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ABSTRACT

With rapid urbanization, predicting urban microclimates has become critical, as it
affects building energy demand and public health risks. However, existing gen-
erative and homogeneous graph approaches fall short in capturing physical con-
sistency, spatial dependencies, and temporal variability. To address this, we in-
troduce UrbanGraph, a framework founded on a novel structure-based inductive
bias. Unlike implicit graph learning, UrbanGraph transforms physical first princi-
ples into a dynamic causal topology, explicitly encoding time-varying causalities
(e.g., shading and convection) directly into the graph structure to ensure physical
consistency and data efficiency. Results show that UrbanGraph achieves state-of-
the-art performance across all baselines. Specifically, the use of explicit causal
pruning significantly reduces the model’s floating-point operations (FLOPs) by
73.8% and increases training speed by 21% compared to implicit graphs. Our
contribution includes the first high-resolution benchmark for spatio-temporal mi-
croclimate modeling, and a generalizable explicit topological encoding paradigm
applicable to urban spatio-temporal dynamics governed by known physical equa-
tions.

1 INTRODUCTION

Urban microclimate prediction is crucial for urban sustainability and public health (Grant et al.,
2025; He et al., 2024). This task represents a broad class of spatio-temporal urban physical field
prediction problems, such as urban wind field simulation and pollutant dispersion forecasting. The
core challenge of these problems is that the physical state at any point in urban space is determined
by the collective interactions among numerous and diverse urban entities (e.g., buildings, vegeta-
tion) through time-varying physical processes such as radiation and convection (Coutts et al., 2013;
de Abreu-Harbich et al., 2015; Irmak et al., 2017; Abd Elraouf et al., 2022). While high-fidelity
physics-based numerical simulations, such as Computational Fluid Dynamics (CFD), are the stan-
dard approach for solving such problems, their immense computational overhead makes them in-
feasible for large-scale, time-series prediction tasks. Therefore, exploring computationally efficient
data-driven methods to strike a balance between prediction accuracy and efficiency has become an
essential research direction.

Although data-driven methods are promising, they still face challenges in accurately modeling the
underlying physical processes. While urban data is spatially discretized, physical interactions are
often non-local (e.g., shadows skipping intermediate spaces) and anisotropic (e.g., directional wind
flow). Grid-based models (CNNs) struggle to capture these long-range, irregular dependencies with-
out excessive depth.(Carter et al., 2016; Kemppinen et al., 2024). Graph Neural Networks (GNNs)
offer a more natural framework for modeling the spatial dependencies among urban entities. How-
ever, existing GNN-based approaches often lack physical consistency. They typically employ a
uniform message-passing mechanism that cannot distinguish between different physical processes,
such as vegetation evapotranspiration and building shading (Zhao et al., 2021). Furthermore, these
methods struggle to model temporal variability. They mostly rely on a fixed graph structure, which
is incapable of representing how physical processes evolve in real-time in response to changing en-
vironmental conditions. Consequently, there is a pressing need in the field for a unified framework
capable of explicitly modeling multiple physical processes and their temporal evolution.

∗Corresponding author. † Equal contribution.
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Figure 1: Overview of the UrbanGraph framework. (a) Spatio-Temporal Pipeline: The model trans-
forms rasterized urban features and dynamic weather conditions into high-resolution microclimate
heatmaps via GNN learning. (b) Physics-Informed Topology Construction: Physical laws (e.g.,
shading, diffusion) serve as hard structural constraints to dynamically prune non-causal edges from
the candidate set, constructing a sparse and physically consistent graph topology.

Addressing this gap necessitates a fundamental shift in how we model urban dynamics. The core
challenge lies in designing a structure-based inductive bias capable of encoding multiple, inde-
pendent, and time-varying physical processes. (i) Standard graph topologies struggle to abstract
continuous physical fields (e.g., radiative transfer and fluid dynamics) into a discrete representa-
tion without losing critical causal information. (ii) Furthermore, processing such complex graph
sequences requires a neural architecture that can disentangle the diverse physical interactions. The
model must not only handle the dual dynamics of both node features and graph topology but also
differentiate between distinct physical operators (e.g., shading vs. convection), striking a balance
between physical interpretability and computational efficiency(Heo et al.).

To address these challenges, we propose UrbanGraph (see Figure 1), a framework founded on a
novel structure-based inductive bias for spatio-temporal modeling. Unlike standard approaches that
rely on implicit latent graph learning, UrbanGraph transforms physical first principles into a dy-
namic causal topology. By explicitly encoding time-varying causalities—such as solar shading and
anisotropic wind convection—directly into the graph structure, we impose a hard structural con-
straint that forces the model’s receptive field to align with the actual physical domain of influence.
This explicit causal encoding effectively reduces the hypothesis space, preventing the model from
learning spurious correlations from noise. Subsequently, we design a spatio-temporal graph network
where the heterogeneous message-passing mechanism functions as a physical operator approxima-
tor, assigning dedicated learnable parameters to disentangle distinct physical processes(Schlichtkrull
et al., 2017).

To summarize, we make the following contributions:

• We propose a structure-based inductive bias via dynamic topological reconfiguration. By
explicitly encoding time-varying physical processes into the topology of a dynamic het-
erogeneous graph, this method offers a novel pathway for injecting time-evolving causal
knowledge into graph learning as a hard constraint.

• We develop a dynamic heterogeneous graph neural network architecture that efficiently
learns from complex graph sequences. Through a specialized heterogeneous message-
passing mechanism, the model achieves physical operator decoupling, allowing for precise
modeling of distinct environmental interactions.Comprehensive experiments demonstrate
that the architecture achieves state-of-the-art performance in both prediction accuracy and
computational efficiency. Compared to four categories of baselines, it improves accuracy
by up to 10.8% (in R²) and efficiency by 17.0% (in FLOPs).

• We provide a new, well-validated perspective for modeling urban systems. Results quanti-
tatively demonstrate that the heterogeneous and dynamic mechanisms are key to the perfor-
mance improvement, contributing gains of 3.5% and 7.1%, respectively. Furthermore, the
architecture’s results on multiple target variables show strong generalization capabilities.
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2 RELATED WORK

Classical Microclimate Prediction Methods. Classical methods for urban microclimate prediction
can be broadly categorized into two types. The first consists of physics-based simulation models,
such as CFD and ENVI-met (Toparlar et al., 2017; Tsoka et al., 2018; Liu et al., 2021; Barros
Moreira de Carvalho & Bueno da Silva, 2024). These methods offer high physical fidelity but
suffer from immense computational overhead, making them impractical for large-scale, long-term
time-series prediction tasks. The second category comprises data-driven approaches, including tra-
ditional machine learning (Arulmozhi et al., 2021; Alaoui et al., 2023) and grid-based deep learning
models like CNNs (Kumar et al., 2021; Kastner & Dogan, 2023; Fujiwara et al., 2024). While these
methods are computationally efficient, the former struggle to capture complex spatial dependencies,
and the latter are constrained by the Euclidean data assumption, making them unable to process the
inherently non-structural geometry of urban environments.While generic GNNs (Kipf & Welling,
2016; Xu et al., 2019; Zhou et al., 2020) offer a framework for spatial dependencies, they lack the
inductive bias to abstract continuous fields. UrbanGraph addresses this by explicitly bridging the
gap between continuous field dynamics and discrete graph topology.

Physics-Informed Methods. The physics-informed approach incorporates fundamental knowledge
into the learning process (Karniadakis et al., 2021). This integration is achieved primarily through
three bias types. The learning bias uses soft constraints (e.g., PDE residuals in the loss function) but
incurs significant training overhead (Shao et al., 2023; Taghizadeh et al., 2025). The observational
bias leverages physics to modify input features (e.g., by extracting high-level physical indicators)
(Pan et al., 2025). A third type is the inductive bias, which imposes hard constraints via network
modules or graph structures to simulate physical processes (Xue; Qu et al., 2023; Gao et al., 2024).
However, this traditional hard-constraint approach often sacrifices model flexibility. UrbanGraph
addresses this challenge by adopting a novel, efficient form of the inductive bias. By imposing
physics as a dynamic structural constraint via graph topology, UrbanGraph ensures consistency
and interpretability without sacrificing necessary flexibility or incurring the PDE solver overhead
associated with the learning bias.

Heterogeneous Graph Methods. In the context of urban physical field prediction, Graph Neu-
ral Networks typically simplify the complex urban system into a homogeneous graph (Yu et al.,
2024; Zheng & Lu, 2024). However, this simplification limits the model’s fidelity and interpretabil-
ity. Heterogeneous graphs, which consist of multiple types of nodes and edges, can represent the
rich semantic relationships in complex systems (Schlichtkrull et al., 2017; Zhang et al., 2019; Zhao
et al., 2021). By designing type-aware message-passing mechanisms, Heterogeneous Graph Neu-
ral Networks (HGNNs) have achieved success in various tasks, such as quantifying road network
homogeneity (Xue et al., 2022), perceiving urban spatial heterogeneity (Xiao et al., 2023), learn-
ing urban region representations (Kim & Yoon, 2025), predicting the interactive behaviors of traffic
participants (Li et al., 2021), and uncovering the dynamics of building carbon emissions (Yap et al.,
2025). We bridge this gap by leveraging heterogeneity for physical operator decoupling, assigning
distinct learnable operators to fundamentally different environmental interactions.

