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Abstract

Parameter-efficient fine-tuning (PEFT) has
emerged as the predominant technique for fine-
tuning in the era of large language models.
However, existing PEFT methods still have in-
adequate training efficiency. Firstly, the utiliza-
tion of large-scale foundation models during
the training process is excessively redundant
for certain fine-tuning tasks. Secondly, as the
model size increases, the growth in trainable pa-
rameters of empirically added PEFT modules
becomes non-negligible and redundant, lead-
ing to inefficiency. To achieve task-specific
efficient fine-tuning, we propose the Light-
PEFT framework, which includes two methods:
Masked Early Pruning of the Foundation Model
and Multi-Granularity Early Pruning of PEFT.
The Light-PEFT framework allows for the si-
multaneous estimation of redundant parameters
in both the foundation model and PEFT mod-
ules during the early stage of training. These pa-
rameters can then be pruned for more efficient
training. We validate our approach on GLUE,
SuperGLUE, QA tasks, and various models.
With Light-PEFT, parameters of the founda-
tion model can be pruned by over 40%, while
still controlling trainable parameters to be only
25% of the original PEFT method. Compared
to utilizing the PEFT method directly, Light-
PEFT achieves training and inference speedup,
reduces memory usage, and maintains compara-
ble performance and the plug-and-play feature
of PEFT.

1 Introduction

Large-scale pre-trained language models have
demonstrated outstanding performance in various
natural language processing domains (Devlin et al.,
2019; Brown et al., 2020; Zhang et al., 2022; Tou-
vron et al., 2023; OpenAl, 2023). Along with the
performance improvements, the scale of model pa-
rameters continues to grow, making the cost of
fine-tuning models increasingly expensive. More-
over, the practice of maintaining a separate copy

of the large model for each task in conventional
fine-tuning incurs substantial storage costs.

To address these challenges, parameter-efficient
fine-tuning (PEFT) has been proposed: freezing
most parameters of the foundation model and fine-
tuning only a small number of parameters (Houlsby
et al., 2019; Li and Liang, 2021; Lester et al., 2021;
Hu et al., 2022), thereby reducing the computa-
tional resource requirements during training and
performing nearly full-parameter fine-tuning. In ad-
dition, this technique eliminates the need to save an
entire model copy for each task. During inference,
task-specific models can be obtained by switch-
ing directly to the appropriate parameter-efficient
module for the given task.

However, the training efficiency of existing
PEFT methods still needs improvement. The first
problem lies in the excessive redundancy of using a
large-scale foundation model during fine-tuning for
specific tasks, which results in substantial computa-
tional costs. A typical strategy is to integrate PEFT
with quantization (Dettmers et al., 2023; Kim et al.,
2023). Nonetheless, these methods only quantize
parameters to low-bit in memory, without reduc-
ing the number of parameters and they still need
to be dequantized to high-bit during training, lead-
ing to wasted training time. Another more direct
approach for reducing parameters is model struc-
tured pruning (Li et al., 2022a; Hedegaard et al.,
2022). However, most methods mainly focus on
the inference efficiency of the model, which means
they may result in higher training costs.

The second problem is that as the size of the
foundation model increases, the number of param-
eters in added trainable modules also increases sig-
nificantly. This introduces a lot of redundancy in
trainable parameters, leading to inefficiency in fine-
tuning. For instance, the commonly used methods
LoRA (Hu et al., 2022) and QLoRA (Dettmers
et al., 2023) empirically insert the low-rank mod-
ules onto fixed weight. However, there is no need



to uniformly add trainable modules of the same
rank to all weights for fine-tuning each task. An
improved approach is the dynamic rank method
(Zhang et al., 2023; Valipour et al., 2023; Ding
et al., 2023), which adaptively allocates module
parameters by progressively calculating the impor-
tance of the rank during training. However, these
methods require continuous estimation during train-
ing and show limited improvement in actual train-
ing efficiency.

In this paper, we introduce a novel framework
named Light-PEFT, which aims to enhance the ef-
ficiency of the PEFT technique during fine-tuning.
The framework consists of two methods: Masked
Early Pruning of Foundation Model and Multi-
Granularity Early Pruning of PEFT. In the early
training stage, Light-PEFT estimates redundant pa-
rameters in both the foundation model (heads and
intermediate dimensions) and the PEFT modules
(module importance and rank importance) simul-
taneously. Structured pruning is used to eliminate
this redundancy, resulting in a lighter foundation
model and PEFT module for more efficient fine-
tuning.

