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Abstract

Event cameras provide exceptionally high temporal resolution in dynamic vision
systems due to their unique event-driven mechanism. However, the sparse and
asynchronous nature of event data makes frame-based visual processing methods
inappropriate. This study proposes a novel framework, Event-based Graph Spa-
tiotemporal Sensitive Transformer (EGSST), for the exploitation of spatial and
temporal properties of event data. Firstly, a well-designed graph structure is em-
ployed to model event data, which not only preserves the original temporal data but
also captures spatial details. Furthermore, inspired by the phenomenon that human
eyes pay more attention to objects that produce significant dynamic changes, we
design a Spatiotemporal Sensitivity Module (SSM) and an adaptive Temporal Acti-
vation Controller (TAC). Through these two modules, our framework can mimic
the response of the human eyes in dynamic environments by selectively activating
the temporal attention mechanism based on the relative dynamics of event data,
thereby effectively conserving computational resources. In addition, the integration
of a lightweight, multi-scale Linear Vision Transformer (LViT) markedly enhances
processing efficiency. Our research proposes a fully event-driven approach, effec-
tively exploiting the temporal precision of event data and optimising the allocation
of computational resources by intelligently distinguishing the dynamics within
the event data. The framework provides a lightweight, fast, accurate, and fully
event-based solution for object detection tasks in complex dynamic environments,
demonstrating significant practicality and potential for application. The source
code can be found at: EGSST.

1 Introduction

There is an increasing demand for devices capable of accurately capturing targets in high-speed
dynamic scenes, such as autonomous driving, where traditional CMOS or CCD visual sensors often
encounter motion blur and overexposure [1, 2, 3]. In response, event cameras, which employ a novel
event-driven mechanism, have garnered significant attention. Each pixel in event cameras operates
independently, activating only upon detecting a brightness change. This mechanism results in a
series of high-speed, asynchronous event streams with exceptionally high temporal resolution, which
enables the rapid and precise capture of data [4, 5].

Our objective in processing the output data from event cameras is to effectively utilize their high
temporal precision in detection tasks without inducing significant delays. However, the data format
of event cameras is entirely different from that of frame-based cameras, rendering existing object
detection methods based on RGB images inapplicable [6]. Some methods adopt conversion strategies,
utilizing techniques such as temporal slicing to transform sparse data into dense formats, with
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Figure 1: An overview of the proposed EGSST framework. The EGSST is an event-based,
lightweight, and efficient framework designed for rapid object detection in event data. A graph is
constructed from the data and divided into K connected subgraphs. These subgraphs are fed into a
Graph Convolutional Network (GCN) [22] and a SSM. The GCN processes the subgraphs that are
not removed to produce a global Graph Feature Map, which preserves both spatial and temporal
information. The SSM assesses the dynamics of the entire graph and outputs a dynamic feature
indicator, which includes the dynamics of each subgraph and the aggregated dynamics obtained
through a Graph Attention Network (GAT) [23]. The TAC is activated based on the output from the
SSM to enhance focus on the temporal dimension or to feed the graph feature maps directly into a
Multi-scale Linear ViT [24]. Finally, a detection head, such as RT-DETR [25] or YOLOX [26], is
employed to generate prediction outputs.

the aim of leveraging architectures like Convolutional Neural Networks (CNNs) or Transformers
[2, 7, 8, 9, 10, 11]. Unfortunately, methods employing such conversion strategies often result in a loss
of temporal precision. Another direct processing strategies involve methods such as Graph Neural
Networks (GNNs) [12, 13, 14, 15] or Spiking Neural Networks (SNNs) [16, 17, 18, 19, 20, 21],
which analyze the event stream directly, thereby preserving spatiotemporal structure and accuracy.
However, the direct processing strategies often suffer from computational efficiency. The latest
hybrid strategies strive to combine the strengths of previous methods, enhancing performance while
maximizing retention of temporal precision. Although numerous existing strategies have made
significant progress in the extraction of event data features, challenges remain in effectively managing
data across spatial and temporal dimensions [12, 14].

Existing methods may result in the inefficient use of computational resources when processing
data across both spatial and temporal dimensions. Because current models either apply a single
algorithm to both dimensions simultaneously [12, 20] or use different algorithms for each dimension
and then combine the results [27]. Importantly, processing in the temporal dimension typically
consumes significantly more computational resources than processing in the spatial dimension.
Consequently, the continuous processing of temporal data is likely to result in the inefficient utilization
of computational resources, especially for slower-moving objects where spatial resolution may already
be sufficient.

