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Abstract

Parameter-efficient fine-tuning (PEFT) has001
emerged as the predominant technique for fine-002
tuning in the era of large language models.003
However, existing PEFT methods still have in-004
adequate training efficiency. Firstly, the utiliza-005
tion of large-scale foundation models during006
the training process is excessively redundant007
for certain fine-tuning tasks. Secondly, as the008
model size increases, the growth in trainable pa-009
rameters of empirically added PEFT modules010
becomes non-negligible and redundant, lead-011
ing to inefficiency. To achieve task-specific012
efficient fine-tuning, we propose the Light-013
PEFT framework, which includes two methods:014
Masked Early Pruning of the Foundation Model015
and Multi-Granularity Early Pruning of PEFT.016
The Light-PEFT framework allows for the si-017
multaneous estimation of redundant parameters018
in both the foundation model and PEFT mod-019
ules during the early stage of training. These pa-020
rameters can then be pruned for more efficient021
training. We validate our approach on GLUE,022
SuperGLUE, QA tasks, and various models.023
With Light-PEFT, parameters of the founda-024
tion model can be pruned by over 40%, while025
still controlling trainable parameters to be only026
25% of the original PEFT method. Compared027
to utilizing the PEFT method directly, Light-028
PEFT achieves training and inference speedup,029
reduces memory usage, and maintains compara-030
ble performance and the plug-and-play feature031
of PEFT.032

1 Introduction033

Large-scale pre-trained language models have034

demonstrated outstanding performance in various035

natural language processing domains (Devlin et al.,036

2019; Brown et al., 2020; Zhang et al., 2022; Tou-037

vron et al., 2023; OpenAI, 2023). Along with the038

performance improvements, the scale of model pa-039

rameters continues to grow, making the cost of040

fine-tuning models increasingly expensive. More-041

over, the practice of maintaining a separate copy042

of the large model for each task in conventional 043

fine-tuning incurs substantial storage costs. 044

To address these challenges, parameter-efficient 045

fine-tuning (PEFT) has been proposed: freezing 046

most parameters of the foundation model and fine- 047

tuning only a small number of parameters (Houlsby 048

et al., 2019; Li and Liang, 2021; Lester et al., 2021; 049

Hu et al., 2022), thereby reducing the computa- 050

tional resource requirements during training and 051

performing nearly full-parameter fine-tuning. In ad- 052

dition, this technique eliminates the need to save an 053

entire model copy for each task. During inference, 054

task-specific models can be obtained by switch- 055

ing directly to the appropriate parameter-efficient 056

module for the given task. 057

However, the training efficiency of existing 058

PEFT methods still needs improvement. The first 059

problem lies in the excessive redundancy of using a 060

large-scale foundation model during fine-tuning for 061

specific tasks, which results in substantial computa- 062

tional costs. A typical strategy is to integrate PEFT 063

with quantization (Dettmers et al., 2023; Kim et al., 064

2023). Nonetheless, these methods only quantize 065

parameters to low-bit in memory, without reduc- 066

ing the number of parameters and they still need 067

to be dequantized to high-bit during training, lead- 068

ing to wasted training time. Another more direct 069

approach for reducing parameters is model struc- 070

tured pruning (Li et al., 2022a; Hedegaard et al., 071

2022). However, most methods mainly focus on 072

the inference efficiency of the model, which means 073

they may result in higher training costs. 074

The second problem is that as the size of the 075

foundation model increases, the number of param- 076

eters in added trainable modules also increases sig- 077

nificantly. This introduces a lot of redundancy in 078

trainable parameters, leading to inefficiency in fine- 079

tuning. For instance, the commonly used methods 080

LoRA (Hu et al., 2022) and QLoRA (Dettmers 081

et al., 2023) empirically insert the low-rank mod- 082

ules onto fixed weight. However, there is no need 083
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to uniformly add trainable modules of the same084

