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Abstract

We study the fractal structure of language, aiming to provide a precise formalism
for quantifying properties that may have been previously suspected but not formally
shown. We establish that language is: (1) self-similar, exhibiting complexities at
all levels of granularity, with no particular characteristic context length, and (2)
long-range dependent (LRD), with a Hurst parameter of approximately H = 0.70±
0.09. Based on these findings, we argue that short-term patterns/dependencies
in language, such as in paragraphs, mirror the patterns/dependencies over larger
scopes, like entire documents. This may shed some light on how next-token
prediction can capture the structure of text across multiple levels of granularity,
from words and clauses to broader contexts and intents. In addition, we carry out an
extensive analysis across different domains and architectures, showing that fractal
parameters are robust. Finally, we demonstrate that the tiny variations in fractal
parameters seen across LLMs improve upon perplexity-based bits-per-byte (BPB)
in predicting their downstream performance. We hope these findings offer a fresh
perspective on language and the mechanisms underlying the success of LLMs.

1 Introduction

How does the training objective of predicting the next token in large language models (LLMs) yield
remarkable capabilities? Consider, for instance, the two models: Gemini [5] and GPT4 [50]. These
models have demonstrated capabilities that extend to quantitative reasoning, summarization, and even
coding, which has led some researchers to ponder if there was more to intelligence than “on-the-fly
improvisation” [11]. While providing a satisfactory explanation is a difficult endeavor, a possible
insight can be drawn from fractals and self-similarity. We elucidate the connection in this work.

Self-Similarity. Self-similar processes were introduced by Kolmogorov in 1940 [36]. The notion
garnered considerable attention during the late 1960s, thanks to the extensive works of Mandelbrot
and his peers [19]. Broadly speaking, an object is called “self-similar” if it is invariant across scales,
meaning its statistical or geometric properties stay consistent irrespective of the magnification applied
to it (see Figure 1). Nature and geometry furnish us with many such patterns, such as coastlines,
snowflakes, the Cantor set and the Kuch curve. Despite the distinction, self-similarity is often
discussed in the context of “fractals,” another term popularized by Mandelbrot in his seminal book
The Fractal Geometry of Nature [45]. However, the two concepts are different [26]. See Section 2.

In language, in particular, there have been studies arguing for the presence of a self-similar structure.
Nevertheless, due to computational constraints, it was not feasible to holistically model the joint
probability distribution of language. As such, linguists often resorted to rudimentary approximations
in their arguments, such as by substituting a word with its frequency or length [9], or by focusing on
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Figure 1: Manifestations of processes across different time scales. A region marked in red corresponds
to the magnified plot beneath it. LEFT: The process exhibits self-similarity with rich details at all
levels of granularity. It is an integral process (Xt)t∈N calculated from Wikipedia (see Section 2).
RIGHT: Example of a process that is not self-similar, looking smoother at larger time scales.

the recurrence of a specific, predetermined word [49, 3]. These studies fall short of fully capturing
the structure of language due to the simplifying assumptions they make, as discussed in Section 4.

Highlighting the self-similar nature of a process can have profound implications. For instance,
conventional Poisson models for Ethernet traffic were shown to fail because traffic was self-similar [16,
39, 51, 69]. In such cases, recognizing and quantifying self-similarity had practical applications,
such as in the design of buffers [40]. Similarly in language, we argue that self-similarity may offer
a fresh perspective on the mechanisms underlying the success of LLMs. Consider the illustrative
example shown in Figure 1, where the task is to predict the subsequent measurement in a time
series, specifically predicting next tokens in a Wikipedia article (see Section 2 for details). The three
plots in Figure 1 (left) represent different manifestations of the same process observed across three
distinct time scales. Notably, we observe rich, self-similar details, such as burstiness, in all of them.
A well-established approach for quantifying self-similarity is the Hölder exponent [66], which we
denote by S. In language, we find it to be S = 0.59± 0.08, confirming statistical self-similarity.

Why is this important? We hypothesize that since LLMs are trained to predict the future of a self-
similar process, they develop proficiency in capturing patterns across multiple levels of granularity for
two interconnected reasons. First, self-similarity implies that the patterns at the level of a paragraph
are reflective of the patterns seen at the level of a whole text, which is reminiscent of the recursive
structure of language [53]. Thus, recognizing short-term patterns can aide in learning broader
contexts. Second, because language displays intricate patterns at all levels of granularity, it would
not be enough to rely only on the immediate context of a sentence to predict the next token. Instead,
the model needs to identify patterns at higher levels of granularity; e.g. follow the direction of the
argument and the broader intent. It must balance between short- and long-term contexts. Willinger
et al. [68] and Altmann et al. [3] argue for self-similarity in language due to this hierarchical nature.