In order to address the aforementioned issue of inefficiency, we have drawn inspiration from the
dynamic perception of human eyes. The human visual system naturally prioritizes rapidly moving
objects within the visual field while de-prioritizing slower ones—an adaptive feature that enhances
responsiveness and efficiency in dynamic environments. Ideally, artificial models can emulate this
trait by preferentially processing faster-moving objects in the temporal dimension, especially when
managing large volumes of continuous spatiotemporal data. Therefore, we try to develop a novel
algorithm that is closer to the selective attention mechanism of the human eye, which could potentially
enhance both the efficiency and effectiveness of event-based vision systems.

We propose a novel spatiotemporal fusion graph transformer framework, designed to fully leverage
the powerful capability of graph to process unstructured data while also reducing unnecessary
computations in handling spatio-temporal data. Firstly, the framework employs a graph structure to
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model event data, thereby maintaining the original temporal fidelity and capturing crucial spatial
details. A key aspect of our framework is the SSM module, which leverages the graph’s ability to
process unstructured data and aggregates features to effectively discern the relative dynamics of
objects. This differentiation provides a critical basis for determining whether to continue processing
in the temporal dimension. Subsequently, the adaptive TAC is introduced, which dynamically adjusts
its activation based on the insights from the SSM. The TAC is designed to enhance the processing of
highly dynamic events while reducing resource use in scenarios with low dynamics. Furthermore,
the integration of a lightweight multi-scale LViT markedly enhances the processing efficiency of our
system. The principal contributions of our research are as follows:

• Our model introduces a novel and efficient graph processing method by pioneering the use
of connected subgraphs in the context of event cameras. This technique not only preserves
the temporal data completely but also enhances the effective and precise focus on targets
within the event data.

• We introduce SSM and TAC to mimic the human eye’s perception of dynamics and integrate
them into the Graph Transformer framework for efficient object detection in event data.

• Our model integrates Graph and Transformer technologies to enhance object detection tasks
in a fully event-based manner. It is designed to be lightweight, fast, and precise, representing
a novel approach that leverages the strengths of both technologies for improved performance.

2 Related Work

The unique event-driven mechanism of event cameras offers considerable potential for high-speed
motion detection in dynamic environments. However, the inherent sparsity and unstructured nature
of the data generated by these cameras pose significant challenges to conventional image processing
techniques [4, 28]. In response, researchers have transitioned from a singular processing strategy to a
hybrid approach, integrating traditional and innovative methods.

Conversion Processing Strategy involves transforming event data into dense frame-based data,
making it compatible with conventional visual processing algorithms. Systems like the E2VID [29]
utilize CNNs to convert asynchronous event data into video frames through time slicing. Other
approaches generate continuous optical flow and intensity estimation images from event streams
[30], or incorporate attention mechanisms with recurrent and convolutional networks to enhance
spatio-temporal feature extraction [31]. These strategies extend the applicability of event camera data
but often at the cost of reducing its high temporal resolution [32, 33, 34].

Direct Processing Strategy focuses on preserving the original asynchronous characteristics of event
data to maintain its sparsity and high temporal precision. This includes direct modeling of the
event stream for real-time object tracking [35] and employing spiking neural networks (SNNs) for
gesture recognition [7]. Additionally, models like AEGNN [12] leverage GNNs and efficient updating
strategies to retain asynchronous temporal features. While these methods effectively utilize the unique
properties of event data, they face challenges in handling large volumes of sparse data, highlighting
the need for further innovations in architecture [36, 20].

Hybrid Processing Strategy explores a combination of conversion and direct processing methods,
or the integration of multiple model frameworks [37, 38, 39, 40, 9, 27]. For example, merging
GNNs with CNNs, and integrating Transformers with recurrent neural networks, effectively captures
spatio-temporal features from asynchronous events while maintaining high resolution and enhancing
adaptability [38, 39]. Methods like MatrixLSTM [40] and RED [9] increase data processing efficiency
by jointly extracting features. Building on these studies, a recent work, RVT [27], integrates
Transformers with recurrent neural networks, significantly improving processing efficiency and
accuracy. However, current models, despite their commendable performance and efficiency, cannot
effectively differentiate dynamic data, leading to unnecessary computations in the time dimension.

Our research lies within the hybrid processing strategy methods. The proposed framework leverages
graph capabilities to manage irregular data and incorporates a temporal attention mechanism respon-
sive to data dynamics. It also integrates a lightweight linear visual Transformer to extract temporal
and spatial information from event data. This event-based framework is designed to provide a fast,
efficient, and accurate object detection solution, specifically tailored to event cameras.
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3 Methodology

The proposed framework utilizes the Graph Transformer to extract graph-based features from un-
structured event data and integrates both spatial and temporal attention mechanisms. As illustrated
in Figure 1, the architecture and key components are depicted, providing a visual overview of how
these elements are integrated. This section will outline the critical steps involved in the framework.