Dynamic Graph Methods. In applications for urban physical field prediction, Graph Neural Net-
works often rely on a static graph topology to represent the spatial relationships between entities
(Mandal & Thakur, 2023; Shao et al., 2024; Xu et al., 2024). However, this assumption conflicts
with physical reality, as the scope and intensity of physical processes (e.g., building shading) are
determined in real-time by external environmental factors (e.g., solar position). Dynamic Graph
Neural Networks (DGNNs) provide a more realistic framework for this problem (Skarding et al.,
2020; Zheng et al., 2024). DGNNs have become a mainstream and effective approach for handling
other urban tasks with time-varying interactions, particularly in traffic forecasting, demonstrating
their potential in the field of urban computing (Zhao et al., 2020; Xie et al., 2020; Bui et al., 2022).
In these mainstream applications, the evolution of the graph is typically treated as a data-driven,
observational phenomenon (Li et al., 2019b; Jin et al., 2020). In physical field prediction tasks,
however, the graph topology (e.g., shading relationships) is explicitly reconfigured at each timestep
by exogenous physical first principles. Consequently, we propose a First-Principle-Driven approach
that utilizes dynamic topological reconfiguration as a causal pruning mechanism to explicitly model
time-varying interactions.
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3 PRELIMINARY

Target Variables. The Universal Thermal Climate Index (UTCI) (Jendritzky et al., 2012) and the
Physiological Equivalent Temperature (PET) (Matzarakis et al., 1999) represent the isothermal air
temperature that would elicit the same physiological stress response. Air Temperature (AT) is the
most direct measure of atmospheric heat. Mean Radiant Temperature (MRT) quantifies the radiative
heat exchange between the human body and its surrounding surfaces, such as sunlit pavements or
shaded building facades. Wind Speed (WS) primarily affects convective heat loss and the efficiency
of evaporative cooling from the skin surface. Relative Humidity (RH) determines the efficiency of
the body’s primary cooling mechanism: sweat evaporation.

ENVI-met model. The data in this paper were generated using the ENVI-met model. ENVI-
met is a high-resolution, three-dimensional, non-hydrostatic numerical model widely recognized for
simulating surface-plant-air interactions within complex urban structures. The model captures the
feedback mechanisms among different urban elements by coupling an atmospheric model with de-
tailed soil and vegetation models. This enables it to accurately simulate how solid boundaries (’hard’
boundaries), such as building walls, and porous obstructions (’soft’ boundaries), such as vegetation
canopies, alter local airflow, temperature, and humidity. The fundamental equations governing these
processes are detailed in Appendix A.

Problem Formulation. We model the urban environment by discretizing Geographic Information
System (GIS) data into grid cells, where each cell is treated as a node v ∈ V. The state of the
environment is represented by a sequence of dynamic heterogeneous graphs {Gt}, where the graph
at timestep t is defined as Gt = (V, Et,R). Here, V is the static set of nodes, R is the static set of
relation types (e.g., ’covered by shadow from cell’), and Et is the set of edges that varies with time.
The static node feature matrix X ∈ R|V|×8 explicitly encodes pixel-wise GIS properties: Building
Height, Tree Height and Land Cover Type. Additionally, ut represents the dynamic global context,
comprising meteorological forcing data: Solar Radiation, Solar Position, Ambient Temperature,
Humidity, Wind Speed, and Wind Direction.

For any one of the six target variables, denoted by k, given a sequence of historical graph ob-
servations of length Thist, {Gt}t0t=t0−Thist+1, and the corresponding sequence of context vectors
{ut}t0t=t0−Thist+1, the model aims to learn a specialized mapping function F (k)(·) to predict the
values of this specific variable for the next Tpred timesteps:{

ŷ
(k)
t0+1, . . . , ŷ

(k)
t0+Tpred

}
= F (k)

(
{Gt}t0t=t0−Thist+1 , {ut}t0t=t0−Thist+1 , X

)
(1)

where ŷ
(k)
τ ∈ R|V| is the predicted vector for the target variable k at a future timestep τ .

Relational graph convolutional networks. RGCNs are an extension of GCNs, initially developed
for tasks such as link prediction and entity classification. They are specifically designed to handle
multi-relational graph data. The core idea is to learn distinct feature transformations for different
types of relationships between nodes. The forward-pass update of a single RGCN layer is defined
as:

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 (2)

where h(l)
i ∈ Rd(l)

is the hidden state of node vi in the l-th layer, and d(l) is the dimensionality of the
representation at this layer. Nr

i denotes the set of neighbors of node vi under relation r ∈ R. W (l)
r

is a learnable, relation-specific weight matrix that allows the model to distinguish between different
types of relations, and W

(l)
0 is the weight matrix for the self-connection. σ represents an element-

wise activation function (e.g., PReLU), and ci,r is a problem-specific normalization constant that
can either be learned or preset (e.g., ci,r = Nr

i ).

4 METHOD

Our proposed UrbanGraph framework consists of two core components: a physics-informed graph
representation and a spatio-temporal dynamic relational graph network. To rigorously evaluate the
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effectiveness of our approach, we first generated a large-scale spatio-temporal dataset through high-
fidelity physical simulations, the detailed generation process and parameter configurations of which
are described in Appendix B.1. Second, to address the challenge that urban systems exhibit high
heterogeneity in both spatial and temporal dimensions, we detail our physics-informed graph repre-
sentation in Section 4.1, which is designed to efficiently capture the underlying physical interactions
among different urban elements. Finally, in Section 4.2, we introduce the UrbanGraph architecture,
which explicitly leverages the time-varying relationships between urban elements to perform node
prediction tasks.

Figure 2: An illustrative overview of the five edge types used in our graph representation. Dynamic
edges are derived from physical processes like shadowing and wind, while static edges are based on
spatial proximity, feature similarity, and object integrity.

4.1 PHYSICS-INFORMED GRAPH REPRESENTATION

For the graph at any given timestep t, Gt = (V, Et,R), its edge set Et is reconstructed based on
the environmental conditions of the current hour. This process is designed to explicitly capture the
physical mechanisms that govern the spatial distribution of microclimate factors. The edge set Et
encodes five distinct types of relationships, which are categorized into two main classes: static and
dynamic. Figure 2 provides a visual illustration of the construction mechanisms for these five edge
types.

Physics-Informed Dynamic Edges. To explicitly model time-varying physical processes, we intro-
duce three types of dynamic edges whose connections are updated hourly:

SHADING. This edge type encodes directional radiative obstruction. By establishing links based
on geometric line-of-sight, we strictly enforce the dependency of the shadowed region on the occlud-
ing object. A directed edge of type ’shadow’ is established from a shading object node vi (building
or tree) with height hobj to a ground node vj if their Euclidean distance d(vi, vj) is less than or equal
to the shadow length Lshadow,t, and the angular deviation falls within a predefined shadow angle
width ∆φshadow. The shadow properties are calculated as follows:

Lshadow,t = hobj/ tan(θelev,t) (3)

φshadow,t = (φazimuth,t + 180◦)mod360◦ (4)

where θelev,t is the solar elevation angle at timestep t, φazimuth,t is the solar azimuth angle, and
φshadow,t is the principal direction of the shadow projection.

VEGETATION EVAPOTRANSPIRATION. This edge type models localized bio-physical interac-
tions, serving as a solar-dependent spatial filter. Specifically, a directed edge is established from
a tree node vi to any other node vj if their Euclidean distance d(vi, vj) does not exceed a dynamic
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radius of influence, Ractivity,t. This radius is calculated based on the global horizontal radiation
It(Wh/m2) for the current hour, where Rbase is a presettable base radius:

Ractivity,t = Rbase · clip(It/1000, 0.5, 1.2) (5)

CONVECTIVE DIFFUSION. To encode fluid dynamic anisotropy, this edge redefines topologi-
cal proximity using a wind-modulated ’effective distance’ metric (Eq. 7), approximating the ad-
vection process on a discrete graph. The condition for creating this edge is that their ’effective
distance’deff (vi, vj), must be less than or equal to a base local radius, Rlocal. This effective dis-
tance is adjusted by a modulation factor, αwind,t, which accounts for the wind speed vwind,t and
wind direction alignment ∆θwind:

αwind,t = 1.0 + λwind · cos(∆θwind) · (vwind,t/vmax) (6)

deff (vi, vj) = d(vi, vj)/αwind,t ≤ Rlocal (7)

where λwind is the wind effect intensity coefficient, determining the extent to which wind speed
and direction stretch or compress the ’effective connection distance’.vmax represents the maximum
wind speed observed in the study scenario, ensuring the numerical stability of the model. These
threshold parameters serve as preset physical upper bounds derived from established urban physics
literature, ensuring the graph topology remains within a valid physical domain while allowing the
network to learn specific interaction strengths. Detailed parameter configurations for constructing
all edge types are provided in Appendix C.

Static Semantic Topology. To complement the dynamic physical edges and provide structural
redundancy against heuristic imperfections, we introduce two static edge types that capture non-
local dependencies and local continuity:

SEMANTIC SIMILARITY EDGES. To capture non-local functional interactions, we construct di-
rected edges from each node to its k nearest neighbors in the normalized static feature space. This
mechanism allows the GNN to aggregate information from spatially distant but physically similar
entities (e.g., similar materials), serving as a backup information pathway.

INTERNAL CONTIGUITY EDGES. To model intra-object energy transfer (thermal inertia) within
large continuous bodies, ’internal nodes’ establish connections with their eight immediate neigh-
bors (Moore neighborhood). This ensures local physical consistency within building clusters or
vegetation patches.

4.2 URBANGRAPH ARCHITECTURE

To align neural computation with the encoded structural priors, we designed a dynamic and hetero-
geneous architecture for UrbanGraph. As illustrated in Figure 3, the overall architecture comprises
four core components: Feature Encoders, a Spatial Graph Encoder, a Spatio-Temporal Evolution
Module, and a Prediction Head.

