# Image Super-Resolution with Guarantees via Conformalized Generative Models

#### Eduardo Adame

School of Applied Mathematics Getulio Vargas Foundation eduardo.salles@fgv.br

# **Daniel Csillag**

School of Applied Mathematics Getulio Vargas Foundation daniel.csillag@fgv.br

# **Guilherme Tegoni Goedert**

School of Applied Mathematics Getulio Vargas Foundation guilherme.goedert@fgv.br

#### Abstract

The increasing use of generative ML foundation models for image restoration tasks such as super-resolution calls for robust and interpretable uncertainty quantification methods. We address this need by presenting a novel approach based on conformal prediction techniques to create a 'confidence mask' capable of reliably and intuitively communicating where the generated image can be trusted. Our method is adaptable to any black-box generative model, including those locked behind an opaque API, requires only easily attainable data for calibration, and is highly customizable via the choice of a local image similarity metric. We prove strong theoretical guarantees for our method that span fidelity error control (according to our local image similarity metric), reconstruction quality, and robustness in the face of data leakage. Finally, we empirically evaluate these results and establish our method's solid performance.

# 1 Introduction

Generative ML foundation models led to massive leaps in the capabilities of modern image synthesis and processing, spanning domains such as image generation, inpainting, and super-resolution. Particularly in the case of image super-resolution, recent methods have become considerably adept at leveraging patterns in images to better recover complex textures, geometries, lighting and more.

In testament to these improvements, leading manufacturers are constantly improving and deploying tools based on these frameworks in every new generation of consumer devices. These widespread applications highlight an important question: How trustworthy are the predictions of these models? When a model does some particular inpainting or super-resolution infill, what guarantees do we have that its predictions are truly accurate to reality, and not mere hallucinations? Therefore, it would be most desirable to have a proper uncertainty quantification over the predicted image.

However, most of the previous contributions to this endeavor have suffered from a lack of interpretability. In order to be widely adopted, a new framework should clearly communicate its uncertainty estimates to the public in a way that reflects how they will be used. This demand for interpretability fundamentally guides the properties and theoretical guarantees we seek to establish for our predictions, and thus on the underlying procedure. Of course, all of this is compounded by the usual challenges of having to do trustworthy uncertainty quantification that is model agnostic and can be employed effectively atop any "black-box" foundation model.

In this paper, we address all these issues by proposing a method based on techniques from conformal prediction [Vovk et al., 2005] and conformal risk control [Angelopoulos et al., 2022a], while employing metrics designed for interpretability in concrete applications. All our method requires is a handful of unlabelled high-resolution images that were not present in the training set for the diffusion model, and we achieve strong guarantees on our predictions that are also intuitive to the user and robust to violations of our key assumptions.

Our main contributions are:

- A new method to quantify uncertainty in images inpainted or augmented by diffusion-based models. Our method can work atop any black-box diffusion model, including models that are locked behind an opaque API, and requires only easily-attainable unlabelled data for calibration.
- We identify additional theoretical guarantees enjoyed by our model. In particular, we
  prove that our method also controls the PSNR of the predicted images, and show that it
  is reasonably robust to data leakage, reinforcing the effectiveness and robustness of our
  method.
- A comprehensive study of modelling choices in our approach, revealing particular modifications from the base procedure that can significantly enhance performance. Particularly, we demonstrate that certain applications of low-pass filters can greatly improve our method's effectiveness.

We note that our procedure is also reasonably generalizable to other image restoration tasks, and provide examples in the supplementary material.

**Related work** There have been some attempts on formal uncertainty quantification for image super-resolution with varying approaches. But most existing works, e.g., [Angelopoulos et al., 2022b, Teneggi et al., 2023], have as their goal to produce, rather than a single image, an interval-valued image (i.e., an image where each pixel is represented by an interval rather than a single value), and ensure that these intervals will, with high probability, contain the 'true' pixel values. However, this is fairly non-intuitive for the user and its underlying guarantees are a bit lax. As far as we are aware, the only existing solution that proposes some other way of quantifying uncertainty is [Kutiel et al., 2023], which produces a continuous "confidence" mask over the predicted image, meaning that each pixel in the image is assigned a confidence score in [0, 1]. However, their solution has no probabilistic guarantee, which is fundamental for reliable uncertainty quantification (see the supplementary material). Ours, in contrast, is backed by a plethora of such theorems. Finally, our proposed solution is closely related to the existing applications of conformal prediction to semantic segmentation, e.g., [Csillag et al., 2023, Mossina et al., 2024]. Also worth noting are methods for uncertainty quantification for image super-resolution that do not have any formal guarantee of correctness; relevant works include both general uncertainty quantification techniques for deep learning such as Bayesian neural networks [Goan and Fookes, 2020] and Monte Carlo Dropout [Gal and Ghahramani, 2015], as well as more task-specific approaches such as [Nehme et al., 2023, Adapa et al., 2024].

# 2 Method

#### 2.1 Conformal Mask Calibration

Let us be supplied with any generative image super-resolution model  $\mu:[0,1]^{w\times h\times 3}\to [0,1]^{kw\times kh\times 3}$ , where w and h stand for the low-resolution image dimensions, and k is the upscaling factor. Naturally, this is a stochastic function due to the generative nature of the model, so an intuitive (albeit nonrigorous) way to quantify model indecision would be to aggregate many realizations of the output image (e.g. by computing the variance of generated pixels). However, our methodology is capable of working naturally when supplied with an arbitrary estimate of model indecision that can be described by a function  $\sigma:[0,1]^{w\times h\times 3}\to\mathbb{R}^{kw\times kh}$ . We further discuss useful constructions of  $\sigma$  in Section 2.2.

Having received a lower resolution image X, we must consider how the model prediction  $\widehat{Y} = \mu(X)$  differs from the true high resolution image Y. Our goal is to find a "confidence mask" M(X) that

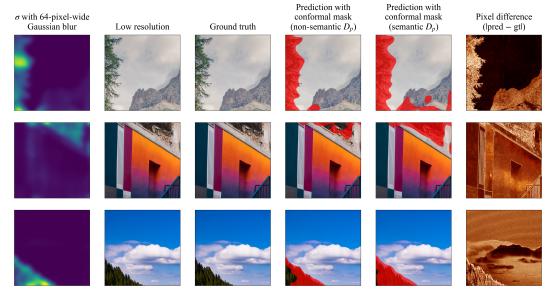


Figure 1: Our method highlights meaningful uncertainty regions in generated images. This figure presents a comparison of multiple high-resolution images with their corresponding conformal masks. Our conformal masks accurately highlight regions where the predictions significantly deviate from the ground truth, capturing differences in color, texture, and lighting.

indicates the region of the image whose content we trust, i.e. the pixels in the predicted image with indecision below a sought threshold. Formally, the mask is a (possibly stochastic) function  $M:[0,1]^{w\times h\times 3}\to\{0,1\}^{kw\times kh}$  that has image  $M(X)=\{p\in\mathbb{Z}\times\mathbb{Z}:[\sigma(X)]_p\leq t\}$ , where  $[\bullet]_p$  is the image value at pixel p (be it binary, grayscale or colored) and t is a desired indecision threshold.

We seek masks that satisfy fidelity guarantees between the true and predicted high-resolution images. This fidelity is measured by a **fidelity error** defined as  $\sup_{p\in M} D_p(Y,\widehat{Y})$ , where  $D_p$  is a function that measures the difference between two images around some pixel location p. We can employ any local measure of the difference as long as  $0 \le D_p(Y,\widehat{Y}) \le 3$  for all p, Y and  $\widehat{Y}$  (e.g.  $D_p(Y,\widehat{Y}) = \|[Y]_p - [\widehat{Y}]_p\|_1$ ). There are many different useful choices for  $D_p$ , with a few explored in Section 2.3.

