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ABSTRACT

We propose a new method for solving imaging inverse problems using text-to-
image latent diffusion models as general priors. Existing methods using latent
diffusion models for inverse problems typically rely on simple null text prompts,
which can lead to suboptimal performance. To address this limitation, we introduce
a method for prompt tuning, which jointly optimizes the text embedding on-the-fly
while running the reverse diffusion process. This allows us to generate images
that are more faithful to the diffusion prior. In addition, we propose a method
to jointly utilize the VAE generative prior. Synergistically leveraging both the
diffusion and the VAE prior to solving inverse problems helps to reduce image
artifacts, a major problem when using latent diffusion models instead of pixel-based
diffusion models. Our combined method, called P2L, outperforms both image- and
latent-diffusion model-based inverse problem solvers on a variety of tasks, such as
super-resolution, deblurring, and inpainting.

1 INTRODUCTION

Imaging inverse problems are often solved by optimizing or sampling a functional that combines
a data-fidelity/likelihood term with a regularization term or signal prior (Romano et al., 2017;
Venkatakrishnan et al., 2013; Ongie et al., 2020; Kamilov et al., 2023; Kawar et al., 2022; Kadkhodaie
& Simoncelli, 2021; Chung et al., 2023b). A common regularization strategy is to use pre-trained
image priors from generative models, such as GANs (Bora et al., 2017), VAEs (Bora et al., 2017;
González et al., 2022), Normalizing flows (Whang et al., 2021) or Diffusion models (Song et al.,
2022; Chung & Ye, 2022).

In particular, diffusion models have gained significant attention as implicit generative priors for
solving inverse problems in imaging (Kadkhodaie & Simoncelli, 2021; Whang et al., 2022; Daras
et al., 2022; Kawar et al., 2022; Feng et al., 2023; Laroche et al., 2023; Chung et al., 2023b). Leaving
the pre-trained diffusion prior intact, one can guide the inference process to perform posterior
sampling conditioned on the measurement at inference time by resorting to Bayesian inference. In
the end, the ultimate goal of Diffusion model-based Inverse problem Solvers (DIS) would be to act as
a fully general inverse problem solver, which can be used not only regardless of the imaging model,
but also regardless of the data distribution.

Solving inverse problems in a fully general domain is hard. This directly stems from the difficulty of
generative modeling a wide distribution, where it is known that one has to trade-off diversity with
fidelity by some means of sharpening the distribution (Brock et al., 2018; Dhariwal & Nichol, 2021).
The standard approach in modern diffusion models is to condition on text prompts (Rombach et al.,
2022; Saharia et al., 2022b), among them the most popular being Stable Diffusion (SD), a latent
diffusion model (LDM), which is itself an under-explored topic in the context of inverse problem
solving. While text conditioning is now considered standard practice in content creation including
images (Ramesh et al., 2022; Saharia et al., 2022b), 3D (Poole et al., 2023; Wang et al., 2023d),
video (Ho et al., 2022), personalization (Gal et al., 2022), and editing (Hertz et al., 2022), it has
been completely disregarded in the inverse problem solving context. This is natural, as it is highly
ambiguous which text would be beneficial to use when all we have is a degraded measurement. The
wrong prompt could easily lead to degraded performance.

In this work, we aim to bridge this gap by proposing a way to automatically find the right prompt to
condition diffusion models when solving inverse problems. This can be achieved through optimizing
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FFHQ ImageNet
SR×8 Inpaint (p = 0.8) SR×8 Inpaint (p = 0.8)

Prompt FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑
"" 61.16 0.327 26.49 52.34 0.241 29.78 78.68 0.397 23.49 70.87 0.350 26.20

"A high quality photo" 61.17 0.327 26.57 52.82 0.237 29.70 77.00 0.396 23.51 69.10 0.350 26.26
"A high quality photo of a cat" 69.03 0.377 26.39 55.15 0.248 29.63 76.69 0.402 23.63 68.48 0.355 26.13
"A high quality photo of a dog" 66.55 0.371 26.48 55.91 0.249 29.65 76.45 0.394 23.58 67.75 0.354 26.10
"A high quality photo of a face" 60.41 0.325 26.74 52.33 0.239 29.69 77.32 0.403 23.60 68.83 0.352 26.20

Proposed 58.73 0.317 26.68 51.40 0.233 29.69 66.96 0.386 23.57 66.82 0.314 26.29
PALI prompts from y 61.33 0.329 26.81 54.34 0.249 29.76 68.28 0.388 23.57 69.55 0.355 26.26
PALI prompts from x 60.73 0.322 26.76 52.06 0.238 29.75 66.55 0.387 23.57 64.00 0.348 26.17

Table 1: Difference in restoration performance using LDPS on SR×8 task with varying text prompts.
Proposed: text embedding optimized without access to ground truth. PALI prompts from x/y:
captions are generated with PALI (Chen et al., 2022) from x: ground truth clean images / y: degraded
images. The former can be considered an empirical upper bound.

the continuous text embedding on-the-fly while running DIS. We formulate this into a Bayesian
framework of updating the text embedding and the latent in an alternating fashion, such that they
become gradually aligned during the sampling process. Orthogonal and complementary to embedding
optimization, we devise a simple LDM-based DIS (LDIS) that controls the evolution of the latents to
stay on the natural data manifold and additionally utilizes the VAE prior for stability of the solutions.
We name the algorithm that combines these components P2L, short for Prompt-tuning Projected
Latent diffusion model-based inverse problem solver. In reaching for the ultimate goal of DIS, we
focus on 1) LDM-based DIS (LDIS) for solving inverse problems in the 2) fully general domain
(using a single pre-trained checkpoint) that targets 3) 512×512 resolution1. All the aforementioned
components are highly challenging, and to the best of our knowledge, have not been studied in
conjunction before.

2 BACKGROUND

2.1 LATENT DIFFUSION MODELS

Diffusion models are generative models that learn to reverse the forward noising process (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021), starting from the initial distribution
p0(x), x ∈ Rn and approaching the standard Gaussian pT (x) = N (0, I) as T → ∞ by the forward
Gaussian perturbation kernels p(xt|x0) = N (x0, t

2I)2. The forward/reverse processes can be
characterized with Ito stochastic differential equations (SDE). Sampling from the distribution can
either be done through solving the reverse SDE, or equivalently by solving the probability-flow
ordinary differential equation (PF-ODE) (Song et al., 2021; Karras et al., 2022):

dxt = −t∇xt
log p(xt) dt =

xt − E[x0|xt]

t
dt, xT ∼ pT (xT ), (1)

where we use the Tweedie’s formula (Efron, 2011) given as E[x0|xt] = xt + t2∇xt
log p(xt). Here

∇xt log pt(xt) is typically approximated with a score network sθ(·) or a noise estimation network
ϵθ(·), and learned through denoising score matching (DSM) (Vincent, 2011) or epsilon-matching
loss (Ho et al., 2020).

Image diffusion models that operate on the pixel space x are compute-heavy. One workaround for
compute-efficient generative modeling is to leverage a variational autoencoder that maximizes the
evidence lower bound (ELBO) (Rombach et al., 2022; Kingma & Welling, 2013). This leads to the
following encoder and decoder representation for all x ∼ pdata(x) ∈ Rn:

x = Dφ(z), where z = Eϕ(x) := Eµ
ϕ (x) + Eσ

ϕ (x)⊙ ϵ, ϵ ∼ N (0, I), (2)

1All prior works on DIS/LDIS focused on 256×256 resolution. Most LDIS focused their evaluation on a
constrained dataset such as FFHQ, and did not scale their method to more general domains such as ImageNet.