Long-range dependence. However, self-similarity alone is not sufficient for a predictive model to
exhibit anything resembling “intelligent” behavior. In fact, some self-similar processes, despite their
intricate details, remain entirely unpredictable. A quintessential example is the simple Brownian
motion, which is a Wiener process with independent increments. Its discrete analog isBn =

∑n
i=1 εi,

where εi ∼ N (0, σ2). Despite possessing rich details at all granularities, a model trained to predict
Bn cannot learn anything useful from data since the process itself has independent increments.

Thus, for strong capabilities to emerge, the process must have some degree of predictability or
dependence as well. One classical metric for quantifying predictability in a stochastic process is
the Hurst parameter [31], developed by the hydrologist H. E. Hurst in 1951 while studying the Nile
river. It is generally considered to be a robust metric [68], unlike the wavelet estimator [1] and the
periodogram method [24] that can be sensitive to errors [54]. As discussed in Section 2.3, we find the
Hurst parameter in language to be H = 0.70 ± 0.09. For context, H only takes values in [0, 1]. A
value H > 0.5 implies predictability in the data, while H = 0.5 indicates random increments.

While it is compelling that our estimate of H in language lies nearly midway between predictability
(H = 1) and noise (H = 0.5), a Hurst parameter of about 0.75 turns out to occur commonly in nature,
including in river discharges, Ethernet traffic, temperatures, precipitation, and tree rings [16, 21, 8].
For agents that learn from data, such as LLMs, this value is also reminiscent of processing-based
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theories of curiosity, which suggest that a sweet spot of complexity exists (not too simple, nor too
unpredictable) that facilities or accelerates learning [34].

Importantly, predictability and self-similarity together imply long-range dependence (LRD). This
follows from the definition of self-similarity, where the patterns at small scales mirror those at larger
scales so, for example, the correlations established at micro levels are also pertinent at macro levels.
LRD is arguably crucial for enhancing the functionality of predictive models because processes with
only short-range dependence could be forecasted (somewhat trivially) with lookup tables that provide
the likelihood of transitions over brief sequences. By contrast, this is not possible in LRD processes
whose contexts extend indefinitely into the past.

Information Theoretic Complexity. To define fractal parameters, we follow recent works such
as [28, 22, 41, 47, 25] in adopting an information-theoretic characterization of the complexity in
language using minimal-length codes or surprise. This corresponds to an intrinsic, irreducible
description of language and the minimum compute overhead to comprehend/decode it [22], which
also correlates well with actual reading times [28, 41]. In this context, self-similarity means that the
intrinsic complexity or surprise in language (measured in bits) cannot be smoothed out, even as we
look into broader narratives. That is, surprising paragraphs will follow predictable paragraphs, in a
manner that is statistically similar to how surprising sentences follow predictable sentences.

Analysis. How robust are these findings? To answer this question, we carry out an extensive
empirical analysis across various model architectures and scales, ranging from 1B to over 500B
parameters. We find that fractal parameters are quite robust to the choice of the architecture.

However, there exists tiny variations across LLMs. Interestingly, we demonstrate that from a practical
standpoint, these differences help in predicting downstream performance in LLMs compared to
using perplexity-based metrics alone, such as bits-per-byte (BPB). Specifically, we introduce a new
metric and show that using it to predict downstream performance can increase the adjusted R2 from
approximately 0.65 when using solely BPB, to over 0.86 with the new metric2.

Statement of Contribution. In summary, we:

1. highlight how the fractal structure of language can offer a new perspective on the capabilities
of LLMs, and provide a formalism to quantify properties, such as long-range dependence.

2. establish that language is self-similar and long-range dependent. We provide concrete
estimates in language of the three parameters: the self-similarity (Hölder) exponent, the
Hurst parameter, and the fractal dimension. We also estimate the related Joseph exponent.

3. carry out a comparative study across different model architectures and scales, and different
domains, such as ArXiv and GitHub, demonstrating that fractal parameters are robust.

4. connect fractal patterns with learning. Notably, we show that a “median” Hurst exponent
improves upon perplexity-based bits-per-byte (BPB) in predicting downstream performance.

2 Fractal Structure of Language

2.1 Preliminaries

Suppose we have a discrete-time, stationary stochastic process (xt)t∈N, with E[xt] = 0 and E[x2t ] = 1.
We will refer to (xt)t∈N as the increment process to distinguish it from the integral process (Xt)t∈N
defined by Xt =

∑t
k=0 xk. While (xt)t∈N and (Xt)t∈N are merely different representations of the

same data, it is useful to keep both representations in mind. For example, self-similarity is typically
studied in the context of integral processes whereas LRD is defined on increment processes.

In the literature, it is not uncommon to mistakenly equate parameters that are generally different.
For example, the Hurst parameter H has had many definitions in the past that were not equivalent,
and Mandelbrot himself cautioned against this [44]. The reason behind this is because different
parameters can agree in the idealized fractional Brownian motion, leading some researchers to equate
them in general [66]. We will keep the self-similarity exponent S and H separate in our discussion.