rank to all weights for fine-tuning each task. An085

improved approach is the dynamic rank method086

(Zhang et al., 2023; Valipour et al., 2023; Ding087

et al., 2023), which adaptively allocates module088

parameters by progressively calculating the impor-089

tance of the rank during training. However, these090

methods require continuous estimation during train-091

ing and show limited improvement in actual train-092

ing efficiency.093

In this paper, we introduce a novel framework094

named Light-PEFT, which aims to enhance the ef-095

ficiency of the PEFT technique during fine-tuning.096

The framework consists of two methods: Masked097

Early Pruning of Foundation Model and Multi-098

Granularity Early Pruning of PEFT. In the early099

training stage, Light-PEFT estimates redundant pa-100

rameters in both the foundation model (heads and101

intermediate dimensions) and the PEFT modules102

(module importance and rank importance) simul-103

taneously. Structured pruning is used to eliminate104

this redundancy, resulting in a lighter foundation105

model and PEFT module for more efficient fine-106

tuning.107

To validate the effectiveness of our Light-PEFT108

framework, we conduct extensive evaluations109

on various foundation models (RoBERTa, OPT-110

1.3B, OPT-6.7B), different PEFT structures (LoRA,111

Adapter), and on diverse benchmarks (GLUE, Su-112

perGLUE, and question-answering tasks). The113

empirical results indicate that the proposed Light-114

PEFT framework outperforms other baseline meth-115

ods in performance. It significantly improves train-116

ing efficiency that reduces training memory usage117

by 39% and accelerates training by 1.6×. Addi-118

tionally, the Light-PEFT framework improves in-119

ference efficiency that reduces inference memory120

by 46% and increases inference speed by 1.43×.121

2 Related Works122

2.1 Parameter-Efficient Fine-Tuning123

Parameter-Efficient Fine-Tuning has been proposed124

to reduce the computational cost of fine-tuning en-125

tire model parameters (Houlsby et al., 2019; Li and126

Liang, 2021; Hu et al., 2022). Following works127

aim to further improve the efficiency of PEFT.128

Improvements to the PEFT module. The moti-129

vation behind of this category of methods is that130

previous works often insert trainable modules em-131

pirically, resulting in uniform ranks for all inserted132

modules that are not parameter-efficient. AdaLoRA133

(Zhang et al., 2023) proposes obtaining the optimal 134

rank for each module by iteratively pruning ranks 135

during training. DyLoRA (Valipour et al., 2023) 136

achieves this through dynamic training on a range 137

of ranks. Recently, SoRA (Ding et al., 2023) in- 138

troduces a mask on the ranks and gradually makes 139

each module sparse. However, all of these meth- 140

ods gradually calculate the rank allocation during 141

training, which does not improve the actual train- 142

ing efficiency in fine-tuning. Our method estimates 143

the rank allocation for each module in the early 144

stage of training and utilizes the pruned parameter- 145

efficient modules to improve training efficiency 146

during fine-tuning. 147

Improvements to the training paradigm of 148

PEFT. To enhance training efficiency, one idea 149

is to further reduce the memory footprint during 150

training. QLoRA (Dettmers et al., 2023) and PEQA 151

(Kim et al., 2023) reduce memory usage by quantiz- 152

ing the foundation model, while LST (Sung et al., 153

2022) and MEFT (Liao et al., 2023), respectively 154

alleviate the memory footprint of intermediate acti- 155

vations in the foundation model through methods 156

ladder side-tuning and reversible structures. Our 157

approach is orthogonal to these methods from a 158

memory perspective and can be combined with 159

them. We explore early-stage pruning of the foun- 160

dation model to reduce memory usage. Moreover, 161

our approach can lower computational costs, speed 162

up training, and improve inference efficiency. 163

Combining PEFT with pruning, most of works 164

focus on improving inference efficiency. PST (Li 165

et al., 2022b) and DSEE (Chen et al., 2023) pro- 166

pose combining unstructured pruning and PEFT, 167

which hardly achieves acceleration on practical 168

hardware. SPAs (Hedegaard et al., 2022) integrates 169

structured pruning of the foundation model with 170

PEFT, while CPET (Zhao et al., 2023) proposes 171

distilling knowledge into PEFT modules simulta- 172

neously with pruning to reduce performance degra- 173

dation. Concurrently to our works, APT (Zhao 174

et al., 2024) reduces the training cost of the CPET 175

method, presenting more efficient distillation and 176

pruning. However, these methods, including APT, 177

still require higher training time and memory costs 178

compared to the original PEFT methods. Our ap- 179

proach aims to reduce the original PEFT training 180

costs, including speed and memory, by employ- 181

ing early-stage structured pruning to train a non- 182

redundant PEFT model efficiently, while improving 183

inference efficiency simultaneously. 184
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2.2 Structured Pruning of Models185

