
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A NOVEL SECURITY THREAT MODEL FOR AUTO-
MATED AI ACCELERATOR GENERATION PLATFORMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, the design of Artificial Intelligence (AI) accelerators has gradu-
ally shifted from focusing solely on standalone accelerator hardware to consid-
ering the entire system, giving rise to a new AI accelerator design paradigm that
emphasizes full-stack integration. Systems designed based on this paradigm offer
a user-friendly, end-to-end solution for deploying pre-trained models. While pre-
vious studies have identified vulnerabilities in individual hardware components
or models, the security of this paradigm has not yet been thoroughly evaluated.
This work, from an attacker’s perspective, proposes a threat model based on this
paradigm and reveals the potential security vulnerabilities of systems by embed-
ding malicious code in the design flow, highlighting the necessity for protection to
address this security gap. In exploration and generation, maliciously leverage the
exploration unit to identify sensitive parameters in the model’s intermediate lay-
ers and insert hardware Trojan (HT) into the accelerator. In execution, malicious
information is concealed within the control instructions, triggering the HT. Exper-
imental results demonstrate that the proposed method, which manipulates sensi-
tive parameters in a few selected kernels across the middle convolutional layers,
successfully misclassifies input images into specified categories with high mis-
classification rates across various models: 97.3% in YOLOv8 by modifying only
three parameters per layer in three layers, 99.2% in ResNet-18 by altering four
parameters per layer in three layers and 98.1% for VGG-16 by changing seven pa-
rameters per layer in four layers. Additionally, the area overhead introduced by the
proposed HT occupies no more than 0.34% of the total design while maintaining
near-original performance as in uncompromised designs, which clearly illustrates
the concealment of the proposed security threat.

1 INTRODUCTION

Recent research has revealed that AI accelerator are inherently vulnerable to various attacks, high-
lighting security as a significant concern. These vulnerabilities stem from multiple sources: 1) The
models themselves, which allows attackers to induce malfunction through minor perturbations to the
inputs (Baniecki & Biecek, 2024; Costa et al., 2024). Besides adding perturbations to the inputs, at-
tackers can also control the model’s behavior by attacking the model parameters (Rakin et al., 2019;
2021; Bai et al., 2023). 2) The accelerator hardware architecture, such as memory, is susceptible
to attacks such as the Row Hammer Attack (Kim et al., 2014). Attackers can also exploit timing
violations to cause the entire design to malfunction (Liu et al., 2020b; Mukherjee & Chakraborty,
2022). 3) Security vulnerabilities during the design synthesis process, such as attackers tampering
with the Look-Up Tables (LUTs) in Field-Programmable Gate Array (FPGA) (Nozaki et al., 2020;
Krieg et al., 2016).

Lately, the research focus on AI accelerators has gradually shifted from solely focusing on AI ac-
celerators to encompassing the entire System on Chip (SoC) and its related software stack, giving
rise to a new AI accelerator design paradigm (Xilinx, 2024; Genc et al., 2021). The yellow part in
Fig. 1 provides a sketch of this paradigm, which centers not only on optimizing the performance
and efficiency of accelerators but also on the deep co-design between hardware and software, as
well as their integration at the system level to address increasingly complex AI workloads. Key
components of this paradigm include exploration unit (e.g., Design Space Exploration (DSE)) and
middleware. DSE uses exploration algorithms to evaluate various design parameters to optimize

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the AI accelerator design paradigm: the left blue part shows the user-provided
model and requirements, the middle yellow part represents the accelerator generation platform map-
ping the model to hardware with a user-friendly interface, and the right blue part provides application
examples. The attacker’s target is the red part within the accelerator generation platform.

hardware designs under resource constraints, ensuring the system achieves the best balance between
performance, power consumption, and area (Chen et al., 2024; Cai et al., 2022). For instance, in
accelerators based on pipeline architecture, DSE can allocate appropriate processing elements (PEs)
for different models to ensure latency balance across layers and maximize system throughput (Zhang
et al., 2018). Meanwhile, middleware provides an abstraction layer that simplifies the interaction be-
tween developers and accelerators, hiding the complexity of the underlying hardware and enhancing
the usability and scalability of the system. Significant progress has been made in areas such as
hardware and software co-design and system integration within the AI accelerator design paradigm.
More specifically, these platforms have recently attracted increasing attention due to their low-cost
realization, quick implementation, and easy deployment on IoT devices and low-cost edge devices.
Unfortunately, the security aspects of these black-box-like platforms remain largely unexplored.

This research aims to propose a generic threat model targeting the AI accelerator design paradigm.
Under this model, the system analyzes user-provided pre-trained models to generate the optimal
hardware and software stack. Concurrently, an attacker exploits malicious code embedded in the
hardware generation flow to analyze model vulnerabilities and insert a hardware Trojan (HT). In par-
allel, the software generation flow is compromised, allowing the injection of malicious instructions
into the communication protocol between the controller and the accelerator, effectively triggering the
HT. The code for this research is available at https://github.com/AnonymousCode-HT/C-SFE.git.

The main contributions are as follows: 1) A general threat model for automated AI accelerator
generation platforms is proposed. It explores how attackers can integrate malicious code into plat-
form components to analyze model vulnerabilities and then insert HTs that can be triggered via a
middleware-based method to achieve desired outcomes with negligible area overhead and no perfor-
mance degradation. 2) A Cross-layer Sensitive Filter Exploration (C-SFE) targeted attack algorithm
is presented and embedded in the hardware design flow. C-SFE is a bit-level adversarial weight
attack, differing from previous research by using a heuristic algorithm and relying solely on for-
ward propagation without gradient information. It targets intermediate convolutional layers, and
parameters identified by C-SFE exhibit regularity, making it more compatible with HT design. 3)
The proposed threat model was validated on the state-of-the-art automated AI accelerator generation
platform, and the actual attack effectiveness on the YOLOv8 classification model, ResNet-18, and
VGG-16 was tested on FPGA.