To validate the effectiveness of our Light-PEFT
framework, we conduct extensive evaluations
on various foundation models (RoBERTa, OPT-
1.3B, OPT-6.7B), different PEFT structures (LoRA,
Adapter), and on diverse benchmarks (GLUE, Su-
perGLUE, and question-answering tasks). The
empirical results indicate that the proposed Light-
PEFT framework outperforms other baseline meth-
ods in performance. It significantly improves train-
ing efficiency that reduces training memory usage
by 39% and accelerates training by 1.6x. Addi-
tionally, the Light-PEFT framework improves in-
ference efficiency that reduces inference memory
by 46% and increases inference speed by 1.43x.

2 Related Works

2.1 Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning has been proposed
to reduce the computational cost of fine-tuning en-
tire model parameters (Houlsby et al., 2019; Li and
Liang, 2021; Hu et al., 2022). Following works
aim to further improve the efficiency of PEFT.

Improvements to the PEFT module. The moti-
vation behind of this category of methods is that
previous works often insert trainable modules em-
pirically, resulting in uniform ranks for all inserted
modules that are not parameter-efficient. AdaLoRA

(Zhang et al., 2023) proposes obtaining the optimal
rank for each module by iteratively pruning ranks
during training. DyLoRA (Valipour et al., 2023)
achieves this through dynamic training on a range
of ranks. Recently, SORA (Ding et al., 2023) in-
troduces a mask on the ranks and gradually makes
each module sparse. However, all of these meth-
ods gradually calculate the rank allocation during
training, which does not improve the actual train-
ing efficiency in fine-tuning. Our method estimates
the rank allocation for each module in the early
stage of training and utilizes the pruned parameter-
efficient modules to improve training efficiency
during fine-tuning.

Improvements to the training paradigm of
PEFT. To enhance training efficiency, one idea
is to further reduce the memory footprint during
training. QLoRA (Dettmers et al., 2023) and PEQA
(Kim et al., 2023) reduce memory usage by quantiz-
ing the foundation model, while LST (Sung et al.,
2022) and MEFT (Liao et al., 2023), respectively
alleviate the memory footprint of intermediate acti-
vations in the foundation model through methods
ladder side-tuning and reversible structures. Our
approach is orthogonal to these methods from a
memory perspective and can be combined with
them. We explore early-stage pruning of the foun-
dation model to reduce memory usage. Moreover,
our approach can lower computational costs, speed
up training, and improve inference efficiency.

Combining PEFT with pruning, most of works
focus on improving inference efficiency. PST (Li
et al., 2022b) and DSEE (Chen et al., 2023) pro-
pose combining unstructured pruning and PEFT,
which hardly achieves acceleration on practical
hardware. SPAs (Hedegaard et al., 2022) integrates
structured pruning of the foundation model with
PEFT, while CPET (Zhao et al., 2023) proposes
distilling knowledge into PEFT modules simulta-
neously with pruning to reduce performance degra-
dation. Concurrently to our works, APT (Zhao
et al., 2024) reduces the training cost of the CPET
method, presenting more efficient distillation and
pruning. However, these methods, including APT,
still require higher training time and memory costs
compared to the original PEFT methods. Our ap-
proach aims to reduce the original PEFT training
costs, including speed and memory, by employ-
ing early-stage structured pruning to train a non-
redundant PEFT model efficiently, while improving
inference efficiency simultaneously.



2.2 Structured Pruning of Models

Model pruning has been proposed to compress re-
dundant parameters in models (LeCun et al., 1989;
Kurtic et al., 2022; Liu et al., 2022; Ma et al., 2023),
with structured pruning being the most straight-
forward method to achieve acceleration on actual
hardware. For structured pruning of Transformer
models, the focus lies in pruning attention heads
(Michel et al., 2019), intermediate dimensions (Mc-
Carley et al., 2021), entire layers (Fan et al., 2020),
and hybrid methods (Xia et al., 2022; Tao et al.,
2023; Xia et al., 2024). However, most structured
pruning works require additional costs during train-
ing to obtain smaller and more accurate models
for inference efficiency. In terms of training ef-
ficiency, You et al. (2020) based on the lottery
ticket hypothesis (Frankle and Carbin, 2019), dis-
covered the existence of early winning tickets in
DNN models, allowing early pruning to enhance
subsequent training efficiency. Subsequently, Chen
et al. (2021) identified early tickets in BERT mod-
els to enhance the efficiency of BERT’s pre-training
and fine-tuning. We follow these works and explore
early pruning in parameter-efficient fine-tuning and
generative foundation models.

