacks, as well as its connection with accuracy
robustness, has been overlooked in current literature.

Just as a model optimized for accuracy in training may not
be robust against an accuracy attack, similarly, a fair model
trained for static fairness may not inherently possess fair-
ness robustness against fairness attacks. Here we similarly
define fairness robustness as a model’s ability to resist ad-
versarial perturbation by a fairness attack and remain same
predictions on clean and fairness adversarial samples. As
shown in Fig. 1, fairness can be volatile under adversarial
perturbations, where a small degree of perturbation can lead
to significant variations in group-wise disparities, and en-
forcing fairness alone during training does not necessarily
lead to improvement in robustness against fairness attacks.
In fairness literature, although adversarial training has been
widely discussed, most of them have been focused on ap-
plying adversarial training as a means to unlearn the impact
of sensitive attributes to achieve static fairness (Madras
et al., 2018; Creager et al., 2019). Chhabra et al. (2022)
first propose a defense framework for adversarial perturba-
tion against fairness; however, such perturbation is targeted
against sensitive information, rather than input features.

In this work, we propose a general framework for fairness
attacks, where we show impacts of fairness attacks up to
each individual under different notions, as well as the con-
nections between these notions regarding gradient-based
attacks. Based on this unified framework, we discuss the
relationship between fairness attacks and accuracy attacks.
Furthermore, we show that despite the discrepancies in ad-
versarial perturbations between the fairness attack and the
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accuracy attack for certain samples, fairness robustness and
accuracy robustness do not necessarily conflict with each
other. Based on the spatial proximity between such samples
and samples where the fairness attack and the accuracy at-
tack acts in the same direction, we show theoretically how
fairness robustness and accuracy robustness can benefit from
each other, i.e., the alignment between fairness robustness
and accuracy robustness. Our theoretical results suggest a
novel defense framework, fair adversarial training, which
incorporates fair classification with adversarial training so
as to improve fairness robustness. We summarize our con-
tribution as follows:

* We propose a unified framework for fairness attacks,
which brings together different notions in group fair-
ness.

* We theoretically demonstrate the alignment between
fairness robustness and accuracy robustness, and we
propose a novel defense framework, fair adversarial
training, which incorporates fairness robustness with
fair classification.

* We empirically validate the superiority of our method
under fairness attacks, and the connection between
fairness robustness and accuracy robustness on four
benchmark datasets.

2. Related Work

Fairness in machine learning. Fairness has gained much
attention in machine learning society. Different notions
have been proposed to quantify discrimination of machine
learning models, including individual fairness (Lahoti et al.,
2019; John et al., 2020; Mukherjee et al., 2020), group fair-
ness (Feldman et al., 2015; Hardt et al., 2016; Zafar et al.,
2017) and counterfactual fairness (Kusner et al., 2017). Our
work is most closely related with group fairness notions.
Works on group fairness generally fall into three categories:
preprocessing (Creager et al., 2019; Jiang & Nachum, 2020;
Jang & Wang, 2024; Yu et al., 2024; Jung et al., 2025),
where the goal is to adjust training distribution to reduce
discrimination; in-processing (Zafar et al., 2017; Jung et al.,
2021; Roh et al., 2021; Chai & Wang, 2022; Lu et al., 2024),
where the goal is to impose fairness constraint during train-
ing by reweighing or adding relaxed fairness regularization;
and post-processing (Hardt et al., 2016; Jang et al., 2022;
Cruz & Hardt, 2023; Tifrea et al., 2023), where the goal is
to adjust the decision threshold in each sensitive group to
achieve expected fairness parity. Compared with existing
work, we extend the discussion to both static fairness and
fairness robustness, emphasizing the fairness notions under
adversarial scenarios.

Adversarial machine learning. Adversarial training and
adversarial attack have been widely studied in trustworthy

machine learning. Goodfellow et al. (2014) propose a simple
one-step gradient-based attack to adversarially perturb the
input features. Madry et al. (2017) extend the one-step
attack to an iterative attack strategy and show that iterative
strategy is better at finding accuracy adversarial samples.
Accordingly, different methods on adversarial defense have
been proposed (Shafahi et al., 2019; Wong et al., 2020;
Xie et al., 2020; Cui et al., 2021; Jia et al., 2022; Dong &
Xu, 2023; Ma et al., 2024) to improve accuracy robustness
of a classifier. However, few literature has addressed the
adversarial training and adversarial attack against fairness.
Some work discusses the problem of fairness poisoning
attack during training (Solans et al., 2020; Mehrabi et al.,
2021b); however, it is not clear how fairness attacks would
influence the predicted soft labels.

Fairness in adversarial robustness. Group fairness in the
context of adversarial robustness has been less studied in
current work. Work including (Nanda et al., 2021; Xu et al.,
2021; Ma et al., 2022) argues that adversarial training with-
out proper regularization leads to class-wise disparities in
accuracy and robustness. However, group-wise disparities
are not considered in these work, and the formulation of dis-
parities by these work is not in accord with notions in group
fairness. Recent work studies the poisoning attack against
group fairness measures (Solans et al., 2020; Mehrabi et al.,
2021b; Zeng et al., 2023); however, these work lacks in-
depth discussion regarding the detailed mechanism of the
fairness attack and the defense techniques. Specifically,
the relationship between the fairness attack and the accu-
racy attack, as well as that between fairness robustness and
accuracy robustness remains unclear. Our work is most
related to (Chhabra et al., 2022), where adversarial pertur-
bation against sensitive information and the corresponding
defense mechanism are considered. In comparison, our
framework considers feature-level perturbation, rather than
sensitive-information-level , which provides more general
quantification regarding the worst-case perturbations against
fairness.

3. Problem Definition
3.1. Adversarial attack against accuracy

We start by formulating the accuracy attack. Denote = €
R™ as the input feature, y € {0,1} as the label, and a €
{0, 1} as the sensitive attribute. Let f : R™ — [0, 1] be the
function of classifier and f(z) the predicted soft label, then
the objective of accuracy attack for sample (z,y, a) can be
formulated as

arg max Leg(f(x +€),y), s.t.] el < eo,

where ||¢|| refers to the L? norm of e with a general choice of
L norm, and Lcg is the cross-entropy loss. By estimating
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the perturbation that maximize Lcg, we seek to amplify the
difference between the predicted soft label and the ground-
truth label, thereby deteriorating accuracy. A common way
to obtain accuracy adversarial samples is through projected
gradient descent (PGD) attack, where accuracy adversarial
samples are iteratively updated in each step based on the
signed gradient:

" =Tl,4 5 (2" + asign (Vi Lee(z,y))) ,

where « is the step size, S := {¢, ||¢|| < €p} is the set of
allowed perturbation and II is the projection operator that
clips the perturbed input into the allowed €p-ball. PGD
attack has been shown to be effective in finding adversarial
samples compared with one-step adversarial attack (Madry
etal., 2017).