Model pruning has been proposed to compress re-186

dundant parameters in models (LeCun et al., 1989;187

Kurtic et al., 2022; Liu et al., 2022; Ma et al., 2023),188

with structured pruning being the most straight-189

forward method to achieve acceleration on actual190

hardware. For structured pruning of Transformer191

models, the focus lies in pruning attention heads192

(Michel et al., 2019), intermediate dimensions (Mc-193

Carley et al., 2021), entire layers (Fan et al., 2020),194

and hybrid methods (Xia et al., 2022; Tao et al.,195

2023; Xia et al., 2024). However, most structured196

pruning works require additional costs during train-197

ing to obtain smaller and more accurate models198

for inference efficiency. In terms of training ef-199

ficiency, You et al. (2020) based on the lottery200

ticket hypothesis (Frankle and Carbin, 2019), dis-201

covered the existence of early winning tickets in202

DNN models, allowing early pruning to enhance203

subsequent training efficiency. Subsequently, Chen204

et al. (2021) identified early tickets in BERT mod-205

els to enhance the efficiency of BERT’s pre-training206

and fine-tuning. We follow these works and explore207

early pruning in parameter-efficient fine-tuning and208

generative foundation models.209

3 Preliminaries210

3.1 Parameter-Efficient Fine-Tuning211

In our framework, we choose two of the most212

widely used methods: Adapter (Houlsby et al.,213

2019) and LoRA (Hu et al., 2022) to validate our214

approach.215

Adapter. For each layer in the foundation model,216

including the attention sub-layer and the feed-217

forward sub-layer, Adapter inserts a trainable MLP218

module after each sub-layer. It consists of a down-219

projection layer Wdown ∈ Rd×r, followed by a220

non-linear activation function f , and finally an up-221

projection layer Wup ∈ Rr×d, where d is the hid-222

den size of the foundation model, and r is the bot-223

tleneck dimension in the trainable module, with224

r ≪ d. The Adapter method can be formulated as225

follows:226

h← h+ f(hWdown)Wup (1)227

where h is the output of the inserted sub-layer.228

LoRA. For each linear weight matrix W ∈ Rd×d229

in the foundation model, the LoRA method adds230

trainable MLP modules in parallel to W . The231

trainable module includes a down-projection layer232

Wdown and an up-projection layer Wup. The LoRA 233

method can be be formulated as follows: 234

h← h+ s ·XWdownWup (2) 235

where X represents the input to the linear weight 236

matrix W and s is a hyper-parameter scaling factor. 237

3.2 PEFT Training Efficiency 238

In this section, we present observations on the train- 239

ing efficiency of PEFT. We utilize LoRA to observe 240

the results on two foundation models, RoBERTa 241

(FP32) and OPT (FP16). For training samples, we 242

set the length to 128 with a batch size of 32 and 243

the time is the sum of 10 batches. All tests are 244

conducted on a single NVIDIA RTX 3090 GPU. 245

The impact of foundation models size. From the 246

perspective of training speed (Figures 1a), PEFT 247

methods reduce the gradient computation time, so 248

the forward pass time gradually surpasses the back- 249

ward pass time. Nonetheless, the forward calcu- 250

lation still unchanged and needs to use all model 251

parameters to propagate the state forward and back- 252

propagate the loss through the entire model, becom- 253

ing slower as the model size increases. From the 254

memory perspective (Figure 1b), although PEFT 255

techniques reduce the memory consumption of op- 256

timizer states and gradients, the model weights and 257

intermediate activations still occupy a significant 258

amount of memory during training. Compressing 259

the foundation model to a smaller size can better 260

alleviate it. This highlights the importance of re- 261

ducing the parameter redundancy of the foundation 262

model for training efficiency. 263
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Figure 1: Impact of foundation model size on training
efficiency.

The impact of PEFT modules. We explore the 264

impact of intra-module rank and the number of 265

PEFT modules on training efficiency. From the 266

perspective of training speed, Figure 2a presents 267

experiments where we keep same modules and 268
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only increased the rank. Figure 2b shows experi-269

ments where we keep the same trainable parame-270

ter, adding structured PEFT modules to different271

weights. It can be observed that when increasing272

the number of PEFT modules compared to vary-273

ing the rank, both forward and backward times274

significantly increased. This indicates that, during275

training, the impact on speed of adding more struc-276

tured PEFT modules is significantly larger than that277

of increasing in rank of a single structured module.278

From a memory perspective, the trainable parame-279

ters affect the memory consumption of optimizer280

states and gradients during training. As the size of281

the foundation model increases, the redundancy in-282

troduced by empirically adding trainable parameter283

modules impacts training efficiency.284
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Figure 2: Impact of intra-module rank and the number
of PEFT modules on training speed