2We release the code for calculating fractal parameters at: https://github.com/google-research/
google-research/tree/master/fractals_language
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Figure 2: Peak probability pε(τ) is plotted against the granularity level τ (see Section 2.2). We observe
power laws pε(τ) ∼ τ−S, indicating self-similarity, with a median exponent of S = 0.59± 0.08.

Figure 3: Rescaled range R(n)/S(n) is plotted against the number of normalized bits n. We observe
a power law R(n)/S(n) ∼ nH in all domains. When aggregating all datasets, H = 0.70± 0.09.

Experimental Setup. In order to establish self-similarity and LRD in language, we convert
texts into sequences of bits using a large language model (LLM). Specifically, we use PaLM2-
L (Unicorn) [6] to calculate the probability of the next token wt conditioned on its entire prefix
w[t−1] = (w0, w1, . . . , wt−1). As discussed in Section 1, this captures its intrinsic, irreducible
description [22]. By the chain rule [15], the corresponding number of bits assigned to wt is
zt = − log p(wt|w[t−1]). Unlike in prior works, which rely on simplifications such as by sub-
stituting a word with its length [9] or by focusing on the recurrence of a single word [49, 3], we use
the LLM to approximate the full joint distribution of language since LLMs are known to produce
calibrated probability scores at the token level [33]. We carry out these calculations for prefixes of
up to 2048 tokens (≈ 8 pages of text). With a suitable normalization, such as bits-per-byte (BPB),
one obtains a standardized description of text, consistent across tokenizers. BPB is widely used as a
tokenizer-agnostic metric to compare LM modeling performance, e.g. for The Pile [23].

Besides PaLM2, we also experiment and report on various model sizes of PaLM [12] and decoder-
only T5 [55]. Namely, we report results for models: PaLM2 XXS (Gecko), XS (Otter), S (Bison), M,
and L (Unicorn); PaLM 8B, 62B, 540B; and decoder-only T5.1.1 at Base (110M), Large (341M), XL
(1.2B), and XXL (5B) sizes. For PaLM and PaLM2, we use the checkpoints pretrained in Chowdhery
et al. [12] and Anil et al. [6]. All T5.1.1 decoder baselines, on the other hand, are trained with a
casual language modeling objective for 262B tokens of C4 [55]. All experiments are executed on
Tensor Processing Units (TPUs). More details on how we train T5.1.1 baselines are in Appendix A.

Once zt is computed for a document, we follow standard definitions in constructing the increment
process (xt)t∈N by normalizing zt to have a zero-mean and unit variance. Intuitively, fractal pa-
rameters are intended to measure a fundamental property of the process (e.g. LRD) that should not
be affected by scale, hence the normalization. The integral process (Xt)t∈N is calculated based on
(xt)t∈N, as described earlier and depicted in Figure 1 (top). Normalizing bits (to have zero mean and
unit variance) models language as a random walk. It is a standard approach used extensively in the
literature in various contexts, such as in DNA sequences [52, 57, 48, 35, 59].
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Figure 4: LEFT: Estimates of the self-similarity exponent S are generally robust to the choice of ε.
RIGHT: The partial auto-correlation function calculated across domains. DM Mathematics has a
much shorter dependence compared to the rest of the domains, in agreement with its Hurst parameter.

For analysis, we use The Pile validation split [23], consisting of 22 subdomains such as Wikipedia
and GitHub. We restrict analysis to sufficiently-long documents of length > 4K tokens and use the
first 2K tokens only, to sidestep potential effects of the finite length of documents and the model
context. To mitigate noise, only domains with > 1K documents are compared; we report results for
them separately and their median. We use bootstrapping [17] to estimate the error margin.

Notation. We write f(x) ∼ xc if f(x) = xcL(x) for some function L that satisfies L(tx)/L(x)→ 1
as x → ∞ for all t > 0. Examples of slowly varying functions are constants L(x) = c and
L(x) = log x. When f(x) ∼ xc, we abuse terminology slightly by referring to f(x) as a power law.

2.2 Self-similarity exponent — Scale invariance

An integral process is said to be self-similar if it exhibits statistical self-similarity. More precisely,
(Xt)t∈N is self-similar if (Xτt)t∈N is distributionally equivalent to (τSXt)t∈N for some exponent
S. Thus, scaling of time is equivalent to an appropriate scaling of space. We will refer to τ as the
granularity level and to the exponent S as the self-similarity or Hölder exponent [66]. Many time
series in nature exhibit self-similar structures, such as human blood pressure and heart rate [27].

One approach for calculating S is as follows. Fix ε� 1 and denote the τ -increments by (Xt+τ −
Xt)t∈N. These would correspond, for instance, to the number of bits used for clauses, sentences,
paragraphs and longer texts as τ increases. In terms of the increment process (xt)t∈N, this corresponds
to aggregating increments into “bursts”. Let pε(τ) be the probability mass of the event {|Xt+τ−Xt| ≤
ε}t∈N. Then, S can be estimated by fitting a power law relation pε(τ) ∼ τ−S [66]. Generally, S is
robust to the choice of ε ∈ [10−3, 10−2] as shown in Figure 4 (left) so we fix it to ε = 5× 10−3.