3 Preliminaries

3.1 Parameter-Efficient Fine-Tuning

In our framework, we choose two of the most
widely used methods: Adapter (Houlsby et al.,
2019) and LoRA (Hu et al., 2022) to validate our
approach.

Adapter. For each layer in the foundation model,
including the attention sub-layer and the feed-
forward sub-layer, Adapter inserts a trainable MLP
module after each sub-layer. It consists of a down-
projection layer Wyp,, € R¥", followed by a
non-linear activation function f, and finally an up-
projection layer W, € R4 where d is the hid-
den size of the foundation model, and r is the bot-
tleneck dimension in the trainable module, with
r < d. The Adapter method can be formulated as
follows:

h < h+ f(thown)Wup (1)

where h is the output of the inserted sub-layer.

LoRA. For each linear weight matrix W € R4*¢
in the foundation model, the LoRA method adds
trainable MLP modules in parallel to W. The
trainable module includes a down-projection layer

W aown and an up-projection layer W,,,. The LoRA
method can be be formulated as follows:

h=h+ s XWaownWap )

where X represents the input to the linear weight
matrix W and s is a hyper-parameter scaling factor.

3.2 PEFT Training Efficiency

In this section, we present observations on the train-
ing efficiency of PEFT. We utilize LoRA to observe
the results on two foundation models, RoBERTa
(FP32) and OPT (FP16). For training samples, we
set the length to 128 with a batch size of 32 and
the time is the sum of 10 batches. All tests are
conducted on a single NVIDIA RTX 3090 GPU.
The impact of foundation models size. From the
perspective of training speed (Figures 1a), PEFT
methods reduce the gradient computation time, so
the forward pass time gradually surpasses the back-
ward pass time. Nonetheless, the forward calcu-
lation still unchanged and needs to use all model
parameters to propagate the state forward and back-
propagate the loss through the entire model, becom-
ing slower as the model size increases. From the
memory perspective (Figure 1b), although PEFT
techniques reduce the memory consumption of op-
timizer states and gradients, the model weights and
intermediate activations still occupy a significant
amount of memory during training. Compressing
the foundation model to a smaller size can better
alleviate it. This highlights the importance of re-
ducing the parameter redundancy of the foundation
model for training efficiency.
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Figure 1: Impact of foundation model size on training
efficiency.

The impact of PEFT modules. We explore the
impact of intra-module rank and the number of
PEFT modules on training efficiency. From the
perspective of training speed, Figure 2a presents
experiments where we keep same modules and



only increased the rank. Figure 2b shows experi-
ments where we keep the same trainable parame-
ter, adding structured PEFT modules to different
weights. It can be observed that when increasing
the number of PEFT modules compared to vary-
ing the rank, both forward and backward times
significantly increased. This indicates that, during
training, the impact on speed of adding more struc-
tured PEFT modules is significantly larger than that
of increasing in rank of a single structured module.
From a memory perspective, the trainable parame-
ters affect the memory consumption of optimizer
states and gradients during training. As the size of
the foundation model increases, the redundancy in-
troduced by empirically adding trainable parameter
modules impacts training efficiency.
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Figure 2: Impact of intra-module rank and the number
of PEFT modules on training speed

4 Methodology
4.1 Overview of Light-PEFT

Our goal is to eliminate parameters redundancies in
the early stage, thereby reducing the computational
costs of fine-tuning. Thus, we propose the Light-
PEFT framework as shown in Figure 3, which con-
sists of two methods: Masked Early Pruning of
Foundation Model to reduce the redundancy of
the foundation model and Multi-Granularity Early
Pruning of PEFT to reduce the redundancy of the
trainable parameters. First, both methods in our
framework simultaneously estimate redundancies
during the early-stage of training, where the total
training steps are denoted as ¢, and the estimation
for early pruning steps denoted as t/, ¢ < t. After
estimation, we prune redundancies in both, thus ob-
tain a non-redundant foundation model and PEFT
modules for more efficient training. In practice,
after fine-tuning, we only need to store additional
mask vectors, which are much smaller than PEFT
modules, to record the pruning index of the foun-

dation model. During the inference, our method
allows the masks and PEFT modules to be easily
changed, maintaining the plug-and-play feature.