4 Methodology285

4.1 Overview of Light-PEFT286

Our goal is to eliminate parameters redundancies in287

the early stage, thereby reducing the computational288

costs of fine-tuning. Thus, we propose the Light-289

PEFT framework as shown in Figure 3, which con-290

sists of two methods: Masked Early Pruning of291

Foundation Model to reduce the redundancy of292

the foundation model and Multi-Granularity Early293

Pruning of PEFT to reduce the redundancy of the294

trainable parameters. First, both methods in our295

framework simultaneously estimate redundancies296

during the early-stage of training, where the total297

training steps are denoted as t, and the estimation298

for early pruning steps denoted as t′, t′ ≪ t. After299

estimation, we prune redundancies in both, thus ob-300

tain a non-redundant foundation model and PEFT301

modules for more efficient training. In practice,302

after fine-tuning, we only need to store additional303

mask vectors, which are much smaller than PEFT304

modules, to record the pruning index of the foun-305

dation model. During the inference, our method 306

allows the masks and PEFT modules to be easily 307

changed, maintaining the plug-and-play feature. 308

4.2 Masked Early Pruning of Foundation 309

Model 310

A typical Transformer model (Vaswani et al., 2017) 311

consists of L layers, each with a multi-head at- 312

tention (MHA) sub-layer and a feed-forward net- 313

work (FFN) sub-layer. A MHA sub-layer con- 314

tains NH attention heads and weight matrices 315

W
(i)
Q ,W

(i)
K ,W

(i)
V ∈ Rd×dH , WO ∈ Rd×d are used 316

for query, key, value and output, where d is the 317

hidden size and dH = d/NH is the hidden size 318

of a head. In parameter-efficient fine-tuning, the 319

weights of the foundation model are frozen, and 320

we add the PEFT module’s ∆W to these matrices. 321

Taking LoRA module as an example, for an input 322

X the output of the MHA is calculated as follows: 323

head(i) = (W
(i)
Q +∆W

(i)
Q ,

W
(i)
K +∆W

(i)
K ,W

(i)
V +∆W

(i)
V , X)

(3) 324

325
MHA(X) = Concat(head(1), ...,

head(NH))(WO +∆WO)
(4) 326

To identify redundancy in attention heads, we in- 327

troduce a trainable scalar mask mA in each layer’s 328

MHA sub-layer. Now the MHA become: 329

head(i) = m
(i)
A · (W

(i)
Q +∆W

(i)
Q ,

W
(i)
K +∆W

(i)
K ,W

(i)
V +∆W

(i)
V , X)

(5) 330

For a FFN sub-layer, which contains activa- 331

tion function Act(·) and weight matrices Wfc1 332

and Wfc2 which denote up-projection and down- 333

projection. With PEFT modules, for an input X 334

the output of the FFN is calculated as follows: 335

FFN(X) =Act(X(Wfc1 +∆Wfc1))

· (Wfc2 +∆Wfc2)
(6) 336

We also introduce a trainable scalar mask mF in 337

each layer’s FFN sub-layer to eliminate redundancy 338

in intermediate dimension. Now the FFN become: 339

FFN(X) =mF ·Act(X(Wfc1 +∆Wfc1))

· (Wfc2 +∆Wfc2)
(7) 340

Inspired by Liu et al. (2017), we then use L1 341

regularization to learn masks mA and mF . During 342

the mask learning, the PEFT module and the mask 343

are trained jointly using gradient descent, which 344
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Figure 3: Illustration of Light-PEFT. The left side of the Figure shows the two methods in Light-PEFT. On the
right side is an illustration of the paradigm. Firstly, both methods simultaneously estimate redundancies during
the early-stage of training. After estimation, Light-PEFT prunes redundancies in both, obtaining a non-redundant
foundation model and PEFT modules for more efficient training.