2 PRELIMINARIES

Hardware Trojans are malicious circuits that are secretly inserted into a circuit. In general, they
remain silent and are triggered only at certain moments, causing a serious impact on the functionality

2

https://github.com/AnonymousCode-HT/C-SFE.git


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of the circuit. The hardware Trojan usually consists of a trigger and a payload, during normal circuit
operation, the trigger will monitor a certain (or some) signal, when these signals reach a specific
condition, it will control the payload into working state, the payload is responsible for the specific
attack. Many different types of hardware Trojans can be created based on physical, activation, and
behavioral characteristics (Xue et al., 2020).

AI accelerator design paradigm focuses on optimizing the performance, energy efficiency, and
scalability of deep neural network workloads through specialized hardware architectures. It em-
phasizes the co-design of hardware and software to support a wide range of applications, from
high-performance computing to low-power edge devices, leading to a significant number of tunable
parameters. As a result, exploration unit within the paradigm, such as DSE, become essential for
optimizing accelerator performance and energy efficiency, helping designers choose the best con-
figurations. Lately, many researchers have explored this design paradigm, with notable examples
such as Gemmini (Genc et al., 2021) and NVDLA (Zhou et al., 2018). Gemmini is a full-stack
DNN accelerator generator featuring: 1) Flexible hardware parameterization supporting various
dataflows (e.g., weight stationary, output stationary). 2) Integration with the Chipyard framework
(Amid et al., 2020), enabling tight coupling with RISC-V Rocket cores via the Rocket Custom Co-
processor (RoCC) commands. 3) A multi-layer software stack based on ONNX Runtime (Microsoft,
2024), providing an easy-to-use interface for end users and low-level control via C/C++ for system
programmers. Some researchers have also integrated NVDLA into the Chipyard framework to pro-
vide a unified approach to accelerator generation (Gonzalez & Hong, 2020; Farshchi et al., 2019).
However, inconsistencies in communication interfaces remain. For example, Gemmini uses RoCC
commands to communicate with RISC-V Rocket cores, while NVDLA relies on Memory-Mapped
I/O (MMIO). The optimization and exploration algorithms in these automatic accelerator genera-
tion platforms might be maliciously used for HT insertion; however, this security risk has not been
investigated to date.

3 ATTACK FRAMEWORK

3.1 THREAT MODEL

As shown in Fig. 1, the proposed method belongs to the category of grey-box attacks. It is assumed
that the adversary is the developer of the AI accelerator platform, and the platform’s level of open-
ness is similar to Vitis AI (Xilinx, 2024). This means that due to commercial purposes, its internal
exploration unit such as DSE are not made public. Therefore, the platform is transparent to the user,
and the design output from the ’VLSI design flow’ is also transparent. However, the user can control
the accelerator’s behavior through the controller’s instructions, such as reading data from a spec-
ified location in memory into the accelerator and performing matrix multiplication or convolution
operations.

During the design and generation phase, since the platform receives information about the model
structure and parameters (i.e., ’User provides model’ in Fig. 1), the adversary would also have
this information. Additionally, the adversary cannot access the training set but can access a small
dataset for validation purposes for two key reasons. First, because floating-point data is inefficient in
terms of both computational performance and hardware resource utilization, quantization methods
are extensively employed during the design space exploration process. In our approach, we employ
the Post-Training Quantization (PTQ) method (included in the ’Exploration unit’), which in turn
necessitates the use of a compact validation dataset. Second, after the quantization process, the
quantized model requires a small subset of input data to determine if there is a significant difference
in model accuracy compared to the floating-point scenario.

3.2 ATTACK PROCEDURE

As shown in the red part of Fig. 1, in this threat model, the attacker exploits three components
in the generation platform that lack sufficient security focus: 1) Exploration unit, such as DSE,
typically integrates various exploration algorithms to find system parameter settings that best meet
user requirements. For example, SkyNet uses a group-based particle swarm optimization (PSO)
algorithm to evolve network candidates for higher accuracy and efficiency (Zhang et al., 2020).
Attackers can insert malicious exploration algorithms into it, or, to reduce the size of the malicious

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 2: (a) The structure of RoCC commands; (b) Overview of the attack process, with the in-
tegration of malicious information in the upper part and the HT within the accelerator in the lower
part.

code, they can reuse the exploration algorithms within the DSE to explore the target parameter
values. 2) Software stack, which provides control interfaces for system developers or end users to
interact with the accelerator. Since it is ultimately compiled into dynamic libraries like .so files for
developers, or Python wheels for end users, it is difficult for them to detect any hidden interfaces
or subtle code modifications embedded within. 3) Hardware generation, such as RTL code or IP
generation, can be exploited to insert HT, allowing the attacker to monitor instructions sent by the
controller (via the software stack) and trigger an attack when specific information is detected.

The workflow and attack process are as follows (see Appendix A.1 for a simplified representation):
1) The user intends to deploy their trained model onto domain-specific hardware (e.g., edge devices
focusing on low-power applications). Therefore, they provide the trained model, calibration input
images, and requirements (e.g., energy-efficiency priority). 2) The Exploration unit configures the
optimal design parameters based on the user’s requirements. Simultaneously, the embedded mali-
cious code leverages the exploration algorithm to locate target model parameters (e.g., parameters
for executing an N-to-1 attack). 3) Using the optimal design parameters configured by the Explo-
ration unit in the previous step, the VLSI design flow automatically generates the RTL code for the
SoC (including the controller and accelerator), inserts the HT into the accelerator, and then produces
a bitfile (for FPGA) or layout (for ASIC) based on user requirements for delivery. 4) The software
stack is adapted to the generated design, enabling the user to easily control the accelerator. During
the generation process, malicious code is inserted so that when the control instructions are sent to
the accelerator, they carry the information of the target parameters to be attacked.

