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Abstract

In Multi-Task Learning (MTL), K distinct tasks are jointly optimized. With the vary-
ing nature and complexities of tasks, few tasks might dominate learning. For other tasks,
their respective performances may get compromised due to a negative transfer from domi-
nant tasks. We propose a Dropped-Scheduled Task (DST) algorithm, which probabilistically
“drops” specific tasks during joint optimization while scheduling others to reduce negative
transfer. For each task, a scheduling probability is decided based on four different met-
rics: (i) task depth, (ii) number of ground-truth samples per task, (iii) amount of training
completed, and (iv) task stagnancy. Based on the scheduling probability, specific tasks get
joint computation cycles while others are “dropped”. To demonstrate the effectiveness of
the proposed DST algorithm, we perform multi-task learning on three applications and two
architectures. Across unilateral (single input) and bilateral (multiple input) multi-task net-
works, the chosen applications are (a) face (AFLW), (b) fingerprint (III'TD MOLF, MUST,
and NIST SD27), and (c) character recognition (Omniglot) applications. Experimental re-
sults show that the proposed DST algorithm has the minimum negative transfer and overall
least errors across different state-of-the-art algorithms and tasks.

1 Introduction

Machine learning and deep learning aim to optimize an objective to achieve an end goal. Depending on the
use-case scenario, the goal may vary from a regression task to a classification task. However, in the real
world, there are scenarios where many objectives need to be solved together. For example, a self-driving
car needs to decipher a road sign while tracking the car in front of it while simultaneously avoiding an
incoming pedestrian on the road (Yang et al., |2018; |Chowdhuri et al., [2019; |Chang et al., [2021). Similarly,
an explainable deep model can predict if an organ’s X-ray/CT/MRI is infected while segmenting the disease
to assist the doctor (Amyar et al.l 2020; |Zhang et al., |2020; [Malhotra et al., [2022). In such scenarios,
algorithms need to process an input data, like a road view from a lidar sensor or an organ X-ray/CT/MRI
scan, to perform multiple tasks.

In the scenarios defined above, Multi-Task Learning (MTL) (Caruana, [1997; |Zhang et all 2021a} [Vanden-
hende et all 2021) is an ideal choice. MTL is a joint optimization of K distinct tasks. The aim is to share
information across related tasks by utilizing shared representations. In a deep convolutional neural network
(CNN), tasks in MTL often share network parameters or layers to design scalable and robust solutions. In
MTL, these K tasks can be placed for training at different stages (depth) of the network. However, at some
level, different tasks share parameters and use the shared representations to perform the respective K" end
task. The shared representations enable the generalization of the solution (Caruana) [1997; Ndirango & Lee,
2019) while saving time and cost to deploy each of the K task models separately.

MTL offers flexibility with tasks getting trained together at different stages (depth) and even different loss
functions such as MSE or cross-entropy. With different depths, tasks requiring coarse features may be trained
with a smaller network depth than more intricate tasks that require considerable network depth and more
epochs. However, these variabilities in joint optimizations may lead to negative transfer. In negative transfer,
one or more tasks dominate learning by overpowering others (Wang et al., [2019; |Zhang et al.l 2021b)). For
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Figure 1: Some tasks can dominate learning in MTL, resulting in negative transfer to other tasks. The proposed
Dropped Scheduled Task (DST) algorithm reduces negative transfer by dynamically selecting dominating tasks and
“dropping” them. This way, other tasks get more compute cycles and learns without negative transfer.

instance, outliers in an already learned, well-performing easier task can negatively affect another challenging
task that is still underperforming. Alternatively, incorrect predictions from complex tasks may negatively
affect correctly predicting easier tasks(Lee et al, [2018). Furthermore, some unrelated tasks might get left
out during the training.

Recent studies aim to achieve global optima and address negative transfer by manipulating the training
process. For limiting negative transfer and controlling information sharing while training an MTL network,
the existing approaches can be categorized under three categories: (i) task grouping, (ii) task prioritization,
and (iii) curriculum learning. The upcoming subsection elaborates on each of these methods.

1.1 Literature Review

The commonly used approaches to optimize training process includes: (i) task grouping (Kumar & Daume II1}
2012)), (ii) task prioritization (Gong et all [2019), and (iii) curriculum learning (Bengio et al., 2009). Each
method aims to control the priority of the tasks to improve the overall performance. For these existing
approaches, we describe each of these three hoods is below.

Task Grouping: In this approach, algorithms aim to group tasks by identifying their relatedness. Post
grouping, the optimization is done by selecting a group of tasks or sub-network for better multi-task training.
Research studies compute grouping by measuring affinities (Zhang & Yeung] 2014} [Standley et al. 2019),
cross-task consistencies (Zamir et al., 2020), or probability of concurrently simple/difficult tasks (Lu et all
2017). Post grouping, algorithm may give different sub-networks (Lu et al, 2017} [Standley et all, 2019) or
orchestrate MTL (Zhang & Yeung, 2014} [Zamir et al 2020). Instead of a single level, a few studies (Han|
|& Zhang, 2015} (Chen et al., 2018aj; Zamir et al.| 2018) further segregated task grouping into different levels
to model complex relationships amongst tasks. Recently, |Chen et al| (2020) suggested to drop gradients of
a group of tasks based on a positive sign purity metric. The idea was to drop either of negative or positive
gradients from different tasks such that they do not neutralize each other during training. Similarly,
formulated MTL as a Nash-MTL algorithm. Nash-MTL performed learning as a bargaining
game, where tasks negotiate to obtain consensus for the gradient direction. Recently, built
a dynamic task relationship during training based on a meta-loss. The association of tasks is dynamically
decided based on the validation loss values. The result is a dynamic task-specific weighting parameter A
against each task’s loss.

