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Figure 1. An overview of two distinct methods for generating synthetic smoke, as detailed in this paper. The top sequence
showcases lower quality data produced using Unreal Engine 5, while the bottom sequence features higher quality data from
NVIDIA Omniverse. Each set displays four frames from different intervals of the synthetic clips (frames 1, 11, 21, and 31),
illustrating how the data was incorporated into a model.

Abstract

Synthetic data plays a crucial role in augmenting lim-
ited or challenging datasets. One domain with a scarcity of
publicly available datasets is environmental monitoring of
smoke opacity. Smoke presents a novel challenge for com-
puter vision because its shape is amorphous and the tex-
ture is inconsistent. The dearth of public smoke datasets
necessitates the generation of synthetic data to augment ex-
isting datasets. However, the generation of synthetic smoke,
and explorations of how quantity and synthetic quality af-
fects downstream model performance, remains largely un-
explored. Here, we present SemiS, a novel, state-of-the-art
deep learning model tailored to extract features from smoke,
and use it to investigate the impact of synthetic smoke data.

* denotes equal contribution.

We used two synthetic smoke pipelines: 1) lower quality but
quick to produce smoke generated with Unreal Engine, and
2) higher quality but slow to produce smoke from NVIDIA
Omniverse. Across both pipelines, we found SemiS’s per-
formance peaked when synthetic data constituted approx-
imately 30% of the initial training data. Further, higher
quality data enhanced training accuracy by approximately
5%, compared to a 2.5% increase achieved with lower qual-
ity data. However, Omniverse was ∼12% slower to gen-
erate than Unreal. Finally, we dissect the quality of the
generated smoke features in comparison with non-synthetic
smoke. These results demonstrate the usefulness of develop-
ing methodologies that determine the value of synthetic data
by analyzing their ability to improve model performance in
smoke detection and similar applications.



1. Introduction
In the realm of computer vision, amorphous objects like
smoke plumes, which adhere to the dynamics of fluids and
gases, pose substantial challenges. These objects’ inher-
ent variability and complexity defy the rigid, geometric
assumptions prevalent in traditional computer vision algo-
rithms [13, 18, 49]. In this work, we explore how synthetic
data influences deep learning models for smoke in the con-
text of industrial smoke plumes — a critical task for en-
vironmental monitoring is the identification and estimation
of smoke opacity. However, the scarcity, limited diversity,
and niche nature of smoke datasets significantly hinder this
effort. One simple and low cost solution is to simply gen-
erate synthetic smoke to augment training data, but little is
known about how variables such as the quantity and quality
of synthetic smoke influence the performance of computer
vision models. Here, we meticulously evaluate the influ-
ence of these variables across the training and evaluation of
SemiS, a novel state-of-the-art deep learning model specif-
ically designed to extract distinctive features from smoke.

For this work, we employ two methods to generate
smoke: game engines (like Unity and Unreal Engine) and
physics simulation platforms, e.g., NVIDIA Omniverse.
Given the distinct characteristics of these methods, this pa-
per delves into a critical examination of how these differ-
ences in quality influence the accuracy of computer vision
models. By contrasting the more accessible yet potentially
less detailed data from Unreal Engine with the highly realis-
tic simulations provided by NVIDIA Omniverse, we aim to
uncover the extent to which the fidelity of synthetic smoke
affects model performance. Across generation methods, we
also investigate the thresholds at which the quantity of syn-
thetic data becomes either insufficient or excessive. This in-
vestigation not only highlights the importance of selecting
appropriate synthetic data generation methods for specific
applications but also sheds light on the broader implications
for the development and training of robust computer vision
systems capable of interpreting complex, dynamic phenom-
ena. By examining these techniques, our goal is to deter-
mine the optimal use of synthetic data for modeling smoke
and other amorphous phenomena, enhancing the quality of
complex datasets.

While our analysis focuses on smoke plumes, we believe
this work establishes a foundation to understand how syn-
thetic data quality impacts the accurate modeling of similar
amorphous phenomena. Further, our findings not only con-
tribute to the discourse around strategically selecting syn-
thetic data generation methods tailored to specific computer
vision tasks, but they also contribute to the broader dis-
course on leveraging synthetic data to enhance the robust-
ness and accuracy of computer vision systems. The contri-
butions of this work can be summarized below:
• Both high and low quality synthetic data have been gen-

erated for the task of smoke detection, exploring the dif-
ficulty in creating accurate smoke.