Figure 2 plots the probability pε(τ) against τ using PaLM2-L. We indeed observe a power law relation
over at least two orders of magnitude; i.e. linear in a log-log scale, with a median self-similarity
exponent of S = 0.59± 0.08. Section 3 shows that the median S is robust to the choice of the LLM.

2.3 Hurst parameter — Long-range dependence

The Hurst parameter H ∈ [0, 1] quantifies the degree of predictability or dependence over time [31].
It is calculated using the so-called rescaled-range (R/S) analysis. Let (xt)t∈N be an increment process.
For each n ∈ N, write yt = xt − 1

t

∑t
k=0 xk and Yt =

∑t
k=0 yt. The range and scale are defined,

respectively, as R(n) = maxt≤n Yt −mint≤n Yt and S(n) = σ ({xk}k≤n), where σ is the standard
deviation. Then, the Hurst parameter H is estimated by fitting a power law relation R(n)/S(n) ∼ nH.
As stated earlier, for completely random processes, such as a simple Brownian motion, it can be
shown that H = 1/2. In addition, H > 1/2 implies dependence over time [16, 68, 8].

Writing ρn = E[(xt+nxt] for the autocovariance function of the increment process (xt)t∈N, the
Hurst parameter satisfies H = 1 − β/2 when ρn ∼ n−β as n → ∞ [26, 16]. Since in self-similar
processes, H > 1/2 implies long-range dependence (LRD), LRD is equivalent to the condition that
the autocovariances are not summable. In terms of the integral process, it can be shown that [58]:
limn→∞

Var(Xn)
n = 1 + 2

∑∞
i=1 ρi. Hence, if H < 1/2, the auto-covariances are summable and
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OpenWeb GitHub FreeLaw PileCC Wiki PubMed Math ArXiv

S 0.53± .05 0.60± .05 0.61± .05 0.56± .03 0.62± .02 0.60± .07 0.42± .03 0.70± .03
H 0.68± .01 0.79± .01 0.68± .00 0.70± .00 0.74± .01 0.65± .00 0.50± .01 0.72± .01
J 0.46± .01 0.49± .00 0.49± .00 0.50± .00 0.52± .00 0.44± .00 0.28± .00 0.49± .00

Table 1: A comparison of the fractal parameters across 8 different domains with > 1000 documents
each in The Pile benchmark (see Section 2.1 for selection criteria). DM-Mathematics is markedly
different because each document consists of questions, with no LRD.

Var(Xn) grows, at most, linearly fast on n. On the other hand, if the process has LRD, Var(Xn)
grows superlinearly on n. In particular, using the Euler-Maclaurin summation formula [7, 2], one
obtains Var(Xn) ∼ n2H if H > 1/2. Figure 3 plots the rescaled range R(n)/S(n) against n. We
observe a power law relation with a median Hurst parameter of H = 0.70± 0.09.

2.4 Fractal dimension — Complexity at all levels

Broadly speaking, the fractal dimension of an object describes its local complexity. For a geometric
object Z, such as the Koch curve, let τ be a chosen scale (e.g. a short ruler for measuring lengths
or a small square for areas). Let N(τ) be the minimum number of objects of scale τ that cover Z;
i.e. contain it entirely. Then, the fractal dimension of Z, also called its Hausdorff dimension, is:
D = − limτ→0

{
logN(τ)
log τ

}
[54]. For example, a line has a fractal dimension 1, in agreement with its

topological dimension, because N(τ) = C/τ for some constant C > 0.

By convention, an object is referred to as “fractal” if D is different from its topological dimension.
For example, the fractal dimension of the Koch curve is about 1.26 when its topological dimension is
1. Fractals explain some puzzling observations, such as why estimates of the length of the coast of
Britain varied significantly from one study to another, because lengths in fractals are scale-sensitive.
Mandelbrot estimated the fractal dimension of the coast of Britain to be 1.25 [43].

The definition above for the fractal dimension D applies to geometric shapes, but an analogous
definition has been introduced for stochastic processes. Let (xt)t∈R be a stationary process with
autocovariance ρn. Then, its fractal dimension D is determined according to the local behavior of ρn
at the vicinity of n = 0, by first normalizing (xt)t∈R to have a zero-mean and a unit variance, and
modeling ρn using a power law ρn ∼ 1− nα as n→ 0+, for α ∈ (0, 2]. Then, the fractal dimension
D ∈ [1, 2] of (xt)t∈R is defined by D = 2 − α/2 [26]. It can be shown that D = 2 − S [26]. For
language, this gives a median fractal dimension of D = 1.41± 0.08.