Equipped with the previous definitions, we are able to produce these fidelity masks  $M_{\alpha}(X)$  for any desired fidelity level  $\alpha \in [0,1]$  with the guarantee that

$$\mathbb{E}\left[\sup_{p\in M_{\alpha}(X)} D_p\left(\mu(X), Y\right)\right] \le \alpha$$

by thresholding the output of  $\sigma$  by some parameter t in the construction of the mask. This parameter can then be calibrated for by using techniques of conformal prediction [Vovk et al., 2005] and conformal risk control [Angelopoulos et al., 2022a] with just access to unlabelled hold-out data, which has not been used to obtain either  $\mu$  or  $\sigma$  (if there is data contamination, weaker guarantees hold; see Proposition 3.2). In particular, given such data  $(X_i,Y_i)_{i=1}^n \subset [0,1]^{w\times h\times 3}\times [0,1]^{kw\times kh\times 3}$ , we produce

$$t_{\alpha} = \sup \left\{ t \in \mathbb{R} \cup \{+\infty\} : \frac{1}{n+1} \sum_{i=1}^{n} \sup_{p : [\sigma(X_{i})]_{p} \le t} D_{p}(Y_{i}, \mu(X_{i})) + \frac{3}{n+1} \le \alpha \right\},$$
(1)

thus obtaining

$$M_{\alpha}(X) := \{ p \in \mathbb{Z} \times \mathbb{Z} : [\sigma(X)]_p \le t_{\alpha} \}. \tag{2}$$

Crucially, all of our guarantees will hold for  $\underline{\mathrm{any}}\ \mu$  and  $\sigma$ , though the produced trust masks  $M_{\alpha}$  will generally be larger (i.e., more confident) for well-chosen ones.

This methodology comes with a strong statistical assurance: a marginal "conformal" guarantee. It holds in expectation on the calibration data jointly with an additional new, 'test' sample:

**Theorem 2.1** (Marginal conformal fidelity guarantee). Let  $\alpha \in \mathbb{R}$  and  $n \in \mathbb{N}$ . Suppose we have n+1 i.i.d. samples  $(X_i,Y_i)_{i=1}^{n+1}$  from an arbitrary probability distribution P and let  $t_\alpha$  and  $M_\alpha$  be as in Equations 1 and 2 (and thus only a function of  $X_i,Y_i$  with  $i=1,\ldots,n$ ). Then it holds that

$$\mathbb{E}_{(X_i, Y_i)_{i=1}^{n+1}} \left[ \sup_{p \in M_{\alpha}(X_{n+1})} D_p \left( \mu(X_{n+1}), Y_{n+1} \right) \right] \le \alpha.$$

Thanks to the discrete combinatorial structure of the set the infimum is taken over in Equation 1, the indecision threshold  $t_{\alpha}$  (defined in Equation 1) can be efficiently computed with the use of dynamic programming in  $O(nd\log d)$  time, where n is the number of images in the calibration set and d is the number of pixels in each image. In contrast, a naive brute force algorithm would take  $\Omega(n^2d^2)$  time. The relevant pseudocodes can be found in the supplementary material.

# 2.2 Producing Score Masks

A key component of our algorithm is the model indecision estimate  $\sigma:[0,1]^{w\times h\times 3}\to\mathbb{R}^{kw\times kh}$ . A good  $\sigma$  should attain higher values for regions of the image where there is more uncertainty, and lower values for regions where we are more certain. Nevertheless, our guarantees hold for any choice of  $\sigma$ .

Considering the generative nature of our base models, one natural way to produce such a  $\sigma$  is to take the pixel-wise empirical variance of M generated images:

$$[\sigma^{\mathrm{var}}(X)]_p = \widehat{\mathrm{Var}}_M[[\mu(X)]_p].$$

However, this may suffer from being too local: for example, if the model correctly knows that an edge must be present in a particular region of an image but slightly misplaces it by one or two pixels, there would be a significant mismatch between the "true" model uncertainty and the indecision estimate by  $\sigma^{\rm var}$ .

To resolve this, we propose to 'smooth out' our predictions by performing a convolution with a low pass kernel K. A naive way of doing so would be to convolve the images whose pixels we are taking the variances of directly:  $\widehat{\mathrm{Var}}_M \big[ [\mu(X) * K]_p \big]$ . However, this has an unintended side effect: by applying the convolution directly to the generated images, we are effectively <u>undoing</u> the super-resolution done by the model! Hence, we propose to instead apply the convolution to the computation of the variance, via its decomposition in terms of the second moment:

$$[\sigma^{\ker\text{-}K}(X)]_p = \widehat{\mathbb{E}}_M\big[[\mu(X)^2*K]_p\big] - \Big(\widehat{\mathbb{E}}_M\big[[\mu(X)*K]_p\big]\Big)^2\,.$$

It should be noted that when K is a 1-box kernel, we recover  $\sigma^{\text{var}}$ . After computing this patch-based variance, we further apply a Gaussian blur to the resulting variance map. This additional smoothing step helps mitigate the risk of border artifacts being overly emphasized, which can otherwise lead to an undesired overestimation of uncertainty along edges.

Finally, we remark that ideally this model indecision would be estimated jointly with the upscaled image  $\mu(X)$ . This is, however, fairly nontrivial and best left for future work.

#### 2.3 Choices of $D_p$

A crucial point of our procedure is the definition of the precise fidelity error we are controlling. This is given by the choice of  $D_p$ , which is a function indexed by a pixel position p that receives the real and predicted images Y and  $\widehat{Y}$  and returns a notion of how similar the two are around p. Our procedure is valid for  $\underline{\text{any}}$  choice of  $D_p$  that is bounded within [0,3], though it is best to chose one for which  $D_p(Y,\widehat{Y}) \to 0$  as  $\widehat{Y} \to Y$ . Here we highlight a couple of the most natural and useful:

**Pointwise metric**  $D_p(Y, \widehat{Y}) = \|[Y]_p - [\widehat{Y}]_p\|_1$ , where  $[Y]_p$  and  $[\widehat{Y}]_p$  correspond to the pixel color of Y and  $\widehat{Y}$  at pixel position p (and thus the 1-norm is necessary to condense their difference into a single number).

<sup>&</sup>lt;sup>1</sup>Technically, Theorem 2.1 holds under the weaker assumption of exchangeability, with the same proof. We stick to i.i.d. for simplicity.

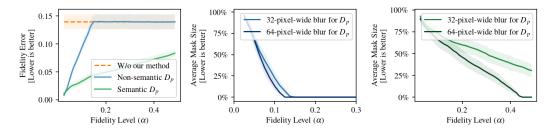


Figure 2: Our method provably controls the fidelity error with accuracy. Left: The figure shows the non-semantic fidelity error obtained by our method for varying fidelity levels  $\alpha$ , for calibration with both the semantic  $D_p$  (orange) and non-semantic  $D_p$  (blue). As is shown in our theoretical guarantee, the error is tightly controlled by our method, being at most  $\alpha$ . Center and Right: The plot displays the size of our confidence masks (i.e., how much of the image we do <u>not</u> trust) for varying fidelity levels  $\alpha$ , for calibration done with a semantic  $D_p$  (Center) and a non-semantic  $D_p$  (Right). As  $\alpha$  increases our masks get smaller, eventually reaching zero, i.e., trusting the whole image.

**Neighborhood-averaged metric**  $D_p(Y, \widehat{Y}) = \|[Y * K]_p - [\widehat{Y} * K]_p\|_1$ , where K is some convolution kernel corresponding to a low pass filter. This makes it so that single wrong pixels in the midst of many correct pixels do not influence the loss function too much, and generally leads to larger confidence masks.