• Through rigorous experimentation, we have identified
key thresholds for the amount of synthetic data required
for varying levels of quality, when training on amorphous
objects.

• To our knowledge, we are the first to explore the gener-
ation of smoke data through game engines and physics
simulators for computer vision.

2. Related Works
With the recent advancements in deep learning, the bene-
fits of large quantities of data have become obvious. Deep
learning techniques thrive when training over a large, di-
verse dataset, but collecting this data is not always straight-
forward. Difficulties in collecting large-scale data include
ensuring quality, addressing scarcity in the dataset, and
maintaining privacy and fairness [8, 27]. One potential
path for addressing these challenges is generating synthetic
data [6]. Data is synthetic when it was not directly col-
lected, but rather manufactured in some way. There are
various ways to create synthetic data. Popular methods
identified in recent work include manual generation, vari-
ational autoencoders (VAEs), generative adversarial net-
works (GANs), synthetic composite imagery, and virtual
synthetic data [27, 28, 33, 36]. In manual generation, the
synthetic data is handcrafted to mimic real data or to add a
dimension to existing data. In VAEs and GANs, artificially
intelligent systems generate new samples after training over
given data. Synthetic composite imagery refers to the pro-
cess of combining data samples to create new samples. Vir-
tual synthetic data has proven to be a valuable method of
creating new data via virtual worlds, such as game engines
[5, 7, 19–21, 37].

For the task of smoke detection, synthetic data has
proven to be a useful resource to improve model perfor-
mance [30, 45–47]. Various methods mentioned above are
applied to generate smoke. For example, [46] used two
GANs to produce synthetic smoke images, and they found
that images from the higher quality GAN resulted in bet-
ter smoke detection. Similarly, [44] developed a pipeline to
generate synthetic smoke images that allowed for adjustable
parameters to yield desired smoke components. Several
previous works used Blender for manually generating syn-
thetic smoke data [30, 45, 47]. However, generating a va-
riety of quality smoke images can be difficult and some of
the input can be automated [45].

Determining measures of quality in synthetic data is
important for understanding its impact on model perfor-
mance, and much work has been done to create such metrics
[2, 8, 9, 40]. The Fréchet Inception Distance [14] was uti-
lized in [38] to determine the quality of synthetic data gener-
ated by a GAN. In [39], Peak Signal-to-Noise ratio (PSNR)



and Structural Similarity Index Measure (SSIM) [43] are
introduced into the loss function of a GAN with the aim of
reducing noise and thus improving quality.

The impact of synthetic data quality varies by task and
field. For example, in a review of synthetic data, [28] found
that studies on photorealistic synthetic data presented dif-
ferent results, and that the impact depended on the task.
Previous work has found that object detection improved
with photorealistic synthetic data [31, 42]. Still, synthetic
data created using domain randomization yields better re-
sults than using only real data [42]. It is important to con-
sider that photorealistic synthetic data has a higher compu-
tational cost to produce, and unrealistic data does still show
improvements in model performance [28]. The trade-off
between computational cost and model improvement is an
unanswered question which will likely vary by task. Here,
we dive deeper into this problem for the task of smoke de-
tection in industrial settings.

3. Dataset
In the following section we discuss the real world data used
to test the model, as well as our techniques for generating
synthetic data.

3.1. Real World Data

In this study, we utilize a novel real-world smoke dataset,
currently undergoing peer review for potential public re-
lease. Though not yet publicly available, this dataset marks
a significant contribution to smoke detection research by of-
fering a diverse and challenging benchmark for assessing
the effectiveness of synthetic data. We utilize a small por-
tion of this dataset, comprising of 1,774 video clips, with
1,554 featuring smoke and 220 without. It is divided into
training, validation, and testing sets to facilitate a thorough
evaluation: 370 smoke and 190 non-smoke clips for train-
ing, 319 smoke and 6 non-smoke clips for validation, and
865 smoke and 24 non-smoke clips for testing. The lack
of data size and distribution is already focused on in other
studies [3, 4, 17, 32], but we propose to address this prob-
lem by incorporating synthetic data into the training set in
our study. In addition, our dataset distribution, particularly
the expansive unseen testing set, is proposed for enhanced
generalization on evaluation, despite the constraints on the
size of training set, which may help in future works, such as
opacity predictions.

