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ABSTRACT

With rapid urbanization, predicting urban microclimates has become critical, as it
affects building energy demand and public health risks. However, existing gener-
ative and homogeneous graph approaches fall short in capturing physical consis-
tency, spatial dependencies, and temporal variability. To address this, we intro-
duce UrbanGraph, a physics-informed framework integrating heterogeneous and
dynamic spatio-temporal graphs. It encodes key physical processes—vegetation
evapotranspiration, shading, and convective diffusion—while modeling complex
spatial dependencies among diverse urban entities and their temporal evolution.
We evaluate UrbanGraph on UMC4/12, a physics-based simulation dataset cov-
ering diverse urban configurations and climates. Results show that UrbanGraph
improves R² by up to 10.8% and reduces FLOPs by 17.0% over all baselines,
with heterogeneous and dynamic graphs contributing 3.5% and 7.1% gains. Our
dataset provides the first high-resolution benchmark for spatio-temporal microcli-
mate modeling, and our method extends to broader urban heterogeneous dynamic
computing tasks.

1 INTRODUCTION

Urban microclimate prediction is crucial for urban sustainability and public health (Grant et al.,
2025; He et al., 2024). This task represents a broad class of spatio-temporal urban physical field
prediction problems, such as urban wind field simulation and pollutant dispersion forecasting. The
core challenge of these problems is that the physical state at any point in urban space is determined
by the collective interactions among numerous and diverse urban entities (e.g., buildings, vegeta-
tion) through time-varying physical processes such as radiation and convection (Coutts et al., 2013;
de Abreu-Harbich et al., 2015; Irmak et al., 2017; Abd Elraouf et al., 2022). While high-fidelity
physics-based numerical simulations, such as Computational Fluid Dynamics (CFD), are the stan-
dard approach for solving such problems, their immense computational overhead makes them in-
feasible for large-scale, time-series prediction tasks. Therefore, exploring computationally efficient
data-driven methods to strike a balance between prediction accuracy and efficiency has become an
essential research direction.

Although data-driven methods are promising, they still face challenges in accurately modeling the
underlying physical processes. Station-based methods can only predict time series at discrete loca-
tions, neglecting spatial relationships and failing to generate continuous physical fields. Grid-based
generative models are constrained by local receptive fields, which makes it difficult for them to cap-
ture long-range spatial dependencies (Carter et al., 2016; Kemppinen et al., 2024). Graph Neural
Networks (GNNs) offer a more natural framework for modeling the spatial dependencies among
urban entities. However, existing GNN-based approaches often lack physical consistency. They
typically employ a uniform message-passing mechanism that cannot distinguish between different
physical processes, such as vegetation evapotranspiration and building shading (Zhao et al., 2021).
Furthermore, these methods struggle to model temporal variability. They mostly rely on a fixed
graph structure, which is incapable of representing how physical processes evolve in real-time in re-
sponse to changing environmental conditions. Consequently, there is a pressing need in the field for
a unified framework capable of explicitly modeling multiple physical processes and their temporal
evolution.
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Figure 1: The UrbanGraph framework. (a) Overall pipeline: Geospatial data is converted into a
graph structure, which is processed by a spatio-temporal GNN with climate and time characteristics
to generate high-resolution predictions. (b) The physics-informed dynamic graph concept: Nodes
represent urban entities, while edges—representing physical interactions like building shading and
convective diffusion—are dynamically reconfigured over time to reflect changing environmental
conditions.

Addressing this gap requires solving the following two core and orthogonal technical challenges.
(i) A method must be designed to encode multiple, independent, and time-varying physical pro-
cesses into a dynamic, heterogeneous graph structure. The fundamental difficulty lies in abstracting
continuous physical fields (such as radiative transfer and fluid dynamics) into a discrete and com-
putationally efficient graph topology, without losing critical physical information. (ii) A neural
network architecture must be designed that can effectively process this complex sequence of graphs.
This is highly challenging because the model must not only handle the dual dynamics of both node
features and graph topology but also remain sensitive to the diverse types of relationships, each
driven by different physical processes. Ultimately, the entire framework must strike a balance be-
tween physical interpretability and computational efficiency, while avoiding oversimplification of
the urban morphology (Heo et al.).

To address these challenges, we propose the UrbanGraph framework,, illustrated in Figure 1. It first
employs a physics-informed graph representation method to explicitly map multiple physical pro-
cesses, such as shading and convection, into different types of dynamic edges, thereby transforming
physical laws into a computable graph structure. Subsequently, we design a spatio-temporal graph
network centered on a heterogeneous message-passing mechanism. This mechanism can assign
dedicated learning functions to different physical processes (Schlichtkrull et al., 2017) and capture
their dynamic evolution. The effectiveness of this approach is validated on a custom high-fidelity,
physics-based simulation benchmark dataset. The results on prediction accuracy and computational
efficiency across multiple targets suggest that this framework can be generalized to other urban
computing tasks.

To summarize, we make the following contributions:

• We propose a physics-informed graph representation that explicitly encodes time-varying
physical processes and static spatial relationships into the topology of a dynamic heteroge-
neous graph. This method offers a novel pathway for injecting temporally evolving domain
knowledge into graph learning.

• We develop a dynamic heterogeneous graph neural network architecture for the Urban-
Graph framework, which efficiently learns from the complex graph sequences we pro-
pose through a heterogeneous message-passing mechanism. Comprehensive experiments
demonstrate that the architecture achieves state-of-the-art performance in both prediction
accuracy and computational efficiency. Compared to four categories of baselines, it im-
proves accuracy by up to 10.8% (in R²) and efficiency by 17.0% (in FLOPs).

• We provide a new, well-validated perspective for modeling urban systems. Results quanti-
tatively demonstrate that the heterogeneous and dynamic mechanisms are key to the perfor-
mance improvement, contributing gains of 3.5% and 7.1%, respectively. Furthermore, the
architecture’s results on multiple target variables show strong generalization capabilities.
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2 RELATED WORK

Classical Microclimate Prediction Methods. Classical methods for urban microclimate prediction
can be broadly categorized into two types. The first consists of physics-based simulation models,
such as CFD and ENVI-met (Toparlar et al., 2017; Tsoka et al., 2018; Liu et al., 2021; Barros Mor-
eira de Carvalho & Bueno da Silva, 2024). These methods offer high physical fidelity but suffer
from immense computational overhead, making them impractical for large-scale, long-term time-
series prediction tasks. The second category comprises data-driven approaches, including traditional
machine learning (Arulmozhi et al., 2021; Alaoui et al., 2023) and grid-based deep learning models
like CNNs (Kumar et al., 2021; Kastner & Dogan, 2023; Fujiwara et al., 2024). While these methods
are computationally efficient, the former struggle to capture complex spatial dependencies, and the
latter are constrained by the Euclidean data assumption, making them unable to process the inher-
ently non-structural geometry of urban environments. To address these limitations, GNNs provide a
more suitable framework, as their message-passing mechanism can directly model complex spatial
dependencies (Kipf & Welling, 2016; Xu et al., 2019; Zhou et al., 2020).