3.1 Graph Construction

Each event captured by an event camera records both spatial information and precise temporal details,
crucial for dynamic scene analysis. That is, each event is recorded as

eventi = (xi, yi, ti, pi), i ∈ N , (1)

where xi, yi locate the pixel and ti represents the timestamp with microsecond precision. The
coordinates xi and yi as well as the timestamps ti are completely asynchronous and occur randomly,
reflecting the event-driven nature of the data capture. The polarity pi ∈ {−1, 1} denotes whether
there is a decrease (for −1) or an increase (for 1) in pixel brightness. N = {1, 2, . . . , N} is the set of
indexes of events.

A graph-based representation is employed to capture irregular spatiotemporal relationships between
events. Firstly, in order to enhance the stability of the model and prevent data bias, especially for
timestamps with otherwise large values, it is necessary to normalize the timestamp for each event
by the equation t∗i = β · (ti − t0), i ∈ N , where t0 = mini∈N {ti} and β is a normalization factor.
Each event eventi then generates a vertex vi = (xi, yi, t

∗
i , pi), and V = {v1, v2, . . . , vN} is the set

of vertices. The position coordinates of each vertex can be represented as ci = [xi, yi, t
∗
i ]

T .

To establish the graph edges, we consider every pair (ci, cj). An edge eij is added to the set E of
edges if the conditions are met,

eij =

{
1, if ∥ci − cj∥ ≤ R,

0, otherwise,
(2)

indicating the connectivity based on the predefined spatiotemporal distance threshold R.

The resulting graph, G = (V,E), effectively encapsulates the essential spatialtemporal properties of
events.

3.2 Connected Subgraphs Construction

Event cameras produce data triggered by pixel brightness changes. Dense events occur at object
contours where brightness exhibits a significant variation, whereas the main body sees fewer, sparse
events due to subtle changes. Transforming this event data into graph G, areas with dense events
display numerous edges, whereas sparser areas show fewer edges. This pattern of data density leads
us to the concept of connected graphs in graph theory, which describes the interconnectivity between
the nodes of an undirected graph. The contour regions, due to their high number of edges, form
several large connected subgraphs with a substantial number of nodes. In contrast, the main bodies,
which have fewer edges, result in connected subgraphs with fewer nodes. By filtering the data
based on the number of nodes, the majority of the retained connected subgraphs attain new physical
meaning, indicating the contiguous edges of object contours. The entire graph G can be divided into
K connected subgraphs, Gk = (Vk, Ek), which satisfy

D = {Gk : Gk ⊆ G, k = 1, 2, · · · ,K}. (3)

However, it should be noted that the connected subgraphs are not in one-to-one correspondence with
the objects Dl in the event data. Consequently, the number of selected subgraphs, K, is typically
greater than the number of real objects, L.

Dl ⊆ D, l = 1, 2, · · · , L (4)

By filtering the number of nodes contained in the connected subgraphs, we can filter out subgraphs
containing too few nodes, thus realizing downsampling. Based on preliminary experimental tests
with the dataset used, processing 10,000 events can retain approximately 73% of the events, which
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Figure 2: Dynamic Visualization of the SSM. Each image is generated from 10,000 event points,
causing slight blurring. However, connected subgraphs effectively filter out background noise,
preserving only relevant objects. (a) The scene shows low relative dynamic, hence the distinction is
not pronounced. (b) The truck on the right accelerates to overtake, while the car on the left moves
slower, making the truck’s relative values significantly higher.

helps reduce noise interference. In contrast to conventional uniform downsampling, this approach
avoids the loss of valid features associated with nodes. Moreover, the scope of event data that requires
focus can be selected in a more effective and rational manner.

After constructing connected subgraphs, we utilize a multilayer GCN that integrates node feature
information with graph topology, efficiently learning node representations. The GCN preserves and
fuses spatial and temporal features globally, producing a global graph feature map.

3.3 Spatiotemporal Sensitivity Module (SSM)

The Spatiotemporal Sensitivity Module (SSM) is a core component of our framework. It mimics the
visual characteristics of the human eye to quantify object dynamics in event data. Since event data
differs from traditional images, directly quantifying object dynamics using displacement speed is
challenging. Thus, we propose Event Global Motion (EGM) and Event Local Motion (ELM), applied
to the global graph G and subgraphs Gk, respectively.

We first define the following metrics to separately quantify the global and local dynamics:

For global motion, we define:
EGM = f(N,∆t∗), (5)

where N = |N | represents the number of nodes in the global graph, and ∆t∗ = maxi,j∈N {|t∗i − t∗j |}
represents the maximum time difference among nodes.