3.2. Adversarial attack against fairness

Similar to that of accuracy attack, we formulate the fairness
attack as follows:

argmax L(f(z + ¢),

€

a,y), stl|ell < e,

where L is some relaxed fairness constraint. By approx-
imating the worst-case perturbation regarding fairness at-
tack, we seek to amplify the difference in predicted soft
labels across different sensitive groups. We consider two
widely adopted group fairness notions: demographic par-
ity (DP) and equalized odds (EOd). For a testing set
S = {(=i,yi,a;),1 < i < N}, denote Sji, := {z;|ly; =
jya; =k}, and S i := {x;]a; = k}. The objective can be
formulated as relaxations of fairness notions (Wang et al.,
2022):

Z |Sll Z |So|

:Z Z |gy0| ES:

ey

L
EOd S, 1|

And fairness adversarial samples can be obtained analo-
gous to the accuracy attack via PGD attack:

l't+1 = HI+S (It =+ asign (sz($7a,y))) .

We summarize the white-box threat model as follows: The
adversary has full access to the target model’s parameters.
Adversarial manipulations are applied at the input level, sub-
ject to a maximum allowable perturbation. Fairness attacks
aim to maximize group-wise disparities on the testing data,
measured by metrics such as DP and EOd. In contrast, ac-
curacy attacks seek to maximize classification error on the
testing data.

4. Connection between Adversarial Attacks

Before delving into the discussion, we first clarify the nota-
tions in Tab. 2. Without loss of generality, we assume S ;
the advantaged group with higher average positive predic-
tion. We refer to fairness attacks targeting DP and EOd as
DP attack and EOd attack, respectively.

4.1. Connection between fairness attacks

We now discuss the detailed relationship between DP at-
tack and EOd attack. The following corollary states the
compatibility of the two objectives:

Corollary 4.1. The adversarial objective of EOd attack is
lower-bounded by that of DP attack up to multiplicative
constants.

We defer the proof to appendix. Corollary 4.1 shows the con-
nection between adversarial attacks against different group
fairness notions, where these attacks perturb the predicted
soft labels against sensitive attributes. A successful DP
attack also leads to a successful EOd attack, while the op-
posite does not necessarily hold true. We will focus on DP
attack for the rest of this paper. In the following context,
we refer to DP attack as fairness attack unless otherwise
specified. For a given sample (z;,y;, a;) in the advantaged
group, we can rewrite Lpp in (1) as:

Z IS1| Z ISol

z; €S
f(z;) f(ﬁci) f(3)
- + - 2
|S'aj| azlegaz:\{«%} |S'aj| IzGXS:a |S~&j| ( )
_ f(=zy)
G

where G; = |1 — a;| and C} is a constant w.r.t. x; since it
does not affect aLD" . This shows that the DP attack is ex-

pected to maximize  the prediction in the advantaged group.

Similarly, for a sample (z, Yk, ar) in the disadvantaged
group, we have:

Z |Sl|

;€S

(i) | _ fl=)
JZGZSO Sol = + Cy,

1S.a,

3)
where C}, is a constant w.r.t. zj thus does not affect %ﬁi_".
(3) shows that the DP attack in the disadvantaged group is
contrary to that of advantaged group, where the predictions

are expected to be minimized.

4.2. Connection between the fairness attack and the
accuracy attack

‘We move on to discuss the connection between the fairness
attack and the accuracy attack. The following corollary
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ZTab,e The clean samples in the clean subgroup.
xff’bia The adversarial sample(s) obtained after the attack type obj.
:;%bla Adversarial sample(s) generated from the clean subgroup {sub, a} at ¢-th iteration targeting attack type obj € {DP, EOd, Acc}.
Sz‘ﬁ{l The set of samples in the clean subgroup.
p::jfx . The distribution of predicted soft labels in the clean subgroup {sub, a} after the attack type obj.
Dsub.a  The distribution of predicted soft labels in the clean subgroup {sub, a} without attack.

Table 2. Summarization of notations.

shows the connection between the fairness attack and the
accuracy attack:

Corollary 4.2. The fairness attack and the accuracy attack
operate in the same direction regarding true negative (TN)
and false positive (FP) samples in the advantaged group
and true positive (TP) and false negative (FN) samples in
the disadvantaged group.

We defer the detailed proof to appendix. Notably, the fair-
ness attack and the accuracy attack behave in the opposite
direction for the remaining sets of samples (i.e., TP and FN
samples in the advantaged group, and TN and FP samples
in the disadvantaged group). Specifically, for the two sub-
groups Stp 1 and Sty o, the fairness attack aims at maximiz-
ing their predicted soft labels as in (2) and (3), respectively.
This results in maximizing the predicted soft labels for Stp ;
and minimizing the predicted soft labels for Sty 9. Whereas
the accuracy attack seeks to minimize the predicted soft
labels for Stp,; and maximize the predicted soft labels for

StN,0-

Likewise, for the subgroups Sgn,1 and Sgp o, the fairness
attack tries to ‘correct’ the predicted soft labels such that the
adversarial predictions align with the ground-truth labels.
In contrast, the accuracy attack is designed to exacerbate
the error within these subgroups. We summarize the con-
nection between the fairness attack and the accuracy attack
on various subgroups in Table 3.

Sensitive Group Same Direction Inverse direction
Disadvantaged

Advantaged

StN,0, Skp,0
Stp,1, Sen1

Stp,0, SEN,0
StN,1> Srp,1

Table 3. Connection between the fairness attack and the accuracy
attack regarding samples in different subgroups.