Physics-Informed Methods. The physics-informed approach aims to enhance the learning process
by incorporating fundamental knowledge and governing physical laws (Karniadakis et al., 2021).
In the field of urban computing, this is often achieved either by adding the residuals of physical
equations to the loss function as a soft constraint, known as a learning bias (Shao et al., 2023;
Taghizadeh et al., 2025), or by designing specific network modules or message-passing mechanisms
to simulate physical processes, known as an inductive bias (Xue; Qu et al., 2023; Gao et al., 2024).
However, the former approach often increases training overhead due to the need to compute residuals
of partial differential equations (PDEs), while the latter, despite imposing hard constraints, can
sacrifice model flexibility. For tasks where the physical processes and rules are relatively well-
defined, a more efficient and decoupled pathway is to modify the input data, an approach known as
an observational bias (Banerjee et al., 2025). For example, Pan et al. (2025) embed principles of
traffic flow physics into a step-wise framework for intersection flow prediction by extracting physical
performance indicators as input features.

Heterogeneous Graph Methods. In the context of urban physical field prediction, Graph Neu-
ral Networks typically simplify the complex urban system into a homogeneous graph (Yu et al.,
2024; Zheng & Lu, 2024). However, this simplification limits the model’s fidelity and interpretabil-
ity. Heterogeneous graphs, which consist of multiple types of nodes and edges, can represent the
rich semantic relationships in complex systems (Schlichtkrull et al., 2017; Zhang et al., 2019; Zhao
et al., 2021). By designing type-aware message-passing mechanisms, Heterogeneous Graph Neural
Networks (HGNNs) have achieved success in various tasks, such as quantifying road network homo-
geneity (Xue et al., 2022), perceiving urban spatial heterogeneity (Xiao et al., 2023), learning urban
region representations (Kim & Yoon, 2025), predicting the interactive behaviors of traffic partici-
pants (Li et al., 2021), and uncovering the dynamics of building carbon emissions (Yap et al., 2025).
Although HGNNs have shown great potential in the field of urban computing, their application in
microclimate prediction—specifically, leveraging them to explicitly differentiate between multiple
physical processes to enhance model fidelity—remains an unexplored area.

Dynamic Graph Methods. In applications for urban physical field prediction, Graph Neural Net-
works often rely on a static graph topology to represent the spatial relationships between entities
(Mandal & Thakur, 2023; Shao et al., 2024; Xu et al., 2024). However, this assumption conflicts
with physical reality, as the scope and intensity of physical processes (e.g., building shading) are
determined in real-time by external environmental factors (e.g., solar position). Dynamic Graph
Neural Networks (DGNNs) provide a more realistic framework for this problem (Skarding et al.,
2021; Zheng et al., 2024). DGNNs have become a mainstream and effective approach for handling
other urban tasks with time-varying interactions, particularly in traffic forecasting, demonstrating
their potential in the field of urban computing (Zhao et al., 2020; Xie et al., 2020; Bui et al., 2022).
In these mainstream applications, the evolution of the graph is typically treated as a data-driven, ob-
servational phenomenon (Li et al., 2019; Jin et al., 2020). In physical field prediction tasks, however,
the graph topology (e.g., shading relationships) is explicitly reconfigured at each timestep by exoge-
nous physical first principles. This fundamental difference gives rise to the need for a new class of
DGNNs capable of learning from graph topologies that are actively reconfigured by physical first
principles.
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3 PRELIMINARY

Target Variables. The Universal Thermal Climate Index (UTCI) (Jendritzky et al., 2012) and the
Physiological Equivalent Temperature (PET) (Matzarakis et al., 1999) represent the isothermal air
temperature that would elicit the same physiological stress response. Air Temperature (AT) is the
most direct measure of atmospheric heat. Mean Radiant Temperature (MRT) quantifies the radiative
heat exchange between the human body and its surrounding surfaces, such as sunlit pavements or
shaded building facades. Wind Speed (WS) primarily affects convective heat loss and the efficiency
of evaporative cooling from the skin surface. Relative Humidity (RH) determines the efficiency of
the body’s primary cooling mechanism: sweat evaporation.

ENVI-met model. The data in this paper were generated using the ENVI-met model. ENVI-
met is a high-resolution, three-dimensional, non-hydrostatic numerical model widely recognized for
simulating surface-plant-air interactions within complex urban structures. The model captures the
feedback mechanisms among different urban elements by coupling an atmospheric model with de-
tailed soil and vegetation models. This enables it to accurately simulate how solid boundaries (’hard’
boundaries), such as building walls, and porous obstructions (’soft’ boundaries), such as vegetation
canopies, alter local airflow, temperature, and humidity. The fundamental equations governing these
processes are detailed in Appendix A.

Problem Formulation. We model the urban environment by discretizing Geographic Information
System (GIS) data into grid cells, where each cell is treated as a node v ∈ V. The state of the
environment is represented by a sequence of dynamic heterogeneous graphs {Gt}, where the graph
at timestep t is defined as Gt = (V, Et,R). Here, V is the static set of nodes, R is the static set of
relation types (e.g., ’covered by shadow from cell’), and Et is the set of edges that varies with time.
The features of all nodes are collected in a matrix X ∈ R|V|×8. Additionally, we define ut as the
global context vector at timestep t.

For any one of the six target variables, denoted by k, given a sequence of historical graph ob-
servations of length Thist, {Gt}t0t=t0−Thist+1, and the corresponding sequence of context vectors
{ut}t0t=t0−Thist+1, the model aims to learn a specialized mapping function F (k)(·) to predict the
values of this specific variable for the next Tpred timesteps:{

ŷ
(k)
t0+1, . . . , ŷ

(k)
t0+Tpred

}
= F (k)

(
{Gt}t0t=t0−Thist+1 , {ut}t0t=t0−Thist+1 , X

)
(1)

where ŷ
(k)
τ ∈ R|V| is the predicted vector for the target variable k at a future timestep τ .

Relational graph convolutional networks. RGCNs are an extension of GCNs, initially developed
for tasks such as link prediction and entity classification. They are specifically designed to handle
multi-relational graph data. The core idea is to learn distinct feature transformations for different
types of relationships between nodes. The forward-pass update of a single RGCN layer is defined
as:

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 (2)

where h(l)
i ∈ Rd(l)

is the hidden state of node vi in the l-th layer, and d(l) is the dimensionality of the
representation at this layer. Nr

i denotes the set of neighbors of node vi under relation r ∈ R. W (l)
r

is a learnable, relation-specific weight matrix that allows the model to distinguish between different
types of relations, and W

(l)
0 is the weight matrix for the self-connection. σ represents an element-

wise activation function (e.g., PReLU), and ci,r is a problem-specific normalization constant that
can either be learned or preset (e.g., ci,r = Nr

i ).

4 METHOD

Our proposed UrbanGraph framework consists of two core components: a physics-informed graph
representation and a spatio-temporal dynamic relational graph network. To rigorously evaluate the
effectiveness of our approach, we first generated a large-scale spatio-temporal dataset through high-
fidelity physical simulations, the detailed generation process and parameter configurations of which
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are described in Appendix B. Second, to address the challenge that urban systems exhibit high
heterogeneity in both spatial and temporal dimensions, we detail our physics-informed graph repre-
sentation in Section 4.1, which is designed to efficiently capture the underlying physical interactions
among different urban elements. Finally, in Section 4.2, we introduce the UrbanGraph architecture,
which explicitly leverages the time-varying relationships between urban elements to perform node
prediction tasks.