Feature Encoders and Spatial Graph Encoder. At timestep t, MLP-encoded global environmen-
tal (uenv

t ) and temporal (utime
t ) features are broadcast and concatenated with spatial node repre-

sentations hRGCN
v,t extracted by a three-layer RGCN. This fusion enables the subsequent LSTM to

contextualize global forcing within local topologies. Crucially, the RGCN functions as a physical
operator approximator: by assigning dedicated weight matrices Wr (Eq. 2) to specific relations (e.g.,
shading vs. convection), it disentangles complex dynamics into distinct physical sub-processes,
structurally mitigating the over-smoothing issues typical of homogeneous GNNs.

Spatio-Temporal Evolution Module. This module is responsible for fusing the spatial and global
dynamic features and uses a Long Short-Term Memory (LSTM) network to model their temporal
evolution. We specifically select LSTM over Attention mechanisms to align with the Markovian na-
ture of physical transport processes (e.g., heat diffusion), where the future state evolves continuously
from the immediate past. Furthermore, unlike coupled spatio-temporal operators (e.g., LRGCN),
our architecture decouples spatial interaction from temporal evolution. By resolving the dynamic
topology explicitly within the RGCN module, we provide the LSTM with a physics-consistent state
representation, thereby reducing optimization complexity.
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Figure 3: Architecture of UrbanGraph. (a) End-to-End Framework: Processes historical data,
weather, and dynamic graphs. The top-left grids denote global and cyclically encoded time fea-
tures. At each step, RGCN blocks extract spatial features, fused via MLP before LSTM temporal
propagation. (b) RGCN Block: Aggregates multi-relational neighbor messages (R1 − R5) with
node self-features. (c) LSTM Layer: Captures temporal dependencies.

At each prediction timestep t (from t1 to Tpred), we concatenate the spatial representation of a node,
hRGCN
v,t , with the global environmental embedding, eenvt , and the temporal embedding, etime

t . The
resulting concatenated vector is passed through a fusion MLP to generate the input feature for the
LSTM layer, xLSTM

v,t . This is expressed as:

xLSTM
v,t = MLPfusion([h

RGCN
v,t ⊕ eenvt ⊕ etime

t ]) (8)

The sequence of fused features is then fed into an LSTM layer to model the temporal dynamics. To
provide the model with an effective initial state, an MLP projects the spatial features from the initial
graph, hRGCN

v,t0 , to form the initial hidden state h0. The initial cell state c0 is initialized as a zero
vector. This is expressed as:

h0 = MLPh0
(hRGCN

v,t0 ) (9)

Prediction Head. Finally, a separate MLP decodes the last hidden state of the LSTM, hLSTM
v,Tpred

, into
a multi-step prediction vector, ŷv . This generates the predictions for all Tpred future timesteps at
once. This is expressed as:

ŷv = [ŷv,1, . . . , ŷv,Tpred] = MLPhead(h
LSTM
v,Tpred

) (10)

5 EXPERIMENTS

Dataset. Experiments utilize a high-fidelity ENVI-met dataset where the environment is discretized
into a 3D grid (4m horizontal, 3m vertical) derived from high-precision vector and land cover data
(Appendix B.1). While primarily evaluating UTCI, we predict all six variables to demonstrate the
architecture’s scalability. Temporal graphs follow principles in Section 4.1. The 396 urban blocks
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are split into Training (70%), Validation (20%), and Testing (10%). Crucially, the test set comprises
spatially distinct, unseen blocks to strictly evaluate generalization to new configurations.

Baseline Models. We benchmark UrbanGraph against four state-of-the-art categories: 1) Grid-
based Methods (CGAN-LSTM (Isola et al., 2017), Pix2Pix+PINN) to assess graph necessity, where
the latter utilizes soft physics-loss constraints; 2) Static Spatio-Temporal GNNs (GCN/GINE-
LSTM, STGCN (Yu et al., 2018), ASTGCN (Guo et al., 2019)) to validate dynamic topology against
fixed structures; 3) Generative Graph Models (GGAN-LSTM, GAE-LSTM) to compare with latent
structure learning; and 4) Dynamic Graph Models (LRGCN (Li et al., 2019a)) to demonstrate the
efficiency of our explicit causal encoding over implicit recurrent learning.

Evaluation Metrics. We evaluate predictive performance using Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Coefficient of Determination (R²). Computational efficiency
is assessed via floating-point operations (FLOPs), training time, and inference speed. Models are
trained using Adam with Mean Squared Error (MSE) loss—augmented by a KL divergence term for
GAE and binary cross-entropy for CGAN. Training employs ReduceLROnPlateau scheduling and
early stopping for robustness.

Model Settings. In the main comparative analysis, our proposed spatio-temporal heterogeneous
model is configured with a learning rate of 0.001, a batch size of 8, a hidden dimension of 128 for
all layers, a 3-layer RGCN encoder, and a 1-layer LSTM. It uses a multi-head prediction architecture,
and all models are run for 3 independent trials. For the subsequent ablation studies and sensitivity
analyses, we use a model with hyperparameters optimized by Optuna (Akiba et al., 2019), featuring
a hidden dimension of 384 and a single prediction head. More detailed hyperparameter settings are
available in Appendix D. All experiments were conducted on a single NVIDIA L4 GPU.

6 RESULT

We evaluate UrbanGraph by strictly benchmarking it against baselines in Section 6.1 and conducting
core ablation studies in Section 6.2. Extended analyses, including additional ablations, hyperparam-
eter sensitivity, and computational efficiency, are detailed in Appendix E.

6.1 MODEL PERFORMANCE

Figure 4: Input data configuration and prediction visualization. (a) Dynamic Global Features: Time-
varying meteorological forcing (e.g., Wind Speed, Temperature, Relative Humidity). (b) Static GIS
Features: Node-level spatial attributes including Building Height, Tree Height, and Land Cover ID.
(c) Prediction Results: Visual comparison between Ground Truth, Model Prediction, and Absolute
Error maps.
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By integrating dynamic meteorological forcing with static GIS features, UrbanGraph achieves high-
fidelity microclimate prediction across complex urban environments. As shown in Figure 4, visual
comparisons confirm that the model accurately captures fine-grained thermal gradients, exhibiting
strong spatial consistency with ground truth and minimal prediction error. To further substantiate
these visual findings, we provide extended qualitative visualizations in Appendix F, which offer
additional intuitive evidence of the model’s ability to capture complex spatial distributions.

Table 1 shows UrbanGraph achieves state-of-the-art performance (highest R2 = 0.8542). Compared
to the strongest dynamic graph baseline LRGCN (R2 = 0.8422), UrbanGraph improves accuracy
while reducing FLOPs by 73.8% (9.13× 109 vs. 3.49× 1010) and training time by 21% (24.5s vs.
31.1s), validating the efficiency of explicit causal pruning over implicit recurrence. Furthermore,
surpassing Pix2Pix+PINN (0.8320) confirms that hard structural constraints offer better physical
consistency than soft loss constraints, a finding corroborated by ablation studies in Appendix E.

Table 1: Performance and efficiency comparison of different model architectures on the test set.

Category Model Flops Test Time Cost
Avg R² Avg RMSE Avg MAE Training (epoch/s) Inference/s

Grid-
based

CGAN-LSTM 1.10× 1010 0.7712± .0369 1.3450± .1175 0.9539± .0611 15.3252± 1.0999 1.5558± .1951
Pix2Pix+PINN 1.10× 1010 0.8320± .0046 1.1485± .0306 0.8365± .0185 17.5020± 0.0576 1.3031± .0253

Static
STGNNs

GCN-LSTM 8.28× 109 0.8347± .0039 1.1327± .0433 0.8544± .0308 28.5321± 2.8358 2.8619± .4516
GINE-LSTM 8.80× 109 0.8087± .0226 1.2045± .0294 0.9030± .0190 32.3169± 1.4643 3.1731± .2325
STGCN 4.13× 109 0.7880± .0065 1.2958± .0287 0.9879± .0243 5.3547± 0.0222 0.2928± .0041
ASTGCN 2.06× 1010 0.8317± .0048 1.1491± .0234 0.8579± .0120 25.4938± 0.0438 1.2903± .0284

Generative
Graph

GAE-LSTM 1.05× 1010 0.8494± .0036 1.0687± .0269 0.7968± .0128 36.7376± 3.2079 3.6022± .4504
GGAN-LSTM 9.44× 109 0.8415± .0034 1.0981± .0406 0.8214± .0319 42.4678± 3.1537 2.6488± .4073

Dynamic
Graph

RGCN-GRU 7.12× 109 0.8483± .0035 1.0682± .0380 0.8020± .0293 20.8096± 1.3612 2.1640± .2133
RGCN-Transformer 5.09× 1010 0.8465± .0065 1.0791± .0253 0.8066± .0118 37.6463± .8325 3.3345± .1482
LRGCN 3.49× 1010 0.8422± .0061 1.0889± .0321 0.8100± .0160 31.0808± 0.1877 3.0550± .0348

URBANGRAPH 9.13× 109 0.8542± .0044 1.0535± .0338 0.7866± .0250 24.4823± 0.9323 2.6914± .1404

The convergence curve (Figure 5a) confirms the stability of the model’s training process. More-
over, the hour-by-hour error analysis (Figure 5b) shows that our method consistently maintains the
lowest RMSE throughout the entire 12-hour prediction horizon. It demonstrates strong robustness
against error accumulation, particularly during afternoon hours (e.g., 14:00 and 17:00) when climate
fluctuations are more pronounced.