There are various methods to trigger the attack, such as a timing trigger (i.e., the malicious code
embedded in the software stack activates at a specific interval, such as once a week), a random
trigger (i.e., activation occurs when a generated random number matches a predefined value), or
a targeted trigger (i.e., activation after continuously detecting a specific category). As shown on
the right side of Fig. 1, once the HT embedded within the accelerator is triggered, it executes
attacks such as a 1-to-1 attack, where a specific class is misclassified into an attacker-specified
class, or an N-to-1 attack, where all classes are misclassified into the attacker-specified class. The
information necessary for the attack is concealed within control instructions, and the specific effects
of the attack are determined by the malicious algorithm embedded in the exploration unit. In the
following section, we take Gemmini as an example to demonstrate how this threat model operates in
a real AI accelerator generation platform. Notably, our approach is broadly applicable to any similar
automation platform.

3.3 ATTACK EXAMPLE: THE GEMMINI CASE

Gemmini leverages Complex Instruction Set Computer (CISC) instructions to simplify accelera-
tor operations, such as performing multi-step convolution configurations with a single instruction,
thereby reducing command transmissions and improving throughput. These CISC instructions are
embedded in the ONNX Runtime middleware, which automatically allocates computations to Gem-
mini when users input models in ONNX format. Since the middleware operates on the Rocket Core,
the CISC instructions are ultimately translated into RoCC commands for execution by Gemmini.

4

Anonymous

Anonymous

Anonymous

Anonymous



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

RoCC commands. Fig. 2a illustrates the structure of RoCC commands, where the funct field
specifies the accelerator operation, the rs1 and rs2 fields contain the necessary information. For
example, the configuration command LOOP CONV WS CONFIG 2, which is part of the CISC in-
struction for the convolution operation, includes information such as kernel dimension and pool
size.

Overview of the Attack Process. Gemmini provides a dedicated CISC instruction called
gemmini loop conv ws to improve throughput for convolution operations which require
transmitting six consecutive configuration commands followed by the execution command (i.e.,
LOOP CONV WS CONFIG 1 to LOOP CONV WS CONFIG 6 and LOOP CONV WS in Fig. 2a). No-
tably, fields such as pool size and kernel dim occupy 16 bits in the instruction, although
in practice they do not require such a wide bit width. For example, in ResNet-18, the largest con-
volution kernel dim is 7, and the largest pool size is 3, using only 3 and 2 bits out of the 16 bits,
respectively. Therefore, the unused bits in these fields can be exploited by attackers to embed mali-
cious information. Based on this, 15 similar fields were identified among the seven RoCC commands
mentioned above. Of these, 5 bits are reserved for original information, while the remaining 11 bits
transmit malicious instructions, with their structure illustrated in the ’Malicious Inst’ section of Fig.
2b. The malicious instructions are categorized into two types: the first type transmits location in-
formation using one valid bit and ten data bits, allowing the indexing of up to 1024 positions. The
second type transmits the mask for the attacked parameters, with the lower 8 bits specifying which
bits to flip. Therefore, to attack a 3 × 3 kernel within a convolutional layer, two fields are needed
to specify the filter’s 1 position and the kernel’s offset, and if all 9 parameters are targeted, a total
of 11 fields will be required, which is within the available limit of 15 fields. As shown in the lower
part of Fig. 2b, the LoopConv module of Gemmini receives one instruction per cycle, taking seven
cycles in total. From the eighth cycle, the module signals the Load Controller to load weight
parameters from off-chip memory to the on-chip scratchpad. By the eighth cycle, the HT reads all
malicious fields and waits for the target parameters to load, replacing them with the malicious values
at the right moment.

Figure 3: Two adversarial weight attack
methods are shown. Blue dots represent
clean parameters, red dots show scattered at-
tack targets from method#1, and yellow dots
from method #2 are clustered in the middle
layers within a single kernel per layer.

Passing different malicious information to the ac-
celerator will result in varying attack effects. The
previous adversarial weight attack methods primar-
ily aimed to flip the fewest bits to achieve either un-
targeted attacks (i.e., reducing model inference ac-
curacy) (Rakin et al., 2019) or targeted attacks (e.g.,
N to 1 attack, single sample attack) (Rakin et al.,
2021; Bai et al., 2023). However, these methods
typically explore all layers of the model, including
the first convolutional layer and the final classifica-
tion layer, which are often the most sensitive and at-
tract the attention of security engineers. As shown
by the red dots in Fig. 3, the identified bits are usu-
ally distributed irregularly across the layers, which
means that the HT would require significant hard-
ware resources to locate them. This contradicts the
design principle of HT, which should aim to use as
few hardware resources as possible. Additionally,
more malicious information would need to be em-
bedded in the software layer (exceeding 15 fields, as detailed in Section 4.3), increasing the risk of
detection by security engineers. Thus, we have outlined two challenges that need to be overcome
in this threat model: 1) Minimizing the number of target parameters and kernels across layers is
preferable. Fig. 3 shows two attacking methods as an example. In contrast to the attack method
indicated by red dots, the attack represented by yellow dots targets only one kernel in each of two
convolutional layers, attacking three parameters per kernel, which is highly desirable from a hard-
ware Trojan perspective. 2) Avoid attacking the model’s first layer and the final classification layer,
as attacks on these two layers can have a significant impact on the model and are therefore more
likely to be closely scrutinized by security engineers.