Figure 2: An illustrative overview of the five edge types used in our graph representation. Dynamic
edges are derived from physical processes like shadowing and wind, while static edges are based on
spatial proximity, feature similarity, and object integrity.

4.1 PHYSICS-INFORMED GRAPH REPRESENTATION

For the graph at any given timestep t, Gt = (V, Et,R), its edge set Et is reconstructed based on
the environmental conditions of the current hour. This process is designed to explicitly capture the
physical mechanisms that govern the spatial distribution of microclimate factors. The edge set Et
encodes five distinct types of relationships, which are categorized into two main classes: static and
dynamic. Figure 2 provides a visual illustration of the construction mechanisms for these five edge
types.

Relational graph convolutional networks. This category of edges represents spatial and semantic
relationships that do not change over time. As demonstrated by Yan et al. (2021), non-local spatial
functions can significantly influence the assessment of a central region. To capture these non-local
interactions between functionally similar nodes, we introduce the following edge type:

SEMANTIC SIMILARITY EDGES. Using the k-Nearest Neighbors (k-NN) algorithm, we construct
directed edges from each node to its k nearest neighbors in the normalized static feature space.

INTERNAL CONTIGUITY EDGES. To simulate local energy transfer within large continuous bod-
ies (e.g., building clusters or groups of trees), ’internal nodes’ establish connections with their eight
immediate neighbors (Moore neighborhood). A node is defined as an ’internal node’ if and only if
all of its direct neighbors (von Neumann neighborhood) belong to the same object class as itself.

Physics-Informed Dynamic Edges. To explicitly model time-varying physical processes, we intro-
duce three types of dynamic edges whose connections are updated hourly:

SHADING. This edge type is used to model the cooling effect of shadows. A directed edge of type
’shadow’ is established from a shading object node vi (building or tree) with height hobj to a ground
node vj if their Euclidean distance d(vi, vj) is less than or equal to the shadow length Lshadow,t,
and the angular deviation falls within a predefined shadow angle width ∆φshadow. The shadow
properties are calculated as follows:

Lshadow,t = hobj/ tan(θelev,t) (3)

5
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φshadow,t = (φazimuth,t + 180◦)mod360◦ (4)

where θelev,t is the solar elevation angle at timestep t, φazimuth,t is the solar azimuth angle, and
φshadow,t is the principal direction of the shadow projection.

VEGETATION EVAPOTRANSPIRATION. This edge type is designed to represent the local cooling
effect of vegetation. A directed edge of type ’Vegetation Evapotranspiration’ is established from a
tree node vi to any other node vj if their Euclidean distance d(vi, vj) does not exceed a dynamic
radius of influence, Ractivity,t. This radius is calculated based on the global horizontal radiation
It(Wh/m2) for the current hour, where Rbase is a presettable base radius:

Ractivity,t = Rbase · clip(It/1000, 0.5, 1.2) (5)

CONVECTIVE DIFFUSION. To simulate the anisotropic effects of wind-driven convection, an edge
of type ’Convective Diffusion’ is created from node vi to vj . The condition for creating this edge is
that their ’effective distance’deff (vi, vj), must be less than or equal to a base local radius, Rlocal.
This effective distance is adjusted by a modulation factor, αwind,t, which accounts for the wind
speed vwind,t and wind direction alignment ∆θwind:

αwind,t = 1.0 + λwind · cos(∆θwind) · (vwind,t/vmax) (6)

deff (vi, vj) = d(vi, vj)/αwind,t ≤ Rlocal (7)

where λwind is the wind effect intensity coefficient, determining the extent to which wind speed
and direction stretch or compress the ’effective connection distance’.vmax represents the maximum
wind speed observed in the study scenario, ensuring the numerical stability of the model. Detailed
parameter configurations for constructing all edge types are provided in Appendix C.

4.2 URBANGRAPH ARCHITECTURE

To effectively process the graph structures from our physics-informed representation, we designed
a dynamic and heterogeneous architecture for UrbanGraph. As illustrated in Figure 3, the overall
architecture comprises four core components: Feature Encoders, a Spatial Graph Encoder, a Spatio-
Temporal Evolution Module, and a Prediction Head.

Feature Encoders and Spatial Graph Encoder. At each timestep t, we employ independent Multi-
Layer Perceptrons (MLPs) to encode non-graph dynamic inputs. Graph-level global environmental
features uenv

t and periodic temporal features utime
t are projected into high-dimensional embedding

vectors eenvt and etime
t , respectively. For each graph Gt in the input sequence, we utilize a three-

layer RGCN to capture the spatial dependencies defined by the time-varying heterogeneous edges.
This module outputs a spatially-informed representation vector hRGCN

v,t for each node v.

Spatio-Temporal Evolution Module. This module is responsible for fusing the spatial and global
dynamic features and uses a Long Short-Term Memory (LSTM) network to model their temporal
evolution. At each prediction timestep t (from t1 to Tpred), we concatenate the spatial representation
of a node, hRGCN

v,t , with the global environmental embedding, eenvt , and the temporal embedding,
etime
t . The resulting concatenated vector is passed through a fusion MLP to generate the input

feature for the LSTM layer, xLSTM
v,t . This is expressed as:

xLSTM
v,t = MLPfusion([h

RGCN
v,t ⊕ eenvt ⊕ etime

t ]) (8)

The sequence of fused features is then fed into an LSTM layer to model the temporal dynamics. To
provide the model with an effective initial state, an MLP projects the spatial features from the initial
graph, hRGCN

v,t0 , to form the initial hidden state h0. The initial cell state c0 is initialized as a zero
vector. This is expressed as:

h0 = MLPh0
(hRGCN

v,t0 ) (9)

Prediction Head. Finally, a separate MLP decodes the last hidden state of the LSTM, hLSTM
v,Tpred

, into
a multi-step prediction vector, ŷv . This generates the predictions for all Tpred future timesteps at
once. This is expressed as:

ŷv = [ŷv,1, . . . , ŷv,Tpred] = MLPhead(h
LSTM
v,Tpred

) (10)
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Figure 3: The overall architecture of the UrbanGraph model.(a) The end-to-end framework, which
processes historical time-series data, weather context, and a sequence of dynamic heterogeneous
graphs. At each timestep, an RGCN Block extracts spatial features from the corresponding graph,
which are then fused with temporal features by an MLP Fusion Layer. An LSTM layer propagates
the temporal state to the next timestep.(b) The detailed structure of the RGCN Block, which aggre-
gates messages from neighbors across different relation types (R1 − R5) and combines them with
the node’s self-features.(c) The architecture of a standard LSTM layer used for capturing temporal
dependencies.

5 EXPERIMENTS

Dataset. All experiments are conducted on the high-fidelity dataset generated via ENVI-met, as
detailed in Appendix B. Our primary task is to evaluate the model’s effectiveness on the UTCI
prediction task. To further demonstrate the scalability and generalization capability of our physics-
informed representation and architecture, we train and evaluate models on all six target variables.
The temporal graph structures are constructed following the physical principles outlined in Sec-
tion 4.1. The resulting spatio-temporal graph sequence data is split into training (70%), validation
(20%), and testing (10%) sets.