2Here, we use the choice used in Karras et al. (2022) for simplicity, but use variance preserving (VP)
models (Song et al., 2021) for experiments as pre-trained models are available in this form. The different choices
can be considered equivalent (Kawar et al., 2022)
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where Eµ
ϕ , Eσ

ϕ are parts of the encoder that outputs the mean and the variance of the encoder
distribution, Dφ is the decoder, and z ∈ Rk with k < n corresponds to the latent representation.
After encoding into the latent space (Rombach et al., 2022), one can train a diffusion model in the
low-dimensional latent space. Latent diffusion models (LDM) are beneficial in that the computation
is cheaper as it operates in a lower-dimensional space, consequently being more suitable for modeling
higher dimensional data (e.g. large images of size ≥ 5122). The effectiveness of LDMs have
democratized the use of diffusion models as the de facto standard of generative models especially for
images under the name of Stable Diffusion (SD), which we focus on extensively in this work.

One notable difference of SD from standard image diffusion models (Dhariwal & Nichol, 2021) is
the use of text conditioning ϵθ(·, C), where C is the continuous embedding vector usually obtained
through the CLIP text embedder (Radford et al., 2021). As the model is trained with LAION-
5B (Schuhmann et al., 2022), a large-scale dataset containing image-text pairs, SD can be conditioned
during the inference time to generate images that are aligned with the given text prompt by directly
using ϵθ(·, C), or by means of classifier-free guidance (CFG) (Ho & Salimans, 2021).

2.2 SOLVING INVERSE PROBLEM WITH (LATENT) DIFFUSION MODELS

Given access to some measurement

y = Ax+ n, x ∈ Rn, y ∈ Rm, A ∈ Rm×n, n ∼ N (0, σ2
yIm) (3)

where A is the forward operator and n is additive white Gaussian noise, the task is retrieving x from
y. As the problem is ill-posed, a natural way to solve it is to perform posterior sampling x ∼ p(x|y)
by defining a suitable prior p(x). In DIS, diffusion models (i.e. denoisers) act as the implicit prior
with the use of the score function.

Earlier methods utilized an alternating projection approach, where hard measurement constraints are
applied in-between the denoising steps whether in pixel space (Kadkhodaie & Simoncelli, 2021; Song
et al., 2021) or measurement space (Song et al., 2022; Chung & Ye, 2022). Distinctively, projection in
the spectral space via singular value decomposition (SVD) to incorporate measurement noise has been
developed (Kawar et al., 2021; 2022). Subsequently, methods that aim to approximate the gradient
of the log posterior in the diffusion model context have been proposed (Chung et al., 2023b; Song
et al., 2023b), expanding the applicability to nonlinear problems. Broadening the range even further,
methods that aim to solve blind (Chung et al., 2023a; Murata et al., 2023), 3D (Chung et al., 2023d;
Lee et al., 2023), and unlimited resolution problems (Wang et al., 2023b) were introduced. More
recently, methods leveraging diffusion score functions within variational inference to solve inverse
imaging has been proposed (Mardani et al., 2023; Feng et al., 2023). Notably, all the aforementioned
methods utilize image-domain diffusion models. Orthogonal to this direction, some of the recent
works have shifted their attention to using latent diffusion models (Rout et al., 2023; Song et al.,
2023a; He et al., 2023), a direction that we follow in this work.

In fact, inverse solvers can be directly linked to posterior sampling from p(x0|y), which can be
achieved by modifying Eq. (1) with

dxt = −t∇xt
log p(xt|y) dt =

xt − E[x0|xt,y]

t
dt, xT ∼ pT (xT ). (4)

Here, log p(xt|y) = log p(xt) + log p(y|xt), and the second equality is given by condition-
ing the Tweedie’s formula with y, i.e. E[x0|xt,y] = xt + t2∇xt

log p(xt|y). However, as
log p(y|xt) is intractable, DPS (Chung et al., 2023b) proposes to approximate it with log p(y|xt) ≃
log p(y|E[x0|xt]), whose approximation error can be quantified and bounded by the Jensen gap.
This idea was recently extended to LDMs in a few recent works (Rout et al., 2023; He et al., 2023)

∇zt
log p(y|zt) ≃ ∇zt

log p(y|Dφ(E[z0|zt])) = ∇zt
∥y −Dφ(ẑ0)∥22/σ2

y, (5)

with ẑ0 := E[z0|zt]. We refer to the sampler that uses the approximation in Eq. (5) as Latent DPS
(LDPS) henceforth. Rout et al. (2023) extends LDPS with an additional regularization term by
showing that there exists a step size for which guiding the latents towards a fixed point is optimal. He
et al. (2023) extends LDPS by using history updates as in Adam (Kingma & Ba, 2015). However, all
of the existing works in the literature that aim for LDIS, to the best of our knowledge, neglect the use
of text embedding by resorting to the use of null text embedding C∅.
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Algorithm 1 P2L
Require: ϵθ∗ ,zT ,y, C, T,K, γ, λD

1: for t = T to 1 do
2: C∗t ← OPTIMIZEEMB(zt,y, C0t ,K) ▷ See Algorithm 2
3: ϵ̂t ← ϵθ∗(zt, C∗t )
4: ẑ0|t ← (zt −

√
1− ᾱtϵ̂t)/

√
ᾱt ▷ Tweedie’s formula

5: if (t mod γ) = 0 then
6: x̂0 ← argminx0

∥y −Ax0∥22 + λ∥x0 −Dφ(ẑ0|t)∥22
7: ẑ0|t ← Eϕ(x̂0)
8: end if
9: z′

t−1 ←
√
ᾱt−1ẑ0|t +

√
1− ᾱt−1ϵ̂t

10: zt−1 ← z′
t−1 − ρt∇zt∥ADφ(ẑ0|t)− y∥

11: C(0)t−1 ← C∗t
12: end for
13: return x0 ← Dφ(z0)

1⃝ C update

2⃝ projection

3⃝ zt update

2.3 PROMPT TUNING

In modern language models and vision-langauge models, prompting is a standard technique (Radford
et al., 2021; Brown et al., 2020) to guide the large pre-trained models to solve downstream tasks. As
it has been found that even slight variations in the prompting technique can lead to vastly different
outcomes (Kojima et al., 2022), prompt tuning (learning) has been introduced (Shin et al., 2020;
Zhou et al., 2022), which defines a learnable context vector to optimize over. It was shown that by
only optimizing over the continuous embedding vector while maintaining the model parameters fixed,
one can achieve a significant performance gain.

In the context of diffusion models, prompt tuning has been adopted for personalization (Gal et al.,
2022), where one defines a special token to embed a specific concept with only a few images.
Moreover, it has also been demonstrated that one can achieve superior editing performance by
optimizing for the null text prompt C∅ (Mokady et al., 2023) before the reverse diffusion sampling
process.

3 MAIN CONTRIBUTION: THE P2L ALGORITHM

3.1 PROMPT-TUNING INVERSE PROBLEM SOLVER

The objective of solving inverse problems is to provide a restoration that is as close as possible to
the ground truth given the measurement, whether we are targeting to minimize the distortion or to
maximize the perceptual quality (Blau & Michaeli, 2018; Delbracio & Milanfar, 2023). In the context
of LDIS,

argmin
x,c

L(x, c) ≡ argmin
z,c

L(Dφ(z), c) (6)

where the first equation follows from x = Dφ(z) in deterministic decoder mapping VAE, where c is
the text embedding and the loss L will be explained in more detail in subsequent session. It is easy to
see that

argmin
z,c

L(Dφ(z), c) ≤ argmin
z

L(Dφ(z), c = C∅), (7)

where C∅ is the text embedding from the null text prompt. Notably, by keeping one of the variables
fixed, we are optimizing for the upper bound of the objective that we truly wish to optimize over. It
would be naturally beneficial to optimize the LHS of Eq. (7), rather than the RHS used in the previous
methods.