To address the complexity of smoke detection, we focus
on the opacity of smoke, quantified by the equation:

Opacity =

(
1− I

L

)
× 100, (1)

where I/L represents the transmittance of light through the
smoke plume, which after being subtracted from one may

be converted into a percentage [16]. Given that detecting
smoke can be straightforward, our study only includes clips
with opacity values between 5-30%, thus elevating the de-
tection challenge by focusing on subtler smoke patterns.

Figure 2 underscore the dataset’s diversity and the nu-
anced task of identifying low-opacity smoke under different
conditions, pivotal for testing our model’s accuracy.

Figure 2. Comparison of image quality across simulated and real-
world Data: This figure illustrates a side-by-side quality com-
parison of images from Unreal Engine, NVIDIA Omniverse, and
real-world environments, with and without the presence of smoke.
These comparisons highlight the simulated datas ability to mimic
real-world conditions and demonstrates the effects of environmen-
tal elements like smoke on image quality.

3.2. Unreal Engine 5

Unreal Engine 5 emerges as a promising tool in synthetic
data generation, offering an accessible platform that is both
easy to learn and use. Its abundant availability of free or
affordable assets enables rapid scene creation, allowing re-
searchers to swiftly commence data generation. Further-
more, its lower computational power requirements make
it an attractive option for research institutions worldwide,



making the ability to perform synthetic data generation
more accessible. However, while Unreal Engine facili-
tates quick setup and initial data generation, the fidelity
of data for amorphous objects like smoke may be com-
promised. Achieving high-quality representations of such
complex phenomena often necessitates access to advanced
simulation tools specifically designed for use within these
game engines. Although this lower quality might not signif-
icantly impact training for general datasets, the nuanced and
fine-grained details essential for accurately detecting smoke
demand a superior level of data realism. Figure 2 show-
cases the qualitative differences with real-world and Om-
niverse data, illustrating the variance in backgrounds and
smoke generated using Unreal Engine. For our study, we
integrated up to a total of 280 clips generated via Unreal
Engine into our training set, evenly split between 140 clips
depicting smoke and 140 clips without, to evaluate the en-
gine’s efficacy in supporting smoke detection research.

3.3. NVIDIA Omniverse

To achieve more realistic smoke simulations, we opted for
Nvidia Omniverse, a physics simulator known for its high-
fidelity outputs. While Omniverse offers unparalleled detail
and realism, it introduces specific challenges, including a
limited selection of publicly available assets and the need
for substantial computational resources. Our experience re-
vealed that running the engine optimally requires at least a
2080 GPU, yet we encountered notable performance issues
on a single 3090 GPU. Performance markedly improved
when we enabled multi-GPU mode (two 3090’s), leading to
more efficient data generation. The quality of smoke simu-
lations generated by Omniverse was notably higher to that
produced by Unreal Engine. Smoke visualizations in Omni-
verse were almost indistinguishable from real-world smoke
to the human eye, in stark contrast to the more artificial ap-
pearance of smoke from Unreal Engine. This visual distinc-
tion raised an intriguing question for our research: How sig-
nificant is the impact of such high-quality synthetic data on
model performance? Given our focus on smoke detection,
it was essential to explore whether the enhanced realism of
Omniverse-generated smoke would translate into measur-
able improvements in model accuracy. Preliminary find-
ings suggest that while the visual quality difference is ap-
parent to the human eye, the incremental benefit for model
training, especially in distinguishing smoke from no-smoke
scenarios, might be nuanced. Our investigation aims to
quantify this effect, assessing whether the superior visual fi-
delity of Omniverse simulations offers a tangible advantage
in training accuracy compared to Unreal Engine’s output.

4. Methods
Extracting smoke features from image sequences poses no-
table challenges, especially in environments where smoke

is subtle or when limited real-world smoke data is avail-
able for model training. To overcome these obstacles and
the impracticality of collecting a vast array of real-world
smoke videos, we propose a novel approach that enhances
data richness without extensive real-world datasets. Our
methodology employs a Residual 3D block-based architec-
ture, enriched with Local Binary Pattern (LBP) and Normal-
ized Absolute Difference (NAD) techniques, to effectively
capture smoke dynamics and features. This paper details the
SemiS architecture, including the implementation of LBP
and NAD (detailed in Sections 4.2 and 4.3, respectively),
our customized loss function, and the specifics of our train-
ing regimen, outlining how each component contributes to
the robust detection of smoke patterns under varied condi-
tions.