Weight based Task Prioritization in MTL: In MTL, let a task be t. If there are K tasks, then
1<t<K. The net loss to optimize for the i** instance is £; = Zfi 1 Lt,. To prioritize tasks, research

studies weigh each task individually and optimize as: £~i = ZtK: L weLy,. The term wy is altered based
on incompleteness/hardness of each task. Assuming task-specific loss is informative enough, studies use
loss value to dynamically balance training. GradNorm (Chen et all) [2018D) altered the gradients of the
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network to prioritize tasks. They calculated the ratio of current loss and the starting loss for all the tasks.
Each task’s gradients are altered based on the calculated task-wise ratio against the expected ratio value
across all tasks. LBTW (Liu et al. 2019a)) uses the ratio of current loss and the starting loss to determine
completeness. The term (ratio)® acts as a weight for each task. Other weighting strategies include studies
by Sener & Koltun| (2018) that finds weights leading to a Pareto-optimal solution, and [Kendall et al.| (2018)
that uses homoscedastic uncertainty for task weighing. Similarly, [Liu et al.| (2019b) introduced Dynamic
Weight Average (DWA) to calculate relative descending rate. DWA is then used to weigh individual tasks.
Liebel & Korner| (2018)) added task-wise weights into learnable parameters. They constrained these weights
with a regularization term to enforce non-trivial solutions. Other than loss values, studies (Guo et al.; |2018;
Jean et al., 2019) also utilize train or validation set performance to determine completeness or hardness of
the task. In some scenarios, weights are dynamically modified to achieve performance closer to pre-computed
Single Task Learning (STL).

Curriculum Learning: In 1993, [Elman| (1993) discussed the concept of starting small to improve the
training process for multiple task subsets. However, the term “curriculum learning” was coined by [Bengio
et al.[ (2009)). The idea was to learn easier examples/samples followed by introducing more challenging cases.
Results showed a speed up in the training process by finding good local minima for non-convex learning. [Lee
& Grauman| (2011)) use the idea to sequentially discover difficult categories using the earlier discovered easier
ones without supervision. Pentina et al.| (2015) performed MTL by sequentially learning individual tasks.
They regularized parameters of each introduced task to be similar to just previously learned tasks. The idea
was that consecutive related tasks in the order of difficulty should have similar parameter representation.
Recently, |Graves et al.| (2017) utilized two signals as a reward to tune curriculum learning. These signals
were the amount of increase in accuracy and increase in model complexity.

Despite advancements in task grouping, task prioritization, and curriculum learning, negative transfer re-
mains a predominant issue in MTL. The limitations of existing approaches are: (i) they seldom consider
network depth while training that can cause a negative transfer. Further exacerbated negative transfer may
be caused by a task-wise varying count of ground-truth annotated training samples (Ge et al.l |2014; 'Wu
et al 2020), (ii) the weighted approaches may leave some tasks in a stagnant condition, and lastly, (iii) a
negligible weight to early completed tasks can result in their catastrophic forgetting. Hence, this research
aims to discover potential issues that can cause a negative transfer and address them using the proposed
optimal training approach.

Research Contributions: In this research, we propose Dropped-Scheduled Task (DST) to address negative
transfer by dynamically selecting dominating tasks and “dropping” them. Our approach selects four factors
that cause negative transfer and resolves them using the corresponding four metrics. These include (i)
network depth, (ii) ground-truth availability count, and current loss values to determine (iii) task-wise
learning completeness, and lastly, (iv) task-wise stagnation. Using these parameters, the DST occasionally
“drops” a subset of tasks by a task-specific activation probability. The term “dropping” refers to not
considering a subset of tasks during joint optimization, i.e., preventing error propagation through the dropped
task(s). As shown in Figure [} holding/dropping quick learners gives a fair chance to complex tasks, and all
the tasks are learned without negative transfer. Dropping can also prevent dominance/overfitting (Wan et al.
2013; |Srivastava et al., |2014; |Ghiasi et al., [2018) of the completed tasks. Along these lines, a recent work
by [Sun et al.| (2021) suggested performing one task at a time during MTL optimization. However, different
combinations of tasks learning together can act as a regularization method and result in the generalization of
the solution (Caruana) 1997 Ndirango & Lee, [2019). The related tasks may further assist other data scarce
tasks and assist in their learning as well (Kapidis et al 2021)). The contributions of the DST algorithm are
as follows:

e The DST algorithm considers negative transfer caused due to task-wise varying network depths and
limited samples for some tasks. Due to network depth as a parameter, DST is shown to work in
unilateral and bilateral models.

e The DST algorithm computes completeness and stagnation of the task, allowing only a subset of tasks
to remain active. Further, DST allows prolonged stagnated earlier finished tasks to be occasionally
active in later training stages, reducing catastrophic forgetting.
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o Due to task dropping, 2% combinations from K tasks are possible. Different combinations during

training acts as implicit regularization to move tasks out of local minima.

o We show MTL on faces, (latent) fingerprint, and character recognition. The applications are cho-
sen considering: (i) their diverse nature and complexities (classification, image-to-image translation,
regression, contrastive loss, segmentation), (ii) different output depths (encoder/FC/decoder) and
architecture (unilateral/bilateral), (iii) varying difficulty of similar tasks (segmentation for finger-
prints easier than latent fingerprints), and (iv) large number of tasks (Omniglot).

2 Dropped-Scheduled Task (DST)

Negative transfer in MTL can be due to a variety of factors. The proposed DST algorithnﬂ is based on
four important factors that can negatively affect learning in MTL. Based on the four factors, the proposed
DST algorithm devises four metrics, based on which a task-specific activation probability is computed.
Consequently, the DST algorithm occasionally “drops” a subset of tasks based on the computed task-specific
activation probability.

The four factors are network depth, ground-truth sample count, task incompleteness, and task stagnation.
For each t'" task in MTL, these four factors is quantified by a metric, which is Patys Peytys Pluk,ty, and
P(r k1) respectively. These individual metrics tell us how a certain task is overpowering or underpowered.
These metrics are combined to define a task-wise activation probability P 4, where P, ;) ranges in [0, 1].
P+ tells what are the chances of t*" task to remain active on k*" epoch. The following section explains
the proposed DST algorithm, followed by details of the chosen tasks and respective architectures.