allowing the mask to better present the impact of345

PEFT to the foundation model training on the target346

task. The loss function is as follows:347

Lmask = L+ λA∥mA∥1 + λF ∥mF ∥1 (8)348

where L is the original loss in fine-tuning, λA and349

λF are hyper-parameters to control the penalty of350

regularization. The masks are initialized to 1 at the351

beginning of training.352

After estimating, we perform structured prun-353

ing on attention heads with pruning ratio ρA layer-354

wise and intermediate dimensions with ρF globally355

based on the magnitudes of mA and mF .356

4.3 Multi-Granularity Early Pruning of PEFT357

In comparison to the fine-grained sparsity (i.e. rank358

allocation) that is the focus of most previous works359

(Zhang et al., 2023; Valipour et al., 2023), our360

preliminary observation also confirms the signifi-361

cance of coarse-grained module pruning for train-362

ing speed. Therefore, we propose multi-granularity363

PEFT pruning to consider both aspects simulta-364

neously. Furthermore, we perform pruning PEFT365

in the early stage to maximize efficiency during366

training, a technique not found in previous works.367

4.3.1 Modules Pruning368

To achieve coarse-grained module pruning, we be-369

gin with the original design of PEFT, where we370

believe that the importance of a module is primarily 371

determined by the change it brings to the original in- 372

formation. Specifically, for the LoRA method, we 373

add a trainable module WdownWup on the weight 374

W . Thus, given an input X , the importance ratio 375

IM is defined as: 376

IM =
∥X ·WdownWup∥2
∥X ·W∥2

(9) 377

where ∥·∥2 represents the L2 norm, measuring the 378

magnitude of the vector output from the PEFT mod- 379

ule. Because one of the weight matrices in the 380

PEFT module, such as Wup in the LoRA method, 381

is typically initialized to zero. Therefore, during 382

training, the ratio of the output magnitude of the 383

LoRA module to the weight W ’s output magnitude 384

indicates the importance of the changes required 385

by the module added at that position. 386

For the Adapter method, a trainable module is 387

added after a sub-layer. Given the output h of 388

the previous sub-layer, the importance ratio IM is 389

defined as: 390

IM =
∥f(hWdown)Wup∥2

∥h∥2
(10) 391

where IM represents the change in information of 392

the Adapter module on the output information h of 393

the previous sub-layer. 394
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In the implementation, to better estimate the395