Real-world generalization requires dynamic edge rules that can withstand observational noise. We
verified this robustness through extensive multi-scale validation (Appendix B.2.1). The model
achieved high accuracy in both micro-scale calibration on the NUS campus (r > 0.73) and city-
scale deployment across Singapore (r = 0.842).This successful generalization confirms that our
parameterization strategy remains effective across heterogeneous urban morphologies.

To rigorously evaluate the model’s generalization across distinct physical domains, we constructed
the UWF3D dataset, which records high-resolution vector fields governed by Navier-Stokes equa-
tions. UrbanGraph demonstrates exceptional adaptability to this new physics, achieving high accu-
racy (R2 > 0.88 for the u-component) and significantly outperforming the Grid-GCN baseline. This
successful transition from scalar thermal diffusion to complex vector flow dynamics confirms the ro-
bustness of our explicit topological encoding framework in capturing diverse physical mechanisms.
Detailed setup and results are provided in Appendix G.

6.2 ABLATION ANALYSIS

Table 2: Ablation studies for key mechanisms.

(a) Heterogeneous.

Model R² MSE

Base 0.8629 1.0976
Homo 0.8336 1.4275

(b) Dynamic.

Model R² MSE

Base 0.8629 1.0976
Static 0.8057 1.6678

Heterogeneous Graph Mechanism. To
validate the importance of modeling diverse
physical interactions with distinct relation
types, we compare our full model (Base),
which uses a heterogeneous graph (RGCN),
against a variant that simplifies the graph
to be homogeneous (GCN). The results,
shown in Table 2a, reveal a significant performance degradation when heterogeneity is removed,
with the R² score dropping from 0.8629 to 0.8347. The performance drop highlights causal entangle-
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Figure 5: Model performance analysis. (a) Test set R2 convergence curves for the UrbanGraph
model. Shaded areas represent the confidence interval. (b) Hour-by-hour R2 comparison between
UrbanGraph and baselines on the test set, with error bars indicating standard deviation.

ment in homogeneous graphs where a single parameter set fits distinct physical laws. Heterogeneity
resolves this by enabling physical operator decoupling.

Dynamic Graph Mechanism. To validate the effectiveness of the dynamic graph mechanism, we
compare our model with a variant that uses a static graph (i.e., the same graph structure is shared
across all timesteps). As shown in Table 2b, disabling the dynamic mechanism leads to a significant
performance drop in the model (Static), with the R² score decreasing from 0.8629 to 0.8057. The
gain validates time-varying causal pruning: unlike static graphs, the dynamic mechanism actively
removes physically irrelevant connections (e.g., shifting shadows), thereby reducing optimization
difficulty.

Further ablation studies analyzing other key components—such as the contribution of individual
edge types, various prediction head architectures, feature fusion strategies, and the effects of explicit
edge features—are detailed in Appendix E.

7 CONCLUSION

In this paper, we proposed UrbanGraph, a physics-informed dynamic graph framework for microcli-
mate prediction. Achieving state-of-the-art accuracy (R2 = 0.8542), UrbanGraph outperforms the
strongest baseline (LRGCN) with a 73.8% reduction in FLOPs and 21% faster training. This result
validates the superior efficiency of explicit causal pruning over implicit recurrence.

Furthermore, the UMC4/12 dataset, which we constructed and released, serves as the first high-
resolution benchmark in this field and will help accelerate the development and fair comparison of
new algorithms in the future. In summary, UrbanGraph demonstrates the potential of structural pri-
ors in bridging the gap between numerical simulation and deep learning. Beyond microclimate pre-
diction, our work offers a generalizable explicit topological encoding paradigm for spatio-temporal
dynamics governed by known physical equations.

Limitation and Future Work. Our work explicitly encodes predefined physical processes (i.e.,
prior knowledge) into the graph topology. While this has shown performance advantages, it may
oversimplify the real physical processes, as it might overlook latent relationships present in the data
that we have not yet modeled or are unknown. To address this trade-off between physical consistency
and model flexibility, a critical future direction is to develop a Hybrid Topology framework. By
augmenting the fixed physical graph with a sparse, learnable Residual Graph, future models could
uncover unmodeled interaction patterns from data residuals. This approach effectively balances the
robustness of engineering rules with the flexibility required to identify new physical mechanisms.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, our code and the UMC4/12 dataset are publicly available at https:
//github.com/wlxin-nus/UrbanGraph.git.
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12

https://www.sciencedirect.com/science/article/pii/S0169204615000390
https://www.sciencedirect.com/science/article/pii/S0169204615000390
https://linkinghub.elsevier.com/retrieve/pii/S2210670724005584
https://linkinghub.elsevier.com/retrieve/pii/S2210670724005584
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.13147
https://www.mdpi.com/2306-5729/4/3/116
https://www.nature.com/articles/s41586-025-08907-1
http://ieeexplore.ieee.org/document/4653466/
http://ieeexplore.ieee.org/document/4653466/
https://www.sciencedirect.com/science/article/pii/S2352710224003838
https://www.sciencedirect.com/science/article/pii/S2352710224003838
https://doi.org/10.1080/19401493.2025.2540925
https://doi.org/10.1080/19401493.2025.2540925
http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0187-62362017000400355&lng=es&nrm=iso&tlng=en
http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0187-62362017000400355&lng=es&nrm=iso&tlng=en


Published as a conference paper at ICLR 2026

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 5967–5976. IEEE Computer
Society, 2017. doi: 10.1109/CVPR.2017.632. URL https://doi.org/10.1109/CVPR.
2017.632.

Gerd Jendritzky, Richard de Dear, and George Havenith. UTCI—Why another thermal index? In-
ternational Journal of Biometeorology, 56(3):421–428, May 2012. ISSN 1432-1254. doi: 10.
1007/s00484-011-0513-7. URL https://doi.org/10.1007/s00484-011-0513-7.

Hongdeng Jian, Zhenzhen Yan, Xiangtao Fan, Qin Zhan, Chen Xu, Weijia Bei, Jianhao Xu, Mingrui
Huang, Xiaoping Du, Junjie Zhu, Zhimin Tai, Jiangtao Hao, and Yanan Hu. A high temporal
resolution global gridded dataset of human thermal stress metrics. Scientific Data, 11(1), October
2024. ISSN 2052-4463. doi: 10.1038/s41597-024-03966-x. URL https://www.nature.
com/articles/s41597-024-03966-x. Publisher: Springer Science and Business Media
LLC.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event network: Autoregressive
structure inferenceover temporal knowledge graphs. In Bonnie Webber, Trevor Cohn, Yulan He,
and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 6669–6683, Online, 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.emnlp-main.541. URL https://aclanthology.org/
2020.emnlp-main.541.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, June 2021.
ISSN 2522-5820. doi: 10.1038/s42254-021-00314-5. URL https://www.nature.com/
articles/s42254-021-00314-5. Publisher: Nature Publishing Group.

Patrick Kastner and Timur Dogan. A GAN-Based Surrogate Model for Instantaneous Ur-
ban Wind Flow Prediction. Building and Environment, 242:110384, August 2023. ISSN
03601323. doi: 10.1016/j.buildenv.2023.110384. URL https://linkinghub.elsevier.
com/retrieve/pii/S0360132323004110.

Julia Kemppinen, Jonas J. Lembrechts, Koenraad Van Meerbeek, et al. Microcli-
mate, an important part of ecology and biogeography. Global Ecology and Bio-
geography, 33(6):e13834, 2024. ISSN 1466-8238. doi: 10.1111/geb.13834. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.13834. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/geb.13834.

Ji Yeon Kim, Chae Yeon Park, Dong Kun Lee, Seok Hwan Yun, Jung Hee Hyun, and Eun Sub
Kim. The cooling effect of trees in high-rise building complexes in relation to spatial distance
from buildings. Sustainable Cities and Society, 114:105737, November 2024. ISSN 2210-6707.
doi: 10.1016/j.scs.2024.105737. URL https://www.sciencedirect.com/science/
article/pii/S2210670724005626.

Namwoo Kim and Yoonjin Yoon. Effective Urban Region Representation Learning Using Heteroge-
neous Urban Graph Attention Network (HUGAT). IEEE Access, 13:102602–102612, 2025. ISSN
2169-3536. doi: 10.1109/ACCESS.2025.3577202. URL https://ieeexplore.ieee.
org/abstract/document/11027114.

Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders, 2016. URL https://
arxiv.org/abs/1611.07308.

Peeyush Kumar, Ranveer Chandra, Chetan Bansal, Shivkumar Kalyanaraman, Tanuja Ganu, and
Michael Grant. Micro-climate Prediction - Multi Scale Encoder-decoder based Deep Learning
Framework. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 3128–3138, Virtual Event Singapore, August 2021. ACM. ISBN 978-1-4503-
8332-5. doi: 10.1145/3447548.3467173. URL https://dl.acm.org/doi/10.1145/
3447548.3467173.

13

https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1007/s00484-011-0513-7
https://www.nature.com/articles/s41597-024-03966-x
https://www.nature.com/articles/s41597-024-03966-x
https://aclanthology.org/2020.emnlp-main.541
https://aclanthology.org/2020.emnlp-main.541
https://www.nature.com/articles/s42254-021-00314-5
https://www.nature.com/articles/s42254-021-00314-5
https://linkinghub.elsevier.com/retrieve/pii/S0360132323004110
https://linkinghub.elsevier.com/retrieve/pii/S0360132323004110
https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.13834
https://www.sciencedirect.com/science/article/pii/S2210670724005626
https://www.sciencedirect.com/science/article/pii/S2210670724005626
https://ieeexplore.ieee.org/abstract/document/11027114
https://ieeexplore.ieee.org/abstract/document/11027114
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://dl.acm.org/doi/10.1145/3447548.3467173
https://dl.acm.org/doi/10.1145/3447548.3467173


Published as a conference paper at ICLR 2026

Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and Lujia Pan. Pre-
dicting path failure in time-evolving graphs. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer
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A KEY PHYSICAL EQUATIONS IN ENVI-MET

This appendix outlines the key physical equations within the ENVI-met model (Bruse & Fleer, 1998)
used to generate the dataset for this study.

