
Relieving the Over-Aggregating Effect in
Graph Transformers

Junshu Sun1,2 Wanxing Chang3
Chenxue Yang4∗ Qingming Huang1,2 Shuhui Wang1∗

1Institute of Computing Technology, CAS 2University of Chinese Academy of Sciences
3DAMO Academy, Alibaba Group 4Agriculture Information Institute, CAAS

{sunjunshu21s,wangshuhui}@ict.ac.cn changwanxing.cwx@alibaba-inc.com
yangchenxue@caas.cn qmhuang@ucas.ac.cn

Abstract

Graph attention has demonstrated superior performance in graph learning tasks.
However, learning from global interactions can be challenging due to the large
number of nodes. In this paper, we discover a new phenomenon termed over-
aggregating. Over-aggregating arises when a large volume of messages is aggre-
gated into a single node with less discrimination, leading to the dilution of the key
messages and potential information loss. To address this, we propose Wideformer,
a plug-and-play method for graph attention. Wideformer divides the aggregation of
all nodes into parallel processes and guides the model to focus on specific subsets
of these processes. The division can limit the input volume per aggregation, avoid-
ing message dilution and reducing information loss. The guiding step sorts and
weights the aggregation outputs, prioritizing the informative messages. Evaluations
show that Wideformer can effectively mitigate over-aggregating. As a result, the
backbone methods can focus on the informative messages, achieving superior
performance compared to baseline methods.

1 Introduction

Transformers have achieved remarkable success in modeling Euclidean-structured data, including
natural language processing [43, 24], image understanding [25, 37, 36], and video processing [2,
48]. Built on this success, significant efforts have been devoted to adapting transformers to graph-
structured data, giving rise to various graph transformer models [22, 54, 51]. Leveraging the
attention mechanism, graph transformers can learn from long-range dependencies and capture
global features. These strengths provide effective solutions to address the challenges of over-
smoothing [28] and over-squashing [1, 42], commonly encountered in traditional graph neural
networks (GNNs) [16, 13, 44, 40, 12, 41]. Evaluations across diverse downstream tasks highlight the
promising performance of graph transformers [51, 39, 8].

Nevertheless, the dense global attention in graph transformers incurs a space complexity of O(n2),
where the memory consumption increases quadratically with the number of input nodes. This high
complexity hinders graph transformers from scaling to large datasets. To enhance the scalability of
graph transformers, two primary approaches have been proposed, including sparse attention [18, 39]
and linear global attention [46, 45, 47, 8]. Sparse methods reduce the density of dense global attention,
which, in its original form, corresponds to a fully connected graph. The sparsified attention graph
contains fewer edges, resulting in reduced memory overhead but also smaller receptive fields for
each node. In contrast, linear methods preserve pairwise interactions between nodes and reduce
complexity by eliminating the need for explicitly computing the dense attention.

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

SAN Exphormer GraphGPS Polynormer SGFormer
0.0

0.2

0.4

0.6

0.8

1.0

At
te

nt
io

n
En

tro
py

(a) Average Attention Entropy

104 105

Number of Nodes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

At
te

nt
io

n
En

tro
py

Cora
AmazonPhoto
tolokers
CoauthorPhysics
minesweeper
CoauthorCS
ogbn-arxiv

(b) Entropy across Node Scales

0 10 20 30 40 50
Epochs

0.2

0.4

0.6

0.8

1.0

At
te

nt
io

n
En

tro
py SAN

Exphormer
GraphGPS
SGFormer
Polynormer

(c) Entropy during Training

Figure 1: Over-Aggregating in Graph Transformers. The entropy values are normalized to [0, 1],
with higher entropy indicating a more uniform distribution of attention scores. In (b), we show
the attention entropy with different numbers of nodes for Polynormer [8], a typical linear attention
method.

However, learning from pairwise interactions is challenging due to the large number of graph nodes.
Fig. 1 illustrates the average attention entropy on different models. Attention entropy denotes the
confidence of the nodes in discriminating informative messages during aggregation. Higher entropy
indicates a more uniform distribution of attention scores and less confidence. From Fig. 1(a), we can
see that linear methods tend to aggregate messages from nodes with higher attention entropy and
similar attention scores. When the number of nodes increases in Fig. 1(b), the attention scores become
more and more similar. As a result, a large volume of messages is aggregated into a single node
with less discrimination, leading to potential information loss. We name this uniform aggregation
phenomenon as over-aggregating.

To tackle over-aggregating in graph transformers, we propose Wideformer, a plug-and-play method for
graph attention. Wideformer divides the aggregation of all nodes into parallel processes and guides the
model to focus on specific subsets of these processes. Specifically, the aggregation inputs are divided
into distinct clusters, with each cluster aggregated separately. Instead of compressing messages
from all nodes into a single target node, Wideformer limits the input volumes for each aggregation,
thereby avoiding message dilution and reducing information loss. To ensure target nodes focus on the
informative messages, the aggregation results are sorted and weighed based on the attention scores
between the clusters and the target nodes. In contrast to the sparse attention methods that reduce the
number of inputs for each target node, Wideformer maintains the global receptive field and distributes
the inputs into multiple aggregation processes. By integrating with three popular linear methods
GraphGPS [32], SGFormer [47], and Polynormer [8], Wideformer demonstrates effectiveness in
tackling over-aggregating. It can consistently benefit the backbones to achieve superior performance
over baselines. Codes are available at https://github.com/sunjss/over-aggregating.

The contribution of this paper can be summarized as follows:

• We discover a new phenomenon in graph attention, termed over-aggregating, which aggregates
a large volume of messages with less discrimination.

• We propose a novel method to relieve over-aggregating, named Wideformer, which divides the
aggregation process and guides the model to focus on the informative messages.

• We demonstrate the effectiveness of Wideformer on thirteen real-world datasets, which consis-
tently relieves over-aggregating and benefits backbones to achieve superior performance.

2 Related Work

GNNs perform message passing on input graphs, enabling nodes to learn from their connected
neighbors and capture topological features [57]. Among the different message passing methods,
GAT [44] first adopts the attention mechanism to aggregate messages. It utilizes attention scores
between connected nodes to help central nodes filter out noisy neighbors and focus on the most
informative ones. Following GAT, subsequent methods further adopt dense global attention to
graphs [22]. A primary challenge for these methods lies in how to effectively encode the graph
structure, as global attention performs message passing between all pairs of nodes while neglecting

2

https://github.com/sunjss/over-aggregating

the underlying graph structure. Several solutions have been proposed, including combining global
attention with GNNs to simultaneously encode global features and graph structures [58, 49, 27],
learning positional or structural encodings as node features [58, 10, 9, 18], and incorporating graph
structures as an attention bias [51].

Another challenge arising from the dense global attention is a space complexity of O(n2). Efforts to
address this challenge can be broadly categorized into two approaches: sparse attention and linear
global attention. Sparse attention stems from the Big Bird model [55], which utilizes random masks,
sliding windows, and partial global masks to achieve sparsification in traditional transformer architec-
tures. Built upon Big Bird, GraphGPS incorporates these sparse mechanisms into a comprehensive
framework for constructing graph transformers [32]. In addition to Big Bird, GAT, which employs
input graphs as attention graphs, can also be considered a form of sparse attention. Exphormer [39]
and Spexphormer [38] further transform the input graphs into expander graphs, thus better approxi-
mating the fully connected graph. However, all of these sparsification methods shrink the receptive
fields of each node, leading to a trade-off between model complexity and the ability to capture global
information. Different from sparse attentions, Wideformer maintains the global receptive field while
requiring linear computing complexity.

In contrast to sparse attention, linear global attention focuses on directly simplifying the computation
of dense attention. For example, GraphGPS [32] and Nodeformer [46] extend the linear attention
method, Performer [7], from traditional transformer architectures to graph transformers. Performer
enables nearly unbiased estimations of dense attention without explicitly computing the attention
matrix. In addition to approximation methods, several models have been proposed to model pairwise
relations in linear time [47, 8]. However, as shown in Fig. 1(a), the linear methods that maintain the
global receptive field during aggregation encounter over-aggregating, leading to dilution of important
messages and potential loss of information.

3 Over-Aggregating in Graph Transformers

Graph transformers facilitate global or approximated global message passing between nodes. How-
ever, extracting informative features from these global interactions becomes challenging as the number
of graph nodes increases. To investigate the behavior of global interactions in graph transformers,
we utilize entropy as a measure of attention scores and examine how graph nodes distribute their
attention in the receptive field.