5. Alignment between Fairness Robustness
and Accuracy Robustness

We now discuss the alignment between fairness robustness
and accuracy robustness. According to Table 3, the relation-
ship between fairness robustness and accuracy robustness
is straightforward on the four subgroups in ‘Same Direc-
tion’ category. Since the fairness attack and the accuracy
attack operate in the same direction for those samples, the

fairness robustness and accuracy robustness also attain align-
ment on these samples. Consider sample x; from the ‘Same
Direction’ groups, by Corollary 4.2 we have:
Fa™) = f (M, ys (217" + asign (Va, Low(xs, ai, 34))))
= f (Hl'r‘rs (xf_l + asign (VJZLCE(IH yl)))) :
Under same perturbation level € and same step size o up to
T iterations, the fairness attack and the accuracy attack leads
to equivalent perturbations in predicted soft labels regard-
ing z;’s in the ‘Same Direction’ category. Therefore, it is
feasible to leverage existing adversarial training tools target-
ing accuracy robustness to improve fairness robustness for
such samples. However, such alignment cannot be directly
extended to the four subgroups in the ‘Opposite Direction’
category. As the fairness attack and the accuracy attack
operate in the opposite direction, it is not straightforward
whether there exists alignment or misalignment between
fairness robustness and accuracy robustness regarding those
samples.

Therefore, in the following we focus our discussion
on the four ‘Opposite Direction’ subgroups in Table 3:
STP,l» SFN,I’ STN,O’ SFRO- Under e-level fairness at-
tack with step size o and up to 7' iterations, we define
DY, = |Lee(f(254 ) v) — Ler(f(Zab.a); y)| as the
change of cross-entropy loss for sample s, and 6f§,ifa =

| f (28 ) = f (Zsub,a) | as the change of f(xgup,q). Therefore,

DFair “and ¢Far - are related with fairness robustness, and

smaller Df&‘ff . and 555&‘)(1 indicate better fairness robustness.
Likewise, under e-level accuracy attack with step size o and
up to 7' iterations, we define D35’ = |Lee(f (245 ,), y) —
Lee(f(%sub,a), y)| as the change of cross-entropy loss for
sample Zpq and 645, = [f(255,) — f(Taub,a)| as the
change of f(@sp,q), and smaller D2 and 52 indicates
better accuracy robustness. Before ‘we state the detailed
relationship, we first state the assumptions we need to prove
the relationship:

Assumption 5.1. The gradient of f w.r.t. input feature x is
Lipschitz with constant K.

Assumption 5.2. The distributions pgs . are uniformly
bounded by constants My q.

Under Assumption 5.1 and 5.2, below we discuss the align-
ment between fairness robustness and accuracy robustness
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in two directions, i.e., how fairness/accuracy robustness
improves accuracy/fairness robustness. While the assump-
tion of Lipschitz gradient seems a bit strong, it is a widely
used assumption for neural network, and it is feasible to
estimate the Lipschitz constant (Fazlyab et al., 2019; Shi
et al., 2022). Also, the difference in fairness/accuracy ro-
bustness as discussed in the Theorem 5.3 and 5.6 are indeed
upper-bounded by the Lipschitz constant K, and a smaller
K indicates better upper-bounds for the difference in robust-
ness, which also suggests better alignment between fairness
robustness and accuracy robustness.

5.1. From accuracy robustness to fairness robustness

We first derive the guarantee for fairness robustness by ac-
curacy robustness. We will focus on xgn,1 and xgp o, as
fairness attack regarding wtp,; and xtn,o does not affect
fairness, i.e., the predicted labels for ztp ; and x1Nn,0 Will
remain the same before and after the fairness attack.

Theorem 5.3. Given a classifier f, consider e-level fair-
ness attack with step size o and up to T' iterations, the
difference of fairness robustness between xpy 1 and Tpy,o is
upper-bounded by the accuracy robustness of Try o up to
an additive and a multiplicative constant:

T
Fair
DFN’lg min DFNO—i—aE Gy,

zrN,0€S10 =1

t—1 Falr t 1,Fair
| VnEd(zpy i ey g ) §t=LaAce
t— t—1,Fair U FN,0 ’
f(xFN,l )

t—1,Fai t—1,Fai
f(xFN(; “) = f(xFN,i “)

N = t—1,F t—1,Fai
f(x Tpn1 W)f(mFN,o mr)

Detailed proof and empirical verification can be found in the
appendix. As discussed in Section 4.2, adversarial training
w.r.t. accuracy also improves fairness robustness of sub-
group Sgn,o While it is unclear for subgroup Sgy ;. Thus,
we leverage Tpn o to explore robustness guarantee against
fairness attack for zpy, 1. Specifically, for f/ under adver-
sarial training w.r.t. accuracy and f under normal training,

we have similar upper-bound, except that we now have

6& oA < 5;NIOA°° which indicates a tighter upper-bound

for f’ in Theorem 5.3. For the marginal advantaged FN
samples (zrn,1) which are more vulnerable under the fair-
ness attack, we have their fairness robustness bounded by
marginal disadvantaged FN samples (zrn,0), and smaller
5?151%, or tighter bound indicates better fairness robustness.
Similar inequality in Theorem 5.3 also holds for xgp ¢ and
ZFP,1-

Remark 5.4. For xpp o and xpp 1, we have similar inequality

regarding the upper-bound of robustness difference:

Dgf)”0< min DFpl+aZHt,

TFp,1 €So01

t—1, Falr t 1,Fair
_ VnKd(zg 0 Trp,1 ) st LAce
t = t 1Fa1r) + o FP,1 )

f (CUFP,O'
f (i 6™") = f(ppa™)

—1 Fai —1 Fai
f(xfrp,f alr)f(x;P,d “)

Pt =

5.2. Fair adversarial training

Theorem 5.3 provides robustness guarantee in terms of
changes in predicted soft labels under the fairness attack
regarding *Opposite Direction’ samples. Based on such dis-
cussion, we now derive the fairness robustness guarantee
regarding fairness measures, namely DP and EOd. Con-
sider DP™", DP, EOd™" and EOd as the fairness measures
after and before the fairness attack, the following theorem
states the fairness guarantee by static fairness and accuracy
robustness under the fairness attack:

Theorem 5.5. Given a classifier f, consider e-level fair-
ness attack with step size a and up to T iterations, let

obj . cp s

sub,a *= MAX{ze8,, .} (5mb o, be the maximum shift in pre-
dicted soft labels within the subgroup under attack type obyj,
let M = max(p.qy Mup,a, the resulting fairness measures
are upper-bounded by the corresponding clean measures
and accuracy robustness of the classifier up to a multiplica-
tive constant:

DP™" < DP + M - Ry, 4)

EOd™" < EOd + M - Ry, (5)

where Ryee = (A/};;f'o +ming, s, , (D?"" +H;)+ A/};\',‘;l +
minﬂfj ESkn,0 (D?CC + GJ))

We defer full proof to the Appendix. The DP and EOd
terms in the upper-bounds of Theorem 5.5 corresponds to
the static fairness, and the remainder corresponds to the
accuracy robustness as stated in Theorem 5.3. Consequently,
retaining small fairness violations under the fairness attack
calls for two different interventions: 1) enhancing static
fairness during training, which results in lower values of
DP and EOd in (4) and (5); and 2) enhancing accuracy
robustness, resulting in lower value of R, in (4) and (5).
These two interventions lead to smaller upper-bounds for
DIF" and EOd™", thereby ensuring fairness robustness.