2.1 Dropping Mechanism to Hold Overpowering Tasks

In the proposed DST algorithm, a task ¢ can remain active at k*" epoch by a probability Py Otherwise,
the tasks are dropped by a probability (1 — P 4)). Pt is a weighted combination of five different metrics
(one being a regularizer). The following subsections explain how the factors like network depth, ground-
truth sample count, task incompleteness, and task stagnation affect MTL. Further, we explain how these
adverse factors can be translated into individual metrics, which eventually are combined to get task activation
probability P ).

2.1.1 Metric based on Network Depth

With vanishing gradients, the gradient diminishes with the network’s depth. For a shallower task, backprop-
agation would be dominant on the initial layers. On the other hand, gradients relatively vanish for deeper
tasks. To give an equal chance, one way is to increase the gradient. GradNorm (Chen et al.| |2018b) showed
a mechanism to alter gradients for faster training. Considering task-wise network depths, our study gives
more computation cycles (keeping task active) for deeper tasks. It reduces the dominance of shallower tasks.
Based on network depth d for task ¢, the metric Py is:

dy

d
1r_<ntf%XK( t)

Playy = (1)

A higher value of P4 ) represents that the task considered is deeper and increases the chances of computation
cycles.

2.1.2 Metric based on Training Sample Count

While training a deep network, the model may overfit if the training samples are low and trained for a
long duration (higher number of epochs). On the contrary, the network may underfit if it is trained for
lesser epochs with larger number of training samples. For MTL, not all tasks may have an equal number

1The source code will be publicly released upon paper acceptance.
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of ground-truth labels. The task with fewer annotated samples might benefit (positive transfer) from the
large corpus of samples provided by another task with more labeled samples. However, a target task with
more labeled samples might undergo a negative transfer due to a source task with fewer instances (Wu et al.,
2020). This can be seen from |Lee et al.|(2016) and our experiments, where a highly confident task faces a
negative transfer due to a low-confident task trained with fewer training samples. Hence, each task requires
computing cycles proportional to the number of labeled instances.

We propose to consider task wise ground-truth count to decide computation cycles for each task. It ensures
a reduction in computation cycles for tasks with fewer annotated training samples by dropping them more
often. On the other hand, it increases computation cycles for the task with more annotated training samples.
The metric P ) is given as:

Ct

P(c,t) = (2)

nax (ct)
Here, P(. ) is the ratio of the ground-truth count ¢; of the considered t*" task divided by the maximum
ground-truth availability count of all tasks. A higher value of P, ;) represents that the task has more labeled

instances, resulting into task having more computation cycles.

2.1.3 Metric based on Task Incompleteness

To dynamically perform task scheduling, the proposed algorithm assumes that task-specific losses are de-
scriptive for task balancing. A ratio of each task’s current loss to its initial loss shows how much the task
has learned. The expected value of this ratio across tasks denotes the average completion rate. Using the
expected ratio, we can establish a relative completeness/incompleteness for each task.

Let the value of loss for task t at the k' epoch be Vik,e)- The initial loss value after the 1% epoch is
represented as: V(; ;). Hence, the amount of “incompleteness” during training for task t at the k" epoch
can be defined as:

Ty = 57— (3)

For a task whose learning is incomplete with a negligible decrease in loss, the value for I(; ;) would be close
to 1. On the contrary, a task that has completely learned would have a small value towards 0. Further, it
could be a case where a task has digressed and has its V(; sy > V(1 4). This would result in [ ;) > 1. Using
I(11), the relative incompleteness of each task ¢ can be found as:

I
. (k)

u - 1 17 4
Puk,ry = m n< E( [(k))> (4)

Here, E(I(k)) is the expected value of I(;, ;) across all tasks at k" epoch. Plu,k,¢) penalizes faster learning tasks
but does not reward a slow task as the value is upper bound to 1. It makes all tasks that are uncompleted
and slower than estimated E(/(;)) to obtain the highest activation chance while reducing the compute cycles
of faster tasks.

2.1.4 Metric based on Task being Stagnant

While training, a task may become stagnant. The stagnancy may be due to task completion or a task not
getting priority. For the former case, the task could be kept on hold. However, for the latter case, more
compute cycles need to be provided. The rate of change in loss from previous to current loss value can be
used to measure stagnancy. The local rate of change of loss Ry ;) for t*" task at k' epoch can be defined
as:

1 " Viety = Vik—1,0)
Pluk,t) Vie—1,0

R(k,t) = Vk k>2 (5)
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Here, V(1) represents the loss value for task ¢ at the k' epoch. The term Pluk,e) is taken from Eq.
The multlphcatlon by =

; ensures that for two equally stagnant tasks, priority is given to the one which

is relatively 1ncomplete Usmg the local rate of change R ), we compute the global exponential moving
average as:

Rl p=4 ® : 6
0 {6R(k n+1-=5) zlc—l,t) if k> 3. ©

Here, 8 € [0, 1] is the discount factor. Larger values of 8 prioritizes more recent rate of change. R,(k 0 is
assigned value of Rzk_l 0 if R(x) < 0. The metric based on loss stagnancy is defined as:

1 if k=1
Pk = mm(L( W) if 1> 2, (™)

R

Here, E(Ry,,) denotes the expected value of R( ) across all tasks at the k' epoch. Stagnant and incomplete
tasks obtain a value of Py, ;) closer to 1.
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Figure 2: The Encoder-Decoder architecture to perform MTL using face images. The five tasks are: (i) gender
prediction, (ii) spectacles prediction, (iii) 21 point (x,y) landmark prediction, (iv) pose estimation, and (v) image
denoising.