Baseline Models. To comprehensively evaluate our model’s performance, we construct a series of
strong baseline models by replacing key components of our proposed architecture. While ensuring
a relatively fair comparison, we independently optimize the hyperparameters for each architecture.
(i)Non-Graph Model.We replace the RGCN module with a Conditional GAN (CGAN) (Isola et al.,
2018) to evaluate the utility of an explicit graph structure. (ii)Homogeneous Graph Models. We
replace the RGCN module with GCN and GINE to assess the importance of modeling heteroge-
neous relationships. (iii)Generative Graph Models. We replace the RGCN with generative methods,
including a Graph Autoencoder (GAE) and a Graph GAN (GGAN), where the CNN layers in a
standard GAN are replaced with RGCN layers. (iv)Temporal Variants.We replace the LSTM mod-
ule with a GRU and a Transformer encoder to analyze the impact of different temporal modeling
components.

7
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Evaluation Metrics. The predictive performance of the models is evaluated using three standard
regression metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the Coef-
ficient of Determination (R²). To assess computational cost, we record the number of floating-point
operations (FLOPs), training time (seconds per epoch), and inference speed (inferences per second).
All models are trained using the Adam optimizer with a Mean Squared Error (MSE) loss function.
For the GAE, the loss function is augmented with a KL divergence term; for the CGAN, a binary
cross-entropy loss is added. To ensure robust training, we employ the ReduceLROnPlateau learning
rate scheduling strategy and an early stopping mechanism.

Model Settings. In the main comparative analysis, our proposed spatio-temporal heterogeneous
model is configured with a learning rate of 0.001, a batch size of 8, a hidden dimension of 128 for
all layers, a 3-layer RGCN encoder, and a 1-layer LSTM. It uses a multi-head prediction architecture,
and all models are run for 3 independent trials. For the subsequent ablation studies and sensitivity
analyses, we use a model with hyperparameters optimized by Optuna (Akiba et al., 2019), featuring
a hidden dimension of 384 and a single prediction head. More detailed hyperparameter settings are
available in Appendix D. All experiments were conducted on a single NVIDIA L4 GPU.

6 RESULT

This section presents a comprehensive experimental evaluation of our proposed UrbanGraph frame-
work. We begin in Section 6.1 by comparing its performance against various baseline models to
validate its effectiveness. Subsequently, in Section 6.2, we conduct key ablation studies to quantify
the contributions of our model’s core components. Further detailed analyses—including additional
ablation studies, hyperparameter sensitivity, and a computational performance evaluation—are pro-
vided in Appendix E.

6.1 MODEL PERFORMANCE

As shown in Table 1, our proposed UrbanGraph achieves the best performance across all evaluation
metrics. On the test set, the model achieves the highest average R² of 0.8542 and the lowest RMSE
of 1.0535, outperforming all baseline models. Compared to all baselines, it improves prediction
accuracy by up to 10.8% (in R²) and enhances computational efficiency by 17.0% (in FLOPs). This
highlights the effectiveness of the proposed method in efficiently capturing complex spatio-temporal
dependencies.

Table 1: Performance and efficiency comparison of different model architectures on the test set.

Model Flops Test Time Cost
Avg R² Avg RMSE Training (epoch/s) Inference/s

CGAN-LSTM 1.10× 1010 0.7712± .0369 1.3450± .1175 15.3252± 1.0999 1.5558± .1951
GCN-LSTM 8.28× 109 0.8347± .0039 1.1327± .0433 28.5321± 2.8358 2.8619± .4516
GINE-LSTM 8.80× 109 0.8087± .0226 1.2045± .0294 32.3169± 1.4643 3.1731± .2325
GAE-LSTM 1.05× 1010 0.8494± .0036 1.0687± .0269 36.7376± 3.2079 3.6022± .4504
GGAN-LSTM 9.44× 109 0.8415± .0034 1.0981± .0406 42.4678± 3.1537 2.6488± .4073
RGCN-GRU 7.12× 109 0.8483± .0035 1.0682± .0380 20.8096± 1.3612 2.1640± .2133
RGCN-Transformer 5.09× 1010 0.8465± .0065 1.0791± .0253 37.6463± .8325 3.3345± .1482

URBANGRAPH 9.13× 109 0.8542± .0044 1.0535± .0338 24.4823± 0.9323 2.6914± .1404

The convergence curve (Figure 4a) confirms the stability of the model’s training process. More-
over, the hour-by-hour error analysis (Figure 4b) shows that our method consistently maintains the
lowest RMSE throughout the entire 12-hour prediction horizon. It demonstrates strong robustness
against error accumulation, particularly during afternoon hours (e.g., 14:00 and 17:00) when climate
fluctuations are more pronounced.

In addition to these quantitative metrics, we provide qualitative visualizations of the predicted heat
maps in Appendix F, which intuitively demonstrate the model’s ability to capture fine-grained spatial
distributions.

6.2 ABLATION ANALYSIS
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Figure 4: Model performance analysis. (a) Training and validation R² convergence curves for the
UrbanGraph model. Shaded areas represent the confidence interval. (b) Hour-by-hour R² compari-
son between UrbanGraph and baselines on the test set, with error bars indicating standard deviation.

Table 2: Ablation studies for key mechanisms.
(a) Heterogeneous.

Model R² MSE

Base 0.8629 1.0976
Homo 0.8336 1.4275

(b) Dynamic.

Model R² MSE

Base 0.8629 1.0976
Static 0.8057 1.6678

Heterogeneous Graph Mechanism. To
validate the importance of modeling diverse
physical interactions with distinct relation
types, we compare our full model (Base),
which uses a heterogeneous graph (RGCN),
against a variant that simplifies the graph
to be homogeneous (GCN). The results,
shown in Table 2a, reveal a significant performance degradation when heterogeneity is removed,
with the R² score dropping from 0.8629 to 0.8347. This underscores the necessity of using a hetero-
geneous framework to differentiate between various physical processes.

Dynamic Graph Mechanism. To validate the effectiveness of the dynamic graph mechanism, we
compare our model with a variant that uses a static graph (i.e., the same graph structure is shared
across all timesteps). As shown in Table 2b, disabling the dynamic mechanism leads to a significant
performance drop in the model (Static), with the R² score decreasing from 0.8629 to 0.8057. This
highlights that explicitly modeling the temporal evolution of spatial interactions is crucial for this
prediction task.

Further ablation studies analyzing other key components—such as the contribution of individual
edge types, various prediction head architectures, feature fusion strategies, and the effects of explicit
edge features—are detailed in Appendix E.

7 CONCLUSION

In this paper, we proposed UrbanGraph, a physics-informed dynamic heterogeneous graph frame-
work for solving urban dynamic heterogeneous graph computing tasks. We tested it on the problem
of microclimate prediction, where UrbanGraph achieved the best performance compared to all base-
lines. It improves prediction accuracy by up to 10.8% (in R²) and computational efficiency by 17.0%
(in FLOPs), with the heterogeneous and dynamic graph mechanisms contributing gains of 3.5% and
7.1%, respectively. Furthermore, the UMC4/12 dataset, which we constructed and released, serves
as the first high-resolution benchmark in this field and will help accelerate the development and fair
comparison of new algorithms in the future. In summary, our work advances the application of data-
driven methods in the field of urban physical field prediction and points to a promising direction for
future research.