One direct result regarding Theorem 5.5 is to incorporate
accuracy adversarial samples during training to obtain a
classifier that is also robust to fairness attack. Correspond-
ingly, regarding the defense framework against the fairness
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attack, we consider the following objective to minimize the
fairness gap while ensuring accuracy robustness, as means
to ensure fairness robustness. Specifically, we propose to
improve fairness robustness of classifier by incorporating
accuracy adversarial samples and fairness constraints during
training:

N
: 1 CcC
argermnNZLCE(f(:c? ),yi), st. L<v, (6)
i=1

where 22 corresponds to the accuracy adversarial sample

by x;, the Leg(f(22), y;) term corresponds to accuracy
robustness, and L < v corresponds to static fairness, as we
derived in Theorem 5.5. L can be explicitly specified by
fairness relaxations during training or implicitly specified
as preprocessing or post-processing techniques. We defer
the pseudo-code of our fair adversarial training framework
to the Appendix.

5.3. From fairness robustness to accuracy robustness

For the other direction, under Assumption 5.1, we have
the following guarantee for accuracy robustness by fairness
robustness. We will focus on ztp 1 and ztn 0, as accuracy
attack regarding xpn,1 and zgp,o does not affect accuracy,
i.e., the predicted labels remain false before and after the
accuracy attack.

Theorem 5.6. Given a classifier f, consider e-level accu-
racy attack with step size o and up to T iterations, the
accuracy robustness of xtp,1 is upper-bounded by the fair-
ness robustness of xrp o up to an additive constant:

Acc Fair t— 1ALL t 1,Acc
Orp1 < mlE%m orpo + E VnaKd(wmp ™, 2 ")

Here the fairness attack and the accuracy attacks are in
alignment regarding rp o, which we use to upper-bound ac-
curacy robustness of zrp 1. Specifically, the first term in the
RHS of the inequality corresponds to the fairness robustness
of x1p 0, and the second term is determined by the spatial
distance between xp,o and xtp,; under the accuracy attack.
Theorem 5.6 shows that adversarial training w.r.t. fairness
also benefits accuracy robustness. Specifically, for f”/ under
adversarial training w.r.t. fairness and f under normal train-
ing, we have similar inequality, except that we now have
S < 04sS), which indicates better accuracy robustness
for xtp,; under adversarial training. Similar upper bound
also holds for TN samples:

Remark 5.7. For x1n,1 and 21N,0, We have similar inequality
regarding the upper-bound of accuracy robustness:

5’T\§°0 < min

1N,1€S01

Fair t—1, Acc t 1,Acc
5TN1+§ \FO‘Kd‘TTNO LN1 )-

t=1

Since the change of predictions under accuracy attack is
upper-bounded by fairness robustness, it is also feasible to
improve accuracy robustness of classifier by using fairness
adversarial samples during training.

6. Experiments

We evaluate our method on four datasets: Adult (Dua &
Graff, 2017), COMPAS (Larson et al., 2016), German (Dua
& Graff, 2017) and CelebA (Liu et al., 2015) '. We use
accuracy as the performance metric, and DP and EOd as
fairness metrics. All the evaluation metrics are calculated
based on 0 — 1 cutoff, rather than the relaxed version. The
classifier is chosen as ResNet-18 for CelebA and MLP for
the other three datasets, and all methods are trained un-
der the same data partition. During adversarial training,
the perturbation level is set as 0.2 for Adult dataset, 0.005
for COMPAS dataset, 0.01 for German dataset and 0.1 for
CelebA dataset, where the perturbation level is empirically
determined to achieve the largest perturbation while still
ensuring convergence.

In the following, we validate the adversarial training frame-
work under fairness attacks and accuracy attacks, respec-
tively. We defer details of each dataset, full experimental
results and empirical verification of theoretical results to the
Appendix.

Robustness against fairness attack. Regarding normal
training, we consider the following four baselines: Baseline
(without fairness regularization); Preprocessing (Yu et al.,
2024); In-processing (Wang et al., 2022); Post-processing
(Jang et al., 2022). Regarding adversarial training, we con-
sider one baseline and three different realizations of fair
adversarial training: Adversarial training: Neural network
under adversarial training w.r.t. accuracy; Adversarial train-
ing (preprocessing) with samples reweighed by Yu et al.
(2024); Adversarial training (in-processing) with relaxed
EOd constraint by Wang et al. (2022); Adversarial train-
ing (post-processing) with soft predictions postprocessed by
Jang et al. (2022). The three versions differ in the fairness
regularization L in (6). Results on classifiers under fairness
attack on Adult dataset are shown in Fig. 2. The fairness
attack enforces biased predictions on testing samples, and
under a successful attack (DP reaches its maximum), EOd
also reaches its maximum, while the accuracy is determined
by the base rate of each group. Compared with adversarial
training, normal training shows a sharp increase in DP and
EOd under fairness attacks, and improvement in fairness
under normal training does not help with fairness robust-
ness. In comparison, classifiers under adversarial training
w.r.t. accuracy show improvement in fairness robustness,

!Code available at https://github.com/cjy24/
fair-adversarial-training.
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EOd

Figure 2. Change of accuracy, DP and EOd under fairness attack on Adult dataset. Three variations of our fair adversarial training method
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and classifiers under fair adversarial training show further
remarkable improvement in terms of fairness robustness.

Robustness against accuracy attack. We move on to dis-
cuss the improvement of accuracy robustness under adver-
sarial training w.r.t. fairness. We compare baseline with
adversarial training (fairness) (adversarial training w.r.t. re-
laxed DP), and results on classifiers under accuracy attack
on Adult dataset are shown in Fig. 3. Under a successful
accuracy attack (the accuracy reaches its minimum), EOd
also becomes zero, while DP does not necessarily vanish
due to disparities in base rates. The classifier under adver-
sarial training shows remarkable improvement in accuracy
robustness, which validates that accuracy robustness also
benefits from adversarial training w.r.t. fairness.