2.5 Joseph effect — Burstiness

Finally, we examine another related parameter that is commonly studied in self-similar processes. The
motivation behind it comes from the fact that in processes with LRD, one often observes burstiness as
shown in Figure 1; i.e. clusters over time in which the process fully resides on one side of the mean,
before switching to the other. This is quite unlike random noise, for instance, where measurements
are evenly distributed on both sides of the mean. The effect is often referred to as the Joseph effect,
named after the biblical story of the seven fat years and seven lean years [68, 46, 66].

A common way to quantify the Joseph effect for integral processes (Xt)t∈N is as follows [66]. First,
let στ be the standard deviation of the τ -increments Xt+τ − Xt. Then, fit a power law relation
στ ∼ τJ. The exponent J here is called the Joseph exponent. In an idealized fractional Brownian
motion, both J and the self-similarity exponent S coincide. Figure 5 provides the detailed empirical
results. Overall, we find that J = 0.49± 0.08.

3 Analysis

Comparative Analysis. Table 1 compares fractal parameters across different domains, such as
ArXiv, Github and Wikipedia. In general, most domains share similar self-similarity and Hurst
exponents with a few exceptions. The first notable exception is DM-Mathematics, which has a Hurst
parameter of about 0.5, indicating a lack of LRD. Upon closer inspection, however, a value of H = 0.5
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Figure 5: The standard deviation σ of the τ -increments Xt+τ −Xt is plotted against the scale τ . We,
again, observe another power law relation σ ∼ τJ, with a Joseph exponent J = 0.49± 0.08.

T5-Decoder PaLM PaLM2
110M 340M 1B 5B 8B 62B 540B XXS XS S M L

Self-similarity exponent S

.58±.06 .60±.06 .60±.05 .58±.08 .60±.07 .62±.08 .64±.08 .59±.06 .57±.08 .56±.05 .59±.07 .60±.08

Hurst exponent H

.64±.08 .64±.08 .64±.09 .64±.08 .66±.07 .68±.07 .68±.07 .66±.07 .66±.07 .67±.08 .68±.09 .69±.09

Joseph exponent J

.44±.06 .44±.06 .44±.06 .44±.06 .47±.06 .47±.06 .48±.06 .47±.06 .47±.06 .48±.07 .48±.07 .49±.08

Table 2: A comparison of the estimated median fractal parameters by various LLMs over the entire
Pile validation split. Estimates are generally robust to the choice of the LLM, but the tiny variations
in median H reflect improvements in the model quality. See Section 3.

is not surprising for DM-Mathematics because its documents consist of independent mathematical
questions as shown in Figure 6. In Figure 4 (right), we plot the partial autocorrelation function for
each of the 8 domains against time lag (context length). Indeed, we see that DM-Mathematics shows
markedly less dependence compared to the other domains. The second notable observation is the
relatively larger value of H = 0.79 in GitHub, indicating more structure in code. This is in agreement
with earlier findings by Kokol and Podgorelec [35] who estimated LRD in computer languages to
be greater than in natural language. In Table 2, we compare the three fractal parameters S, H and J
using different families of LLM and different model sizes. Overall, we observe that the parameters
are generally robust to the choice of the architecture.

Downstream Performance. By definition, fractal parameters are calculated on the sequence of
negative log-probability scores after normalizing them to zero-mean and unit variance. Hence, they
may offer an assessment of downstream performance that improves upon using a perplexity-based
metric like bits-per-byte (BPB) alone. To test this hypothesis, we evaluate the 12 models in Table 2
on challenging downstream zero- and few-shot benchmarks focusing on language understanding and
reasoning. We include results for 0-shot (0S) and 3-shot (3S) evaluation for BIG-Bench Hard tasks
[63, 64] reporting both direct and chain-of-thought (CoT) prompting results following Chung et al.
[13]. In addition we report 0-shot and 5-shot (5S) MMLU [30], and 8-shot (8S) GSM8K [14] with
CoT. Raw accuracy is reported for all tasks. BBH and MMLU scores are averaged across all 21 tasks
and 57 subjects, respectively. These benchmarks are quite diverse and include tasks such as logical
deduction, arithmetic, translation error detection, disambiguation, as well as general knowledge (e.g.
history, computer science, law, sports, movies, etc). All prompt templates for our evaluation are taken
from Chung et al. [13], Longpre et al. [42], which we refer the reader to for more details. We prompt
all models using a 2048 context length. See Table 8 of Appendix C for the full results.

The first (surprising) observation is that the median Hurst parameter is itself strongly correlated
with the BPB scores with an absolute Pearson correlation coefficient of 0.83, even though the Hurst
exponent is calculated after normalizing all token losses to zero-mean and unit variance! Informally,
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Document I: What is the square root of 211269 to the nearest integer? 460. What is the square root

of 645374 to the nearest integer? 803...