A.1 MEAN AIR FLOW

The model describes three-dimensional turbulence by solving the non-hydrostatic, incompressible
Navier-Stokes equations. The fundamental equations for the mean wind velocity components u,v,w
are as follows:
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where p′is the local pressure perturbation,θ is the potential temperature, Km is the turbulent diffu-
sivity for momentum, f is the Coriolis parameter, and Su(i) are the momentum source/sink terms
induced by elements such as vegetation.

A.2 TEMPERATURE AND HUMIDITY

The distribution of potential temperature θ and specific humidity q in the atmosphere is described
by the advection-diffusion equations, which include internal source/sink terms:
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where Khand Kq are the turbulent exchange coefficients for heat and moisture, respectively. Qh and
Qq are the source/sink terms that couple the heat and moisture exchange processes at the surface and
with vegetation.

A.3 RADIATIVE FLUXES

The model solves the energy balance for surfaces and walls by calculating the net shortwave radi-
ation, Rsw,net, and the net longwave radiation,Rlw,net. The shortwave radiation flux at any point,
Rsw(z), consists of direct and diffuse radiation, and accounts for the shading effects of buildings
and vegetation:

Rsw(z) = σsw,dir(z)R
0
sw,dir + σsw,dif (z)σsvf (z)R

0
sw,dif + (1− σsvf (z))R

0
sw,dif ᾱ (16)

where the R0 terms represent the incoming radiation at the top of the model, and the σ coefficients
are reduction factors ranging from 0 to 1 that quantify the effects of direct radiation σsw,dir, diffuse
radiation σsw,dif , and the sky view factor σsvf .

For the complete set of model equations, parameterization schemes, and numerical solution meth-
ods, please refer to the original publication.

B HIGH-RESOLUTION SPATIO-TEMPORAL DATASET FOR MICROCLIMATE
AND THERMAL COMFORT

B.1 DATASET GENERATION

We constructed the UMC4/12 dataset based on public geospatial data and the ENVI-met model. We
selected a typical extreme heat day as the basis for our simulations, using the standard meteoro-
logical year data (EPW) from Singapore Changi Airport. To ensure morphological diversity in the
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dataset, we employed a stratified sampling strategy to select 11 representative 1 km² sites across Sin-
gapore. The stratification was based on key urban morphology metrics, and the sample pool covers
a wide range of urban typologies, from ultra-high-density commercial districts to mature residen-
tial areas with large parks (see Appendix Table A1). The metrics include Average Building Height
(Avg.BH), Green Space Ratio (GSR), and Building Coverage Ratio (BCR).

Table A1: Distribution of morphological and material properties for the 11 selected 1km² sites in
Singapore.

Data Index Avg.BH(m) GSR BCR Pavement% Smashed Brick% Loamy Soil% Deep Water%
1 13.36 0.021 0.078 0.520 0.095 0.367 0.019
2 19.76 0.055 0.155 0.734 0.062 0.181 0.023
3 12.86 0.255 0.219 0.487 0.000 0.471 0.043
4 23.97 0.184 0.217 0.630 0.043 0.316 0.010
5 10.11 0.116 0.235 0.643 0.026 0.302 0.029
6 12.01 0.429 0.126 0.260 0.020 0.718 0.002
7 28.14 0.165 0.242 0.671 0.023 0.286 0.020
8 13.86 0.209 0.338 0.733 0.036 0.220 0.011
9 33.73 0.198 0.108 0.297 0.050 0.554 0.098
10 19.81 0.105 0.109 0.291 0.023 0.222 0.464
11 16.06 0.444 0.128 0.211 0.062 0.654 0.072

We built the 3D model input files for the ENVI-met simulations by integrating multiple public
geospatial data sources. Specifically, we resampled and performed 3D voxelization on raw data with
varying precisions: building footprints were extracted from vector-based OpenStreetMap data (Hak-
lay & Weber, 2008), while the land cover classification (Gaw et al., 2019) and canopy height
maps (Tolan et al., 2024) utilized a 1m high resolution. This process generated ENVI-met input
files (.INX) with a uniform horizontal resolution of 4 meters and a vertical resolution of 3 meters.
To ensure high fidelity, we assigned realistic material properties to different surfaces and building
boundaries, and specified corresponding tree species for vegetation of varying heights. The detailed
material assignments and parameters are provided in Appendix Table A2 and A3. The simulation
period covered the hours from 08:00 to 19:00, when urban heat effects are most significant.

Table A2: Class definitions mapping land cover types to surface materials for ENVI-met simulation.

Type Material Class
Buildings Pavement 1
Impervious surfaces Pavement 1
Non-vegetated pervious surfaces Terre battue 2
Vegetation with limited human management (w/ Tree Canopy) Loamy Soil 3
Vegetation with limited human management (w/o Tree Canopy) Loamy Soil 3
Vegetation with structure dominated by human management (w/ Canopy) Loamy Soil 3
Vegetation with structure dominated by human management (w/o Canopy) Loamy Soil 3
Freshwater swamp forest Unsealed Soil 4
Freshwater marsh Unsealed Soil 4
Mangrove Deep Water 5
Water courses Deep Water 5
Water bodies Deep Water 5
Marine Deep Water 5

Figure A1 provides a visualization of the primary input data layers—tree height, land cover type,
and building height—for two representative sites, illustrating the morphological diversity within the
UMC4/12 dataset.

Following the ENVI-met simulation, we generated high-resolution spatio-temporal data for the six
target variables. Figure A2 illustrates the simulation output for one of the urban blocks, displaying
the evolution of all six variables over the course of the day.

To expand the dataset while efficiently managing computational resources, we systematically parti-
tioned the original 1 km² simulation results into 250m × 250m blocks with a 50-meter overlapping

18



Published as a conference paper at ICLR 2026

Table A3: Material properties used in the ENVI-met model configuration.

Material z0 Roughness Length Albedo Emissivity
Pavement 0.010 0.3 0.9
Terre battue 0.010 0.4 0.9
Loamy Soil 0.015 0.0 0.9
Unsealed Soil 0.015 0.2 0.9
Deep Water 0.010 0.0 0.9

Figure A1: Visualization of the input data for ten sample sites from the UMC4/12 dataset. For every
site, three data layers are visualized: (left in the triplet) Tree Height, (middle) Land Cover Type, and
(right) Building Height.

area. This resulted in a final dataset containing 396 unique urban blocks. Each block is discretized
into 2,500 nodes. For each block, we provide a time series covering a 12-hour interval for 6 key mi-
croclimate and thermal comfort variables. Overall, the UMC4/12 dataset offers approximately 11.9
million high-quality spatio-temporal data points for each target variable, enabling the systematic
evaluation of spatio-temporal prediction models in complex urban environments.

B.2 REAL-WORLD VALIDATION STRATEGY

To ensure that our physics-informed framework generalizes to real-world scenarios, we implemented
a two-tier validation process covering both micro-scale fidelity and city-scale consistency.

B.2.1 MICRO-SCALE CALIBRATION WITH FIELD MEASUREMENTS

We conducted a rigorous validation of the ENVI-met model based on a sensor network deployed on
the campus of the National University of Singapore (NUS).

As shown in Figure A3a, a sensor on an open rooftop (Reference Point) was selected to provide
the driving meteorological inputs. We compared simulation results with measured data from five
distributed sensor stations covering diverse morphologies.

19



Published as a conference paper at ICLR 2026

Figure A2: Visualization of the spatio-temporal simulation output for a single urban block. Each
row corresponds to a different target variable: AT, WS, RH, MRT, PET, and UTCI. Each column
represents a specific hour, showing the dynamic evolution of the microclimate from morning (09:00)
to evening (19:00).

Figure A3: ENVI-met model validation. (a) Map of the validation area and sensor locations on the
NUS campus. (b) Comparison of simulated vs. measured diurnal cycles for Temperature, Relative
Humidity, and Wind Speed, showing strong agreement (r > 0.73).
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The plots in Figure A3b show the hourly variations of key variables: air temperature, relative hu-
midity, and gust wind speed. The results indicate high agreement with measured values (Pearson’s
correlation coefficient r > 0.73, p < 0.01), accurately capturing diurnal trends. This confirms
that our simulation setup reliably reproduces key microclimate dynamics in complex urban environ-
ments, providing a solid physical basis for subsequent data-driven modeling.

B.2.2 CITY-SCALE CROSS-VALIDATION

To further assess the model’s dynamic response capability in the temporal dimension and its gener-
alization at the city scale, we introduced the HiGTS dataset (Jian et al., 2024), which provides global
hourly UTCI at a 0.1◦ × 0.1◦ resolution.

Figure A4: City-scale generalization validation against the HiGTS dataset. The scatter plot com-
pares UrbanGraph predictions with HiGTS reference hourly UTCI for Singapore. The results
demonstrate a strong correlation (r = 0.842) and low bias, confirming the model’s robustness in
generalizing to real-world urban environments.

We deployed the trained UrbanGraph model to predict the hourly UTCI for the entire Singapore
island on May 3rd, 2023, and compared the aggregated results with the HiGTS reference values.