Ablation study. We validate the superiority of our method
over vanilla adversarial training under fairness attacks, and
the results are shown in Fig. 4. Heuristic adaptations of
adversarial training utilizing fairness adversarial samples
or accuracy adversarial samples alone, without incorporat-
ing fairness regularization, fail to maintain fairness robust-
ness under larger perturbations, highlighting the intricacy
of achieving fairness robustness. In comparison, our frame-
work shows remarkable improvement in fairness robustness.

7. Conclusion

Fairness attack and defense are an important, yet not prop-
erly addressed problem. In this paper, we propose a uni-
fied framework for fairness attack against group fairness
notions, where we show theoretically the connection of fair-
ness attacks under different notions, and we demonstrate
the connections between fairness attack and accuracy at-
tack. We show theoretically the alignment between fair-
ness robustness and accuracy robustness, and we propose
a fair adversarial training structure, where the goal is to
improve fairness robustness while maintaining fairness. Fur-
ther, from experiments we validate that our method achieves
better fairness robustness, and that fairness robustness and
accuracy robustness align with each other.
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A. Experimental supplementary

‘We validate our method on four datasets:

Adult (Dua & Graff, 2017): The Adult dataset contains 65,123 samples with 14 attributes. The goal is to predict
whether an individual’s annual income exceeds 50K, and the sensitive attribute is chosen as race.

* COMPAS (Larson et al., 2016): The ProPublica COMPAS dataset contains 7,215 samples with 10 attributes. The goal
is to predict whether a defendant re-offend within two years. Following the protocol in earlier fairness methods (Zafar
etal., 2017), we only select white and black individuals in COMPAS dataset, which contains 6,150 samples in total.
The sensitive attribute in this dataset is race.

¢ German (Dua & Graff, 2017): The German credit risk dateset contains 1,000 samples with 9 attributes. The goal is to
predict whether a client is highly risky, and the sensitive attribute in this dataset is sex.

e CelebA (Liu et al., 2015): CelebA dataset contains 202,599 samples with 40 binary attributes. We choose gender as
target label, and the sensitive attribute in this dataset is age.

Details of our fair adversarial training framework are shown as follows:

* Adversarial training (preprocessing (Yu et al., 2024)): Neural network under adversarial training w.r.t. accuracy with
training samples reweighed by Yu et al. (2024);

* Adversarial training (in-processing (Wang et al., 2022)): Neural network under adversarial training w.r.t. accuracy with
relaxed EOd constraint by Wang et al. (2022);

* Adversarial training (post-processing (Jang et al., 2022)): Neural network under adversarial training w.r.t. accuracy
with predicted soft labels postprocessed by Jang et al. (2022).

B. Pseudo-code

We include pseudo-codes of the three variations of our fair adversarial training framework as follows:

Algorithm 1 Adversarial training (preprocessing)

Input: Network fp with parameter 0, training data D = {(Z;, §;), 1 < ¢ < N} reweighed inversely proportional to each
group—label pair’s empirical frequency by (Yu et al., 2024), batch size M, training epochs FE, learning rate 7, allowed
perturbation set S = {e, ||¢|]| < eo}, attack step size «, attack steps k.

for epoch = 1to E do:

1:
2 for batch B = {(2;,9;),1 <j < M} C D do:
3: for attack stept = 0tok — 1 do:
4:
;%;H = s, 45 (25 + asign (Vs Leg (5, 95))) -
5: end for
6: Training loss:
LM
Lee = 57 > —0;log(fo(#5)) — (1 9;) log(1 = fo(35)).
j=1
7: Update 0 by gradient descent:
Lcg
0=0—-—n——.
6
8: end for
9: end for
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Algorithm 2 Adversarial training (in-processing)

Input: Network fy with parameter 6, training data D = {(x;,y;,a;), 1 < i < N}, batch size M, training epochs E,
learning rate 1), allowed perturbation set S = {¢, ||¢|| < eo}, attack step size «, attack steps k, regularization coefficient A,
gorup size |S |, [S1]-

1: for epoch = 1to E do:
2 for batch B = {(z;,y,),1 <i¢< M} C D do:
3: for attack stept = 0Otok — 1 do:
4:
(E;Jrl = Ha:j+5 (*/L'E + asign (V:rj LCE(x§‘> y]))) .
5: end for
6: Training loss:
M
Leg = 77 > —yilog(fo(z})) — (1 —y;) log(1 — fo(x})),
j=1
- > T
T; €S |Sl| ;€S0 ‘SO‘
Liota = Lcg + ALpp.
7: Update 6 by gradient descent:
Ltotal
0=0-— .
96
8: end for
9: end for

Algorithm 3 Adversarial training (post-processing)
Input: Network fp with parameter 0, training data D = {(x;, y;,a;),1 < i < N}, batch size M, training epochs E,
learning rate 7, allowed perturbation set S = {e, ||¢|| < €p}, attack step size «, attack steps k.

1: for epoch = 1to E do:
2 for batch B = {(x;,y,),1 < M} C D do:
3: for attack stept = O to k — 1 do:
4:
x;H =1, 45 (xz + asign (VI]. LCE(xg-, y]))) .
5: end for
6: Training loss:
M
Lce = Z jlog(fo(})) — (1 —y;)log(1 — fa(a])).

7: Update 6 by gradient descent:

Lcg

0=0—-—n——r.

00
8: end for
9: end for

10: post-process fy(x) on training data D by estimating the group-dependent thresholds (Jang et al., 2022).

C. Connection between DP attack and EOd attack

We empirically validate our discussion regarding the relationship between DP and EOd attack as in Corollary 4.1. As
shown in Fig 2, under a successful DP attack, EOd always reaches its maximum, and a successful DP attack also leads to a
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successful EOd attack.

D. Proof of Corollary 4.1

Proof. The objective for EOd attack can be written as the following form:

Lrod = z%&‘; |Soo\ Z |S()1‘ Z \S10| ZS: ‘Sll|
L (x)
|2 &, Z \Sou Z |Slo| Z ol
TE€Spo €S11
0l £(5) , s ol S5) 54l F@) s~ Bl £)
IEZS ISool |So| Z |S10| IS0 Z |So1| S ZS [S11] [S.1 ’

This shows that the EOd attack is lower-bounded by the weighted DP attack as in (1). Specifically, under a successful DP
attack, we have f(x) > 0.5,Vz € S, and f(z) < 0.5,Vx € S 4/, and we have EOd under under such attack as

‘ZZEESIO ( ) 2 05] EwESn ]l[f( ) > 0. 5 ‘ ‘ZIESOO [f( ) < 05} ZwESm ]l[f(x) < 05] ‘ —9

EOd = — -
[S10] S11] Sool [So1]

N

which shows that a successful DP attack always implies a successful EOd attack.