Limitation and Future Work. Our work explicitly encodes predefined physical processes (i.e.,
prior knowledge) into the graph topology. While this has shown performance advantages, it may
oversimplify the real physical processes, as it might overlook latent relationships present in the data
that we have not yet modeled or are unknown. Therefore, a key direction for future research is
to explore adaptive graph learning methods. The core objective is to design a framework that can
automatically learn and optimize the graph structure from data in an end-to-end manner. Such a
framework could not only surpass existing frameworks on prediction tasks but also uncover un-
known interaction patterns among urban entities, providing new insights for urban science.

9
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A KEY PHYSICAL EQUATIONS IN ENVI-MET

This appendix outlines the key physical equations within the ENVI-met model (Bruse & Fleer, 1998)
used to generate the dataset for this study.

A.1 MEAN AIR FLOW

The model describes three-dimensional turbulence by solving the non-hydrostatic, incompressible
Navier-Stokes equations. The fundamental equations for the mean wind velocity components u,v,w
are as follows:

∂u

∂t
+ ui

∂u

∂xi
= −∂p′

∂x
+Km

(
∂2u

∂x2
i

)
+ f(v − vg)− Su (11)

∂v

∂t
+ ui

∂v

∂xi
= −∂p′

∂y
+Km

(
∂2v

∂x2
i

)
− f(u− ug)− Sv (12)

∂w

∂t
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∂w

∂xi
= −∂p′

∂z
+Km

(
∂2w

∂x2
i

)
+ g

θ(z)

θref (z)
− Sw (13)

where p′is the local pressure perturbation,θ is the potential temperature, Km is the turbulent diffu-
sivity for momentum, f is the Coriolis parameter, and Su(i) are the momentum source/sink terms
induced by elements such as vegetation.

A.2 TEMPERATURE AND HUMIDITY

The distribution of potential temperature θ and specific humidity q in the atmosphere is described
by the advection-diffusion equations, which include internal source/sink terms:

∂θ

∂t
+ ui

∂θ

∂xi
= Kh

(
∂2θ

∂x2
i

)
+Qh (14)

∂q

∂t
+ ui

∂q

∂xi
= Kq

(
∂2q

∂x2
i

)
+Qq (15)

where Khand Kq are the turbulent exchange coefficients for heat and moisture, respectively. Qh and
Qq are the source/sink terms that couple the heat and moisture exchange processes at the surface and
with vegetation.
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A.3 RADIATIVE FLUXES

The model solves the energy balance for surfaces and walls by calculating the net shortwave radi-
ation, Rsw,net, and the net longwave radiation,Rlw,net. The shortwave radiation flux at any point,
Rsw(z), consists of direct and diffuse radiation, and accounts for the shading effects of buildings
and vegetation:

Rsw(z) = σsw,dir(z)R
0
sw,dir + σsw,dif (z)σsvf (z)R

0
sw,dif + (1− σsvf (z))R

0
sw,dif ᾱ (16)

where the R0 terms represent the incoming radiation at the top of the model, and the σ coefficients
are reduction factors ranging from 0 to 1 that quantify the effects of direct radiation σsw,dir, diffuse
radiation σsw,dif , and the sky view factor σsvf .

For the complete set of model equations, parameterization schemes, and numerical solution meth-
ods, please refer to the original publication.

B HIGH-RESOLUTION SPATIO-TEMPORAL DATASET FOR MICROCLIMATE
AND THERMAL COMFORT

We constructed the UMC4/12 dataset based on public geospatial data and the ENVI-met model. We
selected a typical extreme heat day as the basis for our simulations, using the standard meteoro-
logical year data (EPW) from Singapore Changi Airport. To ensure morphological diversity in the
dataset, we employed a stratified sampling strategy to select 11 representative 1 km² sites across Sin-
gapore. The stratification was based on key urban morphology metrics, and the sample pool covers
a wide range of urban typologies, from ultra-high-density commercial districts to mature residen-
tial areas with large parks (see Appendix Table A1). The metrics include Average Building Height
(Avg.BH), Green Space Ratio (GSR), and Building Coverage Ratio (BCR).

Table A1: Distribution of morphological and material properties for the 11 selected 1km² sites in
Singapore.

Data Index Avg.BH(m) GSR BCR Pavement% Smashed Brick% Loamy Soil% Deep Water%
1 13.36 0.021 0.078 0.520 0.095 0.367 0.019
2 19.76 0.055 0.155 0.734 0.062 0.181 0.023
3 12.86 0.255 0.219 0.487 0.000 0.471 0.043
4 23.97 0.184 0.217 0.630 0.043 0.316 0.010
5 10.11 0.116 0.235 0.643 0.026 0.302 0.029
6 12.01 0.429 0.126 0.260 0.020 0.718 0.002
7 28.14 0.165 0.242 0.671 0.023 0.286 0.020
8 13.86 0.209 0.338 0.733 0.036 0.220 0.011
9 33.73 0.198 0.108 0.297 0.050 0.554 0.098
10 19.81 0.105 0.109 0.291 0.023 0.222 0.464
11 16.06 0.444 0.128 0.211 0.062 0.654 0.072

We built the 3D model input files for the ENVI-met simulations by integrating multiple public
geospatial data sources. Specifically, we resampled and performed 3D voxelization on building
footprints and heights from OpenStreetMap (Haklay & Weber, 2008), a high-resolution land cover
classification map (Gaw et al., 2019), and an ultra-high-resolution canopy height map (Tolan et al.,
2024). This process generated ENVI-met input files (.INX) with a horizontal resolution of 4 meters
and a vertical resolution of 3 meters. To ensure high fidelity, we assigned realistic material properties
to different surfaces and building boundaries, and specified corresponding tree species for vegetation
of varying heights. The detailed material assignments and parameters are provided in Appendix
Table A2 and A3. The simulation period covered the hours from 08:00 to 19:00, when urban heat
effects are most significant.

Figure A1 provides a visualization of the primary input data layers—tree height, land cover type,
and building height—for two representative sites, illustrating the morphological diversity within the
UMC4/12 dataset.

Following the ENVI-met simulation, we generated high-resolution spatio-temporal data for the six
target variables. Figure A2 illustrates the simulation output for one of the urban blocks, displaying
the evolution of all six variables over the course of the day.
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Figure A1: Visualization of the input data for two sample sites from the UMC4/12 dataset. The top
row shows a dense, mixed-use urban area, while the bottom row depicts a residential area with more
green space. Each column represents a different data layer: (left) Tree Height, (middle) Land Cover
Type, and (right) Building Height.

Figure A2: Visualization of the spatio-temporal simulation output for a single urban block. Each
row corresponds to a different target variable: AT, WS, RH, MRT, PET, and UTCI. Each column
represents a specific hour, showing the dynamic evolution of the microclimate from morning (09:00)
to evening (19:00).
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Table A2: Class definitions mapping land cover types to surface materials for ENVI-met simulation.