4.2 Masked Early Pruning of Foundation
Model

A typical Transformer model (Vaswani et al., 2017)
consists of L layers, each with a multi-head at-
tention (MHA) sub-layer and a feed-forward net-
work (FFN) sub-layer. A MHA sub-layer con-
tains Ny attention heads and weight matrices
WS), W;(Z), W‘(/Z) e R4 W, € R4 gre used
for query, key, value and output, where d is the
hidden size and dy = d/Np is the hidden size
of a head. In parameter-efficient fine-tuning, the
weights of the foundation model are frozen, and
we add the PEFT module’s AW to these matrices.
Taking LoRA module as an example, for an input
X the output of the MHA is calculated as follows:

head® = ( (@) + AW(C;),

Q
(i) (1) 1y () (i) )
w4 aw® wi + awl), x)
MHA (X) = Concat(headV, ..., @

headNH))(Wo + AW o)

To identify redundancy in attention heads, we in-
troduce a trainable scalar mask m 4 in each layer’s
MHA sub-layer. Now the MHA become:
@) — @ @ ()
head™ =my’ - (Wy' + AW, )
Wi+ AW W + aw), x)

For a FFN sub-layer, which contains activa-
tion function Act(-) and weight matrices Wy
and W which denote up-projection and down-
projection. With PEFT modules, for an input X
the output of the FFN is calculated as follows:

FFN(X) IACt(X(Wfd + AWfd))

6
“(Wiea + AWseo) ©)

We also introduce a trainable scalar mask m g in
each layer’s FFN sub-layer to eliminate redundancy
in intermediate dimension. Now the FFN become:

FEN(X) =mp - Act(X (Wyer + AWer))

@)
*(Wie2 + AWye2)

Inspired by Liu et al. (2017), we then use L1
regularization to learn masks m 4 and mg. During
the mask learning, the PEFT module and the mask
are trained jointly using gradient descent, which
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Figure 3: Illustration of Light-PEFT. The left side of the Figure shows the two methods in Light-PEFT. On the
right side is an illustration of the paradigm. Firstly, both methods simultaneously estimate redundancies during
the early-stage of training. After estimation, Light-PEFT prunes redundancies in both, obtaining a non-redundant
foundation model and PEFT modules for more efficient training.

allowing the mask to better present the impact of
PEFT to the foundation model training on the target
task. The loss function is as follows:

Linask = L+ Aallmalli + Arllmrli  (8)

where L is the original loss in fine-tuning, A4 and
Ar are hyper-parameters to control the penalty of
regularization. The masks are initialized to 1 at the
beginning of training.

After estimating, we perform structured prun-
ing on attention heads with pruning ratio p 4 layer-
wise and intermediate dimensions with pr globally
based on the magnitudes of m4 and mp.

4.3 Multi-Granularity Early Pruning of PEFT

In comparison to the fine-grained sparsity (i.e. rank
allocation) that is the focus of most previous works
(Zhang et al., 2023; Valipour et al., 2023), our
preliminary observation also confirms the signifi-
cance of coarse-grained module pruning for train-
ing speed. Therefore, we propose multi-granularity
PEFT pruning to consider both aspects simulta-
neously. Furthermore, we perform pruning PEFT
in the early stage to maximize efficiency during
training, a technique not found in previous works.

4.3.1

To achieve coarse-grained module pruning, we be-
gin with the original design of PEFT, where we

Modules Pruning

believe that the importance of a module is primarily
determined by the change it brings to the original in-
formation. Specifically, for the LoORA method, we
add a trainable module W,,,, Wy, on the weight
W. Thus, given an input X, the importance ratio
Iy is defined as:

Inr — ||X . ”down”up”Q
M =
12X - Wla

®

where ||-||2 represents the L2 norm, measuring the
magnitude of the vector output from the PEFT mod-
ule. Because one of the weight matrices in the
PEFT module, such as W, in the LoORA method,
is typically initialized to zero. Therefore, during
training, the ratio of the output magnitude of the
LoRA module to the weight W’s output magnitude
indicates the importance of the changes required
by the module added at that position.