For local motion, we define:
ELMk = f(nk, δt

∗
k), (6)

where nk represents the number of nodes involved in the measurement of the k-th subgraph, and δt∗k
is the maximum time difference within the subgraph. While the function f could be designed to take
more complex forms to capture intricate relationships between these variables, we opt for a simple
ratio-based method, f(x, y) = x/y. This choice is motivated by the desire to balance simplicity and
computational efficiency. The ratio directly reflects the relationship between the number of events and
the temporal spread in the subgraph, providing an intuitive measure of local motion dynamics. By
using this straightforward formulation, we ensure that the computation remains tractable, especially
when dealing with large-scale event data, while still effectively capturing the key dynamics of interest.

For instance, in a traffic scenario, event data may include dynamic entities such as vehicles and
pedestrians, as well as static background elements like trees and fences. EGM quantifies the
dynamics of the entire event data, representing the overall level of motion in the environment, while
ELMk describes the motion level of individual subgraphs. Given the high temporal resolution of
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event cameras, we can assume that any object responds to events almost instantaneously. As an
object’s speed increases, more pixels detect brightness changes, generating more events, which
increases nk and decreases δt∗k, leading to a significant increase in ELMk.

To analyze the relationship between the dynamics of each subgraph relative to the overall environment,
we introduce the following metric:

H =

{
hk =

ELMk

EGM
: k = 1, 2, . . . ,K

}
, (7)

which quantifies the relative motion of each subgraph with respect to the global dynamic level.
During subgraph construction, distance thresholds and limitations on adjacent nodes are set to divide
large objects into multiple subgraphs, thus preventing a single subgraph from dominating the motion
representation of a large object.

While all nodes in each subgraph should reflect relative dynamics, assigning the same features to every
node is unnecessary as it would result in redundant computations. We aggregate the spatiotemporal
coordinates of each subgraph into representative coordinates as follows:

S = {sk = π(V ∗
k ) : k = 1, 2, . . . ,K} , (8)

where V ∗
k denotes the set of spatiotemporal position coordinates for subgraph nodes, and π is a

function for aggregation [12, 41], such as mean, max, or min. These functions are chosen because
they are insensitive to the varying number of nodes in each subgraph, ensuring that the aggregation
process remains consistent regardless of subgraph size. We then use the K-nearest neighbors
algorithm to connect these new representative coordinates, forming a new set of edges E , mapping
features hk to the corresponding representative coordinates, and building a new set of vertices V . This
results in a new graph G = (V, E), which significantly reduces the number of nodes and decreases
computational complexity and processing delay.

In the newly constructed graph, each node represents an aggregated subgraph with a relatively
sparse distribution in the spatiotemporal domain, necessitating the enhancement or suppression
of relationships between nodes. We introduce inter-subgraph attention using a Graph Attention
Network (GAT) [23] to capture relationships among nodes. The GAT enables nodes to adaptively
aggregate information based on the importance of their features and their neighbors, strengthening the
connections between nodes representing the same object while weakening those representing different
objects. The GAT’s attention mechanism also ensures that smaller objects are not overlooked and
evaluates their significance in the overall environment. The aggregated values are used as the final
output of the SSM for assessing relative motion. Figure 2 shows some example results, illustrating
how the spatiotemporal sensitivity module captures the relative dynamics in different regions.

3.4 Temporal Activation Controller

Upon evaluation of the output from the SSM, a determination is made as to whether to enhance the
temporal focus by activating the TAC. The TAC processing comprises two parts: firstly, a simple
attention-like method is employed to dynamically weight and selectively emphasise the temporal
dimension; secondly, the Query, Key, and Value (QKV) are reconstructed.

In the first part of the TAC, we define a set F = {Ft}, where Ft represents the stream of graph
feature maps over time t, and F is the collection of these streams. We aggregate all features within
the set using the formula Fst = Aggregation{F} to generate the Global Spatiotemporal Feature,
Fst, which serves as a comprehensive representation of the spatiotemporal data. Subsequently, we
employ an Adaptive Gating Mechanism to adjust these features at each timestamp, generating gating
signals from Fst for each Ft. This mechanism either enhances or suppresses the features based on
the global feature, thereby maintaining temporal integrity while adapting to the sequence context.
Finally, an adaptive fusion technique modulates the integration between the original and enhanced
features, producing outputs suitable for subsequent processing.

In the second part of TAC, different sources generate the QKV matrices,

Q = Wq(Fst),

K, V = Wk,v(F).
(9)

The global spatiotemporal feature Fst is employed to generate the Query (Q), which offers a global
perspective when assessing the relevance of each timestamp to the entire sequence. Meanwhile, the
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Figure 3: The flowchart of the Multi-scale Linear ViT. This diagram shows the stages of the Multi-
scale Linear ViT, with the removable Enhanced CNN and Activated TAC modules. The Enhanced
CNN processes input data through convolutional and normalization layers before passing it to the ViT
stages. Activated TACs at Stage 2 and Stage 4 optimize temporal processing and balance efficiency.
The data is then sent to the detection head for final object detection.

utilisation of the aggregated outputs of each timestamp in the first part as the source of Keys (K) and
Values (V) generation helps to reflect the state of each timestamp with greater accuracy. This method
of employing diverse generation sources merges global and local insights, thereby bolstering the
model’s capability to process complex spatiotemporal data within a self-attention architecture.