importance of all added positions, for the LoRA396

method, we add LoRA modules on all weights of397

the foundation model. This may results in higher398

costs compared to the original LoRA in the short399

term, but our early estimation steps are significantly400

smaller than the total training steps, allowing for a401

substantial reduction in total costs. For the Adapter402

method, we follow the original approach by adding403

them after both the MHA and FFN sub-layers. Af-404

ter estimation, we use IM to globally prune the405

entire PEFT modules with the pruning rate ρM .406

4.3.2 Ranks Pruning407

Not only coarse-grained pruning, we further per-408

form fine-grained pruning on the rank of the mod-409

ules. This allows us to reduce more trainable pa-410

rameters and enhance training efficiency. Our mo-411

tivation is based on the fact that not all modules412

require the same rank. To determine the importance413

of the rank in each module, we first calculate the im-414

portance of a single neuron, following Molchanov415

et al. (2017), we use first-order Taylor expansion416

for estimation:417

IWij = Ex∼D

∣∣∣∣∂L(x)∂Wij
Wij

∣∣∣∣ (11)418

where Wij represents the i-th row and j-th column419

of neurons in Wup or Wdown of the PEFT module.420

D represents the data used for estimation, and x421

denotes a batch sampled from D. The importance422

of the rank is determined by the sum of the impor-423

tance of its connected weights, i.e., the sum of the424

importance of connections from neurons in Wup425

and Wdown modules to the rank. Then, we globally426

prune the unimportant ranks with pruning rate ρR.427

5 Experiments428

5.1 Experimental Setup429

Datasets and evaluation. We conduct experiments430

on eight natural language understanding (NLU)431

tasks from GLUE (Wang et al., 2019b) and Su-432

perGLUE (Wang et al., 2019a) and six question-433

answering (QA) tasks. Because our goal is to en-434

hance training efficiency, training on small datasets435

does not hold much significance. As a result, we436

choose four larger datasets from GLUE including437

MNLI (Williams et al., 2018), QNLI (Rajpurkar438

et al., 2016), QQP1, and SST-2 (Socher et al., 2013),439

1https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

and four larger datasets from SuperGLUE compris- 440

ing ReCord (Zhang et al., 2018), WiC (Pilehvar 441

and Camacho-Collados, 2019), BoolQ (Clark et al., 442

2019), and MultiRC (Khashabi et al., 2018). For 443

MNLI, we report accuracy on the matched valida- 444

tion set. For QNLI, QQP, SST-2, WiC and BoolQ 445

we report accuracy. For ReCord we report F1 and 446

for MultiRC we report F1 over all answer-options 447

(F1a). The QA tasks including OpenBookQA (Mi- 448

haylov et al., 2018), PIQA (Bisk et al., 2020), ARC- 449

Easy and ARC-Challenge (Clark et al., 2018), SciQ 450

(Welbl et al., 2017) and WebQuestions (Berant 451

et al., 2013). We report accuracy on all QA tasks 452

by lm-evaluation-harness (Gao et al., 2023). 453

Baselines. We use Roberta-Large for NLU tasks, 454

OPT-1.3B and OPT-6.7B for QA tasks as our foun- 455

dation models. We choose several baselines to ver- 456

ify the effectiveness of our method. Full-FT is the 457

conventional approach for fine-tuning. Adapter 458

(Houlsby et al., 2019) and LoRA (Hu et al., 2022) 459

are original structures we used in our framework. 460

LayerDrop (Fan et al., 2020) is a strong baseline 461

method that enhances training efficiency by dy- 462

namically dropout layers during training. We re- 463

implement it combining with LoRA method. LST 464

(Sung et al., 2022) improves model training effi- 465

ciency by avoiding backpropagation in the foun- 466

dation model. Offsite-Tuning (Xiao et al., 2023) 467

uses a emulator derived from the foundation model 468

for efficient training, and replaces the emulator’s 469

layers back into the foundation model for inference. 470

LLM-Pruner (Ma et al., 2023) prunes model on 471

small amount of task-agnostic corpora and restores 472

performance using LoRA, thereby improving train- 473

ing efficiency. We re-implement their original task- 474

agnostic pruning and added a task-specific pruning 475

implementation using 1k task data. 476

Implementation. For the GLUE benchmark, we 477

control the estimation steps for early pruning to 478

be around 5% of the total training steps. For the 479

more challenging SuperGLUE benchmark, we set 480

the estimation steps to be within 10%. For QA 481

tasks, we uniformly use 10% of the training steps. 482

Please refer to the AppendixA for detailed pruning 483

settings, as well as other training details. 484

5.2 Experimental Results 485

5.2.1 Experiments on NLU Tasks 486

We first evaluate our method on the GLUE bench- 487

mark. As shown in Table 1, we achieve comparable 488

performance with the original method while using 489
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Method
#Trainable

Params
#Foundation

Model Params
GLUE Training

Speed upMNLI QNLI QQP SST-2 Avg.

Full-FT 335.0M 100% 90.4 94.7 92.2 96.4 93.4 0.7×
Adapter 0.8M 100% 90.8 94.7 91.5 96.3 93.3 1×
LoRA 0.8M 100% 90.6 94.9 91.6 96.2 93.3 1×

LayerDrop 0.8M 67% 87.4 91.7 88.3 94.7 90.5 1.4×
LST 8.6M 100% 86.7 90.2 89.7 95.1 90.4 1.4×

Ours (Adapter) 0.3M 72% 88.3 93.2 89.8 95.6 91.7 1.4×
Ours (LoRA) 0.3M 72% 89.4 93.6 89.7 95.9 92.2 1.4×

Ours (Adapter) 0.3M 67% 87.6 93.1 89.1 95.4 91.3 1.6×
Ours (LoRA) 0.3M 67% 89.0 93.5 89.2 95.8 91.9 1.6×

Table 1: Results of GLUE benchmark. The training speed is measured on a single NVIDIA RTX TITAN 24GB GPU
with batch size=32 and sequence length=128. Note that the speed computed here also includes the time required for
estimation before pruning.

Method #T.P. #F.P.
SuperGLUE

ReCord WiC BoolQ MultiRC Avg.

Adapter 0.8M 100% 89.5 71.0 84.3 82.4 81.8
Ours 0.3M 76% 86.0 70.1 81.2 76.0 78.3

LoRA 0.8M 100% 88.3 72.7 84.1 82.7 82.0
Ours 0.3M 76% 86.6 70.2 83.3 78.0 79.5

Table 2: Results of SuperGLUE Benchmark.