Type Material Class
Buildings Pavement 1
Impervious surfaces Pavement 1
Non-vegetated pervious surfaces Terre battue 2
Vegetation with limited human management (w/ Tree Canopy) Loamy Soil 3
Vegetation with limited human management (w/o Tree Canopy) Loamy Soil 3
Vegetation with structure dominated by human management (w/ Canopy) Loamy Soil 3
Vegetation with structure dominated by human management (w/o Canopy) Loamy Soil 3
Freshwater swamp forest Unsealed Soil 4
Freshwater marsh Unsealed Soil 4
Mangrove Deep Water 5
Water courses Deep Water 5
Water bodies Deep Water 5
Marine Deep Water 5

Table A3: Material properties used in the ENVI-met model configuration.

Material z0 Roughness Length Albedo Emissivity
Pavement 0.010 0.3 0.9
Terre battue 0.010 0.4 0.9
Loamy Soil 0.015 0.0 0.9
Unsealed Soil 0.015 0.2 0.9
Deep Water 0.010 0.0 0.9

To expand the dataset while efficiently managing computational resources, we systematically parti-
tioned the original 1 km² simulation results into 250m × 250m blocks with a 50-meter overlapping
area. This resulted in a final dataset containing 396 unique urban blocks. Each block is discretized
into 2,500 nodes. For each block, we provide a time series covering a 12-hour interval for 6 key mi-
croclimate and thermal comfort variables. Overall, the UMC4/12 dataset offers approximately 11.9
million high-quality spatio-temporal data points for each target variable, enabling the systematic
evaluation of spatio-temporal prediction models in complex urban environments.

C PARAMETER SETTINGS FOR PHYSICS-INFORMED GRAPH
REPRESENTATION

This appendix details the key parameters used in the construction of the dynamic heterogeneous
graph, as introduced in Section 4.1, and provides the rationale for their settings.

C.1 PARAMETER RATIONALE

Number of Nearest Neighbors (k). The value is chosen to balance informational richness with
computational overhead. Allowing each node to connect to its eight most similar neighbors (con-
sistent with the size of a Moore neighborhood) effectively captures non-local semantic information
while avoiding the noise that could be introduced by connecting too many distant nodes. As demon-
strated in the sensitivity analysis in Section E.2, this value represents the optimal trade-off between
model performance and efficiency.

Maximum Shadow Extent (Rshadow
max ). These upper limits are set to prevent unrealistically long

shadows, which can occur at low solar elevation angles, from creating computational redundancy
in the graph representation. The maximum shadow extent for buildings (15 grids, or 60m) is larger
than that for trees (5 grids, or 20m), which is consistent with their typical differences in height and
obstruction capacity in an urban environment.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Shadow Angle Width (∆ϕshadow). This parameter expands the theoretical line-like shadow into
an area of influence. This accounts for the apparent motion of the sun over an hour and the penumbra
effect caused by diffuse light, making the shadow model more physically realistic.

Base Radius of Influence for Vegetation (Rbase). The base radius of influence for vegetation is
set to 5 grids (20m), based on the typical effective range of local cooling effects from single or small
patches of green space reported in existing microclimate research (Kim et al., 2024).

Wind Effect Coefficient (λwind). As a modulation coefficient, a value of 0.3 is a relatively con-
servative choice. It allows the wind field to significantly guide the anisotropy of connections without
completely dominating the graph structure, thus preserving the influence of other physical processes.

Maximum Reference Wind Speed (vmax). This value is used to normalize the actual wind speed.
A value of 8.0 m/s was chosen as the reference upper limit as it represents the maximum wind speed
historically observed in Singapore.

Table A4: Parameters for Dynamic Heterogeneous Adjacency Construction.

Parameter Value Description
Semantic Similarity Links
k 8 The number of neighbors for semantic similarity links.
ϵ 1e-6 A small constant to avoid division by zero during feature normalization.

Shadow Links
Rshadow

max 15 Maximum extent of building shadows (in number of grids).
Rtree

max 5 Maximum extent of tree shadows (in number of grids).
∆ϕshadow 25.0◦ The effective angular width for shadow calculations.

Vegetation Activity Links
Rbase 5 The base maximum radius of influence for vegetation activity (in number

of grids).

Local Wind Field Links
λwind 0.3 Coefficient that modulates the impact of wind direction on the connection

range.
vmax 8.0 m/s Used to normalize wind speed for calculating the wind modulation factor.

D MODEL IMPLEMENTATION DETAILS AND HYPERPARAMETERS

To ensure fairness, transparency, and reproducibility in our experimental comparisons, this appendix
details the implementation specifics and key hyperparameter configurations for our proposed Urban-
Graph model and all baseline models.

D.1 BASELINE MODELS AND HYPERPARAMETER SETTINGS

The following table summarizes the key hyperparameters for UrbanGraph and all baseline models
used in the different experimental phases. In our comparative experiments, we strive to ensure
a fair comparison by maintaining a similar model scale (i.e., hidden dimension size), such that
performance differences primarily originate from the model architectures themselves.

D.2 IMPLEMENTATION DETAILS FOR CROSS-PARADIGM BASELINES

To compare our graph-based approach with traditional grid-based methods, we adapted the data
input for certain baseline models.

Data Rasterization. For the CGAN-LSTM model, we convert the graph data at each timestep
into a 50x50 grid image. Each node in the graph is mapped to a pixel in the image, where the pixel
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Table A5: Key hyperparameters for the proposed model and all baseline models.

Model Hidden Dim Spatial Encoder Temporal Encoder Key Hyperparameters
UrbanGraph (Ours) 128/384* RGCN(3) LSTM(1) lr=0.001, batch size=8,

optimizer=Adam,
weight decay=1e-5

GCN-LSTM 128 GCN(3) LSTM(1) same
GINE-LSTM 128 GINE(3) LSTM(1) same
RGCN-GRU 128 RGCN(3) GRU(1) same
RGCN-Transformer 128 RGCN(3) Transformer d model=128, nhead=4,

num encoder layers=2
CGAN-LSTM 128 U-Net LSTM(1) lr G=0.0002, lr D=0.0002,

beta1=0.5, lambda L1=100
GAE-LSTM 128 GAE(3) LSTM(1) latent dim=128, beta=0.1
GGAN-LSTM 128 GGAN LSTM(1) latent dim=128, lr G=0.0001,

lr D=0.0004, beta1=0.5

*Note: The hidden dimension of UrbanGraph is 128 in the main model comparison phase. For the ablation and sensitivity analysis phases, it
is set to 384 based on the results of Optuna optimization.

value represents a key physical feature of the node (e.g., air temperature). The spatial relationships
between nodes are implicitly represented by the adjacency of pixels on the 2D plane.

Model Implementation. We employ a classic U-Net as the generator for the CGAN and a Patch-
GAN as the discriminator. The model’s task is to generate the prediction image for the next timestep
based on a sequence of historical images. During training, we combine an L1 loss (with weight λL1)
with an adversarial loss. The feature sequence extracted by the U-Net encoder is then fed into an
LSTM module for temporal modeling.

E DETAILED ANALYSIS OF MAIN EXPERIMENTS

E.1 DETAILED ABLATION STUDIES

We conduct a series of ablation studies to systematically evaluate the contributions of the key com-
ponents within the UrbanGraph framework.