It is worth mentioning that TAC is not a module but a component, so it can theoretically be loaded on
any model focusing on the extraction of spatial features, greatly improving scalability.

3.5 Multi-scale Linear ViT

The original Vision Transformer (ViT) [42] does not allow for multi-scale processing, resulting in
significant performance degradation compared to models equipped with such capabilities [43, 44, 45].
To address this issue, our enhanced ViT module supports multi-scale processing and incorporates
the TAC, which improves the model’s ability to handle spatial and temporal dimensions. To reduce
the computational load and increase processing speed, we adopt linear transformations to simplify
the self-attention mechanism. Drawing upon techniques from models like Efficient ViT [24], which
reduce the computational complexity of self-attention from O(N2) to approximately O(N), our ViT
module adapts these cost-reduction strategies to fit within our framework.

4 Experiments

In this section, we introduce the two datasets utilized, the evaluation metrics, and the implementation
details of our models. We train the baseline model, EGSST-B, and the extended model, EGSST-E,
and compare their performance with other state-of-the-art models applied to both datasets. Detailed
ablation studies are then performed to assess the impact of various components of our models. Finally,
to verify the scalability of the models, we train them using varying numbers of events, obtain their
corresponding weights, and analyze these weights in differently configured models.

4.1 Datasets and Evaluation Metrics

Two complex event camera datasets from traffic scenarios are employed in the experiments: the Gen1
Automotive Detection Dataset [46] and the 1 Megapixel Automotive Detection Dataset [9].

The Gen1 Dataset comprises over 39 hours of event video from urban, highway, and rural settings,
with a resolution of 304× 240 pixels. The dataset includes manual annotations of pedestrians and
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cars, with over 255,000 labels at a frequency of 1 to 4 Hz, making it ideal for testing object detection,
tracking, and optical flow algorithms in automotive environments.

The 1Mpx Dataset comprises over 14 hours of high-resolution (1 megapixel) event video, annotated
with 25 million labels for cars, pedestrians, and two-wheelers, suitable for developing advanced
detection models in dynamic traffic conditions.

Three primary evaluation metrics are employed in the experiments, namely the total number of
parameters, the mean Average Precision (mAP@0.5:0.95) using the COCO toolbox [47], and the
mean time per batch (batch size = 1) for detection. These metrics assess the models’ complexity,
precision, and efficiency, respectively, in real-time applications.

4.2 Implementation Details

The framework proposed in this study is developed using Python 3.9 and PyTorch 2.0, with graph
processing powered by the advanced PyTorch Geometric library [48]. To enhance the scalability and
parallelism of subgraph processing, modifications are made to the underlying libraries to achieve
complete parallelization of graph processing, thus fully leveraging GPU computational capabilities.
The models are trained on RTX3090 GPUs using the Lightning framework. We employ the Adam
optimizer [49] coupled with the OneCycle learning rate schedule [50], which includes 100 warm-up
iterations followed by cosine decay starting from the maximum learning rate. The training batch size
is set at 8, with an initial learning rate of 1e-6.

4.3 Dynamic Label Augmentation

In our model, we use a batch segmentation method based on a fixed number of events, which
requires generating corresponding labels for inputs with varying numbers of nodes. However, the data
generation speed of event cameras is extremely high, while the number of labels available in existing
datasets is relatively limited. For instance, current datasets such as Gen1 cannot effectively provide
sufficient labels to match the rapidly collected fixed-number event data. To address this mismatch, it
is necessary to develop an effective approach to increase the number of available labels.

A common approach is to extend the labeling by adding a fixed time window before and after each
label, mapping all the data within that time frame to the same label [12, 27, 51, 52]. While this
method can indeed increase the number of labels under typical conditions, it can introduce significant
labeling errors when applied to fixed-number event-based batch segmentation, especially in dynamic
environments with substantial variability.

To address this issue, we propose a dynamic label augmentation method. This approach dynamically
adjusts the labeling precision based on the time span over which events are captured, aiming to
expanding the number of labels while enhancing labeling accuracy. Specifically, in the dynamic label
augmentation method, a longer time span for collecting a fixed number of events indicates slower
target motion, allowing for an expanded time window to capture more labels for the current target.
Conversely, a shorter time span suggests faster target motion, necessitating a smaller time window to
maintain accurate labeling. More details can be found in the Appendix C.