3.1 Attention Entropy

In graph attention, input features are projected into query, key, and value features. The value features
are aggregated based on the similarity between the query and key features. Let X ∈ Rn×d denote
the input node features, where n denotes the number of nodes and d denotes the number of features.
Node features are mapped to the query, key, and value features through Q = XWQ, K = XWK ,
and V = XWV , respectively. Let R = QK⊤, we now have graph attention as

H = αV, αi,j = softmax(R)i,j =
exp(Ri,j)∑
k exp(Ri,k)

. (1)

Given the attention scores {αi,1, · · · ,αi,n} between the target node vi and all graph nodes, the
attention entropy can be formulated as

H(vi) = −
n∑

j=1

αi,j logαi,j . (2)

To ensure comparable results across different datasets, the entropy values are normalized by log n
to range [0, 1] for visualizations. Attention entropy measures the distribution of attention scores,
indicating the confidence of the target nodes in discriminating informative messages. Lower entropy
indicates that each target node focuses on a subset of graph nodes with higher attention scores
(confidence), while higher entropy reflects more uniformly distributed attention and lower confidence.

Fig. 1(a) compares the attention entropy in sparse attention and linear global attention methods,
including linear methods GraphGPS with Performer [32], Polynormer [8], and SGFormer [47], as

3

well as sparse methods SAN [18] and Exphormer [39]. The entropy values are averaged over all
graph nodes throughout the training process. As shown in Fig. 1(a), linear and sparse methods
exhibit distinct attention distribution patterns. Specifically, sparse methods demonstrate low attention
entropy, which can be attributed to their sparsification strategies that enable nodes to filter out noisy
messages and focus on the most informative ones. Conversely, linear methods involve all the graph
nodes for aggregation and tend to assign similar attention scores in the receptive field, resulting in
higher entropy. The distinct distribution patterns of the sparse and linear methods indicate the relation
between the number of nodes in aggregation and the attention entropy.
Theorem 3.1 (Monotonic Lower Bond of Attention Entropy). Let αi,· ∈ Rn be the attention
distribution of node vi over n nodes. The attention entropy H(vi) admits a lower bound that
increases monotonically with n.

The proof is provided in Appendix A. Theorem 3.1 indicates that graph attention will be more likely
to have higher attention entropy when aggregating more graph nodes, which is further demonstrated
in Fig. 1(b).

3.2 Over-Aggregating

We refer to the aggregation process with high attention entropy as over-aggregating, typically
demonstrated as uniform and small attention scores, offering limited discrimination among nodes. As
a result, over-aggregating prevents graph nodes from prioritizing the informative messages, leading
to message dilution and potential information loss.

Table 1: Effect of Over-Aggregating by
Attention Entropy Regularization (Mea-
sured by accuracy except for ROC-AUC
for minesweeper: %).

ORI +REG
CORA 86.03±0.54 86.23±0.32

CITESEER 77.96±0.37 78.19±0.39

AMZPHOTO 95.47±0.53 95.52±0.44

MSWEEPER 97.13±0.17 97.20±0.32

To empirically evaluate the effect of over-aggregating
with high attention entropy, we add an entropy regular-
ization term to the optimization loss for linear methods
GraphGPS with Performer, SGFormer, and Polynormer.
The best results among the three backbones are reported.
Tab. 1 shows that directly reducing the attention entropy
during training gives rise to better model performance.
This indicates that over-aggregating with high attention
entropy does harm the model performance. However,
although directly regularizing attention entropy during
training can benefit model performance, this process re-
quires the explicit computation of the whole attention matrix, making it inapplicable to large graphs.
As a result, it remains an open problem to alleviate over-aggregating for learning on graphs.

Over-aggregating stems from the optimization of attention scores. As shown in Fig. 1(c), models
are typically initialized with high attention entropy, which gradually decreases during training.
Throughout this process, models update the parameters WQ and WK with back-propagation, and
thus optimize the attention scores. Take WQ as an example, the gradient of αi,j with respect to WQ

can be derived as
∂αi,j

∂WQ
↓ = αi,j↓

(
X⊤

i,·Xj,·W
⊤
K −

n∑
k=1

αi,kX
⊤
i,·Xk,·W

⊤
K

)
. (3)

For more details, please refer to Appendix B. A higher initial attention entropy implies smaller
attention scores, which in turn attenuate the signals to update these scores. As a result, models
converge with persistently high attention entropy, reflecting suboptimal attention distributions. Eq. 3
can also provide insights for the aggravated over-aggregating problem on large-scale graphs (indicated
by Theorem 3.1 and Fig. 1(b))

∂αi,j

∂WQ
= αi,j(gvj − gothers↑) = αi,j

(1−αi,j)X
⊤
i,·Xj,·W

⊤
K −

n↑∑
k=1
k ̸=j

αi,kX
⊤
i,·Xk,·W

⊤
K

 , (4)

where gvj corresponds to the update signals based on the interaction between node vi and vj , and
gothers corresponds to the cumulative impact of all other nodes. As the number of graph nodes
grows, gothers increasingly incorporates more irrelevant signals, diluting the relative strength of the
meaningful update signals in gvj . This dilution hinders the optimization of αi,j , preventing the model
from learning discriminative attention distributions and amplifying the over-aggregating issue on
large-scale graphs.

4

5

3
1

2

4

1

3

4

5

2

1

2

3

4

5

𝐐 𝐊 𝐕× ×
1
2
3
4
5

1 2 3 4 5

1
2
3
4
5

1
2
3
4
5

𝐎𝐮𝐭=

2

5

5
3

1

4
2

Center Selection

1

3

4

2

5

2

5

Source Node Assignment

1

2

3

4

5

Center-based Divided Aggregation

1

3

4

5

2

1

3

4

5

2 3

5

1

2

4

4
3

2

5

1

input graph

A
tten

tio
n

𝐐

𝐊

𝐕

𝐎

Global Aggregation Divided Global Aggregation

Figure 2: Attention Comparison between Global Aggregation and Our Divided Global Ag-
gregation. Global attention employs global aggregation to aggregate source messages into a one-
dimensional representation. To relieve the over-aggregating, we assign source nodes into distinct
clusters and aggregate each cluster separately, giving rise to multiple aggregation results.

3.3 Discussion

Similar to the occurrence of over-aggregating on the attention graphs, a recent study highlights a
phenomenon known as over-globalizing in graph transformers, where models struggle to learn from
neighboring nodes in homophilic datasets [50]. While over-globalizing specifically concerns nodes at
varying distances, over-aggregating focuses on the discrimination of all nodes during aggregation.

In the context of message passing on input graphs, over-dilution studies aggregation for both feature
dimensions and neighboring nodes [20]. Specifically, intra-node dilution focuses on the volumes of
the node features, while inter-node dilution focuses on whether a node’s own information is preserved
during aggregation. Different from over-dilution, over-aggregating focuses on the volumes of the
input nodes and emphasizes the preservation of messages from the informative nodes, regardless of
whether that includes the node itself.

Besides over-dilution, over-smoothing occurs when node features become increasingly similar as
the number of layers grows [28]. This results from the low-pass aggregation among connected
nodes in the input graph. In contrast, over-aggregating occurs in the attention graph due to the large
number of nodes in the global receptive field. Designing high-pass aggregating functions can tackle
over-smoothing. Conversely, for over-aggregating on graph transformers, even when a high-pass
behavior is desired, the optimization of attention weights may still be hindered by the overwhelming
number of nodes involved in aggregation.

Another notable issue on input graphs is over-squashing, which occurs when message pathways
include edges with negative curvatures. It leads to an exponential expansion of the receptive field as the
message-passing distance increases [1]. In consequence, a large volume of messages is compressed
into fixed-dimensional representations, impeding the effective message exchange between long-range
nodes. Unlike over-squashing that occurs during multi-step message passing, over-aggregating arises
in one step. It aggregates a large volume of messages into a single node with limited discrimination,
leading to the loss of informative messages from one-hop neighbors.

4 Wideformer: Relieving the Over-Aggregating

Based on the analysis in Sec. 3, global attention, including both dense and linear methods, faces a
critical trade-off between mitigating over-aggregating and maintaining a global receptive field. To
address this challenge, we propose Wideformer, a plug-and-play method designed to enhance graph
transformer backbones. Unlike sparse attention methods that reduce the input volume, Wideformer
maintains the total inputs and increases the output volume. Specifically, it partitions the inputs into
distinct clusters, giving rise to multiple aggregation results for each node and guiding the nodes
to focus on the informative clusters. The following subsections detail the two key components of
Wideformer: dividing the aggregation and guiding the attention.