In both cases, we consider the images in Lab color space. This ensures that all the color comparisons being done are perceptually uniform, which would not be the case in e.g., sRGB space.

Though perfectly valid and useful, it is well known that such pixel-wise comparisons struggle to capture semantic and perceptual properties of the underlying images. Hence, both of the options presented above struggle to truly capture semantic differences, where a user would clearly note a difference between the predicted and ground truth images. To this end, we propose a third option based on additional labelled data:

Semantic metric We can suppose a stochastic function  $S:[0,1]^{kw\times kh\times 3}\times [0,1]^{kw\times kh\times 3}\to \{0,1\}^{kw\times kh\times 3}$  that indicates a mask produced by a human-being denoting the differences between the two given high-resolution images (a value of 1 on the image represents a differing point). We can then consider  $D_p(Y,\widehat{Y})=[S(Y,\widehat{Y})]_p$ . Note that for the calibration procedure we only need to compute the  $D_p$  on the calibration images, and thus the only samples of the human annotations  $S(Y,\widehat{Y})$  that we need are on the calibration data.

# 3 Additional theorical results

In this section we present additional theoretical properties enjoyed by our method, which highlight its flexibility and robustness.

# 3.1 Our method provably controls PSNR

So far we have only proven results for the 'fidelity error' defined in Subsection 2.1. However, our results can also be directly mapped to more familiar metrics for image quality quantification. In particular, we can prove strong guarantees on the PSNR of our predictions, a common metric of image fidelity and quality in computer graphics:

**Proposition 3.1.** Let  $\alpha \in \mathbb{R}$  and  $n \in \mathbb{N}$ . Suppose we have n+1 i.i.d. samples  $(X_i, Y_i)_{i=1}^{n+1}$  from an arbitrary probability distribution P and let  $t_{\alpha}$  and  $M_{\alpha}$  be as in Equations 1 and 2 (and thus only a function of  $X_i, Y_i$  with  $i = 1, \ldots, n$ ). Then it holds that

$$\mathbb{E}_{(X_i, Y_i)_{i=1}^{n+1}} \left[ \text{PSNR} \left( \mu(X_{n+1}), Y_{n+1} | M_{\alpha}(X_{n+1}) \right) \right] \ge -20 \log_{10} \alpha.$$

It is rather remarkable that, despite our procedure being originally designed in order to establish guarantees for uncertainty quantification, it also maps over to guarantees on a standard image quality

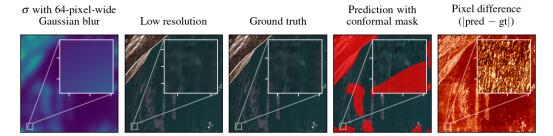


Figure 3: Unreliable predictions are accurately detected. This figure shows a close-up example where  $D_p$  is non-semantic (as shown in Figure 1), highlighting a failure of the base model to reconstruct a blurred area. Our method correctly identifies this failure and assigns low confidence to the affected region, where the predicted image deviates from the ground truth.

metric. The relative functional simplicity of the PSNR may be a contributing factor to this result, but we expect that similar finds will soon follow for other metrics (though the proof would be more involved; the full proof of Proposition 3.1 can be found in the supplementary material).

# 3.2 Under data leakage

One crucial assumption of Theorem 2.1 is that we assume that the calibration data is independent of the base diffusion model – i.e., that the calibration data is independent from (or at least exchangeable with) the data used to train the diffusion model.

Though arguably achievable through the collection of new data for calibration purposes, this is considerably harder to ensure when using foundation models which have been trained on massive datasets that attempt to span all data on the internet. Hence, it becomes essential to explore what happens when there is data leakage from the training data to the calibration data - i.e., some amount of data in the calibration samples is actually already present in the training data.

Proposition 3.2 provides worst-case bounds on the miscoverage error when there is data leakage. In particular, we consider that out of the n calibration samples,  $n_{\rm leaked} < n$  are actually drawn from the training data (or some other arbitrarily different data distribution), while the remaining  $n_{\rm new} = n - n_{\rm leaked}$  are truly independent of the training samples.

**Proposition 3.2.** Let  $\alpha \in \mathbb{R}$  and  $n \in \mathbb{N}$ , with  $n = n_{\text{new}} + n_{\text{leaked}}$ . Suppose we fit our procedure as per Equations 1 and 2 with n data points. Out of these n data points, suppose that the first  $n_{\text{new}}$  are sampled from some arbitrary probability distribution P, and the latter samples (indexed by  $n_{\text{new}} + 1, \ldots, n$ ) be sampled from some arbitrarily different probability distribution Q. Then, as we take a new sample  $X_{n+1}, Y_{n+1}$  from distribution P, it holds that

$$\mathbb{E}_{(X_i,Y_i)_{i=1}^{n+1}} \left[ \sup_{p \in M_{\alpha}(X_{n+1})} D_p\left(\mu(X_{n+1}), Y_{n+1}\right) \right] \le \alpha \cdot \frac{n_{\text{new}} + n_{\text{leaked}} + 1}{n_{\text{new}} + 1}.$$

Note that Q could even be the empirical distribution of the data used to train the base generative model. This result shows that our conformal prediction scheme (and split conformal prediction in general) is somewhat robust to data leakage, as long as it is not too severe in relation to the amount of calibration samples.

# 4 Experiments

We dedicate this section to the empirical evaluation of our method, demonstrating its effectiveness.

**Data** All experiments were conducted using the Liu4K dataset [Liu et al., 2020], which contains 1,600 high-resolution (4K) images in the training set and an additional 400 4K images in the validation set. The dataset features a diverse collection of real-world photographs, including scenic landscapes, architectural structures, food, and natural environments. We use the training set for calibration

| Fidelity Level                                                                                                               | Semantic $D_p$                                                                                   |                                                                                                                  |                                                                                                               | Non-semantic $D_p$                                                                   |                                                                                                                  |                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Traciny Zever                                                                                                                | Avg.<br>PSNR                                                                                     | Avg. Fidelity<br>Error                                                                                           | Avg. Conformal<br>Mask Size                                                                                   | Avg.<br>PSNR                                                                         | Avg. Fidelity<br>Error                                                                                           | Avg. Conformal<br>Mask Size                                                                                   |
| $\begin{array}{l} \alpha = 0.075 \\ \alpha = 0.100 \\ \alpha = 0.200 \\ \alpha = 0.300 \\ \text{w/o our method} \end{array}$ | $32.75 \pm 1.55$<br>$32.65 \pm 1.48$<br>$31.63 \pm 1.32$<br>$30.86 \pm 1.29$<br>$26.83 \pm 1.06$ | $\begin{array}{c} 0.03 \pm 0.01 \\ 0.03 \pm 0.01 \\ 0.05 \pm 0.01 \\ 0.06 \pm 0.01 \\ 0.14 \pm 0.01 \end{array}$ | $\begin{array}{c} 0.77 \pm 0.07 \\ 0.73 \pm 0.07 \\ 0.60 \pm 0.08 \\ 0.50 \pm 0.08 \\ \text{N/A} \end{array}$ | $30.23 \pm 1.12$ $28.64 \pm 0.93$ $26.82 \pm 1.03$ $26.82 \pm 1.09$ $26.82 \pm 1.08$ | $\begin{array}{c} 0.07 \pm 0.01 \\ 0.09 \pm 0.01 \\ 0.14 \pm 0.01 \\ 0.14 \pm 0.01 \\ 0.14 \pm 0.01 \end{array}$ | $\begin{array}{c} 0.43 \pm 0.09 \\ 0.23 \pm 0.06 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ \text{N/A} \end{array}$ |

Table 1: Quantitative evaluation of our method under semantic and non-semantic settings. We evaluate the average PSNR, fidelity error, and average conformal mask size across different fidelity levels  $(\alpha)$  for both semantic and non-semantic  $D_p$ . For reference, we also include a baseline without our method (i.e., trusting the whole image). Overall our method tightly controls the fidelity error and PSNR while producing precise and informative masks.