Remark D.1. A successful EOd attack does not always imply a successful DP attack. Consider the following counter-

. f(z:) fzs) flas) flzi)
example: assume Y. cs. ool S 2aiesor Toorl A Xosies0 Tl = 2owiesy, Bof e under a successful EOd attack,

all the predictions in the disadvantaged group will become correct, while all the predictions in the advantaged group will
become incorrect, and the disparate impact will not be maximized as both groups contain positive predictions.

O

E. Proof of Corollary 4.2

Proof. The objective for accuracy attack for sample z; can be written as
max Leg((@: + €),4:), el < o ®)

Consider the DP attack in (1), we have the objective for DP attack as follows:

flzi+e)

Sl <,
.a;

max o;
§

where o; = —1 for a; = 0 and o; = 1 for a; = 1. For positive samples, we can further write (8) as
max — log(f(zi + ), el < eo,

where the perturbation is expected to minimize the predicted soft label, which is in alignment with the objective of DP when

o; = —1, i.e., for TP and FN disadvantaged samples, the two attacks are in alignment. Similarly, for negative samples, we
have (8) as

max —log(1 — f(z +€)), le]| < ¢,
where the perturbation is expected to maximize the predicted soft label, which is in alignment with the objective of DP when
a; = 1, 1.e., for TN and FP advantaged samples, the two attacks are in alignment. Specifically, for gradient-based attacks,

we have the two kinds of attack equivalent. O
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F. Proof of Theorem 5.3

Proof. Let f be the function of classifier, consider the positive testing set {(z;,1, a;),1 < i < N} for simplicity, at ¢-th
iteration, we have the linear approximation of testing CE loss under the fairness attack as follows:

615— 1,Fair

W +7"L($t_1)7 ©)

Leg(a') = —log(f(2")) = —log(f(2"™") — 6" 1) = —log(f(a"1)) +

where ¢~ LI jg the change of soft label induced by the fairness attack at ¢-th iteration, and 1, () is the remainder of

Taylor’s expansion. For gradient-based attack, the predicted soft label for fairness adversarial sample can be formulated as
f(@) = f(a' + asign(Vai-1Lpp)) = f(2'1) + (V-1 f(2'71)) T sign(Vye-1 Lpp) + 75 (21, (10)

where Lpp is the relaxed DP and 7 () is the remainder of Taylor’s expansion. Let D*Fr .= |L(2!) — L(2'~1)] be the
change of CE loss under the fairness attack at ¢-th iteration, according to (9) and (10) we have

5t7 1,Fair

pbFair _ ’LCE — Leg(x | = |—log(f(z = 1)) + W

- |a(Vzt71 f(xtfl))Tsign(thfl LDP)l
- flat=h) '

+ro(x) +log(f(x))

Consider FN sample gy o from disadvantaged group and FN sample xpn ; from advantaged group, since the gradient of f
w.r.t.  is Lipschitz with constant K, we have the difference of change in CE loss under DP attack at ¢-th iteration as follows:

t,Fair t,Fair
|DFN1 _DFNO|

1,Fair . 1,Fai .
B |(VIF§11Fauf(£L'It;N 1 & )) Slgn(vmél\zll,FairLDp” ‘(VI;]\IE,Fairf(xf:N 0 dr))TSIgn(vZ;;}),FauLDP)‘
= t—1,Fair - T—1,Fair

f(z TEN,1 ) f(xFN,O )

(vmégi,Fairf(x;Nllelr)) sign(Vméﬁ,FmLDp) (V t 1 Faufg(l’lt:NloFdlr)) sign(Vmégé,pairLDp)

= t—1,Fair t—1,Fair

f(xFN 1) f(xFN o )

1,Fair . 1,Fair 1,Fair . 1,Fair
Y (vzél\zi,Fairf(fEf:N 1 )) Slgn(ivm;hzll,Fairf(l';N 1 )) (Vz't:];%),Fairf(z;N 0 ))Tslgn(Niovré];b,Fairf(Ilth 0 ))
- 1,Fai - —1,Fai

f&(x;N 1 “) f(xItJN,O “)
n t—1,Fair t—1,Fair
o Ej:l ‘6$jf(mFN,1 ) Zj:l |8$jf('rFN,0 )
- —1,Fai - —1,Fai
f(x;Nl “ f(x;NO “)
t—1,Fair t—1,Fair
Y ||Vxlt:§y11,Fau~f(l‘FN 1 a )”1 B HVIEN_.B’FM ('rFN 0 @ )H
flami™) g ™)
(11)
where n is the dimension of input feature. Since V. f () is Lipschitz, we have
IVaf(@i)ll2 = [[Vaf(@o)ll2 < [[Vaf(z1) = Vaf(zo)ll2 < Kd(21,20),
where the first sign is due to triangle inequality. By Jensen’s inequality we have ||z||2 < ||z|1 < /n|x||2, and
IVaf(@)llh = Vaf(@o)lli < IVaf(@o) = Vaf(z1)lh < vnKd(z1,z0). (12)
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IV oo vrarf (@i 0™ IV o1 f (2 6™
Assume 'f(x**”“") > FN';(mt,Lm) , plugging (12) back into (11), we have
FN,1 FN,0
D3 i
t—1,F; t—1,F
IV o omie f (g 1 “h IVt f (P ")
= . — -
f(xéNllFalr) f(xf:N 10Fa1r)
{1 Fair _ t—1 Fai t—1,F; t—1,F
\de(xFN 1 " TEN,0 )+ ||Vx;;g'”a"f($m 0 alr)Hl ||vx;§‘é’Fi'irf(xFN 0 a]r)Hl (13)
SO& f(xt—l,Fair) - f(.l?t_LFalr)
FN,1 FN,0
i t—1,F; t—1,F;
\FaKd(w;NllFalr lt:NloFmr) . aHvx;’{’é’F”"f(mFN L alr) Hl aHVx;I;é‘m.-f(xFN 5 alr)”l
= 1,F: —1,F - —1,F ’
f(xf:N ; alr) f(x;NJ alr) f(xf:N’Q alr)
where d(z,y) = ||z — yl|2 is the distance between the two feature. Taking the summation over T iterations, we have
t—1 Fair _ t—1 Fai T t—1,Fai t—1,Fai
pFair _ pyFair VnoKd(zpy y " TEN,0 ) (Trng ) = S( FN,1 ) st=1Ace 14
| FN,1 FN,01 = Z t—1,Fair t—1,Fair t—1,Fair FN,0 ’ ( )
t=1 f('rFN,l ) t=1 f(‘rFN 1 )f(xFN,O )
where diy 1A == |V e—1Far fg(mf:NloFd”) ||l1 is the change of zgn o’s predicted label under e-level accuracy attack at ¢-th
’ FN,0