A motivating example To see Eq. (7) in effect, we conduct two canonical experiments with 256
test images of FFHQ (Karras et al., 2019) and ImageNet (Deng et al., 2009): super-resolution (SR)
of scale ×8 and inpainting with 80% of the pixels randomly dropped, using the LDPS algorithm.
Keeping all the other hyper-parameters fixed, we only vary the text condition for the diffusion model.
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In addition to using a general text prompt, we use PALI (Chen et al., 2022) to provide captions from
the ground truth images (x) and from the measurements (y) and use them when running LDPS.
Further details on the experiment can be found in Appendix B. In Table 1, we first see that simply
varying the text prompts can lead to dramatic difference the performance. For instance, we see an
increase of over 10 FID when we use the text prompts from PALI for the task of ×8 SR on ImageNet.
In contrast, using the prompts generated from y often degrades the performance (e.g. inpainting) as
the correct captions cannot be generated. From this motivating example, it is evident that additionally
optimizing for c would bring us gains that are orthogonal to the development of the solvers (Rout
et al., 2023; He et al., 2023; Song et al., 2023a), a direction that has not been explored in the literature.
Indeed, from the table, we see that by applying our prompt tuning approach, we achieve a large
performance gain, sometimes even outperforming the PALI captions which has full access to the
ground truth when attaining the text embeddings.

Overall framework To effectively utilize the Latent Diffusion Inverse Solver (LDIS), it is essential
to ensure two key criteria: 1) consistency with the measurements, and 2) the feasibility of the solution
as per the latent diffusion model. In the context of prompt-tuning LDIS, the optimization of the
prompt is also a crucial aspect. Instead of trying to meet these objectives all at once, our approach in
this paper is a more pragmatic one, where we alternate between these optimization goals. Specifically,
we focus on maintaining data consistency and optimizing the prompt in every iteration. This approach
often intertwines with the need to uphold the feasibility condition dictated by latent diffusion. We
will delve into the specifics of this methodology in the subsequent section.

3.2 DATA CONSISTENCY AND PROMPT TUNING

Existing LDIS approaches attempt to sample from p(x0|y, C∅), as it is hard to specify a generally
good condition C when all we have access to is the corrupted y. Hence, our goal is to find a good C
on-the-fly while solving for the inverse problem. Before diving into the design of the algorithm, let us
first revisit Eq. (4) for the case where we consider C as a condition.

dzt = −t∇zt log p(zt|y, C) dt =
zt − E[z0|zt,y, C]

t
dt, (8)

where E[z0|zt,y, C] is approximated with the empirical conditional posterior mean and

∇zt log p(zt|y, Ct) = ∇zt log p(zt|Ct) +∇zt log p(y|zt, Ct) (9)

≃ sθ∗(zt, Ct) + ρt∇zt
∥y −ADφ(E[z0|zt, Ct])∥22, (10)

where we used the neural network parameterized score function sθ∗(zt, Ct) ≃ ∇zt log p(zt|Ct)3,
and the second term comes from DPS (Chung et al., 2023b) by defining the prompt conditioned
posterior mean ẑ

(C)
0 := E[z0|zt, C].

p(y|zt, C) = p(y|Dφ(zt), C)
(DPS)
≃ p(y|Dφ(ẑ

(C)
0 )). (11)

Equipped with the approximation in Eq. (11), we propose a sampler that alternates between the
optimization of C while keeping zt fixed, the sampling of zt while keeping the C fixed from the
previous iteration.

Step 1⃝: C update As C is an unknown, we propose to optimize it such that the data fidelity is met.
Specifically, from Eq. (13), we use the following optimization:

C∗
t = argmin

C
∥y −ADφ(E[z0|zt,y, C])∥22. (12)

This corresponds to the OPTIMIZEEMB in Algorithm 1, with details of the optimization function in
Algorithm 2. Further details can be found in Appendix A,D.

Step 3⃝: zt update Plugging in the obtained C∗
t into Eq. (13), we can obtain the standard LDPS

gradient equipped with C∗
t , the optimized text embedding for step t. i.e.,

∇zt
log p(zt|y, C∗

t ) ≃ sθ∗(zt, C∗
t ) + ρt∇zt

∥y −ADφ(E[z0|zt, C∗
t ])∥22, (13)

3Only using Eq. (13) with Ct = C∅ would result in standard LDPS.
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where we set ρt to be the step size that weights the likelihood, similar to Chung et al. (2023b).
We summarize our alternating sampling method in Algorithm 1 and Algorithm 2, based on DDIM
sampling, with standard noise schedule notations adopted from Ho et al. (2020). The reason we refer
this step to Step 3⃝ in Algorithm 1 is that this is intertwined with the feasibility constraint from the
latent diffusion model at every γ iteration, which will be described in the following.

3.3 ENFORCING FEASIBILITY

Step 2⃝: projection To obtain the feasible solutions by the latent diffusion model, we additionally
incorporate the VAE prior. Specifically, we consider the following loss, which is the maximum a
posteriori (MAP) objective under the VAE prior in Eq. (2) with isotropic covariance.

L(x, z) = ∥y −ADφ(z)∥22 + ζ∥z − Eµ(x)∥22, (14)

where ζ absorbs the weighting caused by the variance of respective terms. We can solve Eq. (14) by
splitting the variables similar in spirit to the alternating direction method of multipliers (Boyd et al.,
2011). Namely, using the decoder approximation and setting x = Dφ(z), the optimization problem
with respect to x becomes

min
x

∥y −Ax∥22 + ζ∥z − Eµ
ϕ (Dφ(z))∥22 + λ∥x−Dφ(z) + η∥22. (15)

Here, we set dual variable η as a zero vector and do not consider its update. This leads to

x∗ = argmin
x

∥y −Ax∥22 + λ∥x−Dφ(z)∥22, (16)

which can be solved with negligible computation cost such as conjugate gradient (CG). Subsequently,
using the encoder approximation and setting z = Eϕ(x) with η = 0, the optimization problem with
respect to z reads

z∗ = argmin
z

∥y −ADφEϕ(x)∥22 + ζ∥z − Eϕ(x)∥22, (17)

which has a closed-form solution z∗
0 = Eϕ(x0). Solving for Eq. (14) is performed on the clean data

manifold with the latents obtained through the Tweedie’s formula, similar to Chung et al. (2023c);
Zhu et al. (2023), as presented in line 6-7 of Algorithm 1.

In practice, we choose to apply Eq. (16),Eq. (17) every few iteration to control dramatic changes
in the sampling, and to save computation. Nevertheless, solving Eq. (16) requires access to A⊤,
which is often non-trivial to define. Contrarily, our jax implementation enables defining A⊤ through
jax.vjp. For further discussion, see Appendix E. Note that by Eq. (17), we guarantee that the clean
latents stay on the range space of the encoder4, which minimizes the train-test time discrepancy. This
is natural as the training of LDMs is done with latents that are in the range space of Eϕ. For this
reason, we often denote the method proposed in this section simply as “projection”.