1The filter refers to the collection of kernels applied to a specific input feature map, while the kernel is a
small matrix (e.g., 3 × 3) used for convolution to extract features

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Pseudo-code of Cross-layer Sensitive Filter Exploration
Input: Model model, Layer layer, Test dataset xTest, Target Category targetCatego

1 , Exploration Algorithm ExpA
Output: Parameter positions and corresponding bit flip information

2 for f = 1...filterNum(layer) do
3 iSet← Randomly select a set of kernels from the filter f
4 for i = 1...iSet do
5 kSet← For each i, use K-SIM to select the corresponding kernel from the prior layers
6 // Use ExpA to attack kSet with Equation 1 as fitness function.
7 ctargetCatego

idx ← ExpA(model, kSet, xTest)

8 if ctargetCatego
idx > threshold then

9 pSet← Select the x most negative parameters per kernel (x set by the attacker)
10 // Re-explore pSet using Equation 2 as the fitness function to identify the minimum

number of bit flips.
11 bSet← PBPS(model, ExpA, pSet, xTest)
12 return bSet
13 end
14 end
15 end

3.4 CROSS-LAYER SENSITIVE FILTER EXPLORATION

The proposed C-SFE algorithm addresses the challenges outlined in Section 3.3. By focusing on
the intermediate convolutional layers and avoiding both the initial convolutional and FC layers, C-
SFE expands the decision boundary of a targeted category by flipping a few bits in one kernel per
layer, enabling an N-to-1 attack. C-SFE is structured into two phases: The first phase, kernel-level
exploration, primarily identifies sensitive kernel locations related to the specified category. The
second phase, bit-level exploration, focuses on determining how to achieve the desired attack effect
with the fewest bit flips, based on the selected kernels.

The core of kernel-level exploration is based on heuristic algorithms, such as genetic algorithms
(GA) and PSO. The following example uses GA, assuming N kernels of size k × k need to be
explored simultaneously, and the GA with a population size of PS generates PS individuals per
iteration, each comprising new N × k × k parameters. These parameters sequentially replace the
original values. After each replacement, inference is performed on all input images. The perturba-
tion of the model by the new parameters is defined as follows:

cidx =

I∑
i=1

(f(Xi, Ŵidx)− f(Xi,W)), where idx ∈ [0, PS-1] (1)

Where f describes the behavior of the model, and its output is a vector consisting of confidence
values for each category (i.e., the result after softmax). The Xi represents the input image, with a
total of I images. W represents the original parameters of the model, and Ŵidx represents the idx-
th individual in the population, differing from W in that N × k × k parameters have been replaced
with new values. cidx is a vector that stores the total confidence scores for each class, generated
by the model after performing inference on all inputs using the Ŵidx. In the selection process
of GA, individuals with high fitness are chosen and retained for the next generation. Assuming
the goal is for the new kernel to bias the model towards classifying the input into the category
targetCatego, the selection process will sort the values of the ctargetCatego

idx from highest to lowest,
and the corresponding Ŵ of the top-ranked items will be retained for the next generation. It is worth
noting that when N = 1, Equation 1 represents the exploration of a single kernel.

The kernels in the model define decision boundaries, with each contributing differently to each
category. If explore kernel#1 and kernel#2 increases confidence for a category, joint exploration
them will strongly bias the model towards that category. Otherwise, joint exploration will not
bias the model. Therefore, selecting N kernels at appropriate positions for joint exploration di-
rectly impacts the final attack effect. A naive method is to explore one kernel at a time, se-
quentially examining all kernels in the layer, and recording the category each kernel biases the
model towards. Finally, for the specified category, select N relevant kernels and conduct joint
exploration on them, ultimately causing the model to classify most inputs into that category.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Filters

Layer#(i-2)

Filters

Layer#(i-1)

Filters

Layer#(i)

Figure 4: Kernel Selection Inference Method

However, this method incurs high time complex-
ity, especially when cross-layer attacks are imple-
mented, as the time complexity scales with the num-
ber of layers involved. Given the necessity to con-
ceal HT insertion during DSEs, it is critical to mini-
mize the exploration time to avoid detection.

The proposed kernel-level exploration, combined
with the Kernel Selection Inference Method (K-
SIM), can directly infer the positions of relevant kernels in previous layers based on the kernel
position in the current layer, thus eliminating the overhead of repeated exploration across multiple
layers. The basic idea of K-SIM is to establish strong disturbance relationships within each layer,
where only one kernel needs to be selected in each layer. Let WkIdx,fIdx

l denote the kernel to be
explored, where W represents the model parameters, l is the layer number, and fIdx and kIdx de-
note the filter position in the layer and the kernel position within the filter, respectively. As shown in
Fig. 4, the green parts indicate the method of selecting kernels for each layer in a sequential network
structure (e.g., VGG). Suppose we need to explore W2,3

i , its corresponding input feature map is the
second channel of the output feature map from Layer#(i-1), and the second filter in Layer#(i-1) can
disturb this part. We can freely select kIdx, in this example, W2,2

i−1 is chosen. Using this kernel po-
sition, we can deduce in the same way that Wfree,2

i−2 should be selected for Layer#(i-2). The red parts
illustrates the selection of the kernel in Layer#(i-2) when the model has a residual structure. In this
scenario, to establish a direct perturbation relationship between Layer#(i-2) and Layer#i, the third
filter must be selected in Layer#(i-2). Consequently, the kernel index in Layer#(i-1) is no longer
freely selectable but must also be the third one.

Each kernel consists of multiple parameters (e.g., 9 in a 3 × 3 kernel). Not all parameters contribute
equally to the model’s bias towards a specified category, some are critical, while others have minimal
impact. After kernel-level exploration identifies relevant kernels, bit-level exploration targets the
critical parameters within them. We propose the Parameter Bit-Flip Priority Strategy (PBPS), which
prioritizes the x smallest values in the kernel, leaving the others unchanged, and then explores these
x values. If altering only these parameters can make ctargetCatego reach the predefined threshold,
then these parameters are the final targets for the attacker. For quantized models (e.g., int8), this
method incorporates the Hamming distance between the original and target values of the quantized
final targets as a penalty term into the fitness calculation of the GA, as shown in the following
equation:

fidx = ctargetCatego
idx − β ×HD(qNew, qOrg),where idx ∈ [0, PS-1] (2)

where HD represents the Hamming distance, qNew and qOrg represent the modified and original
quantized values, respectively, and β is the penalty coefficient. Algorithm 1 details the process of
C-SFE. Notably, the proposed C-SFE is one possible implementation that addresses the challenges
outlined in Section 3.3. Considering the importance of concealing exploration time in automated
accelerator generation, it is essential to develop more optimal algorithms.