72% of the foundation model parameters (pruning490

5/16 of the heads and 1/3 of the FFN intermedi-491

ate dimensions) and 0.3M trainable parameters by492

pruning PEFT modules and ranks. This results in a493

1.4× training speedup and improvements in mem-494

ory usage due to pruning. Furthermore, our method495

outperforms the baseline methods with the same496

speed, having fewer trainable parameters. When in-497

creasing the pruning rate and retaining 67% of the498

parameters in the foundation model, Light-PEFT499

achieves a 1.6× training speedup while still ensur-500

ing slightly better performance than the baselines.501

On the more challenging SuperGLUE benchmark,502

as shown in Table 2, we prune 4/16 of the heads and503

30% of the FFN intermediate dimensions, retaining504

76% of the parameters in the foundation model and505

0.3M trainable parameters. This achieves perfor-506

mance comparable to the original PEFT method507

, demonstrating the effectiveness of our method508

Masked Early Pruning of Foundation Model.509

5.2.2 Experiments on QA Tasks510

For the QA tasks, we first conduct experiments on511

OPT-1.3B. We prune parameters (12/32 heads and512

2/5 intermediate dimensions), retaining 64% and513

1.5M trainable parameters, achieving comparable514

performance to the original method. When the515

trainable parameter in the original LoRA method 516

is set to 1.5M, our method outperforms the original 517

LoRA under fewer foundation model parameters, 518

which demonstrates the effectiveness of our method 519

Multi-Granularity Early Pruning of PEFT. 520

Compared to Offsite-Tuning, our approach 521

achieves better performance without the high train- 522

ing costs of the distillation. Compared to LLM- 523

Pruner, our method outperforms both task-agnostic 524

and specific implementations, and our pruning 525

process does not require the large model’s gradi- 526

ents, leading to significantly reduced computational 527

costs. Even with a pruning rate of 54%, we main- 528

tain better performance than the baselines. 529

On the larger OPT-6.7B model, pruning more 530

foundation model parameters than OPT-1.3B and 531

using 5.2M trainable parameters, we achieve perfor- 532

mance comparable to the original method. When 533

reducing trainable parameters to 2M, our method 534

still demonstrates good performance. These ex- 535

perimental results demonstrate that in QA tasks, 536

we can use the Light-PEFT framework to remove 537

more redundant parameters from the foundation 538

model and trainable modules, improving training 539

efficiency with almost no loss in performance. 540

5.3 Analysis 541

5.3.1 Ablation Study 542

In the Section 5.2, we have demonstrated the per- 543

formance of foundation model pruning (more ex- 544

periments in Appendix A.2). Here, we conduct 545

ablation study to examine two PEFT pruning strate- 546

gies, module pruning and rank pruning (Table 4). 547

Compared to not using any PEFT pruning, using 548

module pruning or rank pruning generally improves 549
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Method
#Trainable

Params
#Foundation

Model Params
QA Tasks

OpenBookQA PIQA ARC-E ARC-C SciQ WebQs Avg.

OPT-1.3B
Full-FT 1.3B 100% 31.4 75.2 61.3 27.7 92.5 31.2 53.2

Offsite-Tuning - 100% 29.0 74.5 59.4 27.8 92.9 26.2 51.6
LoRA (r=64) 12.6M 100% 33.6 74.7 59.5 29.5 92.0 29.8 53.2
LoRA (r=8) 1.5M 100% 29.6 74.6 59.9 29.1 93.0 28.7 52.5

LLM-Pruner(agnostic) 10.6M 70% 29.0 72.4 54.0 24.7 89.2 20.7 48.3
LLM-Pruner(specfic) 10.6M 70% 30.4 72.9 55.9 27.6 88.7 26.5 50.3

Ours (LoRA) 1.5M 64% 33.2 74.1 59.0 28.4 92.7 28.6 52.7
Ours (LoRA) 1.9M 54% 33.2 72.6 57.6 27.5 91.8 28.2 51.8

OPT-6.7B
Offsite-Tuning - 100% 33.8 77.7 66.8 33.9 91.9 23.9 54.7
LoRA(r=64) 33.6M 100% 39.2 78.5 67.5 36.7 94.0 38.5 59.1
Ours (LoRA) 5.2M 52% 39.4 74.9 63.4 32.7 92.9 35.8 56.5
Ours (LoRA) 2.0M 52% 37.2 76.0 64.4 31.7 93.3 34.7 56.2

Table 3: Results of QA Tasks.

generalization and thus enhances performance in550

most cases, indicating the effectiveness of the two551

proposed pruning strategies. Moreover, by combin-552

ing the two pruning strategies, the model maintains553

a comparable level of performance despite having554

more pruned trainable parameters.555

PEFT Pruning
Strategy

LoRA Adapter

QNLI SST-2 QNLI SST-2

All 93.5 95.8 93.1 95.4
w/o module p. 93.8 96.1 92.9 95.5

w/o rank p. 93.8 95.8 93.2 95.2
w/o All 93.6 95.6 93.0 95.1

Table 4: Ablation Study of Multi-Granularity Early
Pruning of PEFT.

Method Memory Speed

LoRA 2.51 GB 27.4 token/s
Ours (LoRA) 1.34 GB 39.3 token/s

Table 5: Inference Efficiency. We set max length=100.

5.3.2 Training and Inference Efficiency556

We validate the training and inference efficiency557

of our method on a NVIDIA RTX 3090. In terms558

of training efficiency (Figure 4), we conduct ex-559

periments on RoBERTa-Large, retaining a 67% of560

parameters and 0.3M trainable parameters that re-561

sulted in a 32% reduction in model weight memory,562

a 40% reduction in activations memory, and a 39%563

reduction in peak memory. Calculating the total564

time for 10 batches, we achieve a speedup of 2.2×565

compared to the original LoRA. In terms of infer-566

ence efficiency (Table 5), we conduct experiments567

on OPT-1.3B, retaining 54% of parameters and 568

1.9M PEFT parameters, leading to a 46% reduction 569

in inference memory and 1.43× speed up. 570
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Figure 4: Training Efficiency. We set batch size=32 and
sequence length=128.