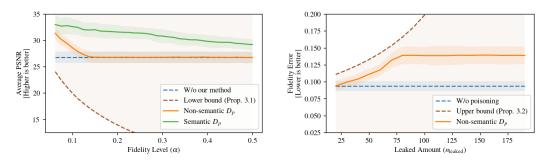


Figure 4: **Our controls the PSNR and is robust and under data leakage.** *Left:* This experiment confirms that the PSNR is theoretically bounded, as established in Proposition 3.1. Additionally, the PSNR within the conformal masks—in both semantic and non-semantic settings—remains consistently higher than the baseline, indicating improved prediction quality in trusted regions. *Right:* This plot illustrates that the fidelity error can bounded under data leakage, as per Proposition 3.2. In both plots, the values plateau once the method reaches the point of trusting the whole images.

procedures, and the test set for evaluation and metrics. We always work in Lab color space for its perceptual uniformity.

**Base Model** We perform our evaluations atop SinSR [Wang et al., 2023], a state-of-the-art generative super-resolution method based on diffusion models. It performs super-resolution by conditioning the score function on a low-resolution image and applying diffusion in the latent space.

Compute Experiments were run on an Intel Xeon E5-2696 v2 processor (2.5GHz base, 3.6GHz boost, 18 threads available) with 40GB of RAM and an NVIDIA RTX 6000 Ada Generation 48GB GPU. Notably, the primary computational bottleneck is the inference process of the base diffusion models, while the conformal calibration step is highly efficient and runs fairly quickly on a CPU. For reproducibility, the source code is available in https://github.com/adamesalles/experiments-conformal-superres, as well as in the supplementary material.

**Baselines** We compare our method to the following prior work:

- **No uncertainty quantification:** this correponds to trusting the whole generated image. In terms of confidence masks, it is equivalent to producing an empty mistrust mask.
- [Angelopoulos et al., 2022b]: the output of this method is an image with interval-valued pixels, with a guarantee that, with high probability, the expected value of the percent of pixel intervals containing their true values will be at least  $(1 \alpha)$ .
- [Kutiel et al., 2023]: the output of this method is a continuous score for each pixel (which they call a 'mask,' though their use of this term differs from ours), which is higher for regions of the image we can trust more. The idea is that when reweighting the pixels by

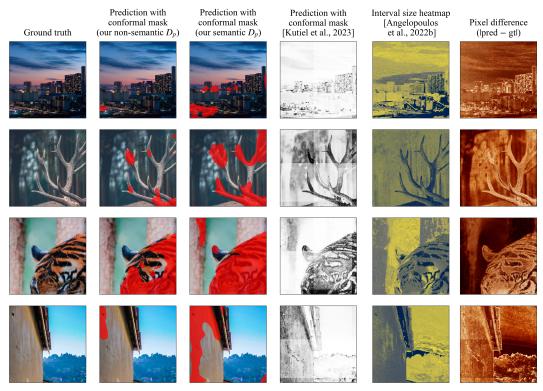


Figure 5: Qualitative comparison to prior work. This figure compares our method – both semantic and non-semantic  $D_p$ , under the same settings as Figure 1 – against the methods of [Angelopoulos et al., 2022b] and [Kutiel et al., 2023]. While our conformal masks highlight precise regions of uncertainty in an interpretable way, the method from [Kutiel et al., 2023] produces continuous masks that closely mirror the original image rather than doing proper uncertainty estimation. Similarly, the heatmaps from [Angelopoulos et al., 2022b] do not visually convey uncertainty, making their interpretation more challenging.

this predicted score, the L1 loss of the generated image against the predicted image is, with high probability, at most some  $\alpha$  in expectation. However, they do not prove such a validity property, and indeed it generally need not hold (see the supplementary material).

The prior work of [Angelopoulos et al., 2022b] and [Kutiel et al., 2023] produce pixel-wise intervals and scores, respectively, and are thus not directly comparable to our binary mask-based uncertainty quantification methodology. For this reason, on these two methods we are limited to a qualitative evaluation, which we do in Figure 5. That aside, we explore our method and show that it is a strict improvement over doing no uncertainty quantification.

In Figure 2, we analyze how well our procedure controls the fidelity error in practice, and how big the confidence masks get. We note that our theorems translate to excellent empirical performance, with the actual fidelity error closely following the specified fidelity level  $\alpha$ . Indeed, the two are essentially equal up until  $\alpha$  becomes so large that we trust the whole image, at which point the fidelity error stays fixed. As for the mask sizes, they steadily decrease as  $\alpha$  grows, remaining informative for all but the most extreme levels of  $\alpha$ . Table 1 reveals similar patterns.

As observed in Figure 3, our method successfully generates accurate confidence masks even when the base model fails in the super-resolution task. This applies not just to perceptual attributes such as color and brightness but also to cases where the original image is blurred; in such scenarios, the base model often misinterprets the blur as a loss of a higher frequency, and hallucinates. Fortunately, our method effectively captures these nuances, preserving essential details and producing faithful, trustworthy results.

In Section 3 we've theoretically shown that our method provably controls PSNR and has a certain robustness to data leakage; we now seek to empirically verify this. Figure 4(left) shows the PSNR

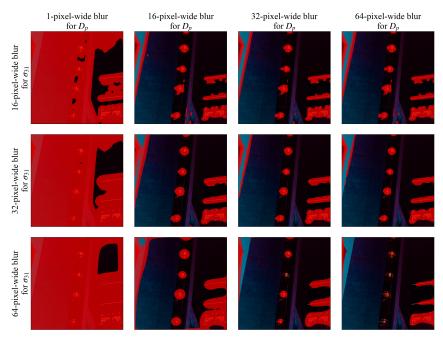


Figure 6: **Blurring improves our conformal masks.** Red regions correspond to the conformal confidence masks, denoting where we mistrust our predictions. Note how, as the radius of the Gaussian blur for  $D_p$  increases, so does the coverage of the trusted regions; and, as the radius of the Gaussian blur for  $\sigma$  increases, not only does the trusted cover also increases, but its regions become more contiguous and visually appealing.

obtained by our method (i.e., the PSNR of the reconstruction constrained to the region of the image we trust) over varying fidelity levels, along with the PSNR obtained by the base reconstruction and our bound from Proposition 3.1. We see that our bound is somewhat lax – especially for higher levels of  $\alpha$  – but it is valid. Similarly, Figure 4(right) seeks to empirically measure our method's robustness to data leakage. For each level of data leakage ( $n_{\rm leaked}$ ) we run our method's calibration with  $n_{\rm leaked}$  of our samples being "perfect predictions" where  $D_p \equiv 0$ , i.e., samples that we are perfectly overfit on. Again we see the validity of our bound, and note that it is more precise for smaller amounts of leakage. After a certain point the fidelity error stabilizes at the highest possible fidelity risk (i.e., the fidelity risk when we trust the whole image).

We also investigate the size of the predicted confidence masks, a crucial aspect in assessing the reliability of our method. Notably, the choice of  $D_p$  plays a fundamental role in determining how much confidence we can assign to our predictions. If  $D_p$  is too local (e.g., defined simply as  $D_p(Y,\widehat{Y}) = \|[Y]_p - [\widehat{Y}]_p\|_1$ ), the model lacks sufficient spatial context to make robust assessments, resulting in overly conservative confidence estimates and smaller masks.