Document II: Suppose 5*l = r - 35, -2*r + 5*l - 15 = -70. Is r a multiple of 4? True. Suppose 2*l +

11 - 1 = 0. Does 15 divide (-2)/l - 118/(-5)? False...

Figure 6: Two examples of documents from the DM-Mathematics subset of The Pile benchmark [23].
Each document comprises of multiple independent questions. The lack of LRD in this data is reflected
in its Hurst parameter of H = 0.50± 0.01

Benchmark BPB H HB 2K 4K 8K

0S BBH Direct 0.785 0.841 0.883 1.81 1.68 1.76
0S MMLU 0.653 0.831 0.825 25.73 26.04 25.81
0S BBH+MMLU 0.685 0.849 0.852 13.39 13.49 13.42

3S BBH Direct 0.767 0.895 0.926 21.35 24.76 23.14
3S BBH CoT 0.881 0.892 0.979 16.87 12.21 7.14
5S MMLU 0.660 0.853 0.832 26.57 26.69 27.07
8S GSM8K CoT 0.654 0.867 0.851 1.06 1.21 1.74
FS BBH+MMLU+GSM8K 0.717 0.890 0.891 15.58 15.46 14.65

Table 3: MIDDLE three columns show the adjusted R2: the proportion of variation in downstream
performance (row) predictable by a linear function of the input (column). Median Hurst (H) and
(especially) the combined metric HB predict downstream performance better than BPB alone. S and
J do not give any improvement (see Appendix C). RIGHT: the downstream performance for three
decoder-only T5.1.1. models pretrained on 100B tokens with 2K, 4K, or 8K context lengths.

this implies that second-order statistics on the sequence of token losses of a particular model can
predict its mean! Self-similarity exponent, by contrast, has an absolute correlation of 0.23 with BPB.

Figure 7 displays downstream performance against both the median Hurst exponent and the median
BPB score, where median values are calculated on the 8 domains in The Pile benchmark listed in
Table 1. In general, both the BPB score and the median Hurst are good predictors of downstream
performance. However, we observe that improvements in BPB alone without impacting the median
Hurst exponent do not directly translate into improvements downstream. This is verified quantitatively
in Table 3 (middle), which reports the adjusted R2 values – the proportion of variance in each
downstream metric that can be predicted using BPB, H, or by combining them together into HB =
1/BPB +H, with BPB replaced with its reciprocal so that higher values are better. We observe that
HB yields indeed a stronger predictor of downstream performance. Hence, while H and BPB are
correlated, combining them yields a better predictor, so each of H and BPB conveys useful information
not captured by the other metric. See Appendix C for similar analysis using the exponents S and J.

Context Length at Training Time (Negative Result). Finally, we present a negative result. Self-
similarity and LRD point to an intriguing possibility: the importance of training the model with
extensive contexts in order to capture the fractal-nature of language, which may elevate the model’s
capabilities regardless of the context length needed during inference. To test this hypothesis, we
pretrain three decoder-only T5.1.1 models with 1B parameters on SlimPajama-627B [62] for up to
100B tokens using three context lengths: 2K, 4K and 8K, all observing the same number of tokens per
batch. We use SlimPajama-627B instead of C4 because most documents in C4 are short (≈ 94% of
them are < 2K tokens in length). Refer to Appendix A for details. These models are, then, evaluated
on the same downstream benchmarks listed in Figure 7. As shown in Table 3 (right) however, we do
not observe any improvements in performance with context length in this particular setup.

4 Related Works and Directions for Future Research

The statistical attributes of human language have long piqued scholarly curiosity. One example
is Zipf’s law, which Shannon leveraged to estimate the entropy of English to be around 1 bit per
letter [60], but his calculation did not consider second-order statistics. More recently, Eftekhari [18]
proposed a refinement to Zipf’s law, suggesting its application to letters rather than words. Another
related result is Heap’s law, which states that the number of unique words is a power law function
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Figure 7: Downstream metric, indicated by bubble size where larger is better, is plotted vs. the
median Hurst and the median BPB for all 12 language models.

of the document’s length [29]. However, both Zipf’s and Heap’s laws are invariant to the semantic
ordering of text, so they do not capture important aspects, such as long-range dependence (LRD) [49].

In terms of self-similarity in language, the Menzerath-Altmann law stipulates a self-similar behavior
in the following sense: when the size of a language construct increases, the size of its constituents
decreases, and this happens at all scales [49, 4]. In Ausloos [9], the authors model texts as a time
series by replacing a word with its length. After that, they study the fractal behavior of language.
However, as mentioned in [22], replacing a word with its length is invalid because it is not translation-
independent (i.e. one could map every word to an arbitrary token, including tokens of equal length).
In our work, we model language as a series of bits calculated from conditional entropies, reflecting
the intrinsic structure of the language itself, inspired by findings in linguistics such as [28, 22, 41].
The existence of self-similarity in language is attributed to its hierarchical nature [68, 3], such as
duality of patterning [37].