4.1. Semi-Synthetic Smoke Detector (SemiS)

In this work, we introduce Semi-Synthetic Smoke Detector
(SemiS), a novel architecture designed to extract smoke fea-
tures and distinguish smoke and non-smoke features. We
employed two modules, Residual 3D blocks [41], to ex-
tract visual features from RGB channels and texture fea-
tures from LBP frames. For efficient computation, we select
only four frames from a 1.4 second video.

For the selection of frames from real-world data I ∈
R40×3×224×224, we defined the indices of the selected
frames as:

ireal = {i× 10 | i ∈ {0, 1, 2, 3}}. (2)

Given the differences in frame rates between the syn-
thetic (60 FPS) and real-world (24 FPS) data, we ensured
temporal alignment of the frames to maintain consistency
across the datasets. This alignment was achieved by calcu-
lating the indices for the synthetic data frames to match the
temporal sequence of the real-world data, facilitating accu-
rate comparison and integration, using the equation:

isyn = {i× 10×
(
60

24

)
| i ∈ {0, 1, 2, 3}}. (3)

Following the initial selection of input frames, the tex-
tures of each frame, denoted as T ∈ R4×1×224×224, were
derived from the selected RGB data Î ∈ R4×3×224×224 uti-
lizing the Local Binary Patterns (LBP) technique (see Sec-
tion 4.2). Subsequently, the changes C ∈ R3×1×224×224

between the selected frames—encompassing both RGB
and texture information—were computed via the Normal-
ized Absolute Difference (NAD) module (see Section 4.3).
These computed changes were then input into Residual
3D Blocks to ascertain smoke movement through tempo-
ral frame differences (see Figure 3). The integrated features
from both RGB Î and texture data T facilitated the pre-
diction of probabilities for the non-smoke and smoke cate-
gories, represented as P̂ ∈ RN×2.



Figure 3. Our architecture (SemiS): Our approach transforms selected input frames into textures using Local Binary Patterns (LBP) and
utilizes normalized absolute differences between RGB and texture frames to identify smoke features. These features, derived from RGB
and texture changes, are combined to accurately detect smoke presence.

In our pursuit of achieving a balance between model ac-
curacy and computational efficiency, a lightweight iteration
of the Residual 3D Block was implemented. To preserve
temporal information without incurring substantial compu-
tational costs, both the kernel and stride dimensions were
meticulously reduced. This modification aimed to accel-
erate inference speed, making our architecture suitable for
real-time deployment. Moreover, by selecting only four
frames within each 1.4 second video clip, we succeed in op-
timizing detection accuracy while concurrently minimizing
the computations.

4.2. Local Binary Pattern (LBP)

The Local Binary Patterns (LBP) method [35] is a crucial
technique for texture analysis and image pattern recognition
[1, 11, 15, 23]. Employed in our methodology to extract
distinctive texture features of smoke, LBP used a preprocess
that can see the spatial structure of an image to highlight
the fine texture details (see Figure 4). This section outlines
the implementation of an efficient LBP computation method
tailored to our application.

Initially, RGB images Î ∈ R4×3×224×224 were con-
verted to grayscale images G ∈ R4×224×224 to simplify the
texture analysis. The grayscale images were then padded
to facilitate neighborhood processing, with a preference for
’reflect’ padding but defaulting to zero padding if necessary.

The essence of the LBP process involves comparing the
intensity of each pixel to its eight surrounding neighbors.
This comparison yields a binary value for each pixel, en-
capsulating local texture information. These binary values
were then weighted by their spatial positions and summed
to produce the center pixel of the texture images.

Our LBP computation was vectorized for efficiency, en-
suring fast processing suitable for large-scale or real-time
applications. This method effectively captures essential tex-
ture features critical for our subsequent analysis as smoke
detection.