3.4 FURTHER DISCUSSIONS

Relation to the previous approach The crucial component that delineates LDM is the existence of
VAE. When naively using the VAE, the decoder introduces a significant amount of error especially
when the estimated clean latent ẑ(C)

0 falls off the manifold of the clean latents, which inevitably
happens with the LDPS approximation. Rout et al. (2023) proposed Posterior Sampling using Latent
Diffusion (PSLD) to regularize the update steps on the latent so that the clean latents are led to the
fixed point of the successive application of decoding-encoding. Formally, omitting the dependence
on C, they use the following gradient step

∇zt
log(y|zt) ≃ ∇zt

(
∥y −ADφ(ẑ0)∥22 + λ∥ẑ0 − Eϕ(Dφ(ẑ0))∥22

)
, (18)

where the additional regularization term weighted by λ leads ẑ0 towards the fixed point. From
our context summarized in the loss function in Eq. (14), their approach is equivalent to using the
following loss function:

LPSLD(z) = L(Dφ(z), z) (19)

4This is different from the range-null space decomposition of the imaging operator, as proposed in Wang
et al. (2023c).
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In order word, rather than using a soft constraint by alternating minimization between x and z as in
our approach, they enforce hard constraint between the x and z in the form of x = Dφ(z). Although
this provided a first successful demonstration of the LDIS, the nature of VAE is not used in the
formulation, which may explain why our approach is outperforming.

Targetting arbitrary resolution Despite its fully convolutional nature, as SD was trained with
64×64 latents (↔ 512× 512 images), the performance degrades when we aim to deal with larger
dimensions, again due to train-test time discrepancy. Several works aimed to mitigate this issue by
processing the latents with strided patches (Bar-Tal et al., 2023; Jiménez, 2023; Wang et al., 2023a)
that increases the computational burden by roughly O(n2). In contrast, we show that our projection
approach, used without any patch processing, can outperform previous methods that rely on patches,
resulting in significantly faster inference speed. In Appendix F, we show that our approach is also
useful for targetting arbitrary resolution image restoration, as the errors accumulated by processing
latents in higher dimensions can be corrected through our projection approach.

4 EXPERIMENTS

Datasets, Models We consider two different well-established datasets: 1) FFHQ 512×512 (Karras
et al., 2019), and 2) ImageNet 512×512 (Deng et al., 2009). For the former, we use the first 1000
images for testing, similar to Chung et al. (2023b). For the latter, we choose 1k images out of 10k
test images provided in Saharia et al. (2022a) by interleaved sampling, i.e. using images of index 0,
10, 20, etc. after ordering by name. For the latent diffusion model, we choose SD v1.4 pre-trained
on the LAION dataset for all the experiments, including the baseline comparison methods based on
LDM. As there is no publicly available image diffusion model that is trained on an identical dataset,
we choose ADM (Dhariwal & Nichol, 2021) trained on ImageNet 512×512 data as the universal
prior when implementing baseline image-domain DIS. Note that this discrepancy may lead to an
unfair advantage in the performance for evaulation on ImageNet, and an unfair disadvantage in the
performance when evaluating on FFHQ. All experiments were done on NVIDIA A100 40GB GPUs.

Inverse Problems We test our method on the following degradations: 1) Super-resolution from ×8
averagepooling, 2) Inpainting from 10-20% free-form masking as used in Saharia et al. (2022a), 3)
Gaussian deblurring from an image convolved with a 61×61 size Gaussian kernel with σ = 3.0, 4)
Motion deblurring from an image convolved with a 61×61 motion kernel that is randomly sampled
with intensity 0.55, following Chung et al. (2023b). For all degradations, we include mild additive
white Gaussian noise with σy = 0.01.

Evaluation As the main objective of this study is to improve the performance of LDIS, we mainly
focus our evaluation on the comparison against the current SOTA LDIS: we compare against LDPS,
GML-DPS (Rout et al., 2023), PSLD (Rout et al., 2023), and LDIR (He et al., 2023). Notably, all
LDIS including the proposed P2L use 1000 NFE DDIM sampling with η = 0.06. We additionally
compare against SOTA image-domain DIS: DPS (Chung et al., 2023b), Diff-PIR (Zhu et al., 2023),
DDS (Chung et al., 2023c), and ΠGDM (Song et al., 2023b). For DPS, we use 1000 NFE DDIM
sampling. For Diff-PIR, DDS, and ΠGDM, we use 100 NFE DDIM sampling. We choose the optimal
η values for these algorithms through grid-search. Details about the comparison methods can be
found in Appendix D.3. We perform a quantitative evaluation with standard metrics: PSNR, FID, and
LPIPS.

Comparison against baseline In all of the inverse problems that we consider in the paper, our
method outperforms all the baselines by quite a large margin in terms of perceptual quality, measured
by FID and LPIPS, while keeping the distortion at a comparable level against the current state-of-the-
art methods. Especially, we see about 10 FID decrease in deblurring and inpainting tasks compared
to the runner up in both FFHQ and ImageNet dataset (See Tables 8,2). The superiority can also be
clearly seen in Fig. 1, where P2L achieves stable, high-quality reconstruction throughout all tasks.
Results from both LDPS and PSLD often contain local grid-like artifacts (Red boxes in Figures) and
are blurry. With P2L, the restored images are sharpened while the artifacts are effectively removed.

5https://github.com/LeviBorodenko/motionblur
6The parameter η indicates the stochasticity of the sampler. η = 0.0 leads to deterministic PF-ODE.
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Figure 1: Inverse problem solving results on ImageNet 512× 512 test set. Row 1: SR×8, Row 2:
gaussian deblurring, Row 3: motion deblurring, row 4: inpainting.

SR (×8) Deblur (motion) Deblur (gauss) Inpaint
Method FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑
P2L (ours) 51.81 0.386 23.38 54.11 0.360 24.79 39.10 0.325 25.11 32.82 0.229 21.99

LDPS 61.09 0.475 23.21 71.12 0.441 23.32 48.17 0.392 24.91 46.72 0.332 21.54
GML-DPS (Rout et al., 2023) 60.36 0.456 23.21 59.08 0.403 24.35 45.33 0.377 25.44 47.30 0.294 21.12
PSLD (Rout et al., 2023) 60.81 0.471 23.17 59.63 0.398 24.21 45.44 0.376 25.42 40.57 0.251 20.92
LDIR (He et al., 2023) 63.46 0.480 22.23 88.51 0.475 21.37 72.10 0.506 22.45 50.65 0.313 23.28
DDS (Chung et al., 2023c) 203.2 1.213 12.72 84.67 0.925 14.52 70.51 0.835 16.58 60.18 0.354 17.03
DPS (Chung et al., 2023b) 54.61 0.544 20.70 71.99 0.599 19.62 98.33 0.910 15.05 71.70 0.360 15.15
DiffPIR (Zhu et al., 2023) 488.3 1.182 13.44 87.04 0.622 19.32 79.31 0.755 20.55 45.97 0.300 20.11
ΠGDM (Song et al., 2023b) 53.00 0.490 21.08 75.35 0.682 18.66 70.26 0.797 21.96 65.75 0.322 16.84

Table 2: Quantitative evaluation (PSNR, LPIPS, FID) of inverse problem solving on ImageNet
512×512-1k validation dataset. Bold: best, underline: second best. Methods that are not LDM-based
are shaded in gray.

LDIR are less prone to artifacts owing to the smoothed history gradient updates, but often results
in unrealistic textures and deviations from the measurement, which is also reflected in having the
lowest PSNR among the LDIS-class methods. In contrast, P2L is free from such drawbacks even
when leveraging Adam-like gradient update steps. However, it should be noted that the compute time
for P2L linearly increases as we increase the number of training iterations for the text embedding.
The compute time for K = 0 is similar to other LDIS baselines, but it becomes slower if K becomes
larger. Devising a more time-efficient way to perform text embedding optimization is thus a promising
future research direction. For further details on the runtime analysis, see Appendix C.