4.4 Benchmark Comparisons

Our baseline model, EGSST-B, achieved an impressive processing time of only 2.4 milliseconds on
the RTX 3090. However, this result was obtained without considering GPU power consumption. To
ensure a fair comparison with other models, we conducte additional tests on the T4 GPU, which has
performance comparable to the Titan Xp and RTX 1080Ti. The ASTMNet and RED models are
tested on the Titan Xp, while the AEC model was evaluated on the RTX 1080Ti.

Table 1 compares the performance of various target detection methods on the Gen1 and 1 Mpx
datasets. Among these benchmarks, our models EGSST-B and EGSST-E outperform the rest. EGSST-
E achieves a 49.6% mAP on the 1 Mpx dataset, demonstrating exceptional capabilities; EGSST-B
processes in just 4.6 milliseconds on the Gen1 dataset, significantly outperforming other models in
terms of efficiency and real-time processing. With parameter counts of 3.5M and 12.3M, respectively,
these models achieve high performance while being more streamlined compared to traditional
approaches. This optimization in parameter efficiency is particularly crucial for deployments on
resource-limited platforms.
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Table 1: Comparison of Different Event-Based Vision Methods. The results of our methods are
obtained from experiments involving 10,000 events. Our methods ending in -Y utilize the YOLOX
[26] detection head instead of the RT-DETR [25] method. A star * indicates that this information is
not directly available and can be estimated based on modules in published articles.

Gen1 1 Mpx

Method Backbone mAP
(%) ↑

Time
(ms) ↓

mAP
(%) ↑

Time
(ms) ↓

Params
(M)

RRC-Events [32] CNN 30.7 21.5 34.3 46.4 >100*
AEGNN [12] GNN 16.3 - - - 20.0
Spiking DenseNet [20] SNN 18.9 - - - 8.2
ERGO-12 [53] Transformer 50.4 69.9 40.6 100.0 59.6
RED [9] CNN + RNN 40.0 16.7 43.0 39.3 24.1
ASTMet [37] CNN + RNN 46.7 35.6 48.3 72.3 >100*
AEC + DETR [54] - 44.5 7.7 45.9 20.7 >40*
AEC + YOLOv5 [54] - 47.0 3.9 48.4 13.8 >40*
RVT-B [27] Transformer + RNN 47.2 10.2 47.4 11.9 18.5
GET-T [52] Transformer + RNN 47.9 16.8 48.4 18.2 21.9
S4D-ViT-B [51] Transformer + SSM 46.2 9.4 46.8 10.9 16.5
S5-ViT-B [51] Transformer + SSM 47.4 8.16 47.2 9.57 18.2

EGSST-B (ours) GNN + LinearViT 44.6 4.6 45.4 5.1 3.5
EGSST-E (ours) GNN + LinearViT 49.6 6.0 50.2 6.3 12.3
EGSST-B-Y (ours) GNN + LinearViT 43.9 3.7 44.1 5.0 3.1
EGSST-E-Y (ours) GNN + LinearViT 47.8 4.2 48.3 5.3 10.4

The EGSST model leverages a fully event-based architecture that makes full use of the rich spa-
tiotemporal data generated by event cameras. The model achieves low processing latency through
effective data downsampling, efficient batch processing, and the use of techniques that mimic the
dynamic characteristics of the human eye. Additionally, the application of linear feature extractors
further enhances its processing efficiency. These aspects enable the model to effectively utilize global
information while minimizing computational demands, making it well-suited for object detection
tasks using event cameras.

4.5 Ablation Studies

All experiments are conducted under identical environmental and equipment conditions. Given the
similar performance observed on the 1Mpx and Gen1 datasets, the experiments described in this
section are based on the Gen1 dataset unless otherwise stated. Moreover, since both of our models
demonstrated similar test results, only the EGSST-E model is used for further analysis.

Table 2: Impact of applying TAC. The ’TAC Adaptive’ refers to the integration of SSM with TAC,
allowing for adaptive adjustments based on the data state.

Condition mAP (%) Time (ms) Params (M)

TAC Inactive 42.1 4.3 10.2
TAC Active 51.5 11.1 16.3
TAC Adaptive 49.6 6.0 12.3

The SSM and TAC, integrated in series within our framework, are the reason why we conduct
comparative experiments with these two components together. The presence of SSM dynamically
activates TAC, thereby causing the parameters involved in the forward computation to vary dynami-
cally as well. For quantitative analysis, we calculated the average amount of parameters under the
condition of 10,000 event inputs across our test dataset. As shown in Table 2, the application state of
TAC significantly impacts all evaluation metrics. By activating TAC at appropriate times, SSM avoids
unnecessary computations and time loss, which not only enhances model efficiency but also confirms
the effectiveness of SSM. Although the full application of TAC can maximize mAP accuracy, the
additional time and computational costs involved are not economical.
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Table 3: Comparison after incorporating CNN. The increase with the addition of the CNN is
shown in parentheses.