4.3. Normalized Absolute Difference (NAD)

The unpredictability of smoke movement, coupled with
challenges posed by low smoke opacity and color similar-
ity to the background, necessitates a robust approach to
smoke detection. To address these challenges, we select
four frames that allow us to see temporal changes in pixel
values, thereby enhancing our model’s ability to detect sub-
tle smoke movements. Specifically, in real-world datasets,
we took the 1st, 11th, 21st, and 31st frames, while for syn-
thetic datasets, the 1st, 26th, 51st, and 76th frames were
chosen. Maintaining a constant time gap facilitates the ob-
servation of pixel value changes over time, as illustrated
in Figure 4. Despite weather-related visibility issues, the
effectiveness of this approach was evidenced by the dis-
cernible smoke movement in the third column of Figure 4.

To capitalize on these observations, we proposed an in-
novative method that combines the temporal changes in
both RGB and texture data, which are then fed into our neu-
ral network. This approach allowed us to extract features
associated with the dynamics of smoke movement and sig-
nificantly enhanced our model’s detection capabilities in di-
verse and challenging conditions.

4.4. Loss Function

Our model employs a confidence loss to measure the dis-
crepancy between the predicted confidences and the ground



Figure 4. Comparison of RGB and texture Data in Smoke Feature Extraction: This figure illustrates the normalized absolute differences
between the 1st and 11th frames for both RGB and texture data, with the 3rd and 6th columns specifically highlight these variations. The
comparison underscores the qualitative disparity in smoke feature extraction between Unreal Engine and NVIDIA Omniverse-generated
data. Notably, Omniverse data demonstrates a superior ability to delineate smoke features across frames, significantly improving the
model’s capacity to recognize authentic smoke patterns during training with real-world datasets. This visualization emphasizes the pivotal
role of high-quality synthetic data in refining computer vision models for more accurate smoke detection.

truth labels for the two classes: ”no smoke” and ”smoke”.
For a given batch of size N , the predicted confidence matrix
P̂ ∈ RN×2 and the ground truth label matrix P ∈ RN×2.
The element-wise multiplication of 1− P̂ and P results in a
matrix Mconf that represents the correct predictions’ miss-
ing confidences. The confidence loss Lconf is then com-
puted as the mean over all elements of Mconf , formally de-
fined as:

Lconf =
1

N

N∑
i=1

[
w · (1− P̂i,0) · Pi,0 + (1− P̂i,1) · Pi,1

]
(4)

where N is the number of instances, P̂i,j represents the
predicted probability of instance i for class j, and Pi,j is
the actual label of instance i for class j, with j = 0 for
the non-smoke class and j = 1 for the smoke class. For
both the training and validation phases, we assign a weight
w = 2 to the non-smoke class to emphasize its importance
in the model’s learning process. However, during the testing
phase, we adjust this weight back to w = 1 to evaluate the
model’s performance under standard class weighting condi-
tions.

The overall loss function, which combines the cross-
entropy loss (LCE) and the modified confidence loss
(Lconf ), is given by:

L = LCE + Lconf (5)

where LCE is the cross-entropy loss which is commonly
used for classification task [22, 29, 48] calculated for the
class predictions and the true labels.

This loss function encourages the model to increase the
confidence for correct predictions, effectively minimizing
the difference between the predicted confidences and the
actual labels.

In our investigation, we adapted the confidence loss, de-
noted as Lconf , to evaluate the certainty with which each
model predicts its decisions. Given that P represents the
probability output from a Softmax layer, we introduce a
measure, Conf , to quantify model confidence as a percent-
age:

Conf(%) = Lconf × 100 (6)

This formulation allows us to translate the confidence
loss into a more intuitive metric, enabling a straightforward



comparison of decision confidence across different models.
Through this approach, we can assess not only the accuracy
but also the reliability of predictions made by our models,
highlighting their effectiveness in practical scenarios.

4.5. Training Details

SemiS was trained with a batch size of 32, using an ini-
tial learning rate of 1e−6. The learning rate was halved
at the 10th, 20th, 30th, and 40th epochs during 50 epochs.
AdamW [26] optimization was used, and the SiLU activa-
tion function [10] was employed in constructing the residual
3D blocks. Before starting each training, the residual 3D
blocks are initialized by the Kaiming initialization [12].