One rather surprising finding is the heavy downgrade in the performance for DIS methods. Even
on in-distribution ImageNet test data, methods such as DPS and DiffPIR become very unstable.
This can be attributed to the generative prior being poor: directly training diffusion models on
high-resolution images often result in poor performance7. This observation again points to the
importance of developing methods that can leverage foundation models when aiming for general
domain higher-resolution data. See Appendix G for further results. As a final note, we believe that
the compromise in PSNR is related to the imperfectness of the VAE used in SD v1.48, and we expect

7Consequently, for ≥ 512× 512 resolution, either using latent diffusion or using cascaded models (Saharia
et al., 2022b) are popular.

8Auto-encoding 1000 ground-truth test images result in the following metrics: FFHQ (PSNR): 29.66 ± 2.29,
ImageNet (PSNR): 27.12 ± 4.38.

8



Under review as a conference paper at ICLR 2024

FFHQ ImageNet
Design components SR×8 Inpaint (p = 0.8) SR×8 Inpaint (p = 0.8)

Projection Γ Prompt tuning FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑
✗ ✗ ✗ 61.16 26.49 52.34 29.78 78.68 23.49 70.87 26.20
✗ ✗ ✓ 58.73 26.68 51.40 29.69 76.40 23.52 67.06 26.32
✓ ✗ ✗ 55.91 26.37 48.71 29.68 74.22 23.16 66.92 26.08
✓ ✓ ✗ 55.68 26.43 47.76 29.70 74.01 23.32 65.45 26.29
✓ ✓ ✓ 52.96 26.64 46.92 29.63 70.08 23.48 59.26 26.12

Table 3: Ablation studies on the design components

σy Γ PSNR FID

0.0 glue 26.51 54.69
Ours 26.80 54.58

0.01 glue 26.39 56.47
Ours 26.43 55.68

0.05 glue 23.86 68.99
Ours 24.92 65.90

Table 4: Choice of Γ

such degradation to be mitigated when switching to better, larger autoencoders such as SDXL (Podell
et al., 2023).

Design components In Table 3, we perform an ablation study on the design components of the
proposed method. From the table, we confirm that prompt tuning, projection to the range space of the
encoder, and performing proximal update step (denoted as Γ) before the projection all contributes
to the gain in the performance. It is important that these gains are synergistic, and one component
does not hamper the other. In the Appendix Tab. 7, we further show that our prompt-tuning approach
is robust to the variation in the hyper-parameters (learning rate, number of iterations). Specifically,
among the 9 configurations that we try, only the one with 5 iterations, lr=0.001 is inferior to not
using prompt tuning. In Fig. 2, we visualize the progress of D(ẑ0) through time t starting from the
same random seed, comparing LDPS, PSLD, and LDPS + projection (row 4 of Tab. 6). Here, we
see that our proposed projection approach effectively suppresses the artifacts that arise during the
reconstruction process, whereas PSLD introduces additional artifacts. Furthermore, in Appendix F,
we show that our approach is also useful for targetting arbitrary resolution image restoration, as
the errors accumulated by processing latents in higher dimensions can be corrected through our
projection approach. Remarkably, we see that our approach often offers better results (e.g. see Fig. 4)
than operating in strided patches (Bar-Tal et al., 2023; Jiménez, 2023), which requires quadratic
scaling of compute time.

Choice of Γ When projecting to the range space of E , we choose to use the proximal optimization
strategy in Eq. (16). Instead, one could resort to projection to the measurement subspace (“gluing”
of Rout et al. (2023)) by using Γ(x̂0) = A⊤y + (I −A⊤A)x̂0. In Table 4, we compare our choice
of Γ against the gluing on various noise levels on FFHQ SR×8. We see that for all noise levels,
the proximal steps consistently outperform the gluing, even when Γ is applied every γ = 4 steps
of reverse diffusion. Furthermore, due to the noise-amplifying nature of projection, the differences
become more pronounced as we increase the noise level. The difference in the compute time between
the two choices is minimal: 331.7 [s] vs 333.2 [s] measured in wall-clock time using RTX 3090 GPU
per the restoration of a single image when we compare gluing vs. proximal optimization.

5 CONCLUSION

We proposed P2L, a latent diffusion model-based inverse problem solver that introduces two new
strategies. First, a prompt tuning method to optimize the continuous input text embedding used for
diffusion models was developed. We observed that our strategy can boost the performance by a good
margin compared to the usage of null text embedding that prior works employ. Second, a projection
approach to keep the latents in the range space of the encoder during the reverse diffusion process
was proposed. We show that our approach paves way to jointly utilizing diffusion generative prior
and the VAE generative prior. Our approach effectively mitigated the artifacts that often arise during
inverse problem solving, while also sharpening the final output. P2L outperforms previous diffusion
model-based inverse problem solvers that operate on the latent and the image domain.

Limitations While prompt tuning enhances the performance, it also incurs additional computational
complexity as additional forward/backward passes through the latent diffusion model and the decoder
is necessary. Consequently, the method will need future investigations when aiming for time-critical
applications. As we optimize the continuous text embeddings rather than the discrete text directly, it is
hard to decipher what the text embedding after the optimization has converged to. This is a limitation
of the text embedder used for SD, as CLIP does not utilize a decoder. We could instead opt for the use
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of Imagen (Saharia et al., 2022b), where T-5 with an encoder-decoder architecture is used, where one
could easily check the learned text from our prompt-tuning scheme. Moreover, we did not consider
the usage of CFG, which would enable flexible control on the degree of sharpening. Extending the
prompt tuning idea to jointly optimize the embedding of the conditional and the unconditional model
may be an interesting direction of future research. Although we have provided a unified optimization
perspective to derive our algorithm, we did not perform convergence analysis in this work. Further
analysis of P2L would be an interesting direction of future research, similar to what was done in Rout
et al. (2023).

Ethics statement While our method can lead to advancements in areas such as computational
imaging, medical imaging, and other fields where inverse problems are prevalent, we also recognize
the potential for misuse in areas like deepfake generation or unauthorized data reconstruction,
naturally leading from the use of generative models. The potential bias within the training dataset of
the diffusion model may be potentially amplified with the usage of our method. We have taken care to
ensure that our experiments adhere to ethical guidelines, using publicly available datasets or those for
which we have obtained explicit permissions. We urge the community to adopt responsible practices
when applying our findings and to consider the broader societal implications of the technology.

Reproducibility statement In order to facilitate reproducibility, We detail our implementation in
the form of Algorithms (Alg. 1,2,3), and pseudo-code (Fig. 3). The specific hyper-parameters chosen
for the method is detailed in Appendix D.
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A BACKGROUND ON DIFFUSION MODELS

Lemma 1 (Tweedie’s formula). Given a Gaussian perturbation kernel p(xt|x0) =
N (xt; stx0, σ

2
t I), the posterior mean is given by

E[x0|xt] =
1

αt
(xt + σ2

t∇xt
log p(xt)) (20)

Proof.

∇xt log p(xt) =
∇xt

p(xt)

p(xt)
(21)

=
1

p(xt)
∇xt

∫
p(xt|x0)p(x0) dx0 (22)

=
1

p(xt)

∫
∇xtp(xt|x0)p(x0) dx0 (23)

=
1

p(xt)

∫
p(xt|x0)∇xt log p(xt|x0)p(x0) dx0 (24)

=

∫
p(x0|xt)∇xt log p(xt|x0) dx0 (25)

=

∫
p(x0|xt)

stx0 − xt

σ2
t

dx0 (26)

=
stE[x0|xt]− xt

σ2
t

. (27)

Rearranging the terms, we achieve the conclusion.