iteration since both are equivalent regarding gy 0. Since the above inequality holds true for all disadvantaged TP samples
and D, = DEX',, we can further write (14) as

t—1Fair _ 1—1Fai T t—1,Fai t—1,Fai
\FO‘Kd(‘TFN 1 i LEN,0 mr) f( LEN,0 alr) - f(wFN,l mr) t—1,Acc
Z t—1 Falr)f( t—1,Fair) FN,0 :

Fair : Acc
Dy £ min Dy + E , t—1,Fair
=1 f('rFN 1 ) t=1 ‘rFN 1 FN,0

ZEN,0E€S10

This shows that under the fairness attack, the difference of change in performance regarding marginal advantaged FN
samples are upper-bounded by the robustness of marginal disadvantaged FN samples up to an additive constant. For f

. . .. .. "t—1,A
under normal training and f’ under normal training, we have similar upper-bound except that we now have dpy o >

5;;110’/\&, which indicates that the adversarial classifier achieves tighter upper-bound than that of a normal classifier. For
IV, - vrarf @i 7™M IV o1k f (@i ™)
FN,1 FN,0

T—1,Fa > T—1,Fal
flepy " (@ o )

, we have same upper-bound:

t,Fair t,Fair
|DFN,1 - DFN,O |

||vz]t:gyll,Fairf(m;Nllelr) || 1 ” vxéiévFﬂ"f(xlt:NloFdlr) || 1
TR ™
_ ||vx;hjyé’Fa"f(x;NloFdlr)“1 B ||VI;];}),F€M (x;NloFdlr)”l *de(x;NllF‘“r It:NloFa_ir)
B f (@™ S (@™
faKd(x;NllF‘“r ) N Al o f i Ml allV g f (@ing™ )l
f(x;Nllelr) f(x It:NllFalr) f(xltxﬁ,ldl:m)
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G. Proof of Theorem 5.5

Proof. Let e, be the error rate in the subgroup S, let b, be the base rate in group a, denote as mea™" the fairness measure
mea after the fairness attack, we have the following expression regarding DI after the fairness attack:

1 1
DPFair — / plgair df _ pl;air df‘
0.5 0.5

1 1
= / (bo(1 — €g")Prplo + (1 — bo)ego Prplo) df — / (b1(1 = )P + (1 = ba)egi prph ) df
0.5 0.5

IN

1 1
/ bo(1 — eio)pre,0df + / (1 — bo)eooprp,odf
0

SHAR 0.5-+AfT
1 1 (15)

- bi(1 — e11)prp1df — (1 — b1)eo1prp,1df
0.5 0.5

0.5 0.5
—/ (1 =b1)(1 = eo1)prn1df — ~ bienpen1df
0.5— AR, 0.5—ARr,

= |b1(1 — 611)PTP71(0.5) + (]. — b1)601PFP71(0.5) + (]. — bl)(l — 601)PTN71(0.5 — A%l\lfl:l)
+b1811PpN,1(0.5 — Agili\}fl) — bo(l — elo)PTp)o(Oﬁ + A%;l)ro) — (1 — bo)@ooPpp)o(Oﬁ + AII::%,ITO)‘ ,

where Astl‘f o i= MaX;e fsub,a} 553“ is the maximum prediction shift within the subgroup, Py 4 is the CDF of pgy 4, and the
inequality is due to that the worst-case prediction shift upper-bounds the overall shift in the distribution of predicted soft
label. Since Py, is Lipschitz continuous with constant M. ¢ (Psub, 1S uniformly bounded by My, ), we can further
simplify (15) as

DP™" < [by (1 — €11) Prp,1(0.5) + (1 — by )eor Pee,1(0.5) + (1 — 1) (1 — eo1) Prn1 (0.5 — ATR) + breas Pen1(0.5 — ARY')
—bo(1 — €10) Pre,o(0.5 + AY) — (1 — bo)eoo Pep.o(0.5 + AR
< DP  bo(1— €10) Mrpo Ay + (1 bo)eonMrp o Mgy + (1= b1) (L~ on) M A -+ bren Min A
<DP+ M(Affy + min (DI + H,) + M, + min (D} +G)),

Skp,1

where M = max{Mrp,0, Mpp,0, M1Nn1, Mpn,1}, and the two minimization terms in the last inequality correspond to the
upper-bounds in Theorem 5.3 and Remark 5.4. Since the fairness robustness and accuracy robustness are equivalent
regarding ztp and 1n,1, and D;, H; and G; are determined by the intrinsic distance between samples and the accuracy
robustness of zgp,; and xgN,o, We can conclude that DPFI ig upper-bounded by static fairness, i.e., the DP term, and the
accuracy robustness 0755, minjes, , (D4 + Hj;), A, and minjeg, , (D5 + G;), which validates our fair adversarial
training framework.
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Similarly, we have the following upper-bound regarding EOd" air,
EO dFaiI‘

1 1 1 1
[t [ s+ | [ st [
0.5 0.5 0.5 0.5

1

1
/0 (1= ety + ) of - / (1= ) + i) df‘

1 1
+ / (1= Pl + €lg'plR) of - / (1= TP + i) df‘
1 1 1 1
= / (1 — ego)pr~,0df +/ ~ epoprp,odf — - (1 —eo1)prNadf — eo1Prp,1df
0.5 0.5+AR", 0.5—AR, 0.5
1 1 1 1
+ / (1 - €10)pTP,0df+/ elopFN,Odf - (1 —ell)pTP,1df— 611pFN,1df
0.5+ Afr, 0.5 0.5 0.5—-ARL |

< EOd + 600MFP,OAE§TO +(1— 601)MTN,1A%3{1 +(1- 610)MTP,0A¥§f0 + 611MFN,1AE?JT1
< FOd+ M((AM5 + min (DA + ;) + AKE, + min (DA +G,),
’ J ’ JjE