4.1 Dividing the Aggregation

Message passing involves aggregating messages from source nodes to target nodes. For each target
node vi in global attention, it treats all the input nodes {vj}, j ∈ {1, · · · , n} as the source nodes,
and aggregate messages Vj,· based on the attention scores between its query features Qi,· and the

5

source key features Kj,·. As a result, messages from all source nodes at each feature dimension
are compressed into a single-dimensional representation, leading to the potential dilution of the key
messages.

Algorithm 1 Center-selection Function Cluster

Input: query Q ∈ Rn×d, number of clusters m
Initialize center C = {0}m×d

C1,· = Qt,·, t = argmaxi
∑

j Qi,j

for t = 1 to m do
Compute distances: q = maxj

[
(QC⊤)·,j

]
Select next center indices: q = argmini(qi)
Update centers: Ct,· = Qq,·

end for
Output: centers C ∈ Rm×d

To relieve the dilution, we propose to divide
the source nodes into different clusters based
on their attention scores and aggregate each
cluster separately. Therefore, source nodes
with the highest level of attention can be ag-
gregated together, excluding the other nodes
and relieving the message dilution. However,
explicitly computing the attention matrix re-
quires a space complexity of O(n2). To ad-
dress this issue, Wideformer approximates the
division with attention scores by first selecting
cluster centers among the query features, and then assigning the source nodes to the clusters based on
the similarity between their key features and the centers.

Let m be the number of clusters, C = Cluster(Q,m) ∈ Rm×d be the cluster centers. The center-
selection function Cluter in Algorithm 1 is implemented based on K-Means++ [3]. The query
of the source node with the largest summation across feature dimensions is selected as the initial
cluster center. Notably, this initial center is solely used to initiate the selection process and does
not participate in the aggregation. Cluter then select m centers sequentially, where the node that
minimizes the maximum similarity to all previously selected centers is designated as a new cluster
center.

The source nodes are assigned to the identified query clusters based on the similarity between K and
C. The assignment result k ∈ Rn can be formulated as

ki = argmax
j

[(
KC⊤

)
i,j

]
. (5)

By performing aggregation within distinct clusters, Wideformer produces multiple outputs for each
target node. The aggregation result of the t-th cluster H(t) ∈ Rn×d can be formulated as

H(t) =
∑

i∈{j|kj=t}

softmax(QK⊤
i,·)Vi,· . (6)

To illustrate the effect of aggregation, for each target node vi and the j-th feature dimension of
the source message V, the original aggregation method in Eq. 1 compresses messages from all
nodes into a one-dimensional representation Hi,j , which leads to the dilution of key messages
and over-aggregating. In contrast, Wideformer with Eq. 6 increases the output volume, yielding a
m-dimensional representation {H(1)

i,j , · · · ,H
(m)
i,j }. Only a limited volume of messages is aggregated

for each cluster, preventing the dilution of the key messages. Even when the target nodes apply
uniform attention scores to the source nodes, the messages in different clusters remain separate from
being over-aggregated.

4.2 Guiding the Attention

The aggregation results {H(1), · · · ,H(m)} are concatenated for the subsequent modules in backbones.
During the concatenation, the current ordering of the aggregated results depends on the cluster-
selection order. However, since each target node assigns different attention scores to the clusters, this
order does not reflect the importance of each cluster for the target node. To ensure consistent ordering
and enable the target nodes to focus on the informative clusters, Wideformer sorts and weights the
clusters for each target node based on the cluster attention score ᾱi,j ∈ Rn×m. These scores can be
formulated as

ᾱi,j = softmax(QK̄⊤)i,j , K̄t,· =
1

|{vi|ki = t}|
∑

i∈{j|kj=t}

Ki,·, (7)

where K̄ ∈ Rm×d denotes the average key features of the clusters. The sorted and weighted
aggregation result Ĥ(t) ∈ Rn×d is then obtained as

Ĥ
(t)
i,· = ᾱi,Si,t

H
(Si,t)
i,· , Si,· = arg sortj [ᾱi,j] , (8)

6

Table 2: Comparison Results on Homophilic Datasets (Measured by accuracy: %). OOM
indicates out-of-memory under the experimental setups.

AMAZONCOMPUTERS COAUTHORCS AMAZONPHOTO COAUTHORPHYSICS
#NODES 13,381 18,333 7,487 34,493
#FEATURES 767 6,805 745 8,415
#CLASSES 10 15 8 5
GCN 89.65±0.52 92.92±0.12 92.70±0.20 96.18±0.07

GRAPHSAGE 91.20±0.29 93.91±0.13 94.59±0.14 96.49±0.06

GAT 90.78±0.13 93.61±0.14 93.87±0.11 96.17±0.08

GPRGNN 89.32±0.29 95.13±0.09 94.49±0.14 96.85±0.08

NAGPHORMER 91.19±0.14 95.75±0.09 95.49±0.11 97.34±0.03

NODEFORMER 86.98±0.62 95.64±0.22 93.46±0.35 96.45±0.28

DIFFORMER 91.99±0.76 94.78±0.20 95.10±0.47 96.60±0.18

GOAT 90.96±0.90 94.21±0.38 92.96±1.48 96.24±0.24

EXPHORMER 91.47±0.17 94.93±0.01 95.35±0.22 96.89±0.09

GRAPHGPS 90.62±0.36 95.44±0.03 94.98±0.16 96.75±0.07

+ENTROPY REG 90.68±0.37 95.50±0.19 95.28±0.28 OOM
+WIDEFORMER 90.84±0.57 95.85±0.07 95.55±0.74 96.95±0.03

SGFORMER 91.66±0.23 93.50±0.32 95.47±0.66 96.87±0.08

+ENTROPY REG 91.78±0.37 93.59±0.41 95.51±0.49 96.88±0.09

+WIDEFORMER 92.19±0.17 93.86±0.41 95.64±0.57 97.39±0.19

POLYNORMER 91.98±0.09 94.53±0.61 95.47±0.53 96.67±0.29

+ENTROPY REG 92.08±0.07 94.57±0.43 95.52±0.44 96.69±0.31

+WIDEFORMER 92.39±0.07 94.60±0.27 95.64±0.36 96.79±0.20

where arg sort returns the indices of the sorted elements in ascending order. Eq. 7 and 8 inject the
importance of each cluster into the aggregation, guiding the focus of the target nodes. The weighted
results are concatenated for the following computation.

5 Experiment

GraphGPS Polynormer SGFormer
0.0

0.2

0.4

0.6

0.8

1.0
At

te
nt

io
n

En
tro

py
Original
+Ours
+Ours w/o. Guide

(a) Attention Entropy Comparison

103 104 105

Number of Nodes (n)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

At
te

nt
io

n
En

tro
py

GraphGPS
SGFormer
Polynormer

(b) Cluster Attention Entropy

Figure 3: Effectiveness Evaluation
for Over-Aggregating. “+ Ours” de-
notes using our proposed Wideformer.
“+ Ours w/o. Guide” employs Wide-
former without attention guidance.

To evaluate the effectiveness of Wideformer, we conduct
empirical evaluations on real-world datasets. The detailed
setups are presented in Appendix D.

5.1 Effectiveness in tackling Over-Aggregating

Wideformer is evaluated on three linear methods, including
GraphGPS with Performer [32], SGFormer [47], and Poly-
normer [8]. To ensure consistent comparison, these methods
are implemented under the framework of GraphGPS. As pre-
sented in Fig. 3(a), Wideformer can effectively reduce the
attention entropy of all backbone methods. This reduction
allows target nodes to focus on informative source nodes
within the global receptive field, effectively preventing the
dilution of key messages and mitigating over-aggregating.

However, Wideformer without the attention-guiding process
still exhibits high attention entropy in Fig. 3(a). This partial
method only avoids message dilution but fails to effectively
guide the attention of the target nodes. To further investigate
the attention-guiding process in Wideformer, we conduct
an empirical analysis of cluster attention ᾱ. As shown in
Fig. 3(b), Wideformer provides low cluster attention entropy
for all three backbones, indicating that only a subset of
input messages is crucial for the target nodes. The attention-
guiding process in Wideformer allows backbone methods to
concentrate on these informative subsets, enhancing their ability to mitigate over-aggregating. As the
number of nodes increases, GraphGPS and SGFormer exhibit increasingly divergent attention scores
across clusters, while Polynormer maintains much lower cluster attention entropy, albeit with a slight
upward trend. This indicates that Wideformer consistently supports different backbone methods in
prioritizing informative messages, even when the graph size grows.