By incorporating additional contextual information into  $D_p$ , such as smoothing the pixel-wise differences with a low-pass filter, we observe a substantial improvement in mask size and quality. This approach allows for larger, more informative confidence masks, as it accounts for a broader spatial region rather than relying solely on isolated pixel differences. As a result, the predictions not only become more faithful to the underlying image structure but also exhibit greater visual coherence. Empirically, this effect is evident in Figure 6, where the use of a smoothed  $D_p$  leads to masks that better capture the regions of uncertainty while preserving the overall perceptual integrity of the image. These findings reinforce the importance of designing  $D_p$  to effectively balance local accuracy with global consistency, ultimately enhancing both interpretability and reliability in uncertainty estimation.

Finally, we compare against all of our baselines in Figure 5. Our outputs are much more immediately interpretable and useful than those of [Angelopoulos et al., 2022b], whose interpretation is tricky due to the combination of a lower+upper image. Similarly, note that though the pixel scores of [Kutiel et al., 2023] are comparatively more interpretable, they are less informative as they follow the original image too closely, whereas ours selects meaningful regions of the image.

# 5 Conclusion

In this work, we have presented a new method for performing uncertainty quantification for image super-resolution based on generative foundation models endowed with statistical guarantees. Our method requires only easily attainable unlabeled data and is adaptable over any base generative model, including those locked behind an opaque API. We also prove that our proposed solution satisfies properties beyond that of conformal risk control, further strengthening it. We expect our method to be broadly useful in practice, including in scenarios beyond image super-resolution.

Nevertheless, our method has a few key limitations: for one, we assume that our calibration data together with a sample from the test set are exchangeable; effectively, this corresponds to giving guarantees for in-distribution behaviour. Though conformal prediction methods are known to be relatively robust to some changes in distribution, significant distribution shift may void our guarantees in principle. Moreover, it is worth noting that our algorithm requires the generation of multiple high-resolution images, which can be a significant increase in computation time. Overall, we believe these to be exciting directions for future work.

# **Impact Statement**

This paper presents work whose goal is to advance the field of trustworthy machine learning. However, it is important to note that advances in image super-resolution technology can have significant societal impacts. For example, as much as our work enables the trustworthy use of super-resolution methods in crucial fields such as medical imaging, it could also be leveraged for harmful tasks such as reversing image censoring (e.g. censoring via blurred pixels). But we highlight that our approach's capability is generally constrained by the capabilities of the base super-resolution model, which we believe limits the negative impact of our work.

# Acknowledgements

This project is part of a global initiative funded by the International Development Research Centre (IDRC) on AI for Global Health, in collaboration with the UK International Development. GTG acknowledges partial funding from FAPERJ.

# References

Maniraj Sai Adapa, Marco Zullich, and Matias Valdenegro-Toro. Uncertainty estimation for super-resolution using esrgan. <u>ArXiv</u>, abs/2412.15439, 2024. URL https://api.semanticscholar.org/CorpusID:274965032.

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In <u>The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)</u> Workshops, July 2017.

Anastasios Nikolas Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal risk control. <a href="https://api.semanticscholar.org/CorpusID:251320513"><u>ArXiv</u>, abs/2208.02814, 2022a. URL https://api.semanticscholar.org/CorpusID:251320513.</a>

Anastasios Nikolas Angelopoulos, Amit Kohli, Stephen Bates, Michael I. Jordan, Jitendra Malik, Thayer Alshaabi, Srigokul Upadhyayula, and Yaniv Romano. Image-to-image regression with distribution-free uncertainty quantification and applications in imaging. <u>ArXiv</u>, abs/2202.05265, 2022b. URL https://api.semanticscholar.org/CorpusID:246706224.

Daniel Csillag, Lucas Monteiro Paes, Thiago Rodrigo Ramos, João Vitor Romano, Rodrigo Loro Schuller, Roberto B. Seixas, Roberto I Oliveira, and Paulo Orenstein. Amnioml: Amniotic fluid segmentation and volume prediction with uncertainty quantification. In <u>AAAI Conference on Artificial Intelligence</u>, 2023. URL https://api.semanticscholar.org/CorpusID: 259282132.

- Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In <a href="International Conference on Machine Learning">International Conference on Machine Learning</a>, 2015. URL <a href="https://api.semanticscholar.org/CorpusID:160705">https://api.semanticscholar.org/CorpusID:160705</a>.
- Ethan Goan and Clinton Fookes. Bayesian neural networks: An introduction and survey. <u>ArXiv</u>, abs/2006.12024, 2020. URL https://api.semanticscholar.org/CorpusID:219873953.
- Xiaoyang Kang, Tao Yang, Wenqi Ouyang, Peiran Ren, Lingzhi Li, and Xuansong Xie. Ddcolor: Towards photo-realistic image colorization via dual decoders. In <u>Proceedings of the IEEE/CVF</u> International Conference on Computer Vision, pages 328–338, 2023.
- Gilad Kutiel, Regev Cohen, Michael Elad, Daniel Freedman, and Ehud Rivlin. Conformal prediction masks: Visualizing uncertainty in medical imaging. In <u>TML4H</u>, 2023. URL https://api.semanticscholar.org/CorpusID:259311276.
- J. Liu, D. Liu, W. Yang, S. Xia, X. Zhang, and Y. Dai. A comprehensive benchmark for single image compression artifact reduction. IEEE Transactions on Image Processing, 29:7845–7860, 2020.
- Luca Mossina, Joseba Dalmau, and L'eo And'eol. Conformal semantic image segmentation: Post-hoc quantification of predictive uncertainty. <u>ArXiv</u>, abs/2405.05145, 2024. URL https://api.semanticscholar.org/CorpusID:269626733.
- Elias Nehme, Omer Yair, and Tomer Michaeli. Uncertainty quantification via neural posterior principal components. <u>ArXiv</u>, abs/2309.15533, 2023. URL https://api.semanticscholar.org/CorpusID:263152079.
- Jacopo Teneggi, Matthew Tivnan, J. Webster Stayman, and Jeremias Sulam. How to trust your diffusion model: A convex optimization approach to conformal risk control. In <a href="International Conference">International Conference on Machine Learning</a>, 2023. URL https://api.semanticscholar.org/Corpus ID:256662678.
- Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang, Bee Lim, et al. Ntire 2017 challenge on single image super-resolution: Methods and results. In <u>The IEEE Conference</u> on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.
- Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world. 2005. URL https://api.semanticscholar.org/CorpusID:118783209.
- Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang, Lanqing Guo, Lap-Pui Chau, Ziwei Liu, Yu Qiao, Alex Chichung Kot, and Bihan Wen. Sinsr: Diffusion-based image super-resolution in a single step. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 25796–25805, 2023. URL https://api.semanticscholar.org/CorpusID:265456 113.

#### A Proofs

*Proof of Theorem 2.1.* This proof is done via the standard conformal risk control argument [Angelopoulos et al., 2022a].

Consider the "lifted" threshold

$$t_{\alpha}^{(n+1)} = \sup \left\{ t \in \mathbb{R} \cup \{+\infty\} : \frac{1}{n+1} \sum_{i=1}^{n+1} \sup_{p; [\sigma(X_i)]_p \le t} D_p(\mu(X_i), Y_i) \le \alpha \right\},\,$$

which, as opposed to their "unlifted" counterpart  $t_{\alpha}$ , leverage the (n+1)-th sample as well and does not include the 3/(n+1) term.

Note that it is certainly the case that  $t_{\alpha}^{(n+1)} \ge t_{\alpha}$ . Moreover, note that the fidelity error is monotone with t, and so it suffices to show that the fidelity function with  $t^{(n+1)}$  is upper bounded by  $\alpha$ .