4 EXPERIMENTAL RESULT

4.1 EXPERIMENTAL SETUP

The system follows Fig. 1, using the Rocket Core (Asanovic et al., 2016) as the controller and Gem-
mini 32 × 32 as the accelerator, with a hardware flow based on the vivado-risc-v project (Tarassov,
2024). We extended it to run at 90 MHz on the Xilinx U50 Alveo accelerator card. Linux runs on
the Rocket Core, with ONNX Runtime 1.18.0 Python wheel compiled, embedding RoCC commands
for Gemmini control. To validate the proposed attack, we use three model architectures: VGG-16
(Simonyan & Zisserman, 2014), ResNet-18 (He et al., 2016), and YOLOv8m-cls (Reis et al., 2023).
Pre-trained models from the PyTorch model zoo are used for VGG-16 and ResNet-18, while Ul-
tralytics’ YOLOv8m-cls is used for YOLOv8. The dataset corresponding to these three models is
ILSVRC 2012 (Deng et al., 2009). We randomly select 50 images from the validation set for C-SFE,
with the rest used for verifying the algorithm’s effectiveness. During actual execution, these models
are quantized to int8, consistent with the quantization method provided by Gemmini.

4.2 ATTACKS RESULT

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Attack Performance on Different Models

Model Total
Parameters

Target
Category

Attack layers Parameters
per Kernel

Perturbation
Rate (%)

Total flipped
bits

Top 1/5
Clean
(%)

Top 1/5
Malicious

(%)

Targeted
Classification

Rate (%)

VGG-16 138,365,992
n03884397

panpipe, pandean
pipe, syrinx

Conv layers 5 to 8 7/7/7/7 0.0000202 85 71.1/90.2 0.2/1.2 98.1

ResNet-18 11,689,512 n03530642
honeycomb

layer2:
(0): conv1
layer1:
(1): conv2, conv1

4/4/4 0.000102 32 69.2/87.6 0.1/1 99.2

YOLOv8m-cls 17,053,336 n03530642
honeycomb

model.4.m.3.cv1
model.4.m.2.cv2
model.4.m.2.cv1

3/3/3 0.0000527 24 75.3/92.7 0.21/1.4 97.3

Figure 5: Impact of attacked parameters on
’honeycomb’ classification rate and model
accuracy in ResNet-18.

The proposed attack method successfully targets any
intermediate layer. Table 1 2 shows examples for
VGG-16, ResNet-18, and YOLOv8m-cls. For VGG-
16, targeting panpipe and attacking the 5th to 8th
convolutional layers, C-SFE identifies one kernel
per layer, requiring attacks on seven parameters per
kernel (85 bit flips in total), reducing Top-1 accu-
racy from 71.1% to 0.2% with only 0.0000202%
parameter modification. Similarly, for ResNet-18
and YOLOv8m-cls, targeting honeycomb, attacking
three intermediate layers with 12 and 9 parameter
modifications drops the Top-1 accuracy to 0.1% and
0.21%, respectively.

Figure 6: The layout of the design, with the
HT hidden within the LoopConv module and
the Scratchpad Controller of the accelerator.

Notably, the attack’s effectiveness varies with the
number of parameters attacked. Fig. 5 shows the
minimum bit flips needed to achieve the highest clas-
sification rate for the honeycomb class in ResNet-18,
targeting the same kernel positions as detailed in Ta-
ble 1. Using the proposed C-SFE, it takes approx-
imately 8 minutes to locate the kernels associated
with this class. For instance, with 9 attacked param-
eters (3/3/3: one kernel per layer, three parameters
per kernel), 95.8% of images are classified as hon-
eycomb and the model’s Top-1 and Top-5 accuracies
drop to 0.21% and 1.5%, respectively, requiring 30
bit flips. For 8 parameters (3/3/2) and 7 parameters
(3/2/2), the classification rate differs by 24.1%. At-
tacking 6 parameters (3/2/1) results in a 42.4% de-
crease in the classification rate compared to 7 param-
eters. Thus, attacking 7 parameters is the threshold
for this model concerning this class. From the per-
spective of a single layer, the attack is concentrated
on one kernel. For example, in YOLOv8m-cls, when
the tile-based computation block containing the tar-
get kernel is about to start computing, the malicious information embedded in the control instructions
only needs two fields for kernel’s position and three fields for bit-flip mask information.

Fig. 6 shows the hardware design layout: green sections represent peripherals (e.g., Ethernet con-
troller, memory controller, UART), the yellow section is the single-core Rocket controller, and the
gray-white section is the Gemmini-based accelerator. The HT is shown in red, divided into two parts:
one in the convolution control unit to receive malicious information, and the other in the scratchpad
control unit to attack parameter values at the right time, as illustrated in Fig. 2b. Table 2 shows the
changes in hardware resources between the clean design without HT and the malicious design with

2More examples at https://github.com/AnonymousCode-HT/C-SFE.git

8

https://github.com/AnonymousCode-HT/C-SFE.git
Anonymous

Anonymous

Anonymous

Anonymous



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

HT in the first four columns, where LUT usage increased by 0.34%, while other resources showed
minimal changes.

Table 2: Resource Utilization Comparison
Between Clean and Malicious Designs

Clean design Malicious design

Strategy: Default Strategy: Default Strategy: Area Opt

without HT with HT var. with HT var.