7

Table 3: Comparison Results on Heterophilic Datasets (Measured by ROC-AUC except for
accuracy for amazon-ratings and roman-empire: %). OOM indicates out-of-memory under the
experimental setups.

AMAZON-RATINGS MINESWEEPER QUESTIONS ROMAN-EMPIRE TOLOKERS
#NODES 24,492 10,000 48,921 22,662 11,758
#FEATURES 300 7 301 300 10
#CLASSES 5 2 2 18 2
GCN 48.70±0.63 89.75±0.52 76.09±1.27 73.69±0.74 83.64±0.67

GRAPHSAGE 53.63±0.39 93.51±0.57 76.44±0.62 85.74±0.67 82.43±0.44

GAT 52.70±0.62 93.91±0.35 76.79±0.71 88.75±0.41 83.78±0.43

GPRGNN 44.88±0.34 86.24±0.61 55.48±0.91 64.85±0.27 72.94±0.97

NAGPHORMER 51.26±0.72 84.19±0.66 68.17±1.53 74.34±0.77 78.32±0.95

NODEFORMER 43.86±0.35 86.71±0.88 74.27±1.46 64.49±0.73 78.10±1.03

DIFFORMER 47.84±0.65 90.89±0.58 72.15±1.31 79.10±0.32 83.57±0.68

GOAT 44.61±0.50 81.09±1.02 75.76±1.66 71.59±1.25 83.11±1.04

EXPHORMER 53.51±0.46 84.19±0.53 73.94±1.06 89.03±0.37 83.77±0.78

GRAPHGPS 49.73±0.11 93.26±0.10 75.48±0.66 81.46±0.40 83.95±0.81

+ENTROPY REG OOM 93.35±0.23 OOM OOM 84.23±0.51

+WIDEFORMER 49.96±0.41 93.52±0.07 75.69±1.17 82.12±0.39 84.67±0.66

SGFORMER 52.38±0.22 88.60±0.49 76.81±0.09 75.20±0.89 82.24±0.13

+ENTROPY REG 52.86±0.29 88.87±0.33 76.83±0.18 75.84±0.43 82.39±0.19

+WIDEFORMER 53.47±0.14 89.02±0.22 76.94±0.05 77.03±0.38 82.55±0.03

POLYNORMER 54.71±0.17 97.13±0.17 78.66±0.50 91.83±0.16 85.09±0.21

+ENTROPY REG 54.79±0.23 97.20±0.32 78.69±0.24 91.94±0.34 85.21±0.33

+WIDEFORMER 55.05±0.08 97.26±0.01 79.00±0.20 92.16±0.24 85.33±0.23

Table 4: Comparison Results on Datasets with Broader
Scales (Measured by accuracy: %). OOM indicates
out-of-memory under the experimental setups.

OGB-ARXIV CITESEER CORA TWITCH-GAMER
#NODES 169,343 3,327 2,708 168,114
#FEATURES 128 3,703 1,433 7
#CLASSES 40 6 7 2
GCN 71.74±0.29 71.60±0.40 81.60±0.40 62.18±0.26

GRAPHSAGE 71.49±0.27 71.93±0.85 82.68±0.47 64.37±0.39

GAT 71.95±0.36 72.10±1.10 83.00±0.70 59.89±4.12

EXPHORMER 72.44±0.28 71.63±1.19 82.77±1.38 64.30±0.16

GRAPHGPS 70.47±1.56 77.96±0.37 86.03±0.54 64.98±0.26

+ENTROPY REG OOM 78.19±0.39 86.23±0.32 OOM
+WIDEFORMER 70.66±1.29 78.61±0.35 86.70±0.83 65.46±0.20

SGFORMER 72.23±0.73 69.93±0.31 80.83±0.52 65.85±0.02

+ENTROPY REG OOM 70.12±0.41 81.04±0.38 OOM
+WIDEFORMER 72.58±0.39 70.63±0.78 81.20±0.37 66.34±0.37

POLYNORMER 70.77±1.16 66.43±1.50 78.70±0.94 67.15±0.03

+ENTROPY REG OOM 67.21±0.35 79.28±0.51 OOM
+WIDEFORMER 70.88±0.10 68.10±0.42 79.90±0.86 67.33±0.15

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Number of Nodes (n)

0.1

0.2

0.3

0.4

0.5

Ti
m

e
Co

st
 (s

)

Whole Model
Wideformer Part
2

4
6
8

Figure 4: Time Cost on GraphGPS.
The point shape “.” denotes the whole
model and “*” denotes the Wideformer
part. The color of the points indicates
the number of the clusters m.

5.2 Model Comparison

Experimental Setup. We adopt thirteen real-world datasets, including both heterophilic and
homophilic graphs. For baseline methods, both GNNs and graph transformers are adopted. Please
refer to Appendix D.2 for detailed experimental setups. To address the out-of-memory issue associated
with the entropy regularization baseline, we divide the target nodes into mini-batches. Each batch is
sequentially processed to compute attention scores with all source nodes. The results of the backbone
methods GraphGPS with Performer, SGFormer, and Polynormer are reproduced under the framework
of GraphGPS.

Performance. We present the comparison results on datasets where the number of nodes is around
10k in Tab. 2 and Tab. 3. Wideformer consistently enhances the performance of all backbone models
across various datasets. Specifically, backbones integrated with Wideformer achieve superior perfor-
mance compared to baseline methods. For instance, in Tab. 2, Wideformer enables backbone methods
to outperform the previous best-performing baselines, including DIFFormer on AmazonComputers
and NAGphormer on CoauthorsCS, CoauthorPhysics, and AmazonPhoto. Compared to the entropy
regularization method, we can see that regularizing entropy results in inferior performance to Wide-
former and even marginal gains on larger graphs. This is consistent with our analysis in Sec. 3.2.
Entropy regularization does not divide the aggregation process, and thus suffers from optimization
challenges when aggregating over a large number of source nodes. In contrast, Wideformer separates

8

the aggregation into parallel processes. Each process only involves a small ratio of the source nodes
to be aggregated, preventing the dilution of the key messages. We also compare the gains with
zero to evaluate the statistical significance of the performance gains. Paired t-tests on all backbones
consistently give rise to p-values smaller than 0.05, and the confidence interval results do not contain
0, validating the statistical significance of the performance gains with Wideformer. These results
demonstrate that relieving over-aggregating improves the effectiveness of graph attention.

To further verify Wideformer’s ability to mitigate over-aggregating, we extend our experiments
to datasets with broader node scales, including 1k and 0.1M nodes. Results in Tab. 4 show that
Wideformer can benefit backbones with different scales of nodes. Among the three backbones,
SGFormer achieves better results on large-scale graphs ogb-arxiv and twitch-gamer, but inferior
results on small-scale graphs CiteSeer and Cora. This is due to the trade-off between noise filtering
and information loss in SGFormer, which is further investigated in Sec. 5.3.1.

5.3 Model Analysis

5.3.1 Informative Source Nodes

103 104 105

Number of Nodes (n)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

No
de

 R
at

io

GraphGPS
SGFormer
Polynormer

Figure 5: Informative Source Node Ra-
tio. The ratio is the number of nodes
assigned to the cluster with the highest
attention score relative to the total num-
ber of graph nodes.

minesweeper tolokers Cora CoauthorCS
Datasets

0.00

0.05

0.10

0.15

0.20

0.25

Ra
tio

Edge
Label

Figure 6: Node Relations. Label/Edge
denotes the ratio of source nodes sharing
the same label/connected with the target
nodes.

Wideformer empowers backbone methods to focus on
informative source nodes within the global receptive field.
To investigate the attention mechanism in Wideformer, we
conduct additional experiments on source nodes assigned
to the cluster with the highest attention score, analyzing
both their volumes and their relations with the target nodes.

Node Ratio. To analyze the node volume, we calculate
the ratio of nodes assigned to the cluster with the high-
est attention score relative to the total number of graph
nodes. As shown in Fig. 5, the node ratio decreases as
the total number of nodes increases. This suggests that
the proportion of informative nodes diminishes in larger
graphs, leading to noisier source messages. Wideformer
addresses this by assigning a smaller ratio of nodes to the
cluster with the highest attention score, guiding the back-
bones to focus on the most informative nodes. Among
the three backbones, SGFormer focuses on fewer source
nodes than GraphGPS and Polynormer. This results in
a trade-off between noise filtering and information loss,
where SGFormer performs better on large-scale graphs
(ogb-arxiv and twitch-gamer) but lags behind on smaller
graphs (CiteSeer and Cora).