As shown in the scatter plot in Figure A4, the two datasets show a strong correlation (r = 0.842),
with a slight systematic underestimation (Bias = −0.667◦C). The hourly analysis reveals that pre-
diction bias primarily originates from trend discrepancies between the simulation inputs and the
reference dataset at specific moments (e.g., abrupt weather changes) rather than flaws in the model
itself. This validates that UrbanGraph can effectively generalize to real-world urban data beyond the
training distribution.
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C PARAMETER SETTINGS FOR PHYSICS-INFORMED GRAPH
REPRESENTATION

This appendix details the key parameters used in the construction of the dynamic heterogeneous
graph, as introduced in Section 4.1, and provides the rationale for their settings.

C.1 PARAMETER RATIONALE

Number of Nearest Neighbors (k). The value is chosen to balance informational richness with
computational overhead. Allowing each node to connect to its eight most similar neighbors (con-
sistent with the size of a Moore neighborhood) effectively captures non-local semantic information
while avoiding the noise that could be introduced by connecting too many distant nodes. As demon-
strated in the sensitivity analysis in Section E.2, this value represents the optimal trade-off between
model performance and efficiency.

Maximum Shadow Extent (Rshadow
max ). These upper limits are set to prevent unrealistically long

shadows, which can occur at low solar elevation angles, from creating computational redundancy
in the graph representation. The maximum shadow extent for buildings (15 grids, or 60m) is larger
than that for trees (5 grids, or 20m), which is consistent with their typical differences in height and
obstruction capacity in an urban environment.

Shadow Angle Width (∆ϕshadow). This parameter expands the theoretical line-like shadow into
an area of influence. This accounts for the apparent motion of the sun over an hour and the penumbra
effect caused by diffuse light, making the shadow model more physically realistic.

Base Radius of Influence for Vegetation (Rbase). The base radius of influence for vegetation is
set to 5 grids (20m), based on the typical effective range of local cooling effects from single or small
patches of green space reported in existing microclimate research (Kim et al., 2024).

Wind Effect Coefficient (λwind). As a modulation coefficient, a value of 0.3 is a relatively con-
servative choice. It allows the wind field to significantly guide the anisotropy of connections without
completely dominating the graph structure, thus preserving the influence of other physical processes.

Maximum Reference Wind Speed (vmax). This value is used to normalize the actual wind speed.
A value of 8.0 m/s was chosen as the reference upper limit as it represents the maximum wind speed
historically observed in Singapore.

The boundary parameters for these edges are structural constraints, with their values set by referenc-
ing classical urban climatology studies (Ziter et al., 2019; Dare, 2005; Ng, 2009; Lin et al., 2023).
This setting is necessary for explicit physical embedding, as it translates domain knowledge (e.g.,
the effective decay distance of vegetation cooling) into reliable physical upper bounds for most typ-
ical urban environments. Within these bounds, the actual interaction strength is adaptively learned
by the network. The robustness of this setup is empirically validated by its successful generaliza-
tion to the UWF3D dataset (Appendix G), where these physical bounds yielded high accuracy on a
completely different physical task.

D MODEL IMPLEMENTATION DETAILS AND HYPERPARAMETERS

To ensure fairness, transparency, and reproducibility in our experimental comparisons, this appendix
details the implementation specifics and key hyperparameter configurations for our proposed Urban-
Graph model and all baseline models.

D.1 BASELINE MODELS AND HYPERPARAMETER SETTINGS

The following table summarizes the key hyperparameters for UrbanGraph and all baseline models
used in the different experimental phases. In our comparative experiments, we strive to ensure
a fair comparison by maintaining a similar model scale (i.e., hidden dimension size), such that
performance differences primarily originate from the model architectures themselves.
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Table A4: Parameters for Dynamic Heterogeneous Adjacency Construction.

Parameter Value Description
Semantic Similarity Links
k 8 The number of neighbors for semantic similarity links.
ϵ 1e-6 A small constant to avoid division by zero during feature normalization.

Shadow Links
Rshadow

max 15 Maximum extent of building shadows (in number of grids).
Rtree

max 5 Maximum extent of tree shadows (in number of grids).
∆ϕshadow 25.0◦ The effective angular width for shadow calculations.

Vegetation Activity Links
Rbase 5 The base maximum radius of influence for vegetation activity (in number

of grids).

Local Wind Field Links
λwind 0.3 Coefficient that modulates the impact of wind direction on the connection

range.
vmax 8.0 m/s Used to normalize wind speed for calculating the wind modulation factor.

Table A5: Key hyperparameters for the proposed model and all baseline models.

Model Hidden Dim Spatial Encoder Temporal Encoder Key Hyperparameters
UrbanGraph (Ours) 128/384* RGCN(3) LSTM(1) lr=0.001, batch size=8,

optimizer=Adam,
weight decay=1e-5

GCN-LSTM 128 GCN(3) LSTM(1) same
GINE-LSTM 128 GINE(3) LSTM(1) same
RGCN-GRU 128 RGCN(3) GRU(1) same
RGCN-Transformer 128 RGCN(3) Transformer d model=128, nhead=4,

num encoder layers=2
CGAN-LSTM 128 U-Net LSTM(1) lr G=0.0002, lr D=0.0002,

beta1=0.5, lambda L1=100
GAE-LSTM 128 GAE(3) LSTM(1) latent dim=128, beta=0.1
GGAN-LSTM 128 GGAN LSTM(1) latent dim=128, lr G=0.0001,

lr D=0.0004, beta1=0.5

*Note: The hidden dimension of UrbanGraph is 128 in the main model comparison phase. For the ablation and sensitivity analysis phases, it
is set to 384 based on the results of Optuna optimization.

D.2 IMPLEMENTATION DETAILS FOR CROSS-PARADIGM BASELINES

To compare our graph-based approach with traditional grid-based methods, we adapted the data
input for certain baseline models.

Data Rasterization. For the CGAN-LSTM model, we convert the graph data at each timestep
into a 50x50 grid image. Each node in the graph is mapped to a pixel in the image, where the pixel
value represents a key physical feature of the node (e.g., air temperature). The spatial relationships
between nodes are implicitly represented by the adjacency of pixels on the 2D plane.

Model Implementation. We employ a classic U-Net as the generator for the CGAN and a Patch-
GAN as the discriminator. The model’s task is to generate the prediction image for the next timestep
based on a sequence of historical images. During training, we combine an L1 loss (with weight λL1)
with an adversarial loss. The feature sequence extracted by the U-Net encoder is then fed into an
LSTM module for temporal modeling.
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E DETAILED ANALYSIS OF MAIN EXPERIMENTS

E.1 DETAILED ABLATION STUDIES

We conduct a series of ablation studies to systematically evaluate the contributions of the key com-
ponents within the UrbanGraph framework.

Physics Injection Strategy. To rigorously isolate the impact of different physics-injection
paradigms, we conducted a controlled experiment. We compared three variants sharing the iden-
tical backbone architecture (GCN+LSTM) and hyperparameter settings (e.g., hidden dimensions,
learning rate). The only difference lies in the mechanism of physics injection: 1) Baseline: A
standard data-driven model without any physical constraints. 2) Soft Constraint: The baseline aug-
mented with PDE-based loss functions (PINN approach). 3) Hard Constraint (Ours): The proposed
UrbanGraph that encodes physics directly into the graph topology.

Table A6: Quantitative comparison of different physics injection strategies.

Strategy Flops Test Time Cost
Avg R² Avg RMSE Avg MAE Training (epoch/s) Inference/s

Baseline (Data-driven) 8.28× 109 0.7846± .0039 1.2918± .0389 0.9953± .0248 11.9636± 0.0046 1.0002± .0082
Soft Constraint (PINN) 8.28× 109 0.7876± .0023 1.3028± .0531 1.0037± .0359 12.0993± 0.0127 1.0164± .0123
Hard Constraint (Ours) 9.13× 109 0.8542± .0044 1.0535± .0338 0.7866± .0250 24.4823± 0.9323 2.6914± .1404

As shown in Table A6, the ’Soft Constraint’ yields negligible improvement (∆R2 ≈ +0.0030)
over the baseline. In contrast, the ’Hard Constraint’ achieves a substantial performance leap
(∆R2 ≈ +0.0696). Although constructing the dynamic topology incurs a computational cost (in-
creasing training time from 12s to 24.5s), the return on investment is significant: The hard structural
constraint delivers over 23 times the accuracy gain of the soft loss constraint.

Temporal Modeling. To validate the contribution of the Spatio-Temporal Evolution Module
(LSTM), we compare the full Spatio-Temporal model against a variant where the LSTM module is
removed. This variant performs independent predictions for each hour, thereby eliminating tempo-
ral dependencies. As shown in Figure A5 in the Appendix, the results demonstrate the effectiveness
of temporal modeling. Our model’s predictive accuracy (R²) surpasses that of the variant across
all prediction hours. Furthermore, Our model exhibits lower variance across multiple independent
trials, indicating enhanced model stability.

Figure A5: Hour-by-hour R² score comparison for the temporal modeling ablation study. The ’Time
Series model’ (our full UrbanGraph model) is compared against the ’Single hour model’ (a variant
without the LSTM module). The results demonstrate that explicitly modeling temporal dependen-
cies leads to superior performance across the entire 12-hour prediction horizon. Error bars represent
the standard deviation from multiple independent trials.