Let  $Z_*$  be the multiset of the samples  $(X_i, Y_i)_{i=1}^n$  – i.e., a random variable representing the samples, but with their order discarded. Hence, upon conditioning on  $Z_*$ , all the randomness that remains is that of the order of the samples. It then follows:

$$\mathbb{E}\left[\sup_{p;[\sigma(X_{n+1})]_p \leq t_{\alpha}^{(n+1)}} D_p(\mu(X_{n+1}), Y_{n+1}) \middle| Z_*\right] = \frac{1}{n+1} \sum_{i=1}^{n+1} \sup_{p;[\sigma(X_{n+1})]_p \leq t_{\alpha}^{(n+1)}} D_p(\mu(X_i), Y_i),$$

and by the definition of  $t_{\alpha}^{(n+1)}$ , this is upper bounded by  $\alpha$ . Thus

$$\mathbb{E}\left[\sup_{p;[\sigma(X_{n+1})]_p \le t_{\alpha}^{(n+1)}} D_p(\mu(X_{n+1}), Y_{n+1})\right] = \mathbb{E}_{Z_*}\left[\mathbb{E}\left[\sup_{p;[\sigma(X_{n+1})]_p \le t_{\alpha}^{(n+1)}} D_p(\mu(X_{n+1}), Y_{n+1})|Z_*\right]\right]$$

$$\le \mathbb{E}_{Z_*}[\alpha] = \alpha,$$

which concludes the proof.

Proof of Proposition 3.1. The PSNR we are bounding is given by

$$\begin{split} \mathbb{E}[\text{PSNR}\left(\mu(X_{n+1}), Y_{n+1} | M_{\alpha}(X_{n+1})\right)] &:= \mathbb{E}\left[10 \log_{10} \frac{(\max_{p \in M_{\alpha}(X_{n+1})} [Y_{n+1}]_p)^2}{|M_{\alpha}(X_{n+1})|^{-1} \sum_{p \in M_{\alpha}(X_{n+1})} \left([\mu(X_{n+1})]_p - Y_p\right)^2}\right] \\ &= 20 \mathbb{E}\left[\log_{10} \frac{\max_{p \in M_{\alpha}(X_{n+1})} [Y_{n+1}]_p}{\sqrt{|M_{\alpha}(X_{n+1})|^{-1} \sum_{p \in M_{\alpha}(X_{n+1})} \left([\mu(X_{n+1})]_p - Y_p\right)^2}}\right]. \end{split}$$

Now, by Jensen's Inequality and standard properties of logarithms,

$$\begin{split} &20\mathbb{E}\left[\log_{10}\frac{\max_{p\in M_{\alpha}(X_{n+1})}[Y_{n+1}]_{p}}{\sqrt{|M_{\alpha}(X_{n+1})|^{-1}\sum_{p\in M_{\alpha}(X_{n+1})}\left([\mu(X_{n+1})]_{p}-Y_{p}\right)^{2}}}\right]\\ &=20\left(\mathbb{E}\left[\log_{10}\max_{p\in M_{\alpha}(X_{n+1})}[Y_{n+1}]_{p}-\log_{10}\sqrt{|M_{\alpha}(X_{n+1})|^{-1}\sum_{p\in M_{\alpha}(X_{n+1})}\left([\mu(X_{n+1})]_{p}-Y_{p}\right)^{2}}\right]\right)\\ &=20\left(\mathbb{E}\left[\log_{10}\max_{p\in M_{\alpha}(X_{n+1})}[Y_{n+1}]_{p}\right]-\mathbb{E}\left[\log_{10}\sqrt{|M_{\alpha}(X_{n+1})|^{-1}\sum_{p\in M_{\alpha}(X_{n+1})}\left([\mu(X_{n+1})]_{p}-Y_{p}\right)^{2}}\right]\right)\\ &\geq20\left(\mathbb{E}\left[\log_{10}\max_{p\in M_{\alpha}(X_{n+1})}[Y_{n+1}]_{p}\right]-\log_{10}\mathbb{E}\left[\sqrt{|M_{\alpha}(X_{n+1})|^{-1}\sum_{p\in M_{\alpha}(X_{n+1})}\left([\mu(X_{n+1})]_{p}-Y_{p}\right)^{2}}\right]\right); \end{split}$$

And, because the RMSE is upper bounded by the maximum error, we get that

$$20 \left( \mathbb{E} \left[ \log_{10} \max_{p \in M_{\alpha}(X_{n+1})} [Y_{n+1}]_p \right] - \log_{10} \mathbb{E} \left[ \sqrt{|M_{\alpha}(X_{n+1})|^{-1}} \sum_{p \in M_{\alpha}(X_{n+1})} ([\mu(X_{n+1})]_p - Y_p)^2 \right] \right)$$

$$\geq 20 \left( \mathbb{E} \left[ \log_{10} \max_{p \in M_{\alpha}(X_{n+1})} [Y_{n+1}]_p \right] - \log_{10} \mathbb{E} \left[ \sup_{p \in M_{\alpha}(X_{n+1})} ([\mu(X_{n+1})]_p - Y_p) \right] \right);$$

And, by Theorem 2.1,

$$\begin{split} &20\left(\mathbb{E}\left[\log_{10}\max_{p\in M_{\alpha}(X_{n+1})}[Y_{n+1}]_p\right]-\log_{10}\mathbb{E}\left[\sup_{p\in M_{\alpha}(X_{n+1})}([\mu(X_{n+1})]_p-Y_p)\right]\right)\\ &\geq 20\left(\mathbb{E}\left[\log_{10}\max_{p\in M_{\alpha}(X_{n+1})}[Y_{n+1}]_p\right]-\log_{10}\alpha\right)\geq -20\log_{10}\alpha, \end{split}$$

where the last step holds as long as all pixel values are in [0, 1].

*Proof of 3.2.* We effectively want to bound the supremum of the expected fidelity error as the leaked data is allowed to alter freely. For convenience, let  $\sup_{leaked}$  denote the supremum over all possible values of the leaked samples  $(X_i, Y_i)_{i=n_{\text{new}}+1}^n$  (and  $\inf_{leaked}$  the corresponding infimum).

Note that the error function is decreasing on the selected parameter t and continuous. Hence:

$$\sup_{\text{leaked}} \mathbb{E} \left[ \sup_{p \in M_{\alpha}(X)} D_p(Y, \widehat{Y}) \right] \leq \mathbb{E} \left[ \sup_{\text{leaked}} \sup_{p \in M_{\alpha}(X)} D_p(Y, \widehat{Y}) \right] = \mathbb{E} \left[ \sup_{p; [\sigma(X)]_p \leq \sup_{\text{leaked}} t_{\alpha}} D_p(Y, \widehat{Y}) \right],$$