Temporal Modeling. To validate the contribution of the Spatio-Temporal Evolution Module
(LSTM), we compare the full Spatio-Temporal model against a variant where the LSTM module is
removed. This variant performs independent predictions for each hour, thereby eliminating tempo-
ral dependencies. As shown in Figure A3 in the Appendix, the results demonstrate the effectiveness
of temporal modeling. Our model’s predictive accuracy (R²) surpasses that of the variant across
all prediction hours. Furthermore, Our model exhibits lower variance across multiple independent
trials, indicating enhanced model stability.

Fusion Mechanism. We compare three different strategies for fusing the spatial node representa-
tions with the global dynamic features: Concatenation Fusion, Multiplicative Fusion, and Attention
Fusion. As shown in Table A6, the simple concatenation strategy achieves the best performance
across all evaluation metrics. This approach not only achieves the highest accuracy but also has the
lowest computational load (FLOPs) and the fastest training and inference speeds.

Table A6: Comparison of different fusion strategies for combining spatial and global features. Best
results are in bold.

Strategy Flops Test Time Cost
Avg R² Avg RMSE Training (epoch/s) Inference/s

Attention 9.42× 109 0.8491± .0052 1.0675± .0254 27.5568± 1.0310 3.1741± .1251
Multiplicative 9.30× 109 0.8515± .0020 1.0623± .0317 25.9573± 1.4409 2.8543± .2170
Concatenation 9.13× 109 0.8542± .0044 1.0535± .0338 24.4823± 0.9323 2.6914± .1404
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Figure A3: Hour-by-hour R² score comparison for the temporal modeling ablation study. The ’Time
Series model’ (our full UrbanGraph model) is compared against the ’Single hour model’ (a variant
without the LSTM module). The results demonstrate that explicitly modeling temporal dependen-
cies leads to superior performance across the entire 12-hour prediction horizon. Error bars represent
the standard deviation from multiple independent trials.

Table A7: Effectiveness of the
Warming-up Mechanism.

Model R² MSE

Base 0.8629 1.0976
NP1 0.8510 1.1526

Warming-up Mechanism. We introduce a warming-up
mechanism that initializes the LSTM’s hidden state using the
spatial features from the initial graph. This aims to provide
the temporal prediction task with a starting point that is rich in
physical priors. As shown in Table A7, removing this mecha-
nism and using random initialization instead (the NP1 model)
leads to a noticeable decline in performance, with the R² score dropping from 0.8629 to 0.8510.

Prediction Head Architecture. We evaluate two strategies for multi-step prediction: a Single-Head
architecture, which uses a single shared prediction head to generate predictions for all 12 hours at
once from the final hidden state of the LSTM; and a Multi-Head architecture, which employs a
separate prediction head for each future timestep. The results in Table A8 show that the single-head
strategy performs better in terms of both predictive accuracy and computational efficiency (FLOPs).
For a relatively short prediction horizon, the single-head architecture can more effectively leverage
the final hidden state, which encodes information from the entire sequence, for joint prediction,
thereby avoiding cumulative errors.

Table A8: Comparison between Single-Head and Multi-Head prediction architectures on the test
set.

Strategy Flops Test Time Cost
Avg R² Avg RMSE Training (epoch/s) Inference/s

Multi-Head 9.21× 109 0.8542± .0044 1.0535± .0338 24.4823± 0.9323 2.6914± .1404
Single-Head 9.13× 109 0.8603± .0008 1.0190± .0421 21.5903± 3.1143 2.4785± .5019

Node Feature Augmentation. We compare the effects of using different node features as input.
As shown in Table A9a, the model using aggregated neighbor features (Base) achieves the best per-
formance. The model without any spatial information enhancement (M3) performs worse than the
Base model. However, performance degrades when using only static topological features (such as
degree centrality) or when combining them with aggregated neighbor features. This result suggests
that introducing additional topological features in our task may add redundant information or noise,
thereby impairing the model’s predictive accuracy.

Input Feature Ablation. To verify the necessity of each input feature, we conduct a systematic
ablation on the static node features ustatic, the temporal encoding features utime

t , and the global
climate features uenv

t . As shown in Table A9b, the baseline model (Base) that includes all three
feature types performs the best. Removing any single feature type leads to a performance drop.
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Notably, the model using only static node features (F1) shows the most significant degradation, with
its R² score dropping from 0.8629 to 0.7179.

Table A9: Ablation studies for feature augmentation and input feature types.

(a) Data Augmentation.

Model Neighbor Structure R² MSE

M1
√

0.8347 1.2798
M2

√ √
0.8462 1.2181

M3 0.8507 1.1696
Base

√
0.8629 1.0976

(b) Input Features.

Model ustatic utime
t uenv

t R² MSE

F1
√

0.7179 2.0867
F2

√ √
0.8529 1.1423

F3
√ √

0.8519 1.1495
Base

√ √ √
0.8629 1.0976

Edge Types. To evaluate the specific contribution of each of the five proposed physics-informed
and semantic edge types, we conduct an ablation study by systematically removing one edge type
at a time. As shown in Table A10, the base model, which includes all five edge types, achieves
the best performance. Removing any single edge type results in a decline in the model’s predic-
tive accuracy, demonstrating that both the physics-informed and semantic edges provide valuable
inductive biases for the model. Notably, removing the Local Wind and Shadow edges leads to the
most significant performance degradation, which underscores the importance of explicitly modeling
time-varying physical processes. Furthermore, the performance drop caused by removing Similar-
ity edges confirms the necessity of capturing non–local spatial interactions in urban microclimate
prediction.

Table A10: Ablation study on different edge types. The checkmark (
√

) indicates that the corre-
sponding edge type is included in the model.

Model Tree activity Similarity Shadow Local Wind Internal R² MSE

E1
√ √ √ √

0.8504 1.1534
E2

√ √ √ √
0.8531 1.1568

E3
√ √ √ √

0.8238 1.4960
E4

√ √ √ √
0.8155 1.4341

E5
√ √ √ √

0.8425 1.2403

Base
√ √ √ √ √

0.8629 1.0976

E.2 SENSITIVITY AND COMPUTATION PERFORMANCE EVALUATION

Sensitivity to the Number of Neighbors (k). To investigate the model’s sensitivity to the number of
neighbors, k, used in constructing the Semantic Similarity Edges, we conducted tests with different
values of k. As shown in Figure A4a, the model’s performance (R²) improves as k increases, reaching
a peak at k=8 before exhibiting minor fluctuations. Considering that a larger k increases graph
density and computational cost, we select the ’elbow point’ of the performance curve, k=8, as the
optimal configuration. The model is not highly sensitive to the choice of k within a certain range,
demonstrating good robustness.

Sensitivity to Training Data Volume. To evaluate the model’s data efficiency and generalization
capability, we performed a sensitivity test on the amount of training data. We reserved a fixed
10% test set and incrementally increased the training set size using fractions of the remaining data,
starting from 2%. As illustrated in Figure A4b, the results reveal a significant positive correlation
between model performance and data volume, with all accuracy metrics improving substantially as
the amount of data increases. However, the model also exhibits a clear diminishing returns effect:
the majority of the performance gain occurs before the training data volume reaches 40-60%, after
which the performance curve begins to plateau. Performance tends to saturate when approximately
90% of the available training data is used.