Fusion Mechanism. We compare three different strategies for fusing the spatial node representa-
tions with the global dynamic features: Concatenation Fusion, Multiplicative Fusion, and Attention
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Fusion. As shown in Table A7, the simple concatenation strategy achieves the best performance
across all evaluation metrics. This approach not only achieves the highest accuracy but also has the
lowest computational load (FLOPs) and the fastest training and inference speeds.

Table A7: Comparison of different fusion strategies for combining spatial and global features. Best
results are in bold.

Strategy Flops Test Time Cost
Avg R² Avg RMSE Training (epoch/s) Inference/s

Attention 9.42× 109 0.8491± .0052 1.0675± .0254 27.5568± 1.0310 3.1741± .1251
Multiplicative 9.30× 109 0.8515± .0020 1.0623± .0317 25.9573± 1.4409 2.8543± .2170
Concatenation 9.13× 109 0.8542± .0044 1.0535± .0338 24.4823± 0.9323 2.6914± .1404

Prediction Head Architecture. We evaluate two strategies for multi-step prediction: a Single-Head
architecture, which uses a single shared prediction head to generate predictions for all 12 hours at
once from the final hidden state of the LSTM; and a Multi-Head architecture, which employs a
separate prediction head for each future timestep. The results in Table A8 show that the single-head
strategy performs better in terms of both predictive accuracy and computational efficiency (FLOPs).
For a relatively short prediction horizon, the single-head architecture can more effectively leverage
the final hidden state, which encodes information from the entire sequence, for joint prediction,
thereby avoiding cumulative errors.

Table A8: Comparison between Single-Head and Multi-Head prediction architectures on the test
set.

Strategy Flops Test Time Cost
Avg R² Avg RMSE Training (epoch/s) Inference/s

Multi-Head 9.21× 109 0.8542± .0044 1.0535± .0338 24.4823± 0.9323 2.6914± .1404
Single-Head 9.13× 109 0.8603± .0008 1.0190± .0421 21.5903± 3.1143 2.4785± .5019

Table A9: Effectiveness of the
Warming-up Mechanism.

Model R² MSE

Base 0.8629 1.0976
NP1 0.8510 1.1526

Warming-up Mechanism. We introduce a warming-up
mechanism that initializes the LSTM’s hidden state using the
spatial features from the initial graph. This aims to provide
the temporal prediction task with a starting point that is rich in
physical priors. As shown in Table A9, removing this mecha-
nism and using random initialization instead (the NP1 model)
leads to a noticeable decline in performance, with the R² score
dropping from 0.8629 to 0.8510.

Node Feature Augmentation. We compare the effects of using different node features as input. As
shown in Table A10a, the model using aggregated neighbor features (Base) achieves the best per-
formance. The model without any spatial information enhancement (M3) performs worse than the
Base model. However, performance degrades when using only static topological features (such as
degree centrality) or when combining them with aggregated neighbor features. This result suggests
that introducing additional topological features in our task may add redundant information or noise,
thereby impairing the model’s predictive accuracy.

Input Feature Ablation. To verify the necessity of each input feature, we conduct a systematic
ablation on the static node features ustatic, the temporal encoding features utime

t , and the global
climate features uenv

t . As shown in Table A10b, the baseline model (Base) that includes all three
feature types performs the best. Removing any single feature type leads to a performance drop.
Notably, the model using only static node features (F1) shows the most significant degradation, with
its R² score dropping from 0.8629 to 0.7179.

Edge Types. To evaluate the specific contribution of each of the five proposed physics-informed
and semantic edge types, we conduct an ablation study by systematically removing one edge type
at a time. As shown in Table A11, the base model, which includes all five edge types, achieves
the best performance. Removing any single edge type results in a decline in the model’s predic-
tive accuracy, demonstrating that both the physics-informed and semantic edges provide valuable
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Table A10: Ablation studies for feature augmentation and input feature types.

(a) Data Augmentation.

Model Neighbor Structure R² MSE

M1
√

0.8347 1.2798
M2

√ √
0.8462 1.2181

M3 0.8507 1.1696
Base

√
0.8629 1.0976

(b) Input Features.

Model ustatic utime
t uenv

t R² MSE

F1
√

0.7179 2.0867
F2

√ √
0.8529 1.1423

F3
√ √

0.8519 1.1495
Base

√ √ √
0.8629 1.0976

inductive biases for the model. Notably, removing the Local Wind and Shadow edges leads to the
most significant performance degradation, which underscores the importance of explicitly modeling
time-varying physical processes. Furthermore, the performance drop caused by removing Similar-
ity edges confirms the necessity of capturing non–local spatial interactions in urban microclimate
prediction.

Table A11: Ablation study on different edge types. The checkmark (
√

) indicates that the corre-
sponding edge type is included in the model.

Model Tree activity Similarity Shadow Local Wind Internal R² MSE

E1
√ √ √ √

0.8504 1.1534
E2

√ √ √ √
0.8531 1.1568

E3
√ √ √ √

0.8238 1.4960
E4

√ √ √ √
0.8155 1.4341

E5
√ √ √ √

0.8425 1.2403

Base
√ √ √ √ √

0.8629 1.0976

E.2 SENSITIVITY AND COMPUTATION PERFORMANCE EVALUATION

Sensitivity to the Number of Neighbors (k). To investigate the model’s sensitivity to the number of
neighbors, k, used in constructing the Semantic Similarity Edges, we conducted tests with different
values of k. As shown in Figure A6a, the model’s performance (R²) improves as k increases, reaching
a peak at k=8 before exhibiting minor fluctuations. Considering that a larger k increases graph
density and computational cost, we select the ’elbow point’ of the performance curve, k=8, as the
optimal configuration. The model is not highly sensitive to the choice of k within a certain range,
demonstrating good robustness.

Sensitivity to Training Data Volume. To evaluate the model’s data efficiency and generalization
capability, we performed a sensitivity test on the amount of training data. We reserved a fixed
10% test set and incrementally increased the training set size using fractions of the remaining data,
starting from 2%. As illustrated in Figure A6b, the results reveal a significant positive correlation
between model performance and data volume, with all accuracy metrics improving substantially as
the amount of data increases. However, the model also exhibits a clear diminishing returns effect:
the majority of the performance gain occurs before the training data volume reaches 40-60%, after
which the performance curve begins to plateau. Performance tends to saturate when approximately
90% of the available training data is used.

Computational Performance Evaluation. To assess the model’s computational overhead in ur-
ban scenarios of varying complexity, we analyzed the relationship between the graph’s structural
properties (i.e., the number of nodes and edges) and computational costs (inference time and peak
GPU memory usage). The analysis (Figure A7b,d) indicates that both inference time and memory
consumption show a positive correlation with the number of edges in the graph (with R² values of
0.5976 and 0.4627, respectively). An interesting finding is that computational cost is negatively
correlated with the number of non-building nodes (Figure A7a,c). This suggests that the number of
non-building nodes can serve as an inverse indicator of a scenario’s structural complexity: scenes
with more open spaces (e.g., parks) typically have sparser graph structures and are therefore more
computationally efficient. Furthermore, the linear relationship between cost and graph complexity
suggests the feasibility of applying the model to larger areas.
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Figure A6: Sensitivity analysis of the model. (a) Model performance (R² and RMSE) on the test set
versus the number of neighbors, k, for constructing similarity edges. The performance peaks at k=8.
(b) Model performance as a function of the percentage of training data used. Performance gains
show diminishing returns and begin to saturate at approximately 90% of the data.

Figure A7: Computational performance analysis. (a) illustrate the negative correlation between
inference time / peak GPU memory and the average number of non-building nodes per window. (b)
show the positive linear correlation between computational costs and the average number of edges
per window.

Scalability Test on City-Scale Grids. To verify the feasibility of deploying UrbanGraph on large-
scale urban grids (as queried regarding 50k–100k nodes), we conducted a stress test on a large urban
region. The region was partitioned into 36 spatial windows, comprising a total of approximately
90,000 nodes. The total edge reconstruction time for the entire 13-hour sequence was recorded at
39.56 seconds (using 16 CPU workers). This empirical evidence confirms that the computational
cost for city-scale edge reconstruction is negligible compared to physics-based simulations, and the
divide-and-conquer strategy effectively ensures scalability.

E.3 EDGE FEATURES AND WEIGHTS

To explore the potential of encoding richer physical information into the graph structure, we de-
signed and evaluated an explicit scheme for edge attributes and edge weights in the early stages of
our research. As mentioned in the main text, our final model did not adopt this design, as experimen-
tal results showed that introducing this explicit information did not lead to a significant performance
improvement for the UTCI prediction task. This section details our initial exploratory design.

EDGE ATTRIBUTE VECTOR. In our initial design, each edge eij ∈ Et in the graph carried a 5-
dimensional attribute vector aij ∈ R5 to encode rich spatio-temporal physical information. This
vector was composed of the following components:

• Euclidean Distance d(vi, vj): The straight-line distance between the nodes.

• Relative Displacement (∆x,∆y): The difference in position in the grid coordinate system.

• Wind Alignment (cos(∆θwind)): The cosine of the angle between the edge vector and the
current hour’s wind direction, used to quantify the convective influence of the wind.
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• Edge Type ID: A categorical ID indicating which of the five relationship types the edge
belongs to.

E.4 EDGE WEIGHT CALCULATION

To quantify the interaction strength between different nodes, we designed a dynamic scheme for
calculating edge weights, wij . All edge weights start from a base value wbase (set to 1.0) and are
dynamically modulated according to the following rule:

wij = wbase/(1 + λ · d(vi, vj)/dgrid) · β · γ (17)

The specific settings for each modulation factor are as follows:

• Distance Decay (λ): All edge weights are decayed based on their Euclidean distance. To
better distinguish between non-local and local effects, we set a smaller distance decay fac-
tor, λsim (set to 0.005), for semantic similarity edges, while other edges based on physical
proximity use a larger decay factor, λphys (set to 0.01).