and in turn

$$\begin{split} \sup_{\text{leaked}} t_{\alpha} &= \sup_{\text{leaked}} \sup \left\{ t \in \mathbb{R} \cup \{+\infty\} : \frac{1}{n+1} \sum_{i=1}^{n} \sup_{p : [\sigma(X_{i})]_{p} \leq t} D_{p}(Y_{i}, \mu(X_{i})) + \frac{3}{n+1} \leq \alpha \right\} \\ &\leq \sup \left\{ t \in \mathbb{R} \cup \{+\infty\} : \inf_{\text{leaked}} \frac{1}{n+1} \sum_{i=1}^{n} \sup_{p : [\sigma(X_{i})]_{p} \leq t} D_{p}(Y_{i}, \mu(X_{i})) + \frac{3}{n+1} \leq \alpha \right\} \\ &= \sup \left\{ t \in \mathbb{R} \cup \{+\infty\} : \frac{1}{n+1} \sum_{i=1}^{n_{\text{new}}} \sup_{p : [\sigma(X_{i})]_{p} \leq t} D_{p}(Y_{i}, \mu(X_{i})) \right. \\ &+ \inf_{\text{leaked}} \frac{1}{n+1} \sum_{i=n_{\text{new}}+1}^{n} \sup_{p : [\sigma(X_{i})]_{p} \leq t} D_{p}(Y_{i}, \mu(X_{i})) + \frac{3}{n+1} \leq \alpha \right\} \\ &= \sup \left\{ t \in \mathbb{R} \cup \{+\infty\} : \frac{1}{n+1} \sum_{i=1}^{n_{\text{new}}} \sup_{p : [\sigma(X_{i})]_{p} \leq t} D_{p}(Y_{i}, \mu(X_{i})) + \frac{3}{n+1} \leq \alpha \right\} \\ &= \sup \left\{ t \in \mathbb{R} \cup \{+\infty\} : \frac{1}{n_{\text{new}}+1} \sum_{i=1}^{n_{\text{new}}} \sup_{p : [\sigma(X_{i})]_{p} \leq t} D_{p}(Y_{i}, \mu(X_{i})) + \frac{3}{n_{\text{new}}+1} \leq \alpha \cdot \frac{n+1}{n_{\text{new}}+1} \right\}. \end{split}$$

Note that this corresponds to doing our calibration procedure only on the new data but with altered fidelity level  $\alpha \cdot (n+1)/(n_{\text{new}}+1) = \alpha \cdot (n_{\text{new}}+n_{\text{leaked}}+1)/(n_{\text{new}}+1)$ , and so, by the same arguments as in Theorem 2.1,

$$\mathbb{E}_{(X_i, Y_i)_{i=1}^{n+1}} \left[ \sup_{p \in M_{\alpha}(X_{n+1})} D_p\left(\mu(X_{n+1}), Y_{n+1}\right) \right] \le \alpha \cdot \frac{n_{\text{new}} + n_{\text{leaked}} + 1}{n_{\text{new}} + 1}.$$

# B On [Kutiel et al., 2023]

The method of [Kutiel et al., 2023] produces, given a low-resolution image X in  $[0,1]^{w\times h\times 3}$  and an initial estimate of uncertainty  $\sigma$  in  $\mathbb{R}^{kw\times kh}_{\geq 0}$ , a predicted high-resolution image  $\hat{Y}$  in  $[0,1]^{kw\times kh\times 3}$  along with a continuous 'confidence mask' M in  $[0,1]^{kw\times kh}$ , where higher values denote higher confidence at that region of the image. Ideally, this continuous mask would be such that it would satisfy an RCPS-like guarantee

$$\mathbb{P}\left[\mathbb{E}\left[\frac{1}{kw\,kh}\sum_{i,j}[M]_{i,j}\cdot\left|[\hat{Y}]_{i,j}-[Y]_{i,j}\right|\right] \leq \alpha\right] \geq 1-\delta,\tag{3}$$

for some chosen  $\alpha$  and  $\delta$ . This goal is enunciated in Definition 2 in [Kutiel et al., 2023].<sup>2</sup> Their calibration procedure is then presented in Section 4.2 of their paper; it does the following:

1. For each  $i = 1, \ldots, n$ , compute

$$\begin{split} M^{(\lambda)} &:= \min \left\{ \frac{\lambda}{1 - [\sigma]_{i,j} + \epsilon}, 1 \right\} \\ \lambda_i &:= \max \left\{ \lambda : \frac{1}{kw \, kh} \sum_{i,j} [M^{(\lambda)}]_{i,j} \cdot \left| [\hat{Y}]_{i,j} - [Y]_{i,j} \right| \leq \alpha \right\} \end{split}$$

- 2. Compute  $\lambda := \text{Quantile}_{1-\delta}(\lambda_1, \dots, \lambda_n)$ .
- 3. The resulting "calibrated" masks are produced by  $M^{(\lambda)}$ .

However, they do not prove that this procedure satisfies Equation 3, other than a passing mention at the end of their Section 4.2. Indeed, the guarantee actually does not hold: intuitively this should be fairly immediate:

1. They write<sup>3</sup> "Finally,  $\lambda$  is taken to be the  $1-\delta$  quantile of  $\{\lambda_k\}_{k=1}^n$ , i.e. the maximal value for which at least  $\delta$  fraction of the calibration set satisfies condition (5). Thus, assuming the calibration and test sets are i.i.d samples from the same distribution, the calibrated mask is guaranteed to satisfy Definition 2." However, their condition (5) states that

$$\mathbb{E}\left[\frac{1}{kw\,kh}\sum_{i,j}[M]_{i,j}\cdot\left|[\hat{Y}]_{i,j}-[Y]_{i,j}\right|\right]\leq\alpha,$$

with an expectation – this expectation is fundamentally absent in the calibration procedure.

2. Additionally, the quantile taken is a simple empirical quantile. But the guarantee we want is that the populational risk is bounded. To satisfy this, one would need to slightly tweak the quantile; this is analogous to how in RCPSs you would apply a concentration inequality (e.g. Hoeffding).

Indeed, we provide here a counterexample, in which their procedure does <u>not</u> satisfy their stated guarantee.

<sup>&</sup>lt;sup>2</sup>The one difference is the presence of the normalization  $\frac{1}{kw\,kh}$ , which is absent in their paper (they refer to a simple 1-norm). However, we found it to be necessary in order for their method to function, and conjecture that it was accidentally omitted in their work.

<sup>&</sup>lt;sup>3</sup>Modulo ajustments to notation

Example B.1. Suppose that  $\sigma$  is a deterministic 0 mask for all inputs. Then, to show that Equation 3 does not hold, we just need that

$$\begin{split} \mathbb{P}\left[\mathbb{E}\left[\frac{1}{kw\,kh}\sum_{i,j}[M]_{i,j}\cdot\big|[\hat{Y}]_{i,j}-[Y]_{i,j}\big|\right] &\leq \alpha\right] < 1-\delta\\ \iff \mathbb{P}\left[\mathbb{E}\left[\frac{1}{kw\,kh}\sum_{i,j}[M]_{i,j}\cdot\big|[\hat{Y}]_{i,j}-[Y]_{i,j}\big|\right] > \alpha\right] > \delta\\ \iff \mathbb{P}\left[[M]_{i,j}\mathbb{E}\left[\frac{1}{kw\,kh}\sum_{i,j}\big|[\hat{Y}]_{i,j}-[Y]_{i,j}\big|\right] > \alpha\right] > \delta\\ \iff \mathbb{P}\left[\mathbb{E}\left[\frac{1}{kw\,kh}\sum_{i,j}\big|[\hat{Y}]_{i,j}-[Y]_{i,j}\big|\right] > \frac{\alpha}{[M]_{i,j}}\right] > \delta, \end{split}$$

for some  $\alpha$  and  $\delta$ . Further suppose that there is some nonzero probability  $\tau$  that  $\frac{1}{kw\,kh}\sum_{i,j}\left|[\hat{Y}]_{i,j}-[Y]_{i,j}\right|=0$  for all samples in the calibration set. Then, with this nonzero probability,  $\lambda=1$  regardless of  $\delta$ , implying that  $[M]_{i,j}=1/(1+\epsilon)$ . By chosing  $\delta=\tau/2$  and  $\alpha\leq \frac{1+\epsilon}{2}\mathbb{E}\left[\frac{1}{kw\,kh}\sum_{i,j}\left|[\hat{Y}]_{i,j}-[Y]_{i,j}\right|\right]$ , we conclude.