For the Adapter method, a trainable module is
added after a sub-layer. Given the output i of
the previous sub-layer, the importance ratio Iy is
defined as:

— ”f(thO’LUn)WupHZ

Iy
[A]]2

(10)

where [, represents the change in information of
the Adapter module on the output information h of
the previous sub-layer.



In the implementation, to better estimate the
importance of all added positions, for the LoRA
method, we add LoRA modules on all weights of
the foundation model. This may results in higher
costs compared to the original LoRA in the short
term, but our early estimation steps are significantly
smaller than the total training steps, allowing for a
substantial reduction in total costs. For the Adapter
method, we follow the original approach by adding
them after both the MHA and FFN sub-layers. Af-
ter estimation, we use I,; to globally prune the
entire PEFT modules with the pruning rate pj,.

4.3.2 Ranks Pruning

Not only coarse-grained pruning, we further per-
form fine-grained pruning on the rank of the mod-
ules. This allows us to reduce more trainable pa-
rameters and enhance training efficiency. Our mo-
tivation is based on the fact that not all modules
require the same rank. To determine the importance
of the rank in each module, we first calculate the im-
portance of a single neuron, following Molchanov
et al. (2017), we use first-order Taylor expansion
for estimation:

0L(x
Iw,; = Eznp OW(U)Wij (11)

where W;; represents the i-th row and j-th column
of neurons in Wy, or Wy, of the PEFT module.
D represents the data used for estimation, and x
denotes a batch sampled from D. The importance
of the rank is determined by the sum of the impor-
tance of its connected weights, i.e., the sum of the
importance of connections from neurons in W,
and W4, modules to the rank. Then, we globally
prune the unimportant ranks with pruning rate pg.

S Experiments

5.1 Experimental Setup

Datasets and evaluation. We conduct experiments
on eight natural language understanding (NLU)
tasks from GLUE (Wang et al., 2019b) and Su-
perGLUE (Wang et al., 2019a) and six question-
answering (QA) tasks. Because our goal is to en-
hance training efficiency, training on small datasets
does not hold much significance. As a result, we
choose four larger datasets from GLUE including
MNLI (Williams et al., 2018), QNLI (Rajpurkar
etal., 2016), QQPI, and SST-2 (Socher et al., 2013),

"https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

and four larger datasets from SuperGLUE compris-
ing ReCord (Zhang et al., 2018), WiC (Pilehvar
and Camacho-Collados, 2019), BoolQ (Clark et al.,
2019), and MultiRC (Khashabi et al., 2018). For
MNLI, we report accuracy on the matched valida-
tion set. For QNLI, QQP, SST-2, WiC and BoolQ
we report accuracy. For ReCord we report F1 and
for MultiRC we report F1 over all answer-options
(F1,). The QA tasks including OpenBookQA (Mi-
haylov et al., 2018), PIQA (Bisk et al., 2020), ARC-
Easy and ARC-Challenge (Clark et al., 2018), SciQ
(Welbl et al., 2017) and WebQuestions (Berant
et al., 2013). We report accuracy on all QA tasks
by Im-evaluation-harness (Gao et al., 2023).
Baselines. We use Roberta-Large for NLU tasks,
OPT-1.3B and OPT-6.7B for QA tasks as our foun-
dation models. We choose several baselines to ver-
ify the effectiveness of our method. Full-FT is the
conventional approach for fine-tuning. Adapter
(Houlsby et al., 2019) and LoRA (Hu et al., 2022)
are original structures we used in our framework.
LayerDrop (Fan et al., 2020) is a strong baseline
method that enhances training efficiency by dy-
namically dropout layers during training. We re-
implement it combining with LoRA method. LST
(Sung et al., 2022) improves model training effi-
ciency by avoiding backpropagation in the foun-
dation model. Offsite-Tuning (Xiao et al., 2023)
uses a emulator derived from the foundation model
for efficient training, and replaces the emulator’s
layers back into the foundation model for inference.
LLM-Pruner (Ma et al., 2023) prunes model on
small amount of task-agnostic corpora and restores
performance using LoRA, thereby improving train-
ing efficiency. We re-implement their original task-
agnostic pruning and added a task-specific pruning
implementation using 1k task data.
Implementation. For the GLUE benchmark, we
control the estimation steps for early pruning to
be around 5% of the total training steps. For the
more challenging SuperGLUE benchmark, we set
the estimation steps to be within 10%. For QA
tasks, we uniformly use 10% of the training steps.
Please refer to the AppendixA for detailed pruning
settings, as well as other training details.