Lemma 1 lets us compute the posterior mean when we have access to the score function. In diffusion
models, we parametrize the score function with a neural network and train it through denoising score
matching

θ∗ = argmin
θ

Et∼U [0,1],x0∼pdata,ϵ∼N (0,I)∥sθ(xt, t)−∇xt
log p(xt|x0)∥22. (28)

Let us consider the case of DDPM (Ho et al., 2020) with the forward perturbation kernel p(xt|x0) =
N (xt;

√
ᾱtx0, (1− ᾱt)I)

9. Then, we have the following alternative parametrizations

sθ∗(xt, t) = − 1√
1− ᾱt

ϵθ∗(xt, t) =

√
ᾱtDθ∗(x0)− xt√

1− ᾱt
, (29)

where the second parametrization comes from epsilon-matching (Ho et al., 2020) and is mostly used
throughout the work, and the last parametrization directly estimates the posterior mean by regarding
the diffusion model as a denoiser.
Corollary 1 (Conditional Tweedie’s formula).

E[x0|xt,y] =
1

st
(xt + σ2

t∇xt
log p(xt|y)) (30)

The corollary is a simple consequence of conditioning the Tweedie’s formula with an additional
variable y. As log p(xt|y) is intractable, we can estimate Eq. (30), with the choices of st, σt made
from DDPM, with Chung et al. (2023b)

E[x0|xt,y] =
1√
ᾱt

(xt + (1− ᾱt)∇xt
(log p(xt) + log p(y|xt))) (31)

(DPS)
≈ 1√

ᾱt
(xt + (1− ᾱt) (sθ∗(xt, t) +∇xt

log p(y|x̂0))) (32)

= x̂0 +
1− ᾱt√

ᾱt
∇xt

log p(y|x̂0) (33)

9In the discrete setup, ᾱt :=
∏t

i=1 αt, and αt := 1− βt with q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)
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where x̂0 := Dθ∗(xt, t). Further, we can circumvent the need to backpropagate through the diffusion
model and save computation by using the DDS approximation (Chung et al., 2023c)

E[x0|xt,y]
(DDS)
≈ x̂0 +

1− ᾱt√
ᾱt

∇x̂0
log p(y|x̂0), (34)

where the difference stems from that we take the gradient w.r.t. x̂0 rather than xt. Running Eq. (4)
with the approximations Eq. (32) or Eq. (34) amounts to approximately sampling from the posterior
distribution.

B PROOF-OF-CONCEPT EXPERIMENT

For the caption generation with PALI, we simply take the captions with the highest score. Examples
of the captions generated from PALI are presented in Fig. 8. In our initial experiments, we found
that using PALI captions directly did not directly lead to an improvement in the performance, as it
only describes the content of the image, and says nothing about the quality of the image. Therefore,
we use the following text prompts for the oracle “A high quality photo of a {PALI_prompt}”,
similar to the general text prompts.

For both inverse problems (SR×8, inpainting with p = 0.8), we use the LDPS algorithm with 1000
NFE and η = 0.0. We apply prompt tuning algorithm per denoising step as indicated in Algorithm 2,
with K = 5 and learning rate of 1e − 4. When optimizing for the text embedding, we initialize it
with the embedding vector from the token “A high quality photo of a face” for FFHQ, and “A
high quality photo” for ImageNet in the case of inpainting. Note that for the latter, we did not
find much performance difference when initializing from the null text prompt, or even initializing
it with “A high quality photo of a dog”. For ×8 SR, we initialize the text embeddings from
PALI captions generated from y, as we empirically observe that PALI captions from y still have a
relatively good coarse description about the given image.

C RUNTIME ANALYSIS

Method Time [s] Type
P2L (K = 5) 1982.7

Latent
diffusion

P2L (K = 3) 1333.6
P2L (K = 1) 657.3
P2L (K = 0) 333.2

LDPS 313.9
GML-DPS (Rout et al., 2023) 390.6
PSLD (Rout et al., 2023) 408.7
LDIR (He et al., 2023) 317.2

DDS (Chung et al., 2023c) 20.1
Pixel

diffusion
DPS (Chung et al., 2023b) 291.0
DiffPIR (Zhu et al., 2023) 21.2
ΠGDM (Song et al., 2023b) 30.2

Table 5: Comparison in compute time
for each method using RTX 3090 GPU
in wall-clock time [s].

In Tab. 5, we include the runtime for each algorithm used
in the paper when solving inverse problems with diffu-
sion models, measured in wall-clock time [s] with a single
RTX 3090 GPU. Note that P2L (K = 0) corresponds to
the case where we do not use prompt-tuning, and only
apply the idea of leveraging the VAE prior (i.e. encoder
range space projection). In this case, the compute time is
roughly equivalent to the LDIS baselines. As we increase
the number of iterations for prompt embedding optimiza-
tion, the required computation time approximately linearly
increases. In this regard, P2L requires more compute
against other LDIS baselines as we additionally optimize
for the text prompt, which can be considered a downside
of the approach. However, it should be noted that P2L is
the first approach that shows the possibility and feasibility
of the approach. While it may not be computationally
efficient at this point, P2L would be a good cornerstone that future works can build upon to devise
faster, more efficient solvers.

D IMPLEMENTATION DETAILS

D.1 C UPDATE PROMPT TUNING

We consider the following optimization problem

C∗ = argmin
C

∥y −AD (E[z0|zt,y, C]) ∥22, (35)
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FFHQ ImageNet
problem Deblur (motion) Deblur (gauss) SR×8 inpaint Deblur (motion) Deblur (gauss) SR×8 inpaint

Gradient type Adam Adam GD Adam Adam GD GD GD
ρt 0.05 0.05 1.0 0.05 0.1 ᾱt 15ᾱt 0.5
γ 5 4 4 3 5 4 4 3
λ 1.0 1.0 1.0 0.1 1.0 1.0 1.0 0.1
K 3 5 5 1 3 3 3 1
learning rate 5e− 5 1e− 4 1e− 4 1e− 4 1e− 5 1e− 4 1e− 5 1e− 4

Table 6: Hyper-parameter choice for the proposed method. White shade: hyper-parameters related to
gradient updates, blue shade: hyper-parameters related to projecting onto the range space of E , red
shade: hyper-parameters related to prompt tuning.

where Eq. (35) is performed for every timestep t during the inference stage. Here, we approximate
the conditional posterior mean as

E[z0|zt,y, C] =
1√
ᾱt

zt +
1− ᾱt√

ᾱt
(∇zt log p(zt|C) +∇zt log p(y|zt, C)) (36)

≃ ẑ
(C)
0 +

1− ᾱt√
ᾱt

∇zt log p(y|ẑ
(C)
0 ) (37)

≃ ẑ
(C)
0 +

1− ᾱt√
ᾱt

∇
ẑ
(C)
0

log p(y|ẑ(C)
0 ), (38)

which is the consequence of the DDS approximation in Eq. (34). Notice that we update our
embeddings to improve the fidelity Eq. (35). However, in practice, this also leads to higher quality
images in terms of perception. For optimizing Eq. (35), we use Adam with the learning rate and
the number of iterations as denoted in Table 6 for every t. In practice, we choose a static step size
ρ = 1.0 with the gradient of the norm, which was shown to be effective in (Chung et al., 2023b). The
resulting prompt tuning algorithm is summarized in Algorithm 2.