Computational Performance Evaluation. To assess the model’s computational overhead in ur-
ban scenarios of varying complexity, we analyzed the relationship between the graph’s structural
properties (i.e., the number of nodes and edges) and computational costs (inference time and peak
GPU memory usage). The analysis (Figure A5b,d) indicates that both inference time and memory
consumption show a positive correlation with the number of edges in the graph (with R² values of
0.5976 and 0.4627, respectively). An interesting finding is that computational cost is negatively
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Figure A4: Sensitivity analysis of the model. (a) Model performance (R² and RMSE) on the test set
versus the number of neighbors, k, for constructing similarity edges. The performance peaks at k=8.
(b) Model performance as a function of the percentage of training data used. Performance gains
show diminishing returns and begin to saturate at approximately 90% of the data.

Figure A5: Computational performance analysis. (a) and (c) illustrate the negative correlation be-
tween inference time / peak GPU memory and the average number of non-building nodes per win-
dow. (b) and (d) show the positive linear correlation between computational costs and the average
number of edges per window.

correlated with the number of non-building nodes (Figure A5a,c). This suggests that the number of
non-building nodes can serve as an inverse indicator of a scenario’s structural complexity: scenes
with more open spaces (e.g., parks) typically have sparser graph structures and are therefore more
computationally efficient. Furthermore, the linear relationship between cost and graph complexity
suggests the feasibility of applying the model to larger areas.

E.3 EDGE FEATURES AND WEIGHTS

To explore the potential of encoding richer physical information into the graph structure, we de-
signed and evaluated an explicit scheme for edge attributes and edge weights in the early stages of
our research. As mentioned in the main text, our final model did not adopt this design, as experimen-
tal results showed that introducing this explicit information did not lead to a significant performance
improvement for the UTCI prediction task. This section details our initial exploratory design.

EDGE ATTRIBUTE VECTOR. In our initial design, each edge eij ∈ Et in the graph carried a 5-
dimensional attribute vector aij ∈ R5 to encode rich spatio-temporal physical information. This
vector was composed of the following components:

• Euclidean Distance d(vi, vj): The straight-line distance between the nodes.

• Relative Displacement (∆x,∆y): The difference in position in the grid coordinate system.

• Wind Alignment (cos(∆θwind)): The cosine of the angle between the edge vector and the
current hour’s wind direction, used to quantify the convective influence of the wind.

• Edge Type ID: A categorical ID indicating which of the five relationship types the edge
belongs to.
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E.4 EDGE WEIGHT CALCULATION

To quantify the interaction strength between different nodes, we designed a dynamic scheme for
calculating edge weights, wij . All edge weights start from a base value wbase (set to 1.0) and are
dynamically modulated according to the following rule:

wij = wbase/(1 + λ · d(vi, vj)/dgrid) · β · γ (17)

The specific settings for each modulation factor are as follows:

• Distance Decay (λ): All edge weights are decayed based on their Euclidean distance. To
better distinguish between non-local and local effects, we set a smaller distance decay fac-
tor, λsim (set to 0.005), for semantic similarity edges, while other edges based on physical
proximity use a larger decay factor, λphys (set to 0.01).

• Physical Process Enhancement (β): Weights are further modulated by dynamic physical
processes. For example, a shadow edge determined to be actively casting a shadow in the
current hour has its weight multiplied by an enhancement factor, βshadow (set to 1.2).

• Source Node Attribute Influence (γ): Weights are also influenced by the attributes of the
source node. For instance, the weight of a vegetation activity edge is positively affected by
the height of its source tree, htree, controlled by the modulation factor γtree (set to 0.2).

Table A11: Ablation study on explicit edge at-
tributes (E) and edge weights (EW ).

Model E EW R² MSE

Base 0.8629 1.0976
EF

√
0.8530 1.1513

EFW
√ √

0.8586 1.2097

Although this scheme is theoretically more
physically interpretable, our ablation experi-
ments showed no improvement in predictive
performance when introducing explicit edge at-
tributes (E) and edge weights (EW) compared
to a simpler model that only uses edge types
(results shown in the table A11). This suggests
that, for the UrbanGraph architecture and the
UTCI prediction task, the model can effectively
and implicitly learn the strength of these inter-
actions from the dynamic graph topology and node features, without needing explicitly injected edge
weights and attributes.

F GENERALIZATION AND VISUALIZATION

F.1 PREDICTION RESULTS ON DIFFERENT ARCHITECTURES

Table A12: Performance on other target
variables.

Model R²

AT 0.5650 ± .1324
WS 0.7500 ± .0176
MRT 0.8378 ± .2005
RH 0.5159 ± .2039
PET 0.8492 ± .0517

To provide a qualitative assessment of our model’s
performance, this section presents a visual compari-
son of the spatio-temporal prediction results between
UrbanGraph and the four categories of baseline mod-
els. Each figure displays the ground truth, the predic-
tions from UrbanGraph and representative baselines,
and their respective prediction error maps (Prediction
- Ground Truth) for a selected test scene at different
hours of the day. White areas in the maps correspond
to buildings, which are excluded from the analysis.

Figure A6 compares UrbanGraph with non-graph and
homogeneous graph baselines, which represent fundamentally different approaches to spatial mod-
eling.

Figure A7 provides a comparison against generative graph models and temporal variants, assessing
different graph learning strategies and sequence modeling components.

F.2 PERFORMANCE ON MULTIPLE TARGETS

To validate the robustness of our physics-informed graph representation and the UrbanGraph archi-
tecture, we trained the model using the same inputs for the remaining five target variables. The
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Figure A6: Visual comparison against Non-Graph (CGAN-LSTM) and Homogeneous Graph (GCN-
LSTM, GINE-LSTM) baselines. Compared to the grid-based CGAN-LSTM, UrbanGraph better
captures fine-grained spatial details. Unlike the homogeneous models that treat all interactions uni-
formly, UrbanGraph’s heterogeneous approach leads to more physically consistent predictions and
lower overall error.
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Figure A7: Visual comparison against Generative Graph (GGAN-LSTM, GAE-LSTM) and Tem-
poral Variant (RGCN-GRU, RGCN-Transformer) baselines. UrbanGraph’s physics-informed, de-
terministic graph construction (shown in Figure A6) avoids the higher errors seen in generative
approaches. Furthermore, its LSTM component proves more effective at capturing long-term de-
pendencies compared to the GRU and Transformer variants.
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performance of the models for these five target variables is shown in Table A12. The R² scores for
all models are above 0.5, with the performance on MRT and PET nearly matching the level achieved
for UTCI, which demonstrates the effectiveness of our proposed method.

To provide a qualitative view of the model’s generalization capabilities, the following figures visu-
alize the spatio-temporal prediction results for the five other target variables.

Figure A8: Qualitative prediction results for thermal comfort indices. This figure visualizes the
performance of UrbanGraph on MRT and PET. Similar to the previous figure, each block compares
the ground truth, model prediction, and the resulting error map, demonstrating the model’s strong
performance on composite indices.
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Figure A9: Qualitative prediction results for microclimate variables. This figure visualizes the per-
formance of UrbanGraph on AT, WS, and RH. For each variable, the top row shows the ground truth,
the middle row shows the model’s prediction, and the bottom row displays the prediction error map
across different hours.
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