LUT 332503 333642 0.34% 319544 -3.90%
LUTRAM 30616 30598 -0.06% 30598 -0.06%
FF 314185 314227 0.01% 314226 0.01%
BRAM 452.5 452.5 0.00% 452.5 0.00%

Notably, during the synthesis process, different op-
timization strategies can be chosen. The last two
columns of the Table 2 show that when the opti-
mization strategy for the malicious design is area-
focused, it uses fewer resources than the clean de-
sign. Since synthesis strategies are typically trans-
parent to users, this aspect could potentially be ex-
ploited by attackers to make the HT more stealthy.
Appendix A.2 presents the resource consumption of
HT under different optimization modes.

4.3 IN COMPARISON WITH RELATED WORK

Figure 7: Comparison of target parameters
identified by T-BFA and C-SFE on ResNet-
18 for the 904th category of ILSVRC 2012.
Both methods target the middle three convo-
lutional layers (x-axis), with kernel positions
on the y-axis, where different sizes represent
the number of bits attacked in each kernel.

The usage of hardware resources for the HT depends
not only on the number of bits flipped but also on the
number of kernels and parameters targeted. Unlike
previous bit-level adversarial weight attacks (Rakin
et al., 2019; 2021; Bai et al., 2023), the proposed
C-SFE focuses on flipping bits within a single ker-
nel per layer, minimizing the required hardware re-
sources. As an example, Fig. 7 shows the attack
results of C-SFE and T-BFA (Rakin et al., 2021) on
the 904th category of ILSVRC 2012 using ResNet-
18. In this case, we restricted the layers explored
by T-BFA to match those of C-SFE. Both methods
successfully identified parameters that caused more
than 98% of input images to be classified into this
category, but T-BFA required attacking 11 kernels
with uneven distribution, while C-SFE targeted only
three kernels, one per layer. To transmit this infor-
mation to the accelerator, T-BFA requires 23 fields
for layer1.1.conv1 (L1.1 C1 in Fig. 7), while
C-SFE only needs 6 fields (detailed in Appendix
A.3). As mentioned in Section 3.3, the fields used
to transmit malicious information are valuable. For
example, in Gemmini, if more than 15 fields are re-
quired, additional instructions must be sent to the ac-
celerator, which could disrupt instruction timing and
increase the risk of detection.

5 CONCLUSION

In this paper, we present a novel threat model for AI accelerator design paradigms, revealing po-
tential security vulnerabilities. Specifically, we maliciously leverage the exploration unit to locate
sensitive model parameters, embed hardware Trojans through the code generation module, and trig-
ger them using malicious information hidden in communication instructions. We also highlight the
challenges of implementing this threat model, as previous attack algorithms are not well-suited for
it. To address these challenges, we propose a tailored attack algorithm, C-SFE. The effectiveness
of the proposed threat model is validated on the Gemmini accelerator generation platform, and the
attack performance was tested on three different models: VGG-16, ResNet-18, and YOLOv8m-cls.
For each model, 4 kernels in VGG-16, 3 kernels in ResNet-18, and YOLOv8m-cls were attacked,
with corresponding total parameter modifications of 28, 12, and 9, respectively. This resulted in
over 98%, 99%, and 97% of the inputs being classified into the attacker’s specified category for each
model.

9

Anonymous

Anonymous

Anonymous

Anonymous



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew,
Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt, John
Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić. Chipyard: Inte-
grated design, simulation, and implementation framework for custom socs. IEEE Micro, 40(4):
10–21, 2020. ISSN 1937-4143. doi: 10.1109/MM.2020.2996616.

Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christopher
Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al. The rocket chip gen-
erator. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 4:
6–2, 2016.

Jiawang Bai, Baoyuan Wu, Zhifeng Li, and Shu-Tao Xia. Versatile weight attack via flipping limited
bits. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Hubert Baniecki and Przemyslaw Biecek. Adversarial attacks and defenses in explainable artificial
intelligence: A survey. Information Fusion, pp. 102303, 2024.

Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Hanrui Wang, Ligeng Zhu, and Song Han.
Enable deep learning on mobile devices: Methods, systems, and applications. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 27(3):1–50, 2022.

Rajat Subhra Chakraborty, Francis Wolff, Somnath Paul, Christos Papachristou, and Swarup Bhu-
nia. Mero: A statistical approach for hardware trojan detection. In International Workshop on
Cryptographic Hardware and Embedded Systems, pp. 396–410. Springer, 2009.

Shixin Chen, Su Zheng, Chen Bai, Wenqian Zhao, Shuo Yin, Yang Bai, and Bei Yu. Soc-tuner: An
importance-guided exploration framework for dnn-targeting soc design. In 2024 29th Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 207–212. IEEE, 2024.

Joana C Costa, Tiago Roxo, Hugo Proença, and Pedro RM Inácio. How deep learning sees the
world: A survey on adversarial attacks & defenses. IEEE Access, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating nvidia deep learning accelerator
(nvdla) with risc-v soc on firesim. In 2019 2nd Workshop on Energy Efficient Machine Learning
and Cognitive Computing for Embedded Applications (EMC2), pp. 21–25. IEEE, 2019.

Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry Zhao,
Daniel Grubb, Harrison Liew, Howard Mao, et al. Gemmini: Enabling systematic deep-learning
architecture evaluation via full-stack integration. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), pp. 769–774. IEEE, 2021.

Abraham Gonzalez and Charles Hong. A chipyard comparison of nvdla and gemmini. Berkeley,
CA, USA, Tech. Rep. EE, pp. 290–2, 2020.

Yanan Guo, Liang Liu, Yueqiang Cheng, Youtao Zhang, and Jun Yang. Modelshield: A generic
and portable framework extension for defending bit-flip based adversarial weight attacks. In 2021
IEEE 39th International Conference on Computer Design (ICCD), pp. 559–562. IEEE, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, and Deliang Fan. Defending and
harnessing the bit-flip based adversarial weight attack. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 14095–14103, 2020.