Algorithm 2 Prompt tuning

1: function OPTIMIZEEMB(zt,y, C(0)t ,K)
2: for k = 1 to K do
3: ϵ̂t ← ϵθ∗(zt, C(k−1)

t )
4: ẑ0|t ← (zt −

√
1− ᾱtϵ̂t)/

√
ᾱt

5: ẑ′
0|t ← ẑ0|t − ρ∇ẑ0|t∥y −Dφ(ẑ0|t)∥

6: x̂0|t ← Dφ(ẑ
′
0|t)

7: L ← ∥Ax̂0|t(C(k−1)
t )− y∥22

8: C(k)t ← C(k−1)
t − AdamGrad(Lt)

9: end for
10: return C∗t ← C

(K)
t

11: end function

Approximation
of E[z0|zt, C]

Optimizing
Eq. (12).
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Algorithm 3 P2L: Adam
Require: ϵθ∗ ,zT ,y, C, T,K, γ, β1, β2, ε,Γ

1: mT ← np.zeros_like(zT )
2: vT ← np.zeros_like(zT )
3: for t = T to 1 do
4: C∗t ← OPTIMIZEEMB(zt,y, C0t ,K)
5: ϵ̂t ← ϵθ∗(zt, C∗t )
6: ẑ0|t ← (zt −

√
1− ᾱtϵ̂t)/

√
ᾱt

7: if (t mod γ) = 0 then
8: ẑ′

0|t ← E
(
Γ
(
D(ẑ0|t)

))
9: end if

10: z′
t−1 ←

√
ᾱt−1ẑ

′
0|t +

√
1− ᾱt−1ϵ̂t

11: g ← ∇zt∥AD(ẑ0|t)− y∥
12: m̂t−1 ← (β1mt + (1− β1)g) /(1− β1)
13: v̂t−1 ← (β2vt + (1− β2)(g ◦ g)) /(1− β2)

14: zt−1 ← z′
t−1 − ρt

m̂t−1√
v̂t−1+ε

15: C(0)t−1 ← C∗t
16: end for
17: return x0 ← D(z0)

D.2 zt UPDATE

In Table 6, there are two gradient types: GD and Adam. For GD, we use standard gradient descent
steps as presented in Algorithm 1. For Adam, using the same prompt tuning Algorithm 2, we adopt a
history gradient update scheme as proposed in He et al. (2023) to arrive at Algorithm 3. Note that the
hyper-parameters of the Adam update were fixed to be β1 = 0.9, β2 = 0.999, ε = 1e− 8, which is
the default setting. We only search for the optimal step size ρt via grid search, which is set to 0.1 for
motion deblurring in ImageNet, and 0.05 otherwise.

D.3 COMPARISON METHODS

LDPS LDPS can be considered a straightforward extension image domain DPS (Chung et al.,
2023b). The three works that we review in this section (He et al., 2023; Rout et al., 2023; Song et al.,
2023a) all consider LDPS as a baseline. In LDPS, we have the following update scheme

zt−1 = DDIM(zt)− ρ∇zt
∥y −AD(ẑ0)∥2, (39)

where ρ is the step size, and DDIM(·) denotes a single step of DDIM sampling. We use a static step
size of ρ = 1, widely adopted in literature.

LDIR (He et al., 2023) Using Adam-like history gradient update scheme, a single iteration of the
algorithm can be summarized as follows

gt = ∇zt∥y −AD(ẑ0)∥ (40)
m̂t = (β1mt−1 + (1− β1)gt)/(1− β1) (41)
v̂t = (β2vt−1 + (1− β2)(gt ◦ gt))/(1− β2) (42)

zt−1 = DDIM(zt)− ρ
m̂t√
v̂t + ε

, (43)

where ◦ denotes element-wise product, and β1, β2, ε are the hyperparameters of the sampling scheme.
As LDIR uses a momentum-based update scheme, we have smoother gradient transitions. We fix
β1 = 0.9, β2 = 0.999, ε = 1e− 8 to be identical to when using the proposed method. The step size
ρ is chosen to be the optimal value found through grid search: 0.1 for ImageNet motion deblurring,
and 0.05 otherwise.

GML-DPS, PSLD (Rout et al., 2023) GML-DPS attempts to regularize the predicted clean latent
ẑ0 to be a fixed point after encoding and decoding. Formally, the update step reads

zt−1 = DDIM(zt)− ρ∇zt
(∥y −AD(ẑ0)∥2 + γ∥ẑ0 − E(D(ẑ0))∥2) . (44)
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steps 0 1 3 5

lr - 1e− 5 1e− 4 1e− 3 1e− 5 1e− 4 1e− 3 1e− 5 1e− 4 1e− 3

FID 61.16 60.66 59.60 57.61 60.11 59.34 60.19 60.02 58.59 62.67
PSNR 26.49 26.69 26.71 26.73 26.78 26.70 26.61 26.73 26.17 26.38

Table 7: Robustness to hyper-parameters in prompt-tuning. FFHQ SR×8 on 256 test images. Bold:
best, underline: second best.

Further, PSLD applies an orthogonal projection onto the subspace of A in between decoding and
encoding to enforce fidelity

zt−1 = DDIM(zt)− ρ∇zt

(
∥y −AD(ẑ0)∥2 + γ∥ẑ0 − E(A⊤y + (I −A⊤A)D(ẑ0))∥2

)
.

(45)

We use the static step size of ρ = 1, and choose γ = 0.1, as advised in Rout et al. (2023). GML-DPS
and PSLD are closest to the proposed method in spirit, as these methods attempt to guide the latents
to stay closer to the natural manifold by enforcing them to be a fixed point after autoencoding. The
difference is that these approaches use gradient guidance while we try to explicitly project the latents
into the the natural manifold.

DPS (Chung et al., 2023b) DPS is a DIS that utilizes the following update scheme10

xt−1 = DDIM(xt)−∇xt
(∥y −Ax̂0∥2) . (46)

The optimal value of η was found through grid search for each inverse problem: η = 0.0 for SR×8,
and η = 1.0 for others.

ΠGDM (Song et al., 2023b) Similar to DPS, ΠGDM considers the following gradient update
scheme

xt−1 = DDIM(xt)−
(
(y −Ax̂0)

⊤(r2tAA⊤ + σ2I)−1A
∂x̂0

∂xt

)⊤

, (47)

where rt is a hyper-parameter and σ is the noise level of the measurement. We take rt as advised in
(Song et al., 2023b), and use 100 step DDIM sampling with η = 1.0 for all experiments.

DDS (Chung et al., 2023c) The following updates are used

x̂′
0 = argmin

x

1

2
∥y −Ax∥22 +

γ

2
∥x− x̂0∥22 (48)

xt−1 =
√
ᾱt−1x̂

′
0 +

√
1− ᾱt−1 − η2β̃2

t−1ϵ̂t + ηβ̃t−1ϵ, (49)

where Eq. (48) is solved through CG with 5 iterations, γ = 1.0. η = 0.0 is chosen for Gaussian
deblurring, and η = 1.0 for the rest of the inverse problems.

DiffPIR (Zhu et al., 2023) Similar to DDS, the following updates are used

x̂′
0 = argmin

x

1

2
∥y −Ax∥22 +

λσ2ᾱt

2(1− ᾱt)
∥x− x̂0∥22 (50)

xt−1 =
√
ᾱt−1x̂

′
0 +

√
1− ᾱt−1(

√
1− ζ ϵ̂t +

√
ζϵ), (51)

where σ is the noise level of the measurement, and λ, ζ are hyper-parameters. Unlike DDS, the
solution to Eq. (50) is obtained as a closed-form solution. These hyper-parameters are found through
grid search. SR×8: ζ = 0.35, λ = 35.0 / Deblur: ζ = 0.3, λ = 7.0 / Inpaint: ζ = 1.0/λ = 7.0.