2.1.5 Regularization

The above four metrics control chances of task activation based on network depth, ground-truth sample
count, task incompleteness, and task stagnation. To prevent a task to completely remain OFF, resulting in
catastrophic forgetting, each task needs to get some chance to be active. To do so, a regularization metric
is given as P ) = 1.

2.1.6 Final Metric for Dropping and Scheduling

Using the five metrics defined above, the final probability to schedule a particular task ¢ at k** epoch is:

Pty = XaPat) + AcPet) + MaPlukt) + MPlkt)y + MPos (8)

Here, A are non-negative weights given to individual metrics such that > A; = 1. These ); can be altered
to address specific variations of data, network, and learning in MTL setup. For our experiments, details
and ablation around )\; are shown in Section and [£.4 respectively. Using P4 ) defined above, G(x 1) is
sampled as:
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G (r,ty ~ Bernoulli( P, ¢)) (9)

Gk, is a 1xK vector of independent Bernoulli random variables for K tasks. For a task ¢ such that 1 < ¢
< K, the t'" value in the vector denotes an ON/OFF bit for the ¢! task at k' epoch.

Ligsy = Gy © Lok (10)

Here, ©® denotes element-wise multiplication. The vector Gy ;) is sampled and multiplied element-wise with
individual task losses. The multiplication accounts for sampling and scheduling tasks from all sets of tasks
at each epoch.

The proposed DST algorithm schedules and gives compute cycles to one or more tasks. The advantages of
the proposed DST algorithm is as follows:

e Dynamic scheduling according to task-wise loss values.

« With K tasks being ON or OFF, each combination from 2% combinations is possible. This acts
as an implicit regularizer that may take a particular task out of its local minima due to varying
combinations of active tasks.

e For two stagnant tasks, DST provides more compute cycles to the relatively incomplete task.
e The DST method considers network depth and ground-truth training sample count for each task.

e The occasional OFF may take easier tasks backward and again take them to their minima when they
are ON. This prevents their overfitting. In later stages of training, the learning allows the network
to gradually switch ON the completed tasks at the very end (since they have been stagnant over
time) avoiding their catastrophic forgetting.

Next, we discuss the applications considered in this study and their corresponding architectures. We show
MTL on faces, (latent) fingerprints, and character recognition. The face and character recognition use the
hard parameter sharing MTL approach. On the other hand, (latent) fingerprint recognition uses a soft
parameter sharing MTL approach. We refer to the face application architecture as unilateral MTL. In
unilateral MTL, an image input is fed, and the tasks segregate out after a few shared layers. The same idea
is followed in the application of character recognition. (Latent) fingerprints use bilateral MTL for various
tasks. In bilateral MTL, two images are taken as input and processed with soft parameter sharing. We
elaborate on the details of these architectures in the following two subsections.

2.2 Unilateral MTL: Face Attribute Analysis

For application of attribute analysis in faces, deep MTL has been explored(Han et al., |2017; [Ranjan et al.,
2017). Unilateral MTL takes a face image as input and performs MTL. For MTL using face images, the
selected tasks are (i) gender, (ii) wearing spectacles or not, (iii) landmarks, (iv) pose estimation, and (v)
image denoising. Let the " input to the network shown in Figure [2 be a noisy face image X }; Let f1
represent the sub-network that predicts the gender probability P(g;|XF,) of the it" noisy input X - Then,
the loss function for the first task 7', of gender prediction is:

Tip,=— Y gilog(P(gilX},)) (11)
9:={0,1}

Similarly, the loss for the second task of predicting if the face is “wearing spectacles/or not” can be given as:

T, =~ Y silog(P(si|XF,)) (12)
57‘,:{0,1}

The above two tasks T, and Tsr, are classification tasks. The other three tasks are regression tasks.



Under review as submission to TMLR

The task T3F, predicts 21 distinet facial landmarks, each represented as a {z,y} tuple. Hence, for each input
X };i, 42 values are predicted using a sub-network f3 as:

Y, = f3(Xp,) Vi 1<j<42 (13)

These values are optimized using Mean Squared Error (MSE) for the third task Tsp,, given as:

42

> (i (Vi —Y,))? (14)

j=1

1
ij

Here, Y, are the ground truth landmarks and Yclj are the predicted landmarks. Due to facial pose or a
partial face, some landmarks may be missing. To ensure such cases keep the loss unaffected, the error is
multiplied with p; (1 if the j*" landmark is present, else 0). The error is normalized by the total number of
landmarks present (3 p;).

T3p, =

The fourth task Tyr, predicts pose angular values. The head pose is defined as three rotation angles: yaw,
pitch, and roll. Unlike landmarks, each of the three angles is present. Hence, the MSE for the fourth task
Tyr,, given as:

1 3

— £ N2
Tyr, = g Z(Yaj - Yaj) (15)

Jj=1

Here, Y, is the ground-truth while Y;J. is the predicted angle. The error is normalized by total pose types,
ie., 3.

Lastly, T5F, is a regression task to denoise the noisy input X7, . Denoising is achieved using the sub-network
f5. For each pixel j, Tsp, is given as:

1 n
Tsp, ==Y (Xp, — [5(Xp,))? 16
o = 5 e, = (X)) (16)
n is the total pixel count and X, is the clean face image.

Overall Loss Function: For images with unavailable ground truth labels for a task, respective sub-
networks may not be active during training. Further, the proposed DST algorithm may “switch OFF” (or
drop) a task. Hence, the final loss £; is computed as:

5
L;= Z Gyw Zy Ty, (17)
=1

Here, Z;; are the switches to denote the presence of the ground-truth label for i*" image of the t'" task.
Further, G is a gate to control training for t** task by the DST algorithm. The values of these switches
(gates) are either 0 or 1. wy is a static weight normalization for each task by scaling the loss values to the
same expected starting loss value. The term wy is optional, and the proposed DST algorithm also works for
varied starting loss values across tasks.