6 Conclusion 571

This paper introduces Light-PEFT, a novel frame- 572

work designed to improve the efficiency of the 573

PEFT technique during fine-tuning. The frame- 574

work comprises two methods: Masked Early Prun- 575

ing of Foundation Model and Multi-Granularity 576

Early Pruning of PEFT. The Light-PEFT frame- 577

work estimates redundant parameters in both the 578

foundation model and PEFT modules during the 579

early stage of training and prunes them to achieve 580

more efficient training. We validate our approach 581

on GLUE, SuperGLUE, and QA tasks using vari- 582

ous models. The experiments demonstrates that 583

Light-PEFT achieves a training and inference 584

speedup, reduced memory usage, and maintained 585

comparable performance. 586
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Limitations587

Although Light-PEFT has achieved improved train-588

ing and inference efficiency along with good per-589

formance, our work primarily focuses on the single-590

task fine-tuning scenario. A future direction worth591

exploring is the estimation and early pruning of592

redundant parameters on the multi-task learning593

scenario, enabling efficient fine-tuning across mul-594

tiple tasks.595

Ethics Statement596

The goal of our Light-PEFT framework is to en-597

hance training efficiency and reduce computational598

resource costs, which has positive impacts.599
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A Appendix959

A.1 Details of Experimental Setup960

Hardware. We use NVIDIA RTX TITAN for961

GLUE for experiments, NVIDIA RTX 3090 for962

SuperGLUE experiments and experiments using963

the OPT-1.3B Model in QA Tasks, NVIDIA A800964

for experiments using the OPT-6.7B Model in QA965

Tasks.966

Hyper-parameters. We use AdamW as the opti-967

mizer for training. Other detailed settings for NLU968

tasks are provided in Table 6, while the settings for969

QA tasks can be found in Table 7 and Table 8.970

A.2 The impact of the pruning rate on the971

foundation model.972

We analyzed the impact of different foundation973

model pruning rates on performance on the WiC974

dataset (Figure 5). It was observed that within a975

certain range (above 62.5%), pruning resulted in976

a relatively minor decrease in performance. How- 977

ever, once this threshold was exceeded, a signifi- 978

cant performance decline occurred, demonstrating 979

that pruning within this range removes redundant 980

parameters. 981
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Figure 5: The impact of the pruning rate on the founda-
tion model.

A.3 The impact of the estimation steps of 982

early pruning 983

We analyzed the impact of the early pruning estima- 984

tion steps on performance using the BoolQ dataset 985

(Figure 6). It was observed that once the estima- 986

tion steps exceeded 6.8% of the total training steps, 987

further estimation did not lead to performance im- 988

provement. This demonstrates that our method can 989

effectively identify redundant parameters in both 990

the foundation model and PEFT modules during 991

the early stage of training. 992
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Figure 6: The impact of the estimation steps of early
pruning.
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Method Dataset MNLI QNLI QQP SST-2 ReCord WiC BoolQ MultiRC

LoRA

Estimation Steps 1000 1000 1000 800 2000 340 400 600
Rank 8
ρM 75%
ρR 50%

Estimation lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Fine-Tuning lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Batch Size 32 32 32 32 32 16 32 16
Sequence Length 128 128 128 128 256 128 128 384

# Epochs 5 5 5 10 5 50 20 20

Adapter

Estimation Steps 1000 1000 1000 800 2000 340 400 1000
Rank 8
ρM 25%
ρR 50%

Estimation lr 6e-4 8e-4 3e-4 6e-4 6e-4 3e-4 6e-4 7e-4
Fine-Tuning lr 4e-4 3e-4 3e-4 3e-4 3e-4 1e-4 6e-4 5e-4

Batch Size 32 32 32 32 32 16 32 16
Sequence Length 128 128 128 128 256 128 128 384

# Epochs 5 5 5 10 5 50 20 20

Table 6: Hyperparameters for NLU Tasks.

Method Dataset OpenBookQA PIQA ARC-E ARC-C SciQ WebQs

LoRA

Estimation Steps 1 Epoch 1 Epoch 1 Epoch 1 Epoch 1 Epoch 1 Epoch
Rank 8
ρM 50%/50%
ρR 50%/25%

Estimation lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Fine-Tuning lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Batch Size 64 64 64 64 64 64
Sequence Length 128 128 128 128 128 128

# Epochs 10 10 10 10 10 10

Table 7: Hyperparameters for QA Tasks on OPT-1.3B.

Method Dataset OpenBookQA PIQA ARC-E ARC-C SciQ WebQs

LoRA

Estimation Steps 1 Epoch 1 Epoch 1 Epoch 1 Epoch 1 Epoch 1 Epoch
Rank 8
ρM 50%/75%
ρR 25%/50%

Estimation lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Fine-Tuning lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Batch Size 64 64 64 64 64 64
Sequence Length 128 128 128 128 128 128

# Epochs 10 10 10 10 10 10

Table 8: Hyperparameters for QA Tasks on OPT-6.7B.
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