5.2 Experimental Results

5.2.1 Experiments on NLU Tasks

We first evaluate our method on the GLUE bench-
mark. As shown in Table 1, we achieve comparable
performance with the original method while using



#Trainable  #Foundation GLUE Training
Method P Model P Speed
arams odel Params  \r\y 1 ONLI QQP SST-2 Ave peed up
Full-FT 335.0M 100% 904 947 922 964 934 0.7x
Adapter 0.8M 100% 90.8 947 915 963 933 1x
LoRA 0.8M 100% 90.6 949 916 962 933 1x
LayerDrop 0.8M 67% 874 91.7 883 947 905 1.4x
LST 8.6M 100% 86.7 90.2 89.7 951 904 1.4x
Ours (Adapter) 0.3M 72% 88.3 932 898 956 917 1.4x
Ours (LoRA) 0.3M 72% 894 936 897 959 922 1.4x
Ours (Adapter) 0.3M 67% 87.6 931 8.1 954 913 1.6x
Ours (LoRA) 0.3M 67% 89.0 935 892 958 919 1.6x

Table 1: Results of GLUE benchmark. The training speed is measured on a single NVIDIA RTX TITAN 24GB GPU
with batch size=32 and sequence length=128. Note that the speed computed here also includes the time required for

estimation before pruning.

Method #T.P.  #EP. SuperGLUE
ReCord WiC BoolQ MultiRC Avg.
Adapter 0.8M 100%  89.5 71.0 843 824 81.8
Ours 03M  76% 8.0 70.1 812 76.0 78.3
LoRA 0.8M 100% 883 727 84.1 82.7 82.0
Ours  03M  76% 86.6 702 833 78.0 79.5

Table 2: Results of SuperGLUE Benchmark.

72% of the foundation model parameters (pruning
5/16 of the heads and 1/3 of the FFN intermedi-
ate dimensions) and 0.3M trainable parameters by
pruning PEFT modules and ranks. This results in a
1.4 x training speedup and improvements in mem-
ory usage due to pruning. Furthermore, our method
outperforms the baseline methods with the same
speed, having fewer trainable parameters. When in-
creasing the pruning rate and retaining 67% of the
parameters in the foundation model, Light-PEFT
achieves a 1.6 training speedup while still ensur-
ing slightly better performance than the baselines.
On the more challenging SuperGLUE benchmark,
as shown in Table 2, we prune 4/16 of the heads and
30% of the FFN intermediate dimensions, retaining
76% of the parameters in the foundation model and
0.3M trainable parameters. This achieves perfor-
mance comparable to the original PEFT method
, demonstrating the effectiveness of our method
Masked Early Pruning of Foundation Model.

5.2.2 Experiments on QA Tasks

For the QA tasks, we first conduct experiments on
OPT-1.3B. We prune parameters (12/32 heads and
2/5 intermediate dimensions), retaining 64% and
1.5M trainable parameters, achieving comparable
performance to the original method. When the

trainable parameter in the original LoRA method
is set to 1.5M, our method outperforms the original
LoRA under fewer foundation model parameters,
which demonstrates the effectiveness of our method
Multi-Granularity Early Pruning of PEFT.

Compared to Offsite-Tuning, our approach
achieves better performance without the high train-
ing costs of the distillation. Compared to LLM-
Pruner, our method outperforms both task-agnostic
and specific implementations, and our pruning
process does not require the large model’s gradi-
ents, leading to significantly reduced computational
costs. Even with a pruning rate of 54%, we main-
tain better performance than the baselines.

On the larger OPT-6.7B model, pruning more
foundation model parameters than OPT-1.3B and
using 5.2M trainable parameters, we achieve perfor-
mance comparable to the original method. When
reducing trainable parameters to 2M, our method
still demonstrates good performance. These ex-
perimental results demonstrate that in QA tasks,
we can use the Light-PEFT framework to remove
more redundant parameters from the foundation
model and trainable modules, improving training
efficiency with almost no loss in performance.