2.3 Bilateral MTL: (Latent) Fingerprint Analysis

Bilateral MTL inputs a pair of images to simultaneously process them for performing joint MTL. We chose
latent fingerprint analysis as it requires important tasks (Malhotra et al., 2018) of recognition, orientation
classification, and segmentation. These tasks are explained in Figure|3] The selected tasks are (i) fingerprint
orientation estimation, (ii) fingerprint segmentation, (iii) latent fingerprint orientation estimation, (iv) latent
fingerprint segmentation, and (v) pairwise matching. The orientation of the (latent) fingerprint is a pattern
in which the ridges flow. They are classified into six categories, as shown in Figure 10 in appendix. As
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Figure 3: Different task associated with latent fingerprint analysis.

shown in Figure @ let the ' input to the Siamese network be a pair of images, fingerprint Xp, and latent
fingerprint Xy, .

Let f{ be the sub-network that predicts the fingerprint orientation probability P(o;|Xp,) in one of the
pre-defined six orientations. Then, the first task can be defined as:

Tip,=— Y, oilog(P(0i|Xp,)) (18)
0:={0,1,2,3,4,5}
Similarly, using P(0;|Xf,), loss function for latent fingerprint orientation prediction (7T3r,) can also be
defined.

The second and fourth tasks are semantic segmentation of fingerprint X p, and latent fingerprint Xy, respec-
tively. For fingerprint segmentation, let ground truth segmentation mask be Sp, while the predicted mask
be Sp,. Then, the second task Tsp, is defined as:

T2Pi = - Z [SPL (.T, y) IOg(SPi(x7y)) + (1 - SPL') log(l - SPi (‘Ta y))} (19)
zy
Similarly, Ty, can be defined for latent fingerprint segmentation. Each of the two segmentation tasks, T5p,
and Tyy,, operate at pixel level (z,y). The classification for each pixel is a 2-class problem, where the
masks are predicted using sub-networks f} and f; (with identical weights). Lastly, T5, calculates pairwise
contrastive loss using distance D; between encoder representations of Xp, and Xy, as:

Ty, = (V)3 (D2 + (1= Yo gmax(0,m — D)’ (20)

2
Here, m denotes the margin parameter. Y; = 1 for a genuine pair, while Y; = 0 for an imposter pair.

Overall Loss Function: Taking into account the missing ground truth labels (Z), proposed task gating
(@), and loss value normalization (w), the net loss £’; is computed as:

L' = Grwi1 ZTp, + Gows ZaiTop, + Gaws Z3i T3y, + GawaZaiTyy, + Gsws 2515, (21)

3 Experimental Details

3.1 Databases and Protocols

In this study, two kinds of experiments are performed, (i): Unilateral MTL on faces (AFLW) and character
recognition (OmniGlot), and (ii): Bilateral MTL with latent fingerprints. A summary of datasets is given
below.
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Figure 4: The architecture for MTL using fingerprint images. The tasks are (i) fingerprint orientation estimation,
(ii) Fingerprint segmentation, (iii) latent fingerprint orientation estimation, (iv) Latent fingerprint segmentation, and
(v) matching.

Table 1: Train-test split for the AFLW database (Koestinger et all [2011), with unequal ground-truth label count
selected for each task.

Task Task Task Training Testing
No. Depth | Count [ (%) | (Count)
1 Gender 17 8434 50
2 Specs 17 12731 75
3 Landmark 17 12727 75 7384
4 Pose angle 17 6692 40
5 Denoising 26 17000 100

1. Unilateral MTL: For faces, we use the AFLW dataset (Koestinger et al., |2011) having 24,384
usable faces. We use 70% (17,000) for training and 30% (7,384) for testing. The cropped face images are
deteriorated by adding speckle noise to 15% of pixels. Table [I| shows that a varying proportion of training
labels are selected for each task. For the testing set, no tags are discarded.

Omniglot database : To show MTL on large number of classes, we use the Omniglot database
for character recognition. We follow the standard MTL protocol used in literature (Liang et al., [2018}
[Meyerson & Miikkulainen| |2018; Prellberg & Kramer} [2020), by randomly selecting a split of 20% as test set
from each alphabet.

2. Bilateral MTL: We use a consolidated set from three fingerprint datasets: NIST SD 27 (INIST-
, IIITD MOLF (Sankaran et al., [2015), and MUST (Malhotra et al., 2020), with

Table 2: Consolidated fingerprint database used for experiments. The labels counts are as per the availability from
the source.

Task Task Task Training Testing
No. Depth | Count | (%) | (Count)
1 FP Orientation 17 33340 79.12
2 FP Segmentation 26 33340 79.12
3 LFP Orientation 17 32308 76.76 13577
4 LFP Segmentation 26 9756 23.15
5 Matching 13 42140 100
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numbers shown in the Table[2l The pairs for the fifth task are considered in a subject-disjoint split. Details
for each of the database is listed below:

NIST SD 27 (NIST-SD-27, [2000) has 258 latent fingerprints with respective inked fingerprint, resulting
in 258 genuine pairs. An equal number of imposter pairs are added, making a total of 516 pairs. In NIST SD
27, there are segmentation masks for latent impressions. Further, each fingerprint and latent fingerprint are

manually annotated for orientation. All of the 516 pairs are included in training set, with labels available
for only four tasks (T1, T3, T4, and T5).

IIITD MOLF (Sankaran et al., [2015) has 4,400 latent fingerprints (DB4). A genuine and an imposter
pair with a fingerprint is formed for each latent fingerprint, totalling 8,800 pairs. Each pair has only the
label for the fifth task (match/non-match) and all 8,800 pairs are included in training set.