Wei Hu, Baolei Mao, Jason Oberg, and Ryan Kastner. Detecting hardware trojans with gate-level
information-flow tracking. Computer, 49(8):44–52, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors. ACM SIGARCH Computer Architecture News, 42(3):361–372,
2014.

Christian Krieg, Clifford Wolf, and Axel Jantsch. Malicious lut: A stealthy fpga trojan injected and
triggered by the design flow. In 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–8. IEEE, 2016.

Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti. Radar: Run-time
adversarial weight attack detection and accuracy recovery. In 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 790–795. IEEE, 2021.

Qi Liu, Wujie Wen, and Yanzhi Wang. Concurrent weight encoding-based detection for bit-flip
attack on neural network accelerators. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2020, 2020a.

Wenye Liu, Chip-Hong Chang, Fan Zhang, and Xiaoxuan Lou. Imperceptible misclassification at-
tack on deep learning accelerator by glitch injection. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pp. 1–6. IEEE, 2020b.

Microsoft. Onnx runtime version 1.18.0, 2024. URL https://onnxruntime.ai/. Accessed
on September 10, 2024.

Rijoy Mukherjee and Rajat Subhra Chakraborty. Novel hardware trojan attack on activation param-
eters of fpga-based dnn accelerators. IEEE Embedded Systems Letters, 14(3):131–134, 2022.

Yusuke Nozaki, Shu Takemoto, Yoshiya Ikezaki, and Masaya Yoshikawa. Lut oriented hardware tro-
jan for fpga based ai module. In 2020 6th International Conference on Applied System Innovation
(ICASI), pp. 46–49. IEEE, 2020.

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack: Crushing neural network with
progressive bit search. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1211–1220, 2019.

Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and Deliang Fan. T-bfa:
Targeted bit-flip adversarial weight attack. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(11):7928–7939, 2021.

Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad Daoudi. Real-time flying object detection
with yolov8. arXiv preprint arXiv:2305.09972, 2023.

Sayandeep Saha, Rajat Subhra Chakraborty, Srinivasa Shashank Nuthakki, Anshul, and Debdeep
Mukhopadhyay. Improved test pattern generation for hardware trojan detection using genetic
algorithm and boolean satisfiability. In Cryptographic Hardware and Embedded Systems–CHES
2015: 17th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings
17, pp. 577–596. Springer, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

E. Tarassov. Vivado-risc-v, 2024. URL https://github.com/eugene-tarassov/
vivado-risc-v. Accessed on September 10, 2024.

Trust-Hub. Trust-hub, 2024. URL https://www.trust-hub.org. Accessed on November
28, 2024.

Xilinx. Vitis ai - xilinx, 2024. URL https://www.xilinx.com/products/
design-tools/vitis/vitis-ai.html. Accessed on September 10, 2024.

Mingfu Xue, Chongyan Gu, Weiqiang Liu, Shichao Yu, and Máire O’Neill. Ten years of hardware
trojans: a survey from the attacker’s perspective. IET Computers & Digital Techniques, 14(6):
231–246, 2020.

11

https://onnxruntime.ai/
https://github.com/eugene-tarassov/vivado-risc-v
https://github.com/eugene-tarassov/vivado-risc-v
https://www.trust-hub.org
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shih-Yuan Yu, Rozhin Yasaei, Qingrong Zhou, Tommy Nguyen, and Mohammad Abdullah
Al Faruque. Hw2vec: A graph learning tool for automating hardware security. In 2021 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pp. 13–23. IEEE,
2021.

Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming
Chen. Dnnbuilder: An automated tool for building high-performance dnn hardware accelerators
for fpgas. In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 1–8. IEEE, 2018.

Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen Cheng, Yuhong Li, Kyle Rupnow,
Jinjun Xiong, Thomas Huang, Honghui Shi, et al. Skynet: a hardware-efficient method for object
detection and tracking on embedded systems. Proceedings of Machine Learning and Systems, 2:
216–229, 2020.

Gaofeng Zhou, Jianyang Zhou, and Haijun Lin. Research on nvidia deep learning accelerator.
In 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification
(ASID), pp. 192–195. IEEE, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SIMPLIFIED ATTACK PROCESS

Figure 8: Simplified attack process

In the literature, numerous potential AI threats have been identified at various stages from data
preparation and training to inference and deployment. These threats can deceive models, alter trained
models, tamper with inference results, or extract sensitive details. Our work specifically targets the
AI hardware generation phase, focusing on identifying potential threats within an automated AI
accelerator generation platform by inserting HTs into the generated AI accelerators. The simplified
attack process of our unique method is illustrated in Figure 8.

A.2 HT SOURCE COMPARE

Table 3: Resource Utilization Comparison Between Clean and Malicious Designs

Clean design Malicious design
Default Area Opt Performance Opt Default Area Opt Performance Opt

without HT without HT without HT with HT var. with HT var. With HT var.
LUT 332,503 318,295 332,364 333,642 0.34% 319,544 0.39% 333,582 0.37%

LUTRAM 30,616 30,616 30,616 30,598 -0.06% 30,598 -0.06% 30,598 -0.06%
FF 314,185 314,185 314,178 314,227 0.01% 314,226 0.01% 314,258 0.03%

BRAM 452.5 452.5 452.5 452.4 0.00% 452.5 0.00% 452.5 0.00%

Table 3 compares the differences in resource consumption between clean designs and malicious
designs under Default mode, Area Optimization mode, and Performance mode. The Variation rep-
resents the rate of change in resource usage between clean and malicious designs within the same
mode.