In Najafi and Darooneh [49], the authors define a fractal dimension for each word. Informally, they
examine the recurrence of a single, predetermined word as a binary series, similar to the approach
used in Altmann et al. [3]. However, this only applies to individual words and cannot model higher-
level clauses. For instance, it does not distinguish between “time” in the phrase “once upon a time”
and “time” in “space and time.” Kokol and Podgorelec [35] estimate LRD in natural language, and
suggest that its LRD is close to that of pure noise! They conjecture this was due to their use of ASCII
encoding. In computer languages, they observe LRD and suggest it is because they are formal.

Besides the above concerns in prior studies that examined the self-similar structure in language,
another concern is that they sometimes give extremely large values of the fractal dimension, sometimes
exceeding 10 [4]! Such values are difficult to interpret because the fractal dimension D should fall in
D ∈ [1, 2] for time series. We do not observe such issues in our analysis. In our case, D = 1.41±0.08.

Limitations and Future Research. Our analysis is currently limited to the English language so
it may not apply to other languages that differ significantly. For instance, some languages such as
Pirahã (spoken in the Amazon) do not have a recursive structure like most languages do [20]. We also
do not model the semantic or lexical form of language. While our information-theoretic approach is
well-founded and captures the intrinsic complexity of language, it does not account for the semantic
nuances that contribute to meaning. Thirdly, self-similarity may explain why parameter sharing, such
as in ALBERT [38], can be successful but exploiting self-similarity more directly in LLMs could
lead to further optimizations. Exploring these aspects are promising directions for future research.

5 Concluding Remarks

In this work, we highlight intriguing insights into the underlying fractal structure of language and
how it may be interconnected with the remarkable capabilities of LLMs. Our formalism quantifies
properties of language that may have been suspected, but not previously formally shown. In particular,
the need in LLMs to balance between short- and long-term contexts is reflected in the self-similar
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structure of language, while long-range dependence is quantifiable using the Hurst parameter. For
instance, the absence of LRD in DM-Mathematics is reflected in its Hurst parameter of H ≈ 0.5.
Interestingly, the estimated median Hurst value of H = 0.70± 0.09 in language reflects an intriguing
balance between predictability and noise that is similar to many other phenomena, and combining
both H with BPB together yields a stronger predictor of downstream performance. We carry out an
extensive comparative analysis across different domains and model architectures, revealing that fractal
parameters are generally robust. We hope that future research can further probe into these fractal
properties, unearthing deeper understandings of the relation between intelligence and language.
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A Experiment Details

All of our experiments are conducted in JAX/Flax [10] using the open source T5X framework [56].

T5 baselines in Table 2 and 3 are pretrained from scratch using the open source T5.1.1 decoder-only
architecture from the T5X library.3. We pretrain using a causal language modeling objective over the
C4 corpus with the default T5 vocabulary as per Raffel et al. [55]. Training is done for 500k steps
with a sequence length of 1024 and batch size of 512, resulting in a total of 262B tokens seen during
pretraining. We optimize our model with the Adafactor [61] optimizer with an inverse square root
learning rate schedule, 1k warmup steps, and an initial learning rate of 1e-2. Models are trained using
256 TPUv5e chips [32].

T5 context length ablation experiments in Table 3 are trained with the same pretraining objective
but over the SlimPajama-627B corpus [62] and using a modified version of the T5 vocabulary that
preserves whitespace and introduces byte-fallback for out of vocabulary tokens. This is similar to
Chowdhery et al. [12], but preserving the original T5 vocabulary. Models with sequence lengths 2048,
4096, 8192 are trained with batch sizes of 512, 256, and 128 respectively to preserve the number of
tokens seen per batch and overall training steps. We train all models for 100k steps, using the same
learning rate schedule described above. Hence, all models observe 100B tokens.

3https://github.com/google-research/t5x/tree/main/t5x/examples/decoder_only/
models
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B Full Results

In this section, we provide the full list of parameters calculated for each combination of LLM and
domain. We use bootstrapping [17] to estimate the error margin.

Model OpenWebText2 Github FreeLaw Pile-CC Wikipedia PubMed Mathematics ArXiv

T5-Decoder-110M 2.89 1.82 2.45 2.88 2.80 2.36 2.28 2.70
T5-Decoder-340M 2.60 1.56 2.14 2.62 2.52 2.08 2.10 2.42
T5-Decoder-1B 2.38 1.37 1.91 2.41 2.29 1.88 2.00 2.19
T5-Decoder-5B 2.19 1.22 1.73 2.25 2.11 1.73 1.91 2.01

PaLM1-8B 2.26 0.79 1.66 2.36 2.08 1.89 1.40 2.08
PaLM1-62B 2.02 0.62 1.44 2.14 1.80 1.68 1.30 1.83
PaLM1-540B 1.88 0.54 1.33 2.01 1.58 1.57 1.25 1.68