IIITD MUST Latent Fingerprint database (Malhotra et al., 2020): As per the defined protocol
for the MUST database, there is a subject disjoint train-test split. Using the train identities, 32,824 train
pairs are formed (with an equal number of genuine and imposter pairs). The knowledge of genuine and
imposter pairs affirms the match/non-match information for the fifth task. Finally, the MUST database’s
test set is used for the testing procedure for the multi-task network. The test set has 13,577 query latent
fingerprints, which are matched against all the test gallery fingerprints. The ground-truth labels for the
testing set have information for all pairs for orientation (T1, T3) and matching (T5). However, for a few
pairs, the segmentation masks are missing.

3.2 Implementation Details

The pseudo-code for task-wise sampling of activation bits using DST algorithm is in the appendix. The
models are trained on a machine with Intel Core i7 with 128 GB RAM and NVIDIA GeForce RTX 2080Ti
GPU in a PyTorch implementation. Learning rate is set at 5 x 107° with Adam optimizer. The encoder
in MTL is initialized with VGG16 (Simonyan & Zisserman), 2014) pre-trained weights of ImageNet dataset.
During training, error backpropagation and weight update are performed from the second epoch to obtain
initial loss estimates. 8 in Eq. []is set as 0.1 to ensure slower change for the ‘stagnant’ parameter. Further,
all \; in Eq. [§are kept as 0.2 to provide equal weight to each metric. For face MTL, the input is a cropped
face image of size 224x224x3. The model is trained for 100 epochs with a batch size of 16. For fingerprint
MTL, the input is a fingerprint-latent fingerprint image pair at resolution 340x280x3. The model is trained
for 75 epochs with a batch size of 4.

4 Results and Analysis

This section shows the efficacy of the proposed DST algorithm. The chosen applications are: (a) multi-
task face (AFLW (Koestinger et al [2011))), (b) multi-task fingerprint (IIITD MOLF (Sankaran et al., 2015]),
MUST (Malhotra et al., 2020, and NIST SD27(NIST-SD-27,[2000)), and (c¢) multi-task character recognition
(Omniglot(et al., [2015)). Subsequently, in Section we present an ablation study to study the effects of
each selected metric, A;, wy, network depths and initialization, and varying sample counts.
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As seen in Table [3] to, Table [4 and Table [6] the proposed DST algorithm reports minimum average errors
across all the three applications (face: 10.75%, fingerprint: 18.87%, character: 10.41%). We compare the
results against STL, MTL and random task drop. Furthermore, The results are also compared against
dynamic task prioritization algorithms (Chen et al., |2018b; |Guo et al., 2018; [Jean et al.l [2019; [Liu et al.
2019a; |Chen et al., 2020) with varying necessary parameters. The comparative results show that o = 0.5
for GradNorm (Chen et al., 2018b) and LBTW (Liu et al., [2019a)) are desired parameters, resulting in the
second and third best performances. We derive information from the train set for all algorithms that require
task-wise performance/loss values to weigh/schedule tasks.

4.1 Unilateral MTL: Faces

When MTL is performed for different tasks with input as face images, the results are shown in Table
Visually, prediction outputs for denoising and landmark prediction are shown in Figure 8, and 9 of the
appendix and briefly in Figure [7

We observe that the regression tasks (landmark, pose, and denoising) undergo negative transfer compared to
STL. On the contrary, MTL has a performance gain of 1.15% in gender classification over STL. The gender
classification task has 40% labeled samples. Hence, learning from other tasks helps in a performance gain for
gender task. By allowing a negligible drop in gender classification performance, DST improves performance
for all the other four tasks and reports the least average error. For landmark localization, the DST algorithm
provides a 1.3% lower error than the STL. This can be seen from loss and task activation plots in Figure
[(l The relatively more computation cycles for landmark localization with the occasional absence of others
help task 3 move towards its minima. Concurrently, the occasional ON/OFF of tasks 1, 2, and 4 limits
trained tasks from overfitting. Once trained towards the end, the DST algorithm also reduces the activation
probability of task 3.

Further, to intuitively illustrate the effect of DST, we study two tasks using their T-Sne plot in Figure
When tasks of gender classification (T1) and “wearing specs” (T2) are trained as a vanilla MTL, we get
the upper kidney-like representation cloud (green-red points). As gender task dominates, it overpowers the
“wearing specs” class. The consequence is that for specs, there are three clusters of data, (i) not wearing
spectacles, (ii) female with spectacles and (iii) males with spectacles. Without gender classification, we
would have seen just the two group of clusters. Using the proposed DST algorithm, P(. ;) metric reduces the
dominance of T1 and T2 gets more chance. T2 then makes relevant weight updates with limited influence
of T1, allowing T2 to separate the “wearing specs” class as one cluster. Hence, we now observe the lower
blue-yellow representation points. While gender classes are separated similarly, the wearing vs. non-wearing
spectacles is now just two clusters.
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Figure 7: Sample outputs from the proposed DST algorithm. Additional instances are shown in the appendix.

Compared to other task prioritization algorithms, the proposed DST algorithm has the best overall perfor-
mance and the least negative transfer. However, for a > 1, GradNorm and LBTW drift away from the
optimal solution and fail to work on the easier tasks (Gender and Specs). DTP operates
on key performance indicators. Even though a task may have saturated due to an upper bound on perfor-
mance, DTP still prioritizes tasks with lesser performance (as it has lower performance than others). While
DTP has overall higher errors, we observe that it provides the near-to-best accuracy of 79.87% for the lower-
performing task of gender recognition. While the overall performance of Adaptive Schedule (Jean et al.
is competitive, the performance plateaus out when a task is getting closer to its STL performance.
This limits the performance gain, even if there could be a scope for improvement (e.g., landmark localiza-
tion). Finally, a dominant task causing negative transfer can have a high gradient, increasing the chances of
its gradient propagation in Gradient Drop(Chen et al) [2020). To counter the effect of the dominant task,
DST identifies such tasks by their properties (depth, data count, incompleteness, and stagnation). Then,
DST reduces their dominance by dropping them stochastically. Experimentally, Gradient Drop
has a net error of 11.07% while DST outperforms with a 10.75% error on the AFLW database.