Node Relations. To analyze the relations between target
and source nodes in the cluster with the highest attention
score, we compute the ratio of the source nodes (1) that
have the same label as the target nodes, and (2) that are connected with the target nodes, both relative
to the total number of source nodes in the cluster. The results with GraphGPS are presented in
Fig. 6. For the other two backbones, please refer to Appendix E. As shown in Fig. 6, we can see
that approximately 10% of source nodes are connected with their target nodes. The label distribution
diverges between heterophilic graphs and homophilic graphs, where target nodes assign larger
attention scores to the same-class source nodes on heterophilic graphs.

5.3.2 Complexity Analysis

The time and space complexity of Wideformer is O(nm), where n and m denote the number of
nodes and clusters, respectively. In practice, m is chosen from {2, ..., 8}, which ensures the model’s
scalability to large graphs. We provide a time cost study regarding the number of nodes (n) and
clusters (m), comparing the whole model with the part of Wideformer. The results on GraphGPS are
presented in Fig. 4, where the time cost of Wideformer scales linearly to n and remains a small ratio
of the total cost. For detailed experimental setup and full results, please refer to Appendix F.

9

5.3.3 Model Ablation

To evaluate the contribution of the aggregation-dividing and attention-guiding process in Wideformer,
we conduct an ablation study on the three backbone methods.

1 2 3 4 5 6 7 8
Number of Clusters (m)

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rfo

rm
an

ce
 G

ai
n

GraphGPS
SGFormer
Polynormer

Figure 7: Comparison with Different
Numbers of Clusters.

Cluster Ablation. Wideformer partitions the source
nodes into distinct clusters. To examine the impact of
this division, we perform an ablation study on the number
of clusters m regarding performance gains. The gain is
defined as pm−p1

p1
, where p1 and pm denote the perfor-

mance with a single cluster and m clusters, respectively.
The average performance gains across various datasets
for all three backbones are shown in Fig. 7. We can see
that increasing the number of clusters initially increases
the performance gain. However, when m exceeds 6, the
performance gain starts to decline. This is because a rel-
atively larger number of clusters can effectively reduce
the input message volume, mitigating the dilution of key
information. Nevertheless, excessively partitioning the source nodes disperses critical information
into multiple clusters. This leads to the distracted attention of the target nodes, reducing the values
of attention scores and increasing attention entropy. In practice, the optimal number of clusters is
around 3 ∼ 5.

Table 5: Comparison on the Center Se-
lection Methods. Results are averaged on
amazon-ratings, questions, CoauthorCS, and
AmazonPhoto.

GRAPHGPS SGFORMER POLYNORMER
ORIGINAL 78.91±0.24 79.54±0.32 80.84±0.45

+WIDEFORMER 79.26±0.59 79.98±0.29 81.07±0.23

+ITER=2 79.93±0.45 80.58±0.39 81.44±0.29

+ITER=4 79.95±0.57 80.42±0.37 81.43±0.21

+ITER=6 79.85±0.44 80.55±0.34 81.52±0.23

+LEARNABLE 80.05±0.46 80.60±0.39 81.54±0.20

Center Selection. To ensure computing efficiency,
Wideformer employs a non-iterative strategy for cen-
ter selection. We now compare this simple choice
with (1) multi-step iterative clustering and (2) param-
eterized centers, to shed light on the future direc-
tions. Tab. 5 shows that applying iterative clustering
can achieve better results, indicating the efficiency-
performance trade-offs. Further modeling centers as
parameters can address this trade-off, which does not
require iterations and achieves the best results.

Table 6: Module Ablation Results (Mea-
sured by accuracy: %). “Div.”/“All” de-
notes the divided aggregation without/with
attention-guidance.

AMAZON
-RATINGS

COAUTHOR
CS

AMAZON
PHOTO

ROMAN
-EMPIRE

GRAPHGPS 49.73±0.11 95.44±0.03 94.98±0.16 81.46±0.40

+DIV. 49.58±0.54 95.56±0.30 94.98±0.61 81.40±0.54

+ALL 49.96±0.41 95.65±0.07 95.55±0.74 82.12±0.39

SGFORMER 52.38±0.22 93.50±0.32 95.47±0.66 75.20±0.89

+DIV. 52.42±0.54 93.53±0.21 95.58±0.53 77.38±0.54

+ALL 53.47±0.14 93.86±0.41 95.64±0.57 77.03±0.38

POLYNORMER 54.71±0.17 94.53±0.61 95.47±0.53 91.83±0.16

+DIV. 54.82±0.11 94.90±0.30 96.74±0.30 92.04±0.15

+ALL 55.05±0.08 94.60±0.27 95.64±0.36 92.16±0.24

Module Ablation. Tab. 6 shows that combining
divided aggregation and attention guidance gener-
ally achieves better performance. However, using
only divided aggregation can also benefit the back-
bones, such as on CoauthorCS and AmazonPhoto
with Polynormer. This is likely due to the simple
attention-guiding strategy, which directly determines
the importance of each cluster as a whole. Under
circumstances where fewer source nodes contain in-
formative messages, this simple strategy leads to lim-
ited benefit capability. Exploring alternative guiding
strategies will be the focus of our future work.

6 Conclusion

In this paper, we discovered a phenomenon in graph attention, termed over-aggregating. Attention
with over-aggregating assigns uniformly distributed attention scores to the messages. As a result, the
key messages are diluted during aggregation, leading to potential information loss. To relieve this
problem, we proposed a novel plug-and-play method, Wideformer. Wideformer divides the source
nodes for aggregation into distinct clusters and aggregates each cluster separately. To ensure focus on
the informative source nodes, Wideformer applies attention guidance to sort and weight the clusters.
Experiments on thirteen datasets show that Wideformer can consistently enhance the performance
of backbones and effectively relieve over-aggregating. Please refer to Appendix. I for the limitation
discussion.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Key R&D Program of China under Grant
2023YFC2508704, in part by the National Natural Science Foundation of China 62236008, and in
part by the Fundamental Research Funds for the Central Universities. The authors would like to thank
the anonymous reviewers for their helpful comments and suggestions that improved this manuscript.

References
[1] Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical

Implications. In International Conference on Learning Representations, Virtual Only, 2021.

[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia
Schmid. ViViT: A Video Vision Transformer. In IEEE/CVF International Conference on
Computer Vision, pages 6816–6826, 2021.

[3] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In
ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035, USA, 2007. Society for
Industrial and Applied Mathematics.

[4] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A Tokenized Graph
Transformer for Node Classification in Large Graphs. In International Conference for Learning
Representations, 2023.

[5] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 257–266, Anchorage AK USA, 2019. ACM.

[6] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive Universal Generalized
PageRank Graph Neural Network. In International Conference on Learning Representations,
virtual, 2022.

[7] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking Attention with
Performers. In International Conference on Learning Representations, 2020.

[8] Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-Expressive Graph
Transformer in Linear Time. In International Conference on Learning Representations, 2023.

[9] Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Networks to
Graphs. In AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

[10] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph Neural Networks with Learnable Structural and Positional Representations. 2021.

[11] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geo-
metric. In International Conference on Learning Representations Workshop on Graphs and
Manifolds, 2019.

[12] Benjamin Gutteridge, Xiaowen Dong, Michael M. Bronstein, and Francesco Di Giovanni.
DRew: Dynamically Rewired Message Passing with Delay. In International Conference on
Machine Learning, pages 12252–12267. PMLR, 2023.

[13] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In International Conference on Neural Information Processing Systems, pages
1025–1035, Red Hook, USA, 2017. Curran Associates Inc.

[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs.
In Advances in Neural Information Processing Systems, volume 33, pages 22118–22133. Curran
Associates, Inc., 2020.

11

[15] Nam Hyeon-Woo, Kim Yu-Ji, Byeongho Heo, Dongyoon Han, Seong Joon Oh, and Tae-Hyun
Oh. Scratching Visual Transformer’s Back with Uniform Attention. In 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 5784–5795, 2023.

[16] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations, Toulon, France, 2017.

[17] Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Goldstein.
GOAT: A Global Transformer on Large-scale Graphs. In Proceedings of the 40th International
Conference on Machine Learning, pages 17375–17390. PMLR, 2023.

[18] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking Graph Transformers with Spectral Attention. In Advances in Neural Information
Processing Systems, volume 34, pages 21618–21629. Curran Associates, Inc., 2021.

[19] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-Attention Graph Pooling. In International
Conference on Machine Learning, pages 3734–3743, Long Beach, California, USA, 2019.
PMLR.

[20] Junhyun Lee, Veronika Thost, Bumsoo Kim, Jaewoo Kang, and Tengfei Ma. Understanding and
Tackling Over-Dilution in Graph Neural Networks. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V.2, pages 1253–1261, New York, NY,
USA, 2025. Association for Computing Machinery.