# **C** Pseudocodes

Concrete implementations of these algorithms can be found in our code.

# **Algorithm 1** Conformal mask calibration (computation of $t_{\alpha}$ ) with dynamic programming

```
T \leftarrow \text{all unique values of } \sigma(X_1), \dots, \sigma(X_n)
T \leftarrow \operatorname{Sort}(T)
D \leftarrow \text{values of } D_n \text{ each entry of } T
                                                                                           > can be computed jointly with the sorting
I \leftarrow indices of the original images for each entry of T \triangleright can be computed jointly with the sorting
                                                                                                           ⊳ risk so far on each observation
\begin{array}{l} R \leftarrow \frac{3}{n+1} \\ t_{\star} \leftarrow -\infty \end{array}
                                                                                                                                      ⊳ total risk so far
l \leftarrow \mathrm{NA}
                                                                                                                     ⊳ last threshold seen so far
for i = 1, \dots, nd do
      if T_i \neq l then
            if R \leq \alpha then
                  t_{\star} \leftarrow T_i
            end if
      end if
      l \leftarrow T_i
      r \leftarrow \max\{R_{I_i}, D_i\} \\ R \leftarrow R - \frac{1}{n+1}R_{I_i} + \frac{1}{n+1}r
      R_i \leftarrow r
end for
return t_{\star}
```

# **Algorithm 2** Conformal mask calibration (computation of $t_{\alpha}$ ) with a brute force search

```
\begin{split} T &\leftarrow \text{all unique values of } \sigma(X_1), \dots, \sigma(X_n) \\ t_\star &\leftarrow -\infty \\ \text{for } t \in T \text{ do} \\ &\text{compute risk } R \leftarrow \frac{1}{n+1} \sum_{i=1}^n \sup_{p; [\sigma(X_i)]_p \leq t} D_p(Y_i, \mu(X_i)) + \frac{3}{n+1} \\ &\text{ if } R \leq \alpha \text{ then} \\ & t_\star \leftarrow \max\{t_\star, t\} \\ &\text{ end if } \\ &\text{ end for } \\ &\text{ return } t_\star \end{split}
```

# D Results under Distribution-Shift

| Fidelity Level   | Semantic $D_p$   | Non-semantic $D_p$ |  |
|------------------|------------------|--------------------|--|
| Tidenty Level    | Avg.             | Avg.               |  |
|                  | PSNR             | PSNR               |  |
| $\alpha = 0.075$ | $13.34 \pm 6.91$ | $13.14 \pm 6.55$   |  |
| $\alpha = 0.100$ | $13.28 \pm 7.30$ | $12.36 \pm 4.47$   |  |
| $\alpha = 0.125$ | $13.01 \pm 7.11$ | $12.30 \pm 3.81$   |  |
| W/o our method   | $11.73 \pm 0.39$ | $11.74 \pm 0.39$   |  |

Table 2: Quantitative evaluation of our methods under distribution-shift. We evaluate the average PSNR across different fidelity levels  $(\alpha)$  for both semantic and non-semantic  $D_p$ , as calculated on Table 1. We utilized the calibration performed on the LIU4K dataset to calculate this metrics on the validation set of DIV2K [Agustsson and Timofte, 2017, Timofte et al., 2017] with 100 samples from a different distribution. Overall our method controls the PSNR point-wisely, but the intervals show that performs better on an in-distribution scenario.

# E On Metric Comparisons with Baseline Methods

Direct metric comparisons with the baseline methods of [Angelopoulos et al., 2022b] and [Kutiel et al., 2023] present fundamental challenges due to output modality differences. These methods produce continuous uncertainty scores rather than binary masks, making objective metric comparisons infeasible without modification. While one could threshold their outputs to obtain binary masks, doing so fundamentally undermines their statistical guarantees, as these methods were not designed for binary mask production. Furthermore, the thresholding process itself introduces methodological complications: for [Angelopoulos et al., 2022b], a natural threshold at  $\alpha$  exists, but for [Kutiel et al., 2023], threshold selection requires an additional calibration split, introducing another degree of freedom that complicates fair comparison.

Given these concerns, we argue that forcing these methods into a common evaluation framework would produce misleading comparisons that do not reflect their intended use cases. Instead, we present qualitative visualizations that respect each method's design principles while highlighting the distinct advantages of our approach–namely, direct binary mask generation with maintained statistical guarantees and substantially tighter confidence regions (mean mask size of  $0.73 \pm 0.07$  for our method at  $\alpha = 0.1$ ).

# F Results on Image Colorization

Here we showcase a direct adaptation of our method for image colorization rather than superresolution. The method works similarly, suggesting a broad applicability beyond our domain.

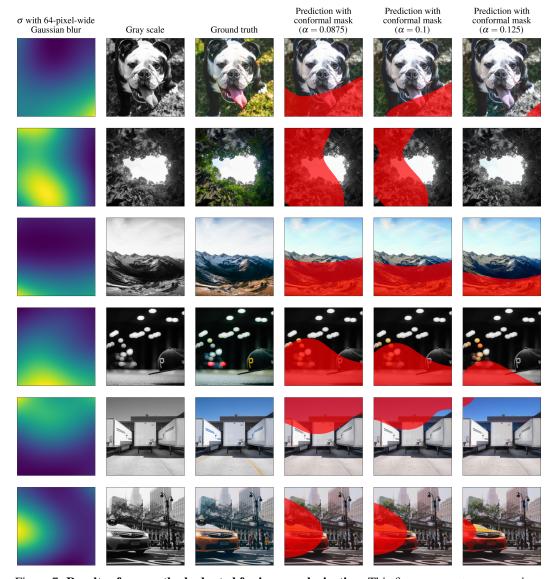


Figure 7: Results of our method adapted for image colorization. This figure presents a comparison of multiple color-restored images generated using the DDColor base model [Kang et al., 2023], alongside their corresponding conformal masks for  $\alpha \in \{0.0875, 0.1, 0.125\}$  and non-semantic  $D_p$ . Our conformal masks accurately highlight regions where color predictions significantly deviate from the ground truth, effectively capturing uncertainty related to hue variations, saturation inconsistencies, and lighting discrepancies. This demonstrates the versatility of our theoretical framework, indicating it can be directly extended to other image restoration tasks beyond super-resolution.

# **NeurIPS Paper Checklist**

# 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: All claims are appropriately justified in the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: All assumptions were stated where appropriate.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

# 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Proofs can be found in the supplementary material, and all assumptions were appropriately stated.

#### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

# 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details for reproduction can be found in the supplementary material.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

#### 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code to reproduce all experiments can be found in the supplementary material and will be made available through GitHub. Dependencies are appropriately managed and documented.

#### Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
  possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
  including code, unless this is central to the contribution (e.g., for a new open-source
  benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

# 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Data and procedures are described in the main text, with details provided in the supplementary material.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
  material.

#### 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide bootstrap CIs where appropriate for experiment results. All CIs are over the randomness in the data.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

#### 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Described at the start of Section 4.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

#### 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The topic is not particularly sensitive, and all data comes from open datasets. There are no ethics violations.

#### Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

#### 10. **Broader impacts**

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The paper is about uncertainty quantification for image super-resolution. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

#### 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Given the lack of immediate negative impacts, we do not see a need for safeguards for our work.

#### Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
  necessary safeguards to allow for controlled use of the model, for example by requiring
  that users adhere to usage guidelines or restrictions to access the model or implementing
  safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

# 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets are open and were appropriately cited.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: No new assets were released.

#### Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

# 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: There was no crowdsourcing nor research with human subjects.

## Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

# 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: There was no crowdsourcing nor research with human subjects.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

# 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No significant use of LLMs.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.