5. Experiments
In our experiments, we address the challenge of limited
real-world data availability by starting with a modest set
of 560 real-world samples. To explore the effectiveness of
synthetic data in enhancing model performance, we incre-
mentally introduced additional synthetic samples, each in-
crement amounting to 5% of the original real-world dataset
size, aiming to identify the optimal synthetic-to-real data
ratio for improved model accuracy.

Moreover, to intensify the challenge and more closely
mimic real-world complexities, the smoke featured in the
real-world data was deliberately chosen to have an opacity
of 30% or less. This choice was made to simulate the dif-
ficulty models face in detecting low-opacity smoke, which
is often more subtle and harder to distinguish. Conversely,
the synthetic data was generated with higher opacity lev-
els, with the intention of facilitating the model’s learning
process by providing clearer examples of smoke features.
This experimental setup was designed not only to test the
model’s ability to learn from limited data but also to evalu-
ate the impact of synthetic data quality, in terms of opacity,
on the learning outcomes.

Table 1 presents a comparison between our SemiS model
and established baseline models, specifically a 3D ResNet
model (R3D) [41] and a tiny Video Swin Transformer
(VST) [25], with training conducted solely on real-world
data. R3D extends the traditional 2D ResNet framework
into three dimensions, adapting it for action recognition
tasks in video sequences. Similarly, VST adapts the Swin
Transformer [24] architecture for video analysis, leverag-
ing its strengths in capturing complex spatial-temporal rela-
tionships. Our SemiS model outperformed these baselines,
achieving the highest accuracy of 89.99%, demonstrating
its capability in accurately detecting smoke features and in-
dicating its potential for advancing computer vision tasks
involving amorphous objects.

To investigate the impact of synthetic data on model per-
formance, we augmented the initial set of 560 real-world
training samples with synthetic data generated from both

Method Parameters Accuracy Conf (↓) VPS (↑)

R3D 33.4 M 72.55 % 36.47 % 37.1
VST (t) 28.2 M 84.70 % 32.05 % 35.5
SemiS (ours) 9.2 M 89.99 % 37.72 % 41.5

Table 1. Results for the baseline tests for smoke detection over the
real world dataset only. Two baseline models, one CNN (R3D) and
one video transformer (VST Tiny), were compared to our efficient
(9.2M parameters) model, named SemiS. We achieved the highest
accuracy by 8.5% over the best baseline VST.

Unreal Engine and Omniverse. As depicted in Figure 5, the
classification accuracy of SemiS consistently showed higher
results with the Omniverse-generated synthetic data, indi-
cating its superior alignment with the nuances of real-world
smoke detection. The optimal integration of synthetic data,
enhancing accuracy maximally, was found to be an addi-
tional 30% of the original dataset size for both sources. Fur-
ther details of the experiments between Unreal Engine and
Omniverse data are detailed in the appendix in Table A.1
and Table A.2.

Figure 5. Graph of synthetic data integration vs. model accuracy:
This graph plots the model’s accuracy as a function of the synthetic
data proportion added to the training set, where 50 indicates that
50% of the initial real-world data size was incorporated as syn-
thetic data. The red line highlights the baseline accuracy achieved
with no synthetic data. The trend illustrates how incorporating
synthetic data impacts the model’s performance, providing a vi-
sual comparison to the baseline scenario.

6. Discussion
The goal of SemiS is to achieve efficiency in training and in-
ference times, while also achieving a high level of accuracy
in detecting smoke. The inclusion of opacity labels in the
real-world dataset we used enabled us to purposefully make



Module Parameters Accuracy Conf (↓)

RGB 4.5 M 74.35 % 37.56 %
Texture 4.5 M 80.43 % 45.07 %
RGB + Texture 9.2 M 89.99 % 37.72 %

Table 2. This table outlines our ablation study results, comparing
the accuracy of using RGB data, texture data, and their combina-
tion for smoke detection. RGB alone achieved 74.55% accuracy,
texture alone reached 80.43%, and their integration significantly
improved baseline accuracy to 89.99%. These results demonstrate
the enhanced performance achieved through combining RGB and
texture features in our SemiS model.

the smoke detection task more difficult by selecting clips of
smoke releases where the opacity of the smoke was 30% or
lower. In theory, low opacity smoke should be more diffi-
cult for the model to learn features from since it is more sub-
tle. The small amount of synthetic data that we introduced
contained smoke that was more clearly discernible with a
higher opacity than the real-world data. As shown in Figure
3 and Figure 4, the normalized absolute difference (NAD)
technique utilized by the SemiS architecture highlights the
features of the smoke more clearly for both real and syn-
thetic data, especially when compared to the RGB inputs.
However, the synthetic data had no background noise which
made the smoke more clearly highlighted when NAD was
applied to them. We did not perform training on just the
purely synthetic data, which is in contrast to other works
[34, 37].