4.2 Bilateral MTL: Fingerprints

When MTL is performed for different tasks with input as pair of fingerprint images, the results are shown
in Table [ followed by segmentation task results in Table Visually, prediction outputs for latent and
fingerprint segmentation is shown in Figure 12 and 13 of the appendix and briefly in Figure[7] Figure 14 in
appendix shows the ROC curve for the fifth task of latent fingerprint comparison.

Under bilateral MTL with application on fingerprints, the fifth task of pairwise matching has the largest
number of annotated ground-truth samples. Training other tasks in presence of pairwise matching task
improves their performances. However, the fifth task (pairwise matching) undergoes a negative transfer due
to the segmentation tasks, which have far lower samples. The DST algorithm ensures performance gain in
orientation and verification tasks and reports the least error across algorithms. We compare results of the
DST algorithm with MTL and other encoder-decoder algorithms for segmentation, as shown in Table 5]
We observe that the proposed DST algorithm reports the best IoU for fingerprint segmentation. Further,
similar to MTL, the DST algorithm also overpowers the standard SegNet and U-Net for latent fingerprint
recognition. With a minimal reduction in the performance of latent segmentation, the DST algorithm limits
negative transfer. The training graphs of DST for fingerprints are shown in Figure 11 in the appendix.

The proposed DST algorithm has the overall best performance of 18.87% compared to other task prioriti-
zation algorithms for fingerprint applications. Similar to faces, GradNorm and LBTW provide competitive
performances when a = 0.5. However, they report higher errors for o > 1, where possibly the solution drifted
away from the optima. DTP aims to prioritize lower-performing tasks. Thus, DTP provides a near-to-best
performance of 57.67% for latent fingerprint orientation classification (T3) as it is the worst-performing task
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Table 5: Segmentation performance (IoU) for DST compared against different encoder-decoder deep architectures.

SegNet UNet

(Badrinarayanan et al., |2017) | (Ronneberger et al., 2015) MTL DST
Fingerprint 0.9140.01 0.92+0.01 0.94+0.00 | 0.944+0.00
Latent 0.79+0.01 0.80+0.02 0.83+0.00 | 0.83+0.01

Table 6: Average error (%)({) on the Omniglot dataset.

MTL Grad Norm LBTW DTP Adap Schedule Grad Drop DST
(Chen et al.| [2018b)) | (Liu et al.||[2019a) | (Guo et al., |2018) | (Jean et al.,[2019) | (Chen et al. [2020)

[ [11.26 | 10.84 [ 10.59 [ 10.77 [ 10.74 [ 10.61 [ 10.41 |

across five tasks of fingerprints (when trained in MTL setting). However, due to T3, well-performing tasks
T1, T2, and T4 observe a higher drop in performance. Hence, DTP reports an overall error of 20.98% com-
pared to 18.87% by DST. Lastly, Gradient Drop provides the second-best performance after the proposed
DST. While the performance of T2, T4, and T5 are comparable, DST outperforms due to higher accuracy
in T1 and T3. This possibly results from more “ON” time for T3 (latent orientation) in DST, which being
similar to T1 (fingerprint orientation), improves its performance too (refer Figure 11(c) of appendix).

4.3 Unilateral MTL: Character Recognition

We illustrate the results of multi-task character recognition using the Omniglot dataset. Omniglot is a
standard MTL benchmarking dataset. The Omniglot dataset is also used to highlight performance on a
large number of tasks in MTL. With fixed ResNet18 architecture, |Prellberg & Kramer| (2020) illustrated the
average baseline error on Omniglot as ~10.70%. In this study, since face and fingerprint had architecture
similar to VGG16, we also utilized VGG (encoder only) based architecture for this application. A branch
for each task starts from the last encoder layer, which classifies a character in the MTL setup. Using this
architecture, MTL yields an error of 11.26%. Table [6] also shows the performance of other task prioritiza-
tion algorithms. Compared to just 10.41% error by the proposed DST algorithm, other task prioritization
algorithms have a relatively higher error in the range of 10.59% to 10.84%.

4.4 Ablation study

The proposed DST algorithm involves multiple variability points that need to be tested to validate the
effectiveness of DST. Table [7] and Table [§] highlight ablation results under different settings. With the
ablation study, we check the impact of weight initialization, network depths, data count, w; in Eq.
varying A (from Eq. and, consequently, the effect of each of the four metrics. We also check a closely
possible extension of DST, where the tasks get dropped with a fixed static probability. Each of these ablations
is presented in this subsection. These ablation experiments are conducted on the AFLW dataset.
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4.4.1 Random Drop

A static random drop is closer to the dynamic task dropping of DST for comparison. To perform ablation
and check if a random drop can achieve a good performance, we drop tasks with a probability of 0.25 and
0.50. This implies that with a throughout fixed activation probability P ), the tasks are stochastically
dropped with a constant probability 1 — P, ;). Static dropping gives slightly better performance than MTL,
but not that of DST, as highlighted in the bottom three rows of Table [3] and ] Random drop reports the
second-best results after the DST algorithm for a few tasks. For instance, T2 of AFLW (wearing specs?) has
just 0.04% lower performance for random drop than DST. Likewise, T4 of latent fingerprint segmentation
also has a difference of 0.05% in IoU. One reason could be the fact that for these tasks, the DST algorithm has
E(P 1)) closer to the static random drop probability. However, of overall performance, DST outperforms
static random drop.

4.4.2 Network Initialization

We used encoder with VGG16 ImageNet pre-trained weights for stable initialization (to mitigate high initial
loss (V(1,)). Alternatively, we also estimate initial loss with N = 10 different initializations and observe that
it slightly reduces the effect of randomness. It yields similar average error of 10.70%.