[21] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

[22] Yuan Li, Xiaodan Liang, Zhiting Hu, Yinbo Chen, and Eric P. Xing. Graph Transformer. 2018.

[23] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and
Strong Simple Methods. In Advances in Neural Information Processing Systems, volume 34,
pages 20887–20902. Curran Associates, Inc., 2021.

[24] Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. DoRA: Weight-Decomposed Low-Rank Adaptation.
In Forty-First International Conference on Machine Learning, 2024.

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In IEEE/CVF
International Conference on Computer Vision, pages 9992–10002, 2021.

[26] Diego Mesquita, Amauri H. Souza, and Samuel Kaski. Rethinking pooling in graph neural
networks. arXiv:2010.11418 [cs], 2020.

[27] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. GraphiT: Encoding Graph
Structure in Transformers. arXiv:2106.05667 [cs], 2021.

[28] Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power
for Node Classification. In International Conference for Learning Representations, 2021.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In International Conference on Neural Information
Processing Systems, pages 8026–8037, Red Hook, NY, USA, 2019. Curran Associates Inc.

[30] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In The Eleventh International Conference on Learning Representations,
Kigali, Rwanda, 2023.

12

http://snap.stanford.edu/data

[31] Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson. Graph Neural
Networks for Intelligent Transportation Systems: A Survey. IEEE Transactions on Intelligent
Transportation Systems, 24(8):8846–8885, 2023.

[32] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. In Advances
in Neural Information Processing Systems, volume 35, pages 14501–14515, New Orleans, USA,
2022.

[33] Giorgos Savathrakis and Antonis Argyros. Enact: Entropy-Based Clustering of Attention
Input for Reducing the Computational Needs of Object Detection Transformers. In 2025 IEEE
International Conference on Image Processing (ICIP), pages 295–300, 2025.

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective Classification in Network Data. AI Magazine, 29(3):93, 2008.

[35] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of Graph Neural Network Evaluation. arXiv:1811.05868 [cs, stat], 2019.

[36] Shufan Shen, Zhaobo Qi, Junshu Sun, Qingming Huang, Qi Tian, and Shuhui Wang. Enhancing
Pre-trained Representation Classifiability can Boost its Interpretability. In The Thirteenth
International Conference on Learning Representations, 2024.

[37] Shufan Shen, Junshu Sun, Xiangyang Ji, Qingming Huang, and Shuhui Wang. Expanding
Sparse Tuning for Low Memory Usage. In Advances in Neural Information Processing Systems,
volume 37, pages 76616–76642, 2024.

[38] Hamed Shirzad, Honghao Lin, Balaji Venkatachalam, Ameya Velingker, David P. Woodruff, and
Danica J. Sutherland. Even Sparser Graph Transformers. In Advances in Neural Information
Processing Systems, volume 37, pages 71277–71305, 2024.

[39] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse Transformers for Graphs. In International Conference on Machine
Learning, volume 202, Honolulu, USA, 2023. PMLR.

[40] Junshu Sun, Shuhui Wang, Xinzhe Han, Zhe Xue, and Qingming Huang. All in a row:
Compressed convolution networks for graphs. In International Conference on Machine Learning,
volume 202, pages 33061–33076, Honolulu, USA, 2023. PMLR.

[41] Junshu Sun, Chenxue Yang, Xiangyang Ji, Qingming Huang, and Shuhui Wang. Towards
Dynamic Message Passing on Graphs. In Conference on Neural Information Processing
Systems, December 2024.

[42] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In International Conference for Learning Representations, 2021.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In International Conference on
Neural Information Processing Systems, pages 6000–6010, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
Vancouver, Canada, 2018.

[45] Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
Scalable (Graph) Transformers Induced by Energy Constrained Diffusion. In The Eleventh
International Conference on Learning Representations, 2023.

[46] Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. NodeFormer: A Scal-
able Graph Structure Learning Transformer for Node Classification. In Advances in Neural
Information Processing Systems, 2022.

13

[47] Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian,
and Junchi Yan. SGFormer: Simplifying and Empowering Transformers for Large-Graph
Representations. In Conference on Neural Information Processing Systems, 2023.

[48] Yue Wu, Zhaobo Qi, Junshu Sun, Yaowei Wang, Qingming Huang, and Shuhui Wang. Video
Language Model Pretraining with Spatio-temporal Masking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8557–8567, 2025.

[49] Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion
Stoica. Representing Long-Range Context for Graph Neural Networks with Global Attention.
In Advances in Neural Information Processing Systems, volume 34, pages 13266–13279. Curran
Associates, Inc., 2021.

[50] Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is More: On the Over-
Globalizing Problem in Graph Transformers. In International Conference on Machine Learning,
pages 54656–54672. PMLR, 2024.

[51] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do Transformers Really Perform Bad for Graph Representation? In Advances
in Neural Information Processing Systems, volume 34, pages 28877–28888. Curran Associates,
Inc., 2021.

[52] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical Graph Representation Learning with Differentiable Pooling. In Advances in Neural
Information Processing Systems, volume 31, pages 4805–4815, Montréal, Canada, 2018. Curran
Associates, Inc.

[53] Hao Yuan and Shuiwang Ji. StructPool: Structured Graph Pooling via Conditional Random
Fields. In International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.

[54] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph
Transformer Networks. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[55] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In International Conference on Neural Information Processing
Systems, pages 17283–17297, Red Hook, NY, USA, 2020. Curran Associates Inc.

[56] Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro
Sanchez-Gonzalez, Peter Battaglia, Razvan Pascanu, and Jonathan Godwin. Pre-training via
Denoising for Molecular Property Prediction. In The Eleventh International Conference on
Learning Representations, 2023.

[57] Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A Complete Expressiveness
Hierarchy for Subgraph GNNs via Subgraph Weisfeiler-Lehman Tests. In Proceedings of the
40th International Conference on Machine Learning, pages 41019–41077. PMLR, 2023.

[58] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-Bert: Only Attention is
Needed for Learning Graph Representations. arXiv:2001.05140 [cs, stat], 2020.

14

A Proof for Monotonic Lower Bound of Attention Entropy

Lemma A.1 (Lower Bound of Attention Entropy). Let αi,· ∈ Rn be the attention distribution of
node vi over n nodes. Suppose each entry satisfies αi,j ≥ ϵ > 0. Then the attention entropy H(vi)
admits the following strict lower bound:

H(vi) ≥ − [1− (n− 1)ϵ] log [1− (n− 1)ϵ]− (n− 1)ϵ log ϵ.

Proof. Assume ϵ > 0 is a lower bound for all elements of αi,·. The minimum entropy under this
constraint is attained when one entry takes the maximum possible weight and the remaining (n− 1)
entries equal ϵ, i.e.,

α̂i,· = (1− (n− 1)ϵ, ϵ, . . . , ϵ) .

The attention entropy of this distribution is

Hmin(vi) = − [1− (n− 1)ϵ] log [1− (n− 1)ϵ]− (n− 1)ϵ log ϵ.

Since the Shannon entropy is strictly concave, any deviation from this distribution increases the
entropy. Therefore, for any valid distribution αi,· with elements bounded below by ϵ, it holds that

H(vi) ≥ Hmin(vi).

We now provide the proof for Theorem 3.1 based on Lemma A.1.

Theorem 3.1 (Monotonic Lower Bound of Attention Entropy). Let αi,· ∈ Rn be the attention
distribution of node vi over n nodes. The attention entropy H(vi) admits a lower bound that
increases monotonically with n.

Proof. To show that Hmin(vi) increases monotonically with n, we compute its derivative with respect
to n

dHmin(vi)

dn
= ϵ log [1− (n− 1)ϵ] + [1− (n− 1)ϵ]

ϵ

[1− (n− 1)ϵ]
− ϵ log ϵ

= ϵ log [1− (n− 1)ϵ] + ϵ− ϵ log ϵ

= ϵ log
1− (n− 1)ϵ

ϵ
+ ϵ.

Since α̂i,· = (1 − (n − 1)ϵ, ϵ, · · · , ϵ) denoting the most non-uniform distribution αi,· requires
0 < ϵ ≤ 1/n, it follows that 1− (n− 1)ϵ ≥ ϵ, and thus

dHmin(vi)

dn
> 0.

This confirms that Hmin(vi) increases monotonically with n.