Our results show that there is likely an ideal portion of
synthetic data to use where the accuracy will increase over
the baseline; in our experiments this proportion seemed to
be around 30%. However, the accuracy improved more with
synthetic data generated by Omniverse, which could likely
be due to the higher fidelity of the smoke generated by the
engine. Besides the level of fidelity, there are several dispar-
ities between the layouts of the Unreal Engine and Omni-
verse scenes. As a result, it is possible that the difference in
performance of these datasets could be partially attributed
to the subtle differences in the layout of the floors, build-
ings, smoke stacks, sky, etc.

6.1. Ablation Study

In our research, an ablation study was conducted to as-
certain the contribution of each key component within our
model—specifically examining the roles of RGB and tex-
ture (represented by greyscaled videos) features. Table 2
outlines the findings, clearly demonstrating the value added
by each component. Utilizing only RGB video data resulted
in the lowest accuracy at 74.55%, indicating the challenges
of relying solely on color information for smoke detection.
Incorporating texture as a standalone feature significantly

improved model accuracy to 80.43%, underscoring its im-
portance in recognizing smoke patterns regardless of color.
Most notably, the integration of both RGB and texture fea-
tures together enhanced the model’s accuracy to 89.99%.
This combination leverages the comprehensive understand-
ing of smoke dynamics—color variations captured through
RGB and structural details through texture—facilitating a
more robust and accurate detection. The results from this
ablation study highlight the critical balance between color
and texture recognition in achieving high performance in
smoke detection tasks.

7. Conclusion

In this study, we explored the potential of synthetic data
for tackling challenging computer vision tasks, with a par-
ticular focus on the detection of amorphous objects such
as smoke. This exploration is pivotal for advancing appli-
cations in opacity and emissions predictions, where tradi-
tional datasets may fall short. Faced with the constraints
of limited and complex real-world datasets, our investiga-
tion centered on the strategic integration of synthetic data
to enhance model robustness and accuracy, probing the opti-
mal balance of quantity and quality necessary for such data.
Through the generation of synthetic smoke data of varying
fidelity—utilizing Unreal Engine 5 for lower fidelity and
NVIDIA Omniverse for higher realism—and leveraging a
novel, efficient model architecture, we established a perfor-
mance baseline without synthetic data. Incrementally, we
introduced synthetic data into the training regimen in 5%
increments, culminating in a dataset comprised of 50% syn-
thetic data relative to the initial real-world dataset size. Our
methodology demonstrated that high-quality synthetic data
from Omniverse significantly boosts model accuracy by ap-
proximately 5%, surpassing not only the baseline but also
the enhancements afforded by lower fidelity synthetic data
from Unreal Engine, which itself offered a 2.5% increase in
accuracy.

These findings underscore the critical role of synthetic
data quality and quantity in optimizing computer vision
models, offering invaluable insights for those limited by re-
sources or requiring enhanced dataset diversity. Looking
forward, we see this work as foundational for the broader
application of synthetic data in computer vision, especially
in areas plagued by dataset scarcity or the need to model
complex phenomena. It is our aspiration that the insights
garnered from this study will fuel further innovations and
research directions, encouraging a deeper exploration into
the capabilities and applications of synthetic data for amor-
phous object detection, classification and beyond.
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recognition with local binary patterns. In Computer Vision-
ECCV 2004: 8th European Conference on Computer Vi-
sion, Prague, Czech Republic, May 11-14, 2004. Proceed-
ings, Part I 8, pages 469–481. Springer, 2004. 5

[2] Ahmed Alaa, Boris Van Breugel, Evgeny S. Saveliev, and
Mihaela van der Schaar. How Faithful is your Synthetic
Data? Sample-level Metrics for Evaluating and Auditing
Generative Models. In Proceedings of the 39th International
Conference on Machine Learning, pages 290–306. PMLR,
2022. 2