E EFFICIENT IMPLEMENTATION IN JAX

10The original work only considered DDPM sampling. We consider DDIM as a generalization of DDPM as it
can be retrieved with η = 1.0.
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Figure 2: Close-up of the progress of D(ẑ0) through time t when solving ×8 SR on FFHQ.

ones = jnp.ones(x.shape)
_, _AT = jax.vjp(A_funcs.A, ones)
AT = lambda y: _AT(y)[0]
A_funcs.AT = AT
def cg_A(x, cg_lamb):

return A_funcs.AT(A_funcs.A(x)) + cg_lamb * x
hatx0 = D(hatz0)
cg_y = A_funcs.AT(y) + cg_lamb * hatx0
hatx0, _ = jax.scipy.sparse.linalg.cg(cg_A, cg_y, x0=hatx0)

Figure 3: Defining A⊤ can be automatically achieved through jax.vjp given that A is differentiable.

Vanilla [1] Bar-Tal et al. (2023) [4] Jiménez (2023) [4] Proposed [1]

Figure 4: Results on ×8 SR on DIV2K validation set of 768×768 resolution. [Diffusion NFE per
denoising step]. Vanilla and proposed process the latent as a whole.

In model-based inverse problem solving, having access to efficient computation of the adjoint A⊤ is
a must. Here, we consider a general case of solving linear inverse problems where the computation
of SVD is too costly, and hence one has to define the adjoint operator manually (e.g. computed
tomography). Furthermore, for cases such as deblurring from circular convolution, one needs to
carefully design the operator, as there are many potential pitfalls (e.g. boundary, size mismatch).
These are more often than not the limiting factors of the applicability of the model-based approaches
for solving inverse problems. We show in Fig. 3 that this can be much alleviated by using jax, as we
can implicitly define a transpose operator with reverse-mode automatic differentiation (Baydin et al.,
2018). We note this design was also established in (Balke et al., 2022).
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F TARGETTING ARBITRARY RESOLUTION

For SD, using an encoder to convert from the image to the latent space reduces the dimension by
×8. When training SD, the diffusion model that operates on the latent space was trained with 64×64
latents, obtained from 512×512 images. When the image that we wish to restore (or generate) is
larger than 512×512, the latents will also be larger than 64×64. In this case, due to the train-test time
discrepancy, the results that we get will be suboptimal if one processes the larger latent as a whole
(Fig. 5 (a)). A natural way to counteract this discrepancy is to process the latents in patches11. When
processing in patches of size 64×64 with stride 32 on both directions, it requires us 4 score function
NFEs per denoising step (Fig. 5 (c),(d)). Bar-Tal et al. (2023) uniformly weights the overlapping
patches, and Jiménez (2023) weights the patches with Gaussian weights with variance 0.01. The
downside of these methods is that the number NFEs required for inference scales quadratically with
the size of the image.

Notice that all methods that aim for high-resolution synthesis using latent diffusion models only
focus on better dealing with the latents and use the decoding part as-is. This is due to the fact that the
diffusion models that act in the latent space is more sensitive to the change in the input resolution,
and hence the error could easily accumulate if we operate on larger latents directly. On the other
hand, VAE is much more robust to the change in the input resolution. When given a latent that stays
within the range space of the encoder, the decoder is able to produce a high-quality image directly
even when the input size is larger than 64× 64. In this regard, we can project this latent to the range
space of E by setting ẑ′

0 = D(Γ(E(ẑ0))) for every few steps, as illustrated in Fig. 5 (b). Even though
the proposed method is considerably faster than patch-based methods (Bar-Tal et al., 2023; Jiménez,
2023), we see that one can achieve a comparable, or superior performance, as presented in Fig. 4.
Furthermore, in Fig. 6, we show that we can use both patching method and the projection method
simultaneously, achieving the best results.

D
ec
od
er

E
ncoder

(a) Vanilla

(c) Bar-Tal et al. (2023)

(b) Proposed

(d) Jiménez (2023)

Figure 5: Method comparison for processing higher resolution images in the latent space.

G FURTHER EXPERIMENTAL RESULTS

11For all the experiments considered in this paper, we consider 768×768 images (96×96 latents).
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SR (×8) Deblur (motion) Deblur (gauss) Inpaint
Method FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑
P2L (ours) 31.23 0.290 28.55 28.34 0.302 27.23 30.62 0.299 26.97 26.27 0.168 25.29

LDPS 36.81 0.292 28.78 58.66 0.382 26.19 45.89 0.334 27.82 46.10 0.311 23.07
GML-DPS (Rout et al., 2023) 41.65 0.318 28.50 47.96 0.352 27.16 42.60 0.320 28.49 36.31 0.208 23.10
PSLD (Rout et al., 2023) 36.93 0.335 26.62 47.71 0.348 27.05 41.04 0.320 28.47 35.01 0.207 23.10
LDIR (He et al., 2023) 36.04 0.345 25.79 24.40 0.376 24.40 35.61 0.341 25.75 37.23 0.250 25.47
DDS (Chung et al., 2023c) 262.0 1.278 13.01 88.70 1.014 14.68 74.02 0.932 17.03 113.6 0.421 17.92
DPS (Chung et al., 2023b) 47.65 0.340 21.81 65.91 0.601 21.11 100.2 0.983 15.71 137.7 0.692 15.35
DiffPIR (Zhu et al., 2023) 141.1 1.266 13.80 72.02 0.664 21.03 69.15 0.751 22.27 33.92 0.238 24.91
ΠGDM (Song et al., 2023b) 42.07 0.311 22.05 60.08 0.531 21.08 70.32 0.788 21.99 140.6 0.738 16.83

Table 8: Quantitative evaluation (PSNR, LPIPS, FID) of inverse problem solving on FFHQ 512×512-
1k validation dataset. Bold: best, underline: second best. Methods that are not LDM-based are
shaded in gray.

Vanilla + Projection

Patch (uniform) + Projection

+ ProjectionPatch (gaussian)

Ground truth

Measurement

Figure 6: Further results on ×8 SR on DIV2K validation set of 768×768 resolution. Comparison
between with and without using our projection approach on various baseline methods.
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Figure 7: Full image results of ×8 SR on DIV2K validation set of 768×768 resolution. Left:
measurement, Right: P2L
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“a dalmatian puppy sleeping on its back on a 
blanket”

“a close up of a dog with a collar”“a close up of a snake on the ground”“A close up of a bald eagle with a black 
background”

“A sting ray laying on the bottom of an aquarium”
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“a blurry photo of a room with a large window” “A couple of people standing next to each other” “A close up of a lizard laying on the ground” “A very blurry picture of a body of water”

“A black background with different colored dots 
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“A very dark image with a few bright spots.” “A purple eggplant with a green stem and 
leaves”

00005 aligned

“A black background with a few white spots.” “A black background with a bunch of dots on it.”
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“A close up of a fish in a fish tank”

“A blurry picture of what appears to be a plant”

M
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“A blurry picture of a bird on the ground” “A blurry picture of a hand holding something” “A very blurry picture of a cat looking at 
something”

“A blurry picture of a dog sitting in the grass”
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ur

“A close up of a fish in an aquarium”“A small dog looking up at the camera” “A blurry photo of a black and white dog” “A group of animals walking up a hill” “A woman sitting in a green chair with her legs 
crossed”

Figure 8: Captions generated by PALI (Chen et al., 2022) from ground-truth ImageNet 512×512
clean images, and the degraded images. The rightmost column contain images that are from the same
ground truth. Captions in in orange box completely fail to describe the underlying image. Purple
captions wrongly identify the image. Captions generated from degraded measurements often contain
negative words such as blurry.
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Figure 9: ImageNet restoration results. Row 1-2: SR×8, row 3-4: gaussian deblurring, row 5-6:
motion deblurring, row 7-8: freeform inpainting; All with σ = 0.01 noise.
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Figure 10: Close-up comparison on diverse inverse problem tasks. Ground truth, measurement,
DPS (Chung et al., 2023b), LDPS, PSLD (Rout et al., 2023), LDIR (He et al., 2023), and the proposed
method.
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