Method (with CNN) mAP (%) Time (ms) Params (M)

EGSST-B 44.6 (+0.4) 4.6 (+0.1) 3.51 (+0.02)
EGSST-E 49.6 (+0.5) 6.0 (+0.1) 12.34 (+0.02)

Removable Convolutional Neural Network. Our framework is event-based and does not use CNN
for feature extraction. Nevertheless, it has been observed that integrating a simple CNN module
enhances detection performance. To operationalize this module, a certain number of event data must
be standardized across the temporal dimension to form an image-like representation. Table 3 shows
that this CNN integration increases mAP with minimal impact on processing time and parameters.
Consequently, we have incorporated a removable CNN layer into the model, allowing for flexibility
to revert to a fully event-driven configuration if needed.

Gen1 Dataset 1Mpx Dataset

Figure 4: Prediction Results. Due to the low accumulated event count, the visualizations appear
somewhat blurred. Nevertheless, our model effectively identifies objects within these sparse events,
demonstrating its robustness and efficacy.

5 Discussion and Conclusion

We present a lightweight, efficient, and accurate event-based object detection framework tailored for
event cameras. Our model shows strong detection performance and scalability, highlighting its practi-
cal application potential. Future work will extend this approach to object tracking and other advanced
visual tasks, as well as explore deployment optimizations, such as enhancing execution speeds and
converting models to ONNX or TensorRT formats. Deploying ViTs is relatively straightforward,
while GNNs pose greater challenges due to complex graph processing requirements. Although
progress has been made, further work is necessary to improve the deployment efficiency of GNNs.

Furthermore, we plan to investigate the integration of event data with RGB frames in a multimodal
model [55, 56, 57], which could enhance the robustness and accuracy of visual recognition tasks
under varied and dynamic conditions. This multimodal approach promises to leverage the strengths
of both sensor types to deliver superior performance in complex environments.
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A Efficient ViT

This section extends section 3.5 by explaining the methodologies used in our architecture with Linear
ViT, which originates from [24] and is a vital component of our model. For further details, readers
are referred to the original paper.

Traditional ViTs are not suitable for fast visual tasks due to their reliance on extensive softmax
attention. Softmax attention modules model interactions between every pair of tokens in the feature
map to aggregate spatial information, leading to high computational complexity. Efficient ViT is a
speedy visual model that replaces the computationally intense softmax calculations with multi-scale
linear attention, maintaining excellent hardware efficiency while achieving a global receptive field
and multi-scale learning.

Firstly, to reduce computational complexity and hardware latency, softmax attention is replaced with
linear attention, formulated as:

Oi =

N∑
j=1

Sim(Qi,Kj)∑N
j′=1 Sim(Qi,Kj′)

Vj (10)

where

Sim(Q,K) = ReLU(Q)ReLU(K)T . (11)
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This leads to the final output:

Oi =
ReLU(Qi)

(∑N
j=1 ReLU(Kj)

TVj

)
ReLU(Qi)

(∑N
j=1 ReLU(Kj)T

) , (12)

significantly reducing both computational complexity and memory requirements.

However, due to the loss of local feature extraction capability by ReLU, linear attention’s performance
lags behind softmax attention. To improve performance, two core solutions have been proposed:

1. Insert deep convolutions in each FFN layer. Linear attention extracts global features, while
FFN+DWConv captures local information, minimizing computational overhead and greatly
enhancing local feature extraction capability of linear attention.

2. By aggregating adjacent Q, K, V token information into multi-scale tokens, the multi-scale
learning capability across different channels of linear attention is enhanced.

B Performance Scalability Analysis

To test the scalability of our models, we use inputs with three different event counts to train distinct
weight parameters and conducted cross-testing under various input conditions. Given the similar
performance outcomes of EGSST-B and EGSST-E, we present specific results only for EGSST-E.

Table 4: Performance scalability analysis with different number of input events. The results here
are all run on the Gen1 dataset and the results on 1Mpx are similar. (Note: T refers to thousand.)