€Skp,1 SEn,0

where the first term in the last inequality corresponds to static fairness, i.e., EOd without fairness perturbation, and the
second term corresponds to accuracy robustness. O

H. Proof of Theorem 5.6

Proof. Let f be the function of classifier, consider x1p o, we have the predicted soft label for sample rp o under accuracy
attack at ¢-th iteration as follows:
t,A t—1,A .
f(pr,Bc) :f(xTP,O cc as1gn(Vz;é,AchCE))

1
t—1,A t—1,A .
~f(Trp “)+ a(vx;;g~A°°f(17TP,o )" sign(— T—T.Acc

f(xTP,O )

:f(xtT;’t’Acc) + oz(Vwf(xfr;}O’Acc))Tsign(Vz%:é,Acc LcE)

—1,A —1,A
:f(x”trp,o “) - 04||Vx;;é=‘*“‘f($"trp,0 Nh

t—1,Acc t—1,Fair
:f(xTP,O ) — 5TP,0 "

t—1,A
Vg:;;é,m f(‘TTP,O CC))

fwhere 5%15? = af|V -1 f (xtT;%’ACC) |l1 is the change of x1p¢’s predicted label under e-level fairness attack at ¢-th
’ TP,0 ’

iteration since both are equivalent regarding tp o. This shows that disadvantaged TP samples that attains d-level robustness
under e-level fairness attack also attains similar robustness w.r.t. accuracy attack.

For z1p 1, let 6%\7? =|f (xtTﬁic) — f(ap )], we have its change in predicted soft label under accuracy attack at ¢-th
iteration as follows:
5 t,Acc
(xTP,l )
A —1,A
:|f(xép7°1°) - f(mfrpg )
—1,A . —1,A
:V@%Jcﬁ+%%dvﬁﬁmL@»_f@%JCm
—1,A .
%a(VIE}’ACCf('r%PJ CC))Tslgn(VIfF};},AchCE)
t—1,A
:a||vm;;}’A°°f(xTP,1 Nh

t,Fair t—1,Acc _t—1,Acc
<orpo + VnaKd(zrp g, mp 0).

(16)

Taking the summation over all iterations, we have
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T

Acc Fai t—1,A t—1,A
O < O + Y ViraKd(p ™, o i), a7)
t=1

where 6??,% is the change of predicted soft label of sample xtp o under e-level fairness attack. Since the inequality hold true
for all x1p o, we can further write (17) as

cc Fair t—1,Acc t 1,Acc
5TP1< mle% §TPO+§ vnaKd(zrp ™, w7 ).
10
t=1

And the lower bound (5?]2?1 > 0 naturally holds true for samples under accuracy attack. This shows that for samples in the
advantaged group, the change of predicted soft label under accuracy attack is lower-bounded by the fairness robustness of its
neighbor sample(s) in the disadvantaged group up to an additive constant. For f” under adversarial training w.r.t. fairness
and f under normal training, we have similar upper-bound except that we now have (5%“0 > 6TP 0> which indicates that the
adversarial classifier achieves tighter upper-bound than that of a normal classifier. O

I. Empirical verification of theoretical results

€ Method D Il::i},rmale D ll::ﬁ;l,-female
0.1 Baseline 0.16+0.03  0.18+0.02
0.1  Adversarial training (preprocessing) 0.07+0.02  0.09+0.02
0.1  Adversarial training (in-processing) 0.07+£0.02  0.11+0.02
0.1  Adversarial training (post-processing)  0.08+0.01  0.09+0.02
0.3 Baseline 0.23£0.02  0.26+0.03
0.3  Adversarial training (preprocessing) 0.09+0.02 0.11+0.02
0.3  Adversarial training (in-processing) 0.10+£0.02  0.12+0.02
0.3  Adversarial training (post-processing) 0.10+£0.02  0.09+0.01

Table 4. Change of cross-entropy loss for FN samples on CelebA dataset under fairness attacks with e = 0.1 and € = 0.3. Experiments
are repeated three times.

We empirically validate the effectiveness of the upper-bounds stated in Theorem 5.3. Results on the change of cross-entropy
loss for samples from different groups by baseline and by fair adversarial training under different perturbation levels are
shown in Tab. 4. Under fair adversarial training, both advantaged and disadvantaged groups show improvements in D"
compared with the baseline, which validates our theoretical results, that is, the alignment between fairness robustness and
accuracy robustness.

Results of DP and EOd, as well as their theoretical bounds by Theorem 5.5 under varying levels of fairness attacks on
CelebA dataset are shown in Fig. 5. While the theoretical bounds differ from the ground-truth values, they effectively
capture the difference in the fairness robustness between the baseline and our method, validating the effectiveness of our
analysis.

J. Results of robustness against DP attack

We include the results of fair adversarial training in Fig. 6 to better distinguish between different fairness methods. Results
of classifiers under DP attack on COMPAS, German and CelebA datasets are shown in Fig. 7.

K. Extension to alternative adversarial training methods

We consider the following alternatives to PGD-based adversarial training, including Trades (Zhang et al., 2019) and Mart
(Wang et al., 2019) for our fair adversarial training framework, and the results on robustness against fairness attack on
CelebA dataset are shown in Fig. 8. Compared with vanilla adversarial training methods, our framework demonstrates
remarkable improvement in fairness robustness, which validates that our proposed framework generalizes well to various
adversarial training techniques.
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Figure 5. Visualizations of theoretical bounds on the CelebA dataset under fairness attacks, where “ours” refers to adversarial training
(preprocessing).

L. Results of robustness against accuracy attack

We show the results on robustness against accuracy attack on COMPAS, German and CelebA datasets in Fig. 9-11.
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Figure 6. Change of true positive rate (TPR) and true negative rate (TNR) under fairness attacks on the four datasets.
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Figure 7. Change in accuracy, DI and EOd under fairness attacks on German dataset. Our adversarial training methods (preprocessing,
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in-processing, post-processing) obtain improved fairness (lower EOd and DI) and higher accuracy with significant margin.
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Figure 8. Experimental results on CelebA dataset under fairness attacks.
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Figure 9. Results of a classifier adversarially trained w.r.t. DP. Change of accuracy, DP and EOd under accuracy attacks on COMPAS

dataset.
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Figure 10. Results of a classifier adversarially trained w.r.t. DP. Change of accuracy, DP and EOd under accuracy attacks on German

dataset.
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Figure 11. Results of a classifier adversarially trained w.r.t. DI. Change of accuracy, DP and EOd under accuracy attacks on CelebA
dataset.
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