13

Anonymous



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 ATTACK METHOD COMPARISON

Table 4: Attack Method Comparison

N-to-1
Attack

Top-1
Accuracy ≤0.1%

Bits
Flipped

Num.
Parameters

Num.
Kernels

Num.
Fields

HT Compatible
(<15 Fields)

Random Attack No Yes 356,877 100,000 33,664 18,936 No
T-BFA Yes Yes 21 21 11 23 No

C-SFE (Proposed) Yes Yes 28 12 3 6 Yes

Table 4 compares the performance of three attack methods: Random Attack, T-BFA, and C-SFE on
the ResNet-18 model pretrained from the PyTorch model zoo. The dataset used was ILSVRC 2012.
For Random Attack, we focused on the number of parameters that need to be modified to reduce the
model’s Top-1 accuracy to 0.1%. For T-BFA and C-SFE, corresponding to Fig. 7 (i.e., the parameter
modifications cause over 98% of input images to be classified into the 904th category of ILSVRC
2012).

We employ a mainstream accelerator based on the systolic array architecture, in which the accelera-
tor processes only one layer of the model at a time. Consequently, the resource consumption of HT
and whether the ISA can accommodate malicious information depend solely on the layer with the
highest number of attack parameters. For T-BFA, as illustrated in Fig. 7, we observe that attention
should be focused on L1.1 C1 (a total of 9 attack parameters, distributed across 7 different kernels).
In contrast, for C-SFE, since the attack parameters are uniformly distributed, there is no need to
concentrate on a specific layer.

In Section 3.3, we indicate that attackers can leverage up to 15 fields during the instruction trans-
mission process in Gemmini to insert attack information, including the positions and values of each
parameter to be attacked. The calculation formula for fields is:

Num. Fields = max
l

(2× Num. Kernelsl + Num. Parametersl) (3)

where l represents the attacked layer. Num. Kernelsl and Num. Parametersl represent the number
of kernels and parameters attacked in the l-th layer, respectively (their sum corresponds to the Num.
Kernels and Num. Parameters in Table 4). Each kernel is multiplied by 2 because it needs to pass the
filter position to which the kernel belongs and its offset within that filter to the accelerator. Therefore,
for the parameters identified by T-BFA in Fig. 7, the number of fields required for L1.1 C1 is
7 ∗ 2 + 9 = 23, whereas for C-SFE, the number of fields required is 1 ∗ 2 + 4 = 6. Therefore, since
the parameters explored by T-BFA are unevenly distributed across layers and scattered within each
layer, it cannot be considered an HT-friendly attack algorithm.

Table 5: Effectiveness of Defense Methods Against the Proposed Threat Model

Defense Method Detection Capability
Model-based methods (He et al., 2020) ✗
Machine learning-based RTL detection (Yu et al., 2021) ✗
Hash or checksum computation (Li et al., 2021; Liu et al., 2020a; Guo et al., 2021) ✗
Test vectors (Chakraborty et al., 2009; Saha et al., 2015) ✗
Information-Flow Tracking (Hu et al., 2016) ✗

A.4 DISCUSSION

We utilized the five commonly used defense methods introduced in Table 5 to evaluate the stealth-
iness of the proposed threat model. The results demonstrated that none of them could effectively
defend against the proposed threat model.

1) Model-based methods enhance resistance to attacks by adjusting and optimizing the model it-
self. In our experiments, we retrained the model for 40 epochs using Weight Clustering (He et al.,
2020) and then re-applied the proposed attack process. Experimental results show that achieving the
same attack effectiveness on the retrained model requires targeting just one additional parameter per

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

layer. Therefore, while this approach slightly mitigates the attack’s impact, it remains insufficient to
effectively defend against the proposed threat model.

2) Machine learning-based detection of RTL is limited to a finite dataset. Taking the Trust-Hub
dataset (Trust-Hub, 2024) as an example, HW2VEC (Yu et al., 2021) convert benchmarks into the
form of Data-Flow Graph (DFG) or Abstract Syntax Tree (AST) representation, and then use Graph
Convolutional Networks (GCN) to train data. The training dataset includes the PIC16F84 micro-
processor and RS232 serial port. As proof, We input the malicious RTL code as test data into the
model, the results show that the model cannot detect the maliciousness of the code.

3) Hash or checksum computation (Li et al., 2021), (Liu et al., 2020a), (Guo et al., 2021), which
utilize hash or checksum values of off-chip memory (e.g., DRAM), have been proven effective in de-
tecting attacks like BFA and T-BFA. These attacks specifically aim to alter bits in off-chip memory,
therefore the use of hash functions makes it a reliable method for detecting DRAM-based attacks.
However, the proposed HT resides within the accelerator’s logic unit and targets only parameters
stored in the on-chip memory, leaving those in off-chip memory unaffected. It is also worth noting
that, the insert position of hardware Trojans is much more flexible making it challenging to deter-
mine the optimal location for inserting the hash computation unit. Consequently, the proposed threat
model can evade detection by such verification methods.

4) Test vectors (Chakraborty et al., 2009), (Saha et al., 2015) are effective in detecting HTs lo-
cated near the output. For example, in encryption chips, HTs are often deployed along key-related
paths and positioned near the output. However, the proposed Payload design executes the attack by
modifying internal model parameters without directly impacting the output. This greatly reduces
the detection success rate of these methods, potentially rendering them incapable of identifying the
attack.

5) Information-Flow Tracking (Hu et al., 2016) monitors the flow of data within a system to identify
and prevent unauthorized data transmission. However, for CNNs, it is challenging to determine
which parameters need to be tracked. Additionally, using this technique to track an excessive number
of parameters can exponentially increase the hardware complexity of the accelerator. Therefore, it
is more suitable for scenarios involving the protection of a single parameter, such as encryption keys
in cryptographic chips.

15


	Introduction
	Preliminaries
	Attack Framework
	Threat Model
	Attack Procedure
	Attack Example: The Gemmini Case
	Cross-layer Sensitive Filter Exploration

	Experimental Result
	Experimental Setup
	Attacks Result
	In Comparison with Related Work

	Conclusion
	Appendix
	Simplified Attack Process
	HT Source Compare
	Attack Method Comparison
	Discussion