EGSST-E (2T) EGSST-E (10T) EGSST-E (18T) EGSST-E

Events mAP
(%) ↑

Time
(ms) ↓

mAP
(%) ↑

Time
(ms) ↓

mAP
(%) ↑

Time
(ms) ↓

Params (M)

2,000 34.9 4.6 39.4 4.6 37.7 4.6 12.3
10,000 33.1 6.1 49.6 6.0 44.5 6.2 12.3
18,000 30.6 7.9 45.4 7.9 51.7 7.8 12.3

In terms of runtime, it can be demonstrated that a higher number of events will invariably lead to
a higher consumption of time. In terms of mAP, cross-test results demonstrate that model weights
trained with fewer events perform well when applied to datasets with a larger number of events,
highlighting the excellent generalization capabilities of our models. Conversely, although models
trained with a larger number of events show some performance disparity when applied to datasets
with fewer events, the performance remains acceptable, indicating good adaptability of the model.

Our models allow for the flexible setting of the event count N , leveraging certain capabilities from
dynamic graph processing in the treatment of GCN. While a larger event count N introduces more
node features, significantly enhancing detection accuracy, it also results in increased computational
load and latency.

C Dynamic Label Augmentation

C.1 Methodology

In this paper, we propose a novel dynamic label matching method to address the limitations of
traditional label matching approaches when processing fixed numbers of event data. Specifically,
the event data acquisition speed is extremely high, while existing datasets typically lack a sufficient
number of labels to match the accumulated fixed-number event data. Therefore, traditional methods
based on fixed time window label assignment are inadequate for scenarios requiring both adaptability
to dynamic scenes and sufficient label coverage. To overcome this limitation, we design a Dynamic
Label Augmentation approach to flexibly assign appropriate labels for each batch of fixed-number
events.
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In the proposed method, we assume that the fixed number of collected events is 10,000, for which
labels need to be assigned. Suppose there are m labels in the original dataset, with each label
corresponding to a timestamp τm. For each batch of 10,000 events, we first compute the representative
time, defined as the mean timestamp of these events, denoted by tr, where r represents the index of
the current batch of 10,000 events.

To achieve dynamic label matching, we introduce a constant γ to control the flexibility of the label
matching time window. Specifically, we define a dynamically adjusted time range γ ·∆t∗, where
∆t∗ is a time parameter that varies in real-time based on the dynamics of the events. A label with
a timestamp τm is considered appropriate for the current batch of 10,000 events if it satisfies the
following condition:

tr − γ ·∆t∗ ≤ τm ≤ tr + γ ·∆t∗ (13)
Since ∆t∗ changes dynamically according to the characteristics of the events, the proposed method
can effectively adapt to variations in the event data, ensuring the accuracy of label assignment.

In summary, the Dynamic Label Augmentation method enables flexible adjustment of the time
window, allowing the label assignment process to adapt to different dynamic properties of the events.
This approach avoids potential mismatches associated with traditional fixed time window methods
and exhibits strong robustness and adaptability.

C.2 Experiment

Table 5 illustrates the impact of various data augmentation techniques on model accuracy, with
dynamic label augmentation demonstrating a relative advantage. Traditional augmentation methods,
such as horizontal flipping, zooming in, and zooming out, improve model robustness by increasing
data diversity, contributing to accuracy improvements. However, dynamic label augmentation, which
adaptively adjusts the label generation range, shows better adaptability when handling dynamic
scenes, particularly by reducing the risk of label mismatches, thereby potentially enhancing overall
model performance.

Table 5: Accuracy Improvement from Dynamic Label Augmentation. All augmentation tech-
niques improve accuracy, with dynamic augmentation showing the greatest improvement.

h-flip zoom-in zoom-out dynamic mAP (%)

38.3
✓ 41.8

✓ 43.3
✓ 42.1

✓ 46.6
✓ ✓ ✓ ✓ 49.6

The experimental results suggest that while conventional augmentation techniques are effective in
improving accuracy, dynamic label augmentation may provide additional gains in both accuracy and
robustness by flexibly adjusting the label generation process. This approach appears to improve the
model’s ability to adapt to complex and fast-changing environments to a certain extent.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope because they succinctly summarize the key methodology employed
in the research, providing a clear overview that aligns with the detailed content presented in
the subsequent sections of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitations of the work performed by the authors in
section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This is an applied paper that provides an event-based processing framework,
and as such, it does not focus on theoretical results that require detailed assumptions and
proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the necessary information to reproduce the main
experimental results by providing detailed descriptions of the methodologies and parameters
used, ensuring that the main claims and conclusions can be independently reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in the supplemental
material, and the code is included in the attachment.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper specifies all the training and test details necessary to understand the
results in section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experimental results in the paper do not include error bars or other
information about the statistical significance of the experiments.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources needed to
reproduce the experiments in section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics
as it ensures the responsible use of data, respects participant privacy and commits to integrity
and ethical standards in research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers or websites that produced the code package or
dataset.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This is an applied paper on event camera applications, and it does not involve
crowdsourcing experiments or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The paper does not involve human experiments or study participants, so there
are no potential risks to describe, no disclosures to subjects, and no need for IRB approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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