[3] Guangzhou An, Masahiro Akiba, Kazuko Omodaka, Toru
Nakazawa, and Hideo Yokota. Hierarchical deep learning
models using transfer learning for disease detection and clas-
sification based on small number of medical images. Scien-
tific reports, 11(1):4250, 2021. 3

[4] Bjorn Barz and Joachim Denzler. Deep learning on small
datasets without pre-training using cosine loss. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), 2020. 3

[5] Steve Borkman, Adam Crespi, Saurav Dhakad, Sujoy Gan-
guly, Jonathan Hogins, You-Cyuan Jhang, Mohsen Ka-
malzadeh, Bowen Li, Steven Leal, Pete Parisi, Cesar
Romero, Wesley Smith, Alex Thaman, Samuel Warren, and
Nupur Yadav. Unity Perception: Generate Synthetic Data for
Computer Vision, 2021. arXiv:2107.04259 [cs]. 2
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[38] JoÅ¾e M RoÅ¾anec, Patrik Zajec, Spyros Theodoropou-
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A. Additional Results
We further breakdown the performance contributions from
each synthetic data source. Specifically, Table A.1 dis-
plays the analysis for data generated via Unreal Engine, and
Table A.2 outlines the performance metrics for NVIDIA
Omniverse-generated data.



Additional Real-World Unreal Accuracy Conf (↓)

0% 560 0 89.99 % 37.72 %
5% 560 28 81.10 % 38.91 %
10% 560 56 85.49 % 34.00 %
15% 560 84 74.13 % 37.86 %
20% 560 112 84.14 % 34.79 %
25% 560 140 81.21 % 38.40 %
30% 560 168 92.58 % 36.53 %
35% 560 196 71.43 % 40.45 %
40% 560 224 78.74 % 39.59 %
45% 560 252 77.73 % 38.29 %
50% 560 280 71.31 % 40.80 %

Appendix A.1. This experiment aimed to determine the optimal
amount of Unreal Engine-generated synthetic data for smoke de-
tection training without compromising accuracy. Beginning with
a dataset devoid of synthetic data, we progressively increased the
synthetic portion by 5% increments, continuing until synthetic
data constituted half of the original training set. This approach
allowed us to identify the threshold at which additional synthetic
data begins to adversely affect model performance.

Additional Real-World Omniverse Accuracy Conf (↓)

0% 560 0 89.99 % 37.72 %
5% 560 28 87.96 % 37.02 %
10% 560 56 79.75 % 39.24 %
15% 560 84 79.08 % 43.71 %
20% 560 112 92.24 % 37.16 %
25% 560 140 90.10 % 36.87 %
30% 560 168 95.05 % 36.13 %
35% 560 196 76.94 % 43.29 %
40% 560 224 79.30 % 43.10 %
45% 560 252 68.29 % 44.44 %
50% 560 280 87.29 % 41.23 %

Appendix A.2. This table displays the accuracy differences ob-
served with varying amounts of NVIDIA Omniverse synthetic
data, paralleling the experiment detailed in Table A.1. It highlights
how incremental additions of Omniverse data influence model per-
formance, mirroring the methodology applied to Unreal Engine
data for comparative analysis.

Analysis of our method, SemiS: predictions and mis-
predictions are visualized in Figure A.I. SemiS is able to
distinguish between smoke and background object move-
ments such as trees, when the difference between frames is
higher (often in higher opacity smoke). However, with lim-
ited movement as seen in lower opacity smoke, it becomes
difficult to extract the smoke features from the background,
which can be seen in the second and fourth rows of Figure
A.I).



Appendix A.I. Visual analysis: Our examination consists of four distinct rows: the first two showcases instances of accurately predicted
video clips, while the last two highlights cases of erroneous predictions. In the first row, the both RGB and texture based Normalized
Absolute Difference (NAD) frames successfully identify smoke movement. Conversely, the second row induces the shape of RGB-based
NAD frame contributes to recognizing non-smoke features which are movements of trees. Misinterpretations occur in the last two rows;
for instance, the third row, the weather condition leads the model to falsely identify smoke. Similarly, the fourth example demonstrates
how tree movements introduce confusion, being misinterpreted as smoke movement by the model. This visual analysis underscores the
challenges in smoke detection, particularly in distinguishing between smoke movement and other dynamic elements within a scene.
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