5.3 Analysis

5.3.1 Ablation Study

In the Section 5.2, we have demonstrated the per-
formance of foundation model pruning (more ex-
periments in Appendix A.2). Here, we conduct
ablation study to examine two PEFT pruning strate-
gies, module pruning and rank pruning (Table 4).
Compared to not using any PEFT pruning, using
module pruning or rank pruning generally improves



#Trainable  #Foundation QA Tasks
Method Params Model Params .

OpenBookQA PIQA ARC-E  ARC-C  SciQ WebQs Avg.

OPT-1.3B
Full-FT 1.3B 100% 314 75.2 61.3 27.7 92.5 31.2 53.2
Offsite-Tuning - 100% 29.0 74.5 59.4 27.8 92.9 26.2 51.6
LoRA (r=64) 12.6M 100% 33.6 74.7 59.5 29.5 92.0 29.8 53.2
LoRA (r=8) 1.5M 100% 29.6 74.6 59.9 29.1 93.0 28.7 52.5
LLM-Pruner(agnostic) 10.6M 70% 29.0 724 54.0 24.7 89.2 20.7 48.3
LLM-Pruner(specfic) 10.6M 70% 30.4 72.9 55.9 27.6 88.7 26.5 50.3
Ours (LoRA) 1.5M 64% 332 74.1 59.0 28.4 92.7 28.6 52.7
Ours (LoRA) 1.9OM 54% 332 72.6 57.6 27.5 91.8 28.2 51.8

OPT-6.7B
Offsite-Tuning - 100% 33.8 717.7 66.8 33.9 91.9 239 54.7
LoRA(r=64) 33.6M 100% 39.2 78.5 67.5 36.7 94.0 38.5 59.1
Ours (LoRA) 5.2M 52% 394 74.9 63.4 32.7 929 35.8 56.5
Ours (LoRA) 2.0M 52% 37.2 76.0 64.4 31.7 93.3 34.7 56.2

Table 3: Results of QA Tasks.

generalization and thus enhances performance in
most cases, indicating the effectiveness of the two
proposed pruning strategies. Moreover, by combin-
ing the two pruning strategies, the model maintains
a comparable level of performance despite having
more pruned trainable parameters.

PEFT Pruning LoRA Adapter
Strategy QNLI SST-2 QNLI SST-2
All 935 958 931 954

w/o module p. 93.8 96.1 92.9 95.5
w/o rank p. 93.8 95.8 93.2 95.2
w/o All 936 956 93.0 951

Table 4: Ablation Study of Multi-Granularity Early
Pruning of PEFT.

Method

LoRA
Ours (LoRA)

Memory

2.51 GB 27.4 token/s
1.34 GB  39.3 token/s

Speed

Table 5: Inference Efficiency. We set max length=100.

5.3.2 Training and Inference Efficiency

We validate the training and inference efficiency
of our method on a NVIDIA RTX 3090. In terms
of training efficiency (Figure 4), we conduct ex-
periments on RoBERTa-Large, retaining a 67% of
parameters and 0.3M trainable parameters that re-
sulted in a 32% reduction in model weight memory,
a 40% reduction in activations memory, and a 39%
reduction in peak memory. Calculating the total
time for 10 batches, we achieve a speedup of 2.2 x
compared to the original LoRA. In terms of infer-
ence efficiency (Table 5), we conduct experiments

on OPT-1.3B, retaining 54% of parameters and
1.9M PEFT parameters, leading to a 46% reduction
in inference memory and 1.43x speed up.

- Al W Peak
W Backward Pass B Activations
254 Forward Pass Weights

Time (s)

Memory (GB)

LoRA Ours (LoRA) T LoRA

Ours (LoRA)

(a) Training Time (b) Memory Usage

Figure 4: Training Efficiency. We set batch size=32 and
sequence length=128.

6 Conclusion

This paper introduces Light-PEFT, a novel frame-
work designed to improve the efficiency of the
PEFT technique during fine-tuning. The frame-
work comprises two methods: Masked Early Prun-
ing of Foundation Model and Multi-Granularity
Early Pruning of PEFT. The Light-PEFT frame-
work estimates redundant parameters in both the
foundation model and PEFT modules during the
early stage of training and prunes them to achieve
more efficient training. We validate our approach
on GLUE, SuperGLUE, and QA tasks using vari-
ous models. The experiments demonstrates that
Light-PEFT achieves a training and inference
speedup, reduced memory usage, and maintained
comparable performance.