B Detailed Derivation

In this section, we provide a detailed derivation for Eq. 3. Let R = QK⊤. Given the attention scores
formulated in Eq. 1, the gradient of αi,j with respect to WQ can be derived as

∂αi,j

∂WQ
=

n∑
k=1

∂αi,j

∂Ri,k

∂Ri,k

WQ

=

n∑
k=1

αi,j (δj,k −αi,k)
∂

∂WQ
Xi,·WQW

⊤
KX⊤

k,·

=

n∑
k=1

αi,j (δj,k −αi,k)X
⊤
i,·Xk,·W

⊤
K

= αi,j

(
X⊤

i,·Xj,·W
⊤
K −

n∑
k=1

αi,kX
⊤
i,·Xk,·W

⊤
K

)
,

where δj,k is a sign function. When k = j, δj,k = 1, otherwise δj,k = 0.

15

Table S7: Comparison Results with Entropy Regulation on the Cluster Attention (Measure by
accuracy: %). “Reg.” denotes employing the attention entropy of the cluster attention scores as part
of the optimization target.

ROMAN-EMPIRE COAUTHORCS
GRAPHGPS 81.46 95.44
+WIDEFORMER 82.12 95.85
+WIDEFORMER W/ REG. 82.23 96.14
SGFORMER 75.20 93.50
+WIDEFORMER 77.03 93.86
+WIDEFORMER W/ REG. 77.83 94.16
POLYNORMER 91.83 94.53
+WIDEFORMER 92.16 94.60
+WIDEFORMER W/ REG. 92.36 95.42

C Over-Aggregating Measurement

In this paper, we propose to employ entropy to quantify over-aggregating. This stems from the
observation that the attention scores distribute uniformly among different source nodes. To quantify
the uniformity of the distribution, we adopt entropy as the measure following the common practice in
the community [52, 5, 30]. Except for entropy, other potential metrics include standard deviation
(STD), Kullback-Leibler divergence (KLD), and Jensen-Shannon divergence (JSD). STD focuses
on the dispersion of values. When the total number of values is large, but the number of dispersed
values is small, the STD may remain small despite the distribution being uneven. Therefore, using
STD to assess uniformity is not an accurate approach. KLD and JSD are used to assess the similarity
between two distributions. It can measure the uniformity of a distribution by setting the reference
distribution to be uniform. However, when the reference distribution is uniform, KLD equals the
difference between the maximum entropy and the entropy of the given distribution, while JSD can
be viewed as a combination of entropy and KLD. Therefore, we opted for the simpler and more
commonly used entropy to directly measure the uniformity.

Entropy also demonstrates effectiveness in benefiting model performance. In addition to the entropy
regularization method on the whole attention matrix (Tab. 1), we compute the entropy of the cluster
attention scores in Wideformer and employ the results as part of the optimization target. Results
on roman-empire and CoauthorCS in Tab. S7 show that optimizing the cluster attention entropy for
backbones with Wideformer can also benefit the model performance. This also indicates that the
value of the attention entropy properly quantifies over-aggregating.

In Fig. 3(a), a more significant entropy reduction occurs on Polynormer, but its associated performance
gains are not superior to those of the other two backbone architectures. This is due to the distinct
architectural design of the backbones. Different architectures inherently prioritize different attention
patterns for optimal representation learning. While high attention entropy consistently indicates
over-aggregating, the optimal entropy level varies across models. Thus, although Polynormer exhibits
the most significant entropy reduction, this may still fall short of what is needed for its optimal
performance.

D Details on Experiments

D.1 Datasets

We adopt thirteen real-world datasets, including heterophilic graphs (amazon-ratings, minesweeper,
questions, roman-empire, tolokers [30], and twitch-gamer [23]) and homophilic graphs (Cora,
CiteSeer [34], CoauthorCS, CoauthorPhysics, AmazonComputers, AmazonPhoto [35], and ogb-
arxiv [14]).

Questions is derived from Yandex Q, spanning user activity from September 2021 to August 2022.
Nodes represent users interested in “medicine" and edges indicate answers to others’ questions. The
binary classification task predicts whether users remained active without account deletion or blocking.
Node features are averaged FastText embeddings of profile descriptions.

16

Amazon-ratings is based on the Amazon product co-purchase network from the SNAP Datasets [21].
Nodes represent products, and edges capture frequent co-purchase relationships. The task is to predict
the average reviewer rating for each product, grouped into five ordinal classes. Node features are the
average FastText embeddings of product descriptions.

Tolokers represents crowdsourcing participation data from the Toloka platform. Nodes correspond
to contributors (“tolokers") active in at least one of 13 projects, with edges connecting those who
completed the same tasks. The binary classification task predicts whether tolokers were banned from
projects. Node features include profile attributes and task performance statistics.

Minesweeper is a synthetic 100x100 grid graph where nodes represent grid cells, with 20% randomly
assigned as mines. The task is to classify nodes as mines or non-mines. Node features are one-hot
vectors encoding the count of neighboring mines, but 50% of nodes have their features reset to
unknown values, marked by a binary indicator.

Twitch-gamer is collected from the Twitch website with nodes representing users. Only users with
mutual relations are incorporated in the dataset. The task is to predict whether the user accounts
contain explicit content.

Cora and CiteSeer are citation graphs. In the Cora dataset, machine learning papers are grouped into
seven distinct classes, while the CiteSeer dataset categorizes papers into six classes. Node features
are derived from high-frequency words appearing in the content of the papers.

CoauthorCS and CoauthorPhysics are derived from the Microsoft Academic Graph. These datasets
represent co-authorship networks, where nodes correspond to researchers, and edges signify their
collaborative relationships. The features of each node reflect the frequency of keywords extracted
from the publications of the respective authors. Graph labels identify the primary research domain of
each author, distinguishing between computer science and physics.

AmazonComputers and AmazonPhoto are co-purchase networks constructed from Amazon. In
these graphs, nodes represent products, while edges indicate co-purchase relationships between item
pairs. Node features are derived from encoded customer review texts associated with each product,
and graph labels classify the products into specific categories.

OGB-arXiv is a citation graph composed of Computer Science papers from arXiv. In this dataset,
nodes correspond to individual articles, and directed edges represent citation relationships. Node
features are computed as the average of 128-dimensional word embeddings extracted from the title
and abstract of each paper. The task involves predicting the primary category of arXiv articles among
40 possible classes.

D.2 Experimental Setup

The attention entropy experiments in Fig. 1, Fig. 3, and Fig. 5 are conducted on Cora, Amazon-
Photo, AmazonComputers, CoauthorCS, CoauthorPhysics, tolokers, amazon-ratings, minesweeper,
and ogb-arxiv. The cluster ablation study in Fig. 7 is conducted and averaged on all the datasets
included in this paper. The number of clusters is 4 in Fig. 3, Fig. 5-6, Fig. S8, and Tab. 5-6. Other
experiments choose m from {2, · · · , 8}. For baseline methods, both GNNs (GCN [16], Graph-
SAGE [13], GAT [44], GPRGNN [6]) and graph transformers (NAGphormer [4], NodeFormer [46],
DIFFormer [45], GOAT [17]) are included. The results of the backbone methods, including GraphGPS
with Performer, SGFormer, and Polynormer, are reproduced under the framework of GraphGPS.
The framework is implemented with PyTorch [29] and PyTorch Geometric [11], and trained on a
single NVIDIA A100. We perform grid search based on the validation performance of the models as
follows:

GraphGPS. We search the number of graph transformer layers in {1, · · · , 6}, the number of hidden
dimensions in {64, 80, 128, 256}, the number of heads in {1, 2, 4}, dropout in {0.1, 0.2, 0.3, 0.5},
and learning rate in {5e− 4, 1e− 3, 1e− 2}. The rest hyperparameters are fixed as in the original
implementation.

SGFormer. The GNN backbone is implemented as GCN [16]. The number of GCN layers is
searched in {1, · · · , 10}, the number of hidden dimensions in {64, 80, 128, 256}, the number of

17

heads in {1, 2, 4}, dropout in {0.1, 0.2, 0.3, 0.5}, and learning rate in {1e− 3, 5e− 3, 1e− 2}. The
rest hyperparameters are fixed as in the original implementation.

Polynormer. The GNN backbone is implemented as GAT [44]. We search the number of graph
transformer layers in {1, · · · , 6}, the number of GAT layers in {1, · · · , 10}, the number of hidden
dimensions in {64, 80, 128, 256}, the number of heads in {1, 2, 4, 8}, dropout in {0.1, 0.2, 0.3, 0.5},
and learning rate in {5e − 4, 1e − 3}. The rest hyperparameters are fixed following the original
implementation.

minesweeper tolokers Cora CoauthorCS
Datasets

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ra
tio

Edge
Label

(a) SGFormer
minesweeper tolokers Cora CoauthorCS

Datasets

0.00

0.05

0.10

0.15

0.20

0.25

Ra
tio

Edge
Label

(b) GraphGPS
minesweeper tolokers Cora CoauthorCS

Datasets

0.00

0.02

0.04

0.06

0.08

Ra
tio

Edge
Label

(c) Polynormer

Figure S8: Full Results for Relations between Source and Target Nodes.