• Physical Process Enhancement (β): Weights are further modulated by dynamic physical
processes. For example, a shadow edge determined to be actively casting a shadow in the
current hour has its weight multiplied by an enhancement factor, βshadow (set to 1.2).

• Source Node Attribute Influence (γ): Weights are also influenced by the attributes of the
source node. For instance, the weight of a vegetation activity edge is positively affected by
the height of its source tree, htree, controlled by the modulation factor γtree (set to 0.2).

Table A12: Ablation study on explicit edge at-
tributes (E) and edge weights (EW ).

Model E EW R² MSE

Base 0.8629 1.0976
EF

√
0.8530 1.1513

EFW
√ √

0.8586 1.2097

Although this scheme is theoretically more
physically interpretable, our ablation experi-
ments showed no improvement in predictive
performance when introducing explicit edge at-
tributes (E) and edge weights (EW) compared
to a simpler model that only uses edge types
(results shown in the table A12). This suggests
that, for the UrbanGraph architecture and the
UTCI prediction task, the model can effectively
and implicitly learn the strength of these inter-
actions from the dynamic graph topology and node features, without needing explicitly injected edge
weights and attributes.

E.5 MULTI-TASK VS. SINGLE-TASK LEARNING

Table A13: Performance on target variables.

Target STL MTL

UTCI 0.8629 ± .0696 0.7460 ± .0806
AT 0.5650 ± .1324 0.4080 ± .1382
WS 0.7500 ± .0176 0.4794 ± .0315
MRT 0.8378 ± .2005 0.7181 ± .1700
RH 0.5159 ± .2039 0.4105 ± .2067
PET 0.8492 ± .0517 0.6883 ± .0589

To evaluate whether shared representations
could enhance performance, we compared the
proposed Single-Task Learning (STL) frame-
work (where a separate model is trained for
each variable) against a Multi-Task Learning
(MTL) variant, which uses a shared Urban-
Graph encoder followed by variable-specific
heads. As shown in Table A13, STL consis-
tently outperforms MTL, with the performance
drop being particularly pronounced for vari-
ables with distinct physical mechanisms (e.g.,
Wind Speed vs. MRT). We attribute this to negative transfer arising from the inherent heterogeneity
of the underlying physical processes: fluid dynamics (governing Wind Speed) and radiative trans-
fer (governing MRT) require learning distinct and often conflicting spatial dependencies. Forcing a
shared encoder to capture these diverse physical laws dilutes the specificity of the node embeddings,
confirming that independent training ensures each model specializes in the specific physical operator
relevant to its target.
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F GENERALIZATION AND VISUALIZATION

F.1 PREDICTION RESULTS ON DIFFERENT ARCHITECTURES

To provide a qualitative assessment of our model’s performance, this section presents a visual com-
parison of the spatio-temporal prediction results between UrbanGraph and the four categories of
baseline models. Each figure displays the ground truth, the predictions from UrbanGraph and rep-
resentative baselines, and their respective prediction error maps (Prediction - Ground Truth) for a
selected test scene at different hours of the day. White areas in the maps correspond to buildings,
which are excluded from the analysis.

Figure A9 compares UrbanGraph with non-graph and homogeneous graph baselines, which repre-
sent fundamentally different approaches to spatial modeling. Figure A10 provides a comparison
against generative graph models and temporal variants, assessing different graph learning strategies
and sequence modeling components.

Figure A8: Qualitative prediction results for thermal comfort indices. This figure visualizes the
performance of UrbanGraph on MRT and PET. Similar to the previous figure, each block compares
the ground truth, model prediction, and the resulting error map, demonstrating the model’s strong
performance on composite indices.

F.2 PERFORMANCE ON MULTIPLE TARGETS

The robustness of our physics-informed representation and the UrbanGraph architecture is validated
by the consistent performance on five remaining target variables (Table A13), where all R2 scores
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Figure A9: Visual comparison against Non-Graph (CGAN-LSTM) and Homogeneous Graph (GCN-
LSTM, GINE-LSTM) baselines. Compared to the grid-based CGAN-LSTM, UrbanGraph better
captures fine-grained spatial details. Unlike the homogeneous models that treat all interactions uni-
formly, UrbanGraph’s heterogeneous approach leads to more physically consistent predictions and
lower overall error.
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Figure A10: Visual comparison against Generative Graph (GGAN-LSTM, GAE-LSTM) and Tem-
poral Variant (RGCN-GRU, RGCN-Transformer) baselines. UrbanGraph’s physics-informed, de-
terministic graph construction (shown in Figure A9) avoids the higher errors seen in generative
approaches. Furthermore, its LSTM component proves more effective at capturing long-term de-
pendencies compared to the GRU and Transformer variants.
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exceed 0.5 and MRT/PET performance nearly matches UTCI. Qualitative generalization capabilities
for these five variables are visualized in Figures A8– A11.

Figure A11: Qualitative prediction results for microclimate variables. This figure visualizes the
performance of UrbanGraph on AT, WS, and RH. For each variable, the top row shows the ground
truth, the middle row shows the model’s prediction, and the bottom row displays the prediction error
map across different hours.
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G GENERALIZATION ON VECTOR FIELDS

G.1 DATASET GENERATION AND PHYSICAL SETUP

To evaluate the model’s generalization on vector fields, we utilized the UWF3D dataset. This dataset
consists of high-fidelity CFD simulations generated using the open-source platform OpenFOAM,
with the following specific configurations:

Physical Modeling. Unlike the thermal dataset generated by ENVI-met, UWF3D solves the steady-
state Reynolds-Averaged Navier-Stokes (RANS) equations coupled with the standard k − ϵ turbu-
lence model. This setup captures complex non-linear fluid dynamics such as flow separation, cavity
circulation, and wake turbulence.

Geometric Configuration. The simulation domain represents a 540m × 540m idealized urban
block. Building geometries are randomly generated via parametric design (Rhino/Grasshopper)
based on real-world prototypes, ensuring morphological diversity.

Boundary Conditions. The inflow boundary follows a logarithmic wind profile with a reference
velocity of 10m/s at 10m height. The simulations operate at high Reynolds numbers (Re ≈ 107 −
108), ensuring Reynolds independence consistent with real-world urban aerodynamics.

Mesh and Solver. The computational domain is discretized using an unstructured mesh containing
approximately 2 to 4 million grid points per sample. This high spatial resolution allows for precise
prediction of the 3D velocity vector field v = (u, v, w) at each spatial node.

Figure A12: Visual overview of the UWF3D dataset configuration and simulation samples. The
figure illustrates the diversity of parametrically generated urban geometries and their corresponding
high-fidelity CFD velocity fields. The simulations, solved via RANS equations with the k − ϵ
turbulence model, explicitly capture complex aerodynamic phenomena such as flow separation and
wake recirculation around varying building morphologies.
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G.2 MODEL SETUP AND COMPARATIVE IMPLEMENTATION

To rigorously validate the framework’s adaptability, we established a benchmark between the pro-
posed UrbanGraph and a Grid-GCN baseline. Given that this task involves purely fluid dynamics
without thermal radiation or biological processes, we adapted the graph construction rules to focus
exclusively on the Navier-Stokes mechanisms.

G.2.1 BASELINE: GRID-GCN

The Grid-GCN serves as a control group representing the standard computer vision approach applied
to physical fields.

Graph Construction. It constructs a homogeneous lattice graph on the 64 × 64 sampling grid.
Connectivity is defined strictly by Euclidean proximity using the Von Neumann neighborhood (con-
necting only to 4 immediate neighbors: up, down, left, right).

Mechanism. Crucially, this topology forces isotropic message passing, where features are aggre-
gated uniformly from all spatial directions regardless of the local wind vector. This effectively treats
fluid prediction as a generic image smoothing task, ignoring the directional nature of momentum
transport.

G.2.2 URBANGRAPH

In contrast, UrbanGraph utilizes its heterogeneous graph capabilities to encode specific fluid dy-
namic operators. We mapped the edge types from the main paper to this aerodynamic context:

Advection Edges. To simulate momentum transport, we construct directed edges searching up-
stream along the dominant wind vector. This explicitly models the advection process, allowing the
network to transport flow features from upstream nodes to downstream ones (mimicking the semi-
Lagrangian scheme).

Wake Edges. To capture non-local turbulence and pressure drops behind obstacles, we construct
wake edges that connect building boundary nodes directly to their leeward wake zones. This is
topologically analogous to the ”Shading” edges in the thermal task (both representing directional
obstruction effects), enforcing physical consistency in cavity circulation regions.

G.2.3 PERFORMANCE ANALYSIS

Table A14: Performance comparison on velocity vec-
tor components (R2).

Model u v w
Grid-GCN 0.7827± 0.0100 0.6885± 0.0166 0.6858± 0.0141
UrbanGraph 0.8886± 0.0004 0.8474± 0.0025 0.7937± 0.0020

Quantitative results in Table A14show that
UrbanGraph achieves an R2 of 0.8886
for the u-component, significantly out-
performing the Grid-GCN. The perfor-
mance gap highlights a critical physical in-
sight: Isotropic aggregation (Grid-GCN) in-
evitably over-smooths the vector field, fail-
ing to maintain sharp velocity gradients at
separation points. Conversely, UrbanGraph’s anisotropic inductive bias successfully reconstructs
complex flow patterns, such as flow separation and wake recirculation, by explicitly routing infor-
mation along physically valid flow paths.
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