4.4.3 Varying Network Depth

Negative transfer is more likely when a task creates dominance due to being shallower. To show stability
for different network structure, T1 FC branch is preponed to 7t" conv instead of original 13t". Position of
other tasks remain the same. With MTL (Row-2, Table , we observe an adverse effect on the deepest
task T5. T1 gets deteriorated due to information loss (larger GAP resolution). T3 got improved with less
interference in learning at encoder. With proposed DST (Row-3, Table , the dominance of shallower task
T1 gets reduced on the deepest task T5. Overall, with other network architectures, we observe improved
performance with DST.

4.4.4 Overfitting

A cause for negative transfer could be overfitting. To counter overfitting, we: (i) early stop, or (ii) prob-
abilistically drop early completed tasks (only P, as metric). For first case, completed tasks are early
stopped when its MTL loss value reaches its optimal STL loss value (Row 4, Table [7)). Here, classification
tasks suffer as other regression tasks (T3, T5) stay longer to make undesirable weight updates for T1 and
T2. Secondly, with only P, ), we observe overall sub-par performance with T3 being the most affected
(Row 5, Table . T3 got limited ON time despite its stagnation (due to absence of P, 1 1)

4.4.5 Inverse case of data count

We also perform ablation for the inverse case where a task with lower ground-truth labeled samples is
preferred over a task with more labeled samples (against the original assumption of Eq. |2l where a task with
more labeled samples is preferred). If the performance turns out to be better than the proposed DST, this
could mean that a task with lower ground-truth labeled samples leads to positive transfer. The selection
criterion is updated as follows:

min (c¢;)

1<t<K

P/(c,t) = (22)

Ct

The results from the above formula are reported in row 6 of Table []] We observed a higher average error
of 11.26% than 10.75% from the proposed DST. Hence, our original assumption holds that tasks with fewer
samples can hamper generalizability while higher sample tasks improve generalization (also shown by (Wu
et al. [2020)).
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4.4.6 win Eq. [I7]

wy scales losses to a standard initial value such that task-wise losses are in the same range for Figure
Removing it has a minimal effect on the DST algorithm as both task incompleteness (Section and
stagnation (Section [2.1.4]) operate on loss ratios. With w, the error of MTL reduces by 0.54% while without
wy, the reduction is by 0.40% only.

4.4.7 Varying )\ and Metrics

A detailed ablation on varying A values in Eq. [§is shown in Table 8] It also includes keeping certain
A = 0 (not considering a metric) and keeping a specific A = 1 (considering only one metric). As we see in
the rows titled “Only dynamic metricsqq, the greatest contribution towards performance is due to dynamic
parameters (P(u,k,t) and P(r,k,t)>- In these cases, one of the lowest errors of 10.96% is observed. While
other static metrics encode intrinsic properties of model and amount of training labels, Py x,;) and P i 1)
dynamically favors tasks during training that require more computational cycles. We observe the same
behavior when A\, and A, are relatively given higher weights, and an even lower error of 10.93% is seen.

5 Conclusion

Due to joint optimization in Multitask Learning, some task(s) may face a negative transfer. We propose
Dropped Scheduled Task (DST) algorithm to reduce the impact of negative transfer. Based on the scheduling
probability, the DST algorithm gives computation cycles to specific tasks while the others are “dropped”.
For each task, the scheduling probability is decided based on four different metrics. These metrics rely
on: (i) task depth, (ii) number of ground-truth samples per task, (iii) task training completion, and (iv)
task stagnancy. Experimental results are shown on face, fingerprint, and character recognition MTL setup.
Due to the occasional task dropping of learned or dominating tasks, more computation cycles are given to
stagnant/slower /weaker tasks, helping them to move towards their minima. In the process, the dropped
task(s) refrain from overfitting, resulting in a generalizable solution. Overall, the results show minimum
negative transfer and overall least error across different algorithms and tasks.
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A Appendix

Algorithm 1: Sampling Task-wise activation bits (ON/OFF) with Dropped Scheduled Task (DST)
Algorithm

Result: G(;,.): a 1xK vector of independent Bernoulli random variables for activating/dropping
individual tasks

Given K tasks, task-wise network depth d;, and task-wise annotated sample count ¢,

Initialize network weights W

Initialize a value for § € [0, 1]

Initialize Mg, Ac, Au, Ary Ap € [0, 1] such that Ag+Ae + Ay + A + Xy =1

for each task t do

Set the probability based on network depth P4 4) = mait @
1<t<K
Set the probability based on training sample count P, s = maiit(c,)
1<t<K

Set regularization probability P(b,t) =1

end

for each epoch k do

for each task t do

if k ==1 then

Calculate task-wise loss value without weight update and store as V{y ;)
Set P(u,k,t) =1

Set P(r,k,t) =1

else
Vi s
Tty = vips
Calculate task incompletness probability P, ;¢ = min(1, ;E}“(Z))))
_ 1 Ve, =Vik—1,1
Calculate local rate of change Ry ;) = P X Vot
if kK == 2 then
‘ Set global rate of change R(; ;) = R,z
else
‘ Update global rate of change Rzk,t) = BRa4y + (1 — 5)Rzk_17t)
end
E(R,)

Calculate task stagnancy probability P ;) = min(1, 4

(k1)
end
Calculate the final probability for task scheduling

Pty = MaPrae) + Acle) T AP,y + Ao Pirk,ry + Ao Poe)
Sample task ON/OFF bit G4, ;) = Bernoulli( Py 4)
end
end
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Ground-truth Predicted Ground-truth

Predicted

Figure 8: Landmark localization results from the DST algorithm for the AFLW database.

Predicted

Figure 9: Image denoising results from the DST algorithm for the AFLW database.
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(a) Fingerprint

(b) Ground-truth mask

(c) Predicted mask

Figure 12: Few sample outputs for fingerprint segmentation (task 2), compared against the

(a) Latent Fingerprint

(b) Ground-truth mask

(c) Predicted mask

Figure 13: Few sample outputs for latent fingerprint segmentation (task 4), compared against the ground-truth
masks.
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Figure 14: ROC curve for latent fingerprint matching (task 5).
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