E Full Results for Informative Source Nodes

To analyze the relations between target and source nodes in the cluster with the highest attention
score, we compute the ratio of the source nodes (1) that have the same label as the target nodes,
and (2) that are connected with the target nodes, both relative to the total number of source nodes
in the cluster. The results for all three backbones are presented in Fig. S8. The ratio of source
nodes that are connected to their target nodes varies across the different backbones. Among the
backbones, SGFormer assigns more attention to source nodes connected with the target nodes than
Polynormer and GraphGPS. The label distribution differs between heterophilic and homophilic
graphs, yet remains consistent across the backbones. On heterophilic graphs, target nodes assign
higher attention scores to source nodes that have the same label as them. This stems from the
heterophily of these graphs, where connected nodes often have different labels. Therefore, models
only aggregate messages from nodes with different labels via local message passing and turn to global
attention to collect messages from nodes with the same label as the target nodes.

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Number of Nodes (n)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ti
m

e
Co

st
 (s

)

Whole Model
Wideformer Part
2

4
6
8

(a) SGFormer

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Number of Nodes (n)

0.1

0.2

0.3

0.4

0.5

Ti
m

e
Co

st
 (s

)

Whole Model
Wideformer Part
2

4
6
8

(b) GraphGPS

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Number of Nodes (n)

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
Co

st
 (s

)

Whole Model
Wideformer Part
2

4
6
8

(c) Polynormer

Figure S9: Time Cost. Different colors of the points denote the number of clusters m. The point
shape “.” denotes the whole model with Wideformer. “*” denotes the Wideformer part.

F Complexity Analysis

We construct synthetic graphs to test the time cost across different graph scales. The average degree
is set to 8, with a maximum number of edges equals 100, 000. The number of classes is set to 10.
Both the number of input features and hidden dimensions are set to 64. Following the common
configuration of the backbones, we set the number of local layers and global layers as (3, 1), (3, 3),

18

Table S8: Average Cost Increase Ratio. Comparing the time and memory cost of 4 clusters against
1 cluster. m denotes the number of clusters. The results are averaged across datasets with different
numbers of graph nodes.

M TIME (S) MEMORY (MB)
GRAPHGPS 1 0.0973 13,870

4 0.140830.93%↑ 15,54610.78%↑
SGFORMER 1 0.0258 50,206

4 0.041337.56%↑ 51,3322.19%↑
POLYNORMER 1 0.1042 29,338

4 0.143527.37%↑ 30,1802.78%↑

Table S9: Comparison Results with ENACT (Measure by accuracy except for ROC-AUC for
questions: %). The bold values denote the best results among comparisons with the same backbone.

AMAZON-RATINGS COAUTHORCS AMAZONPHOTO QUESTIONS
GRAPHGPS 49.73 95.44 94.98 75.48
+ENACT 48.52 95.16 94.76 75.74
+WIDEFORMER 49.96 95.85 95.55 75.69
SGFORMER 52.38 93.50 95.47 76.81
+ENACT 53.32 93.21 95.53 76.53
+WIDEFORMER 53.47 93.86 95.64 76.94
POLYNORMER 54.71 94.53 95.47 78.66
+ENACT 54.94 94.60 95.55 78.78
+WIDEFORMER 55.05 94.94 95.64 79.00

and (6, 3) for SGFormer, GraphGPS, and Polynormer, respectively. All models have 4 attention heads.
From the results in Fig. S9, we can see that the time cost of Wideformer scales linearly with the
number of nodes and remains a small ratio of the total time cost as the number of clusters increases.

In Sec 5.3.3, we show that increasing the number of clusters m can benefit the model performance,
while the optimal value of m is around 3 ∼ 5. In practice, m is chosen from {2, · · · , 8} to remain
a small value. Therefore, although a larger m increases the memory and runtime cost linearly,
the additional cost is minor. We further present the average cost increase ratio (calculated as
cost(m=4)−cost(m=1)

cost(m=1)) across different numbers of graph nodes in Tab. S8. We can see that the
additional costs are relatively minor, amounting to only ∼ 30% of the original time cost and less
than 11% of the memory cost.

G Broader Related Work

Our study is also related to other works beyond graph transformers. Wideformer employs the center
selection method to assign source nodes to different clusters. Traditional cluster pooling methods
focus on learning hierarchical features of input graphs [52, 19, 53, 26]. They can collect global
information by stacking multiple layers. In contrast, Wideformer and other graph transformer models
can collect global information in a single layer, giving rise to shallow architectures for large graphs.

To better optimize the learning process of the attention matrix with dense interactions, a previous
study proposes to inject uniform attention to vision transformers [15]. However, this solution cannot
be directly adopted for graph transformers. It requires explicitly computing the whole attention matrix,
which demands a space complexity of O(n2) and is not scalable to large graphs. Moreover, different
from the occasional observation of the uniform attention [15], we discover that uniform attention
with high attention entropy consistently exists across different global graph attention methods on
different datasets. To further reduce the computing complexity, ENACT proposes to cluster source
nodes during attention-based aggregation for vision transformers [33]. However, ENACT cannot
effectively alleviate over-aggregating. Specifically, their clustering process is based on the features of
each individual node, while Wideformer clusters nodes based on the source-target relation, which
better enables the selection of the informative sources for the targets. ENACT also applies attention

19

aggregation at the cluster level, while Wideformer applies attention aggregation at the node level
within each cluster. Node-level aggregation allows the model to adjust the attention scores at a finer
level and capture the node feature distribution within each cluster. To further compare Wideformer
against ENACT for tackling over-aggregating, we implement ENACT in graph transformers by
directly clustering source nodes based on their own features, and only applying cluster-level attention
aggregation. Results in Tab. S9 show that ENACT cannot effectively tackle over-aggregating and
gains worse performance than Wideformer. This demonstrates the effectiveness of our method in
tackling over-aggregating and benefiting backbone performance.

H Societal Impact

This paper presents work whose goal is to advance the field of graph representation learning by
proposing a plug-and-play method to tackle over-aggregating problem in graph transformers. The
proposed method remains independent of specific downstream applications and can potentially benefit
a wide range of domains, such as computational biology [56, 51] and intelligent transportation [31].
At present, we do not anticipate any evident ethical concerns or foreseeable adverse societal impacts.

I Limitation

This paper discovers the over-aggregating phenomenon in graph attention and proposes a plug-and-
play method to tackle over-aggregating. To keep the simplicity of our proposed method, we only
explore a simple division method based on KMeans++ [3] and an attention-guiding method with
cluster weighting. In Sec. 5.3.3, the center selection study primarily shows that a learnable center
selection strategy can solve the trade-off between efficiency and model performance. The module
ablation study demonstrates that the simple weighting method may fail to benefit backbones under
certain circumstances. All these ablation results and the informative source node study in Sec. 5.3.1
indicates that it lacks further exploration of a learnable division strategy and adaptive weighting
method.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

21

Justification: Theoretical proof is provided for Theorem 3.1 in Appendix A. Detailed
derivation is provided for Eq. 3 in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Appendix D.2. Code is provided in
https://github.com/sunjss/over-aggregating.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code with instructions for reproduction is provided in
https://github.com/sunjss/over-aggregating.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed experimental setups are provided in Appendix D.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Tab. 2-Tab. 6

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix D.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to Appendix D.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

25

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please refer to https://github.com/sunjss/over-aggregating.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, or formatting purposes and does
not impact the core methodology, scientific rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Over-Aggregating in Graph Transformers
	Attention Entropy
	Over-Aggregating
	Discussion

	Wideformer: Relieving the Over-Aggregating
	Dividing the Aggregation
	Guiding the Attention

	Experiment
	Effectiveness in tackling Over-Aggregating
	Model Comparison
	Model Analysis
	Informative Source Nodes
	Complexity Analysis
	Model Ablation

	Conclusion
	Proof for Monotonic Lower Bound of Attention Entropy
	Detailed Derivation
	Over-Aggregating Measurement
	Details on Experiments
	Datasets
	Experimental Setup

	Full Results for Informative Source Nodes
	Complexity Analysis
	Broader Related Work
	Societal Impact
	Limitation