Limitations

Although Light-PEFT has achieved improved train-
ing and inference efficiency along with good per-
formance, our work primarily focuses on the single-
task fine-tuning scenario. A future direction worth
exploring is the estimation and early pruning of
redundant parameters on the multi-task learning
scenario, enabling efficient fine-tuning across mul-
tiple tasks.

Ethics Statement

The goal of our Light-PEFT framework is to en-
hance training efficiency and reduce computational
resource costs, which has positive impacts.
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A Appendix

A.1 Details of Experimental Setup

Hardware. We use NVIDIA RTX TITAN for
GLUE for experiments, NVIDIA RTX 3090 for
SuperGLUE experiments and experiments using
the OPT-1.3B Model in QA Tasks, NVIDIA A800
for experiments using the OPT-6.7B Model in QA
Tasks.

Hyper-parameters. We use AdamW as the opti-
mizer for training. Other detailed settings for NLU
tasks are provided in Table 6, while the settings for
QA tasks can be found in Table 7 and Table 8.

A.2 The impact of the pruning rate on the
foundation model.

We analyzed the impact of different foundation
model pruning rates on performance on the WiC
dataset (Figure 5). It was observed that within a
certain range (above 62.5%), pruning resulted in
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a relatively minor decrease in performance. How-
ever, once this threshold was exceeded, a signifi-
cant performance decline occurred, demonstrating
that pruning within this range removes redundant
parameters.
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Figure 5: The impact of the pruning rate on the founda-
tion model.

A.3 The impact of the estimation steps of
early pruning

We analyzed the impact of the early pruning estima-
tion steps on performance using the BoolQ dataset
(Figure 6). It was observed that once the estima-
tion steps exceeded 6.8% of the total training steps,
further estimation did not lead to performance im-
provement. This demonstrates that our method can
effectively identify redundant parameters in both
the foundation model and PEFT modules during
the early stage of training.
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Figure 6: The impact of the estimation steps of early
pruning.
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Method Dataset MNLI QNLI QQP SST-2 ReCord WiC BoolQ MultiRC
Estimation Steps | 1000 1000 1000 800 2000 340 400 600
Rank 8
PM 75%
PR 50%
LoRA Estimation Ir 3e-4 3e-4 3e4 3e4 3e-4 3e-4  3e4 3e-4
Fine-Tuning Ir 3e-4 3e-4 3e4 3e4 3e-4 3e-4  3e-4 3e-4
Batch Size 32 32 32 32 32 16 32 16
Sequence Length | 128 128 128 128 256 128 128 384
# Epochs 5 5 5 10 5 50 20 20
Estimation Steps | 1000 1000 1000 800 2000 340 400 1000
Rank 8
par 25%
Adapter PR 50%
Estimation Ir 6e-4 8e-4 3e4 6e4 6e-4 3e-4  6e-4 Te-4
Fine-Tuning Ir 4e-4 3e-4 3e4 3e4 3e-4 le-4  6e-4 Se-4
Batch Size 32 32 32 32 32 16 32 16
Sequence Length | 128 128 128 128 256 128 128 384
# Epochs 5 5 5 10 5 50 20 20
Table 6: Hyperparameters for NLU Tasks.
Method Dataset OpenBookQA  PIQA  ARC-E  ARC-C SciQ WebQs
Estimation Steps 1 Epoch 1 Epoch 1Epoch 1Epoch 1Epoch 1Epoch
Rank 8
PM 50%/50%
PR 50%/25%
LoRA Estimation Ir 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Fine-Tuning Ir 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Batch Size 64 64 64 64 64
Sequence Length 128 128 128 128 128 128
# Epochs 10 10 10 10 10 10
Table 7: Hyperparameters for QA Tasks on OPT-1.3B.
Method Dataset OpenBookQA  PIQA ARC-E  ARC-C SciQ WebQs
Estimation Steps 1 Epoch 1 Epoch 1Epoch 1Epoch 1Epoch 1Epoch
Rank 8
PM 50%/75%
PR 25%150%
LoRA Estimation Ir 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Fine-Tuning Ir 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Batch Size 64 64 64 64 64 64
Sequence Length 128 128 128 128 128 128
# Epochs 10 10 10 10 10 10

Table 8: Hyperparameters for QA Tasks on OPT-6.7B.
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