PaLM2-XXS 2.37 0.87 1.77 2.46 2.17 1.96 1.38 1.96
PaLM2-XS 2.12 0.73 1.53 2.22 1.92 1.72 1.27 1.72
PaLM2-S 1.95 0.60 1.37 2.06 1.71 1.57 1.19 1.55
PaLM2-M 1.88 0.56 1.31 1.99 1.59 1.51 1.12 1.48
PaLM2-L 1.75 0.46 1.23 1.88 1.22 1.43 1.08 1.36

Table 4: Log-perplexity (NLL) scores evaluated on the first 2048 tokens, after trimming the first 100
tokens, of documents belonging to each of the shown domains. Only documents with a minimum
length of 4K tokens are used.

Model OpenWebText2 Github FreeLaw Pile-CC Wikipedia PubMed Mathematics ArXiv

T5-Decoder-110M 0.58±
0.04

0.67±
0.03

0.51±
0.02

0.54±
0.07

0.59±
0.04

0.59±
0.03

0.51±
0.04

0.58±
0.05

T5-Decoder-340M 0.52±
0.03

0.59±
0.05

0.63±
0.04

0.58±
0.04

0.61±
0.03

0.61±
0.03

0.48±
0.04

0.61±
0.05

T5-Decoder-1B 0.54±
0.01

0.66±
0.11

0.61±
0.06

0.57±
0.06

0.59±
0.05

0.60±
0.02

0.50±
0.03

0.63±
0.02

T5-Decoder-5B 0.51±
0.04

0.70±
0.04

0.60±
0.04

0.58±
0.02

0.58±
0.03

0.57±
0.02

0.45±
0.02

0.67±
0.05

PaLM1-8B 0.56±
0.03

0.67±
0.05

0.63±
0.05

0.58±
0.01

0.55±
0.04

0.62±
0.03

0.50±
0.03

0.68±
0.07

PaLM1-62B 0.49±
0.03

0.65±
0.09

0.63±
0.09

0.57±
0.03

0.63±
0.05

0.61±
0.04

0.48±
0.05

0.68±
0.03

PaLM1-540B 0.51±
0.04

0.68±
0.09

0.64±
0.05

0.58±
0.04

0.67±
0.03

0.64±
0.08

0.48±
0.03

0.65±
0.04

PaLM2-XXS 0.53±
0.02

0.61±
0.05

0.58±
0.04

0.60±
0.04

0.57±
0.05

0.61±
0.03

0.52±
0.02

0.70±
0.04

PaLM2-XS 0.54±
0.04

0.57±
0.06

0.58±
0.03

0.56±
0.04

0.60±
0.04

0.57±
0.06

0.45±
0.02

0.73±
0.06

PaLM2-S 0.55±
0.02

0.55±
0.15

0.59±
0.02

0.54±
0.08

0.65±
0.04

0.58±
0.05

0.49±
0.04

0.61±
0.03

PaLM2-M 0.58±
0.02

0.62±
0.06

0.59±
0.04

0.60±
0.05

0.70±
0.03

0.56±
0.04

0.46±
0.04

0.62±
0.05

PaLM2-L 0.53±
0.05

0.60±
0.05

0.61±
0.05

0.56±
0.03

0.62±
0.02

0.60±
0.07

0.42±
0.03

0.70±
0.03

Table 5: Self-similarity exponent S evaluated on the first 2048 tokens, after trimming the first 100
tokens, of documents belonging to each of the shown domains. Only documents with a minimum
length of 4K tokens are used.
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Model OpenWebText2 Github FreeLaw Pile-CC Wikipedia PubMed Mathematics ArXiv

T5-Decoder-110M 0.63±
0.00

0.82±
0.01

0.62±
0.01

0.67±
0.01

0.62±
0.01

0.65±
0.00

0.54±
0.01

0.68±
0.01

T5-Decoder-340M 0.63±
0.01

0.82±
0.01

0.62±
0.00

0.67±
0.00

0.62±
0.01

0.64±
0.01

0.54±
0.00

0.67±
0.01

T5-Decoder-1B 0.63±
0.01

0.83±
0.01

0.63±
0.01

0.67±
0.00

0.62±
0.01

0.64±
0.00

0.54±
0.00

0.67±
0.00

T5-Decoder-5B 0.63±
0.01

0.82±
0.00

0.62±
0.01

0.67±
0.01

0.62±
0.01

0.64±
0.01

0.54±
0.00

0.67±
0.00

PaLM1-8B 0.65±
0.01

0.81±
0.01

0.66±
0.00

0.68±
0.01

0.66±
0.00

0.65±
0.01

0.57±
0.00

0.69±
0.01

PaLM1-62B 0.66±
0.01

0.80±
0.00

0.67±
0.01

0.69±
0.01

0.68±
0.00

0.65±
0.00

0.57±
0.00

0.70±
0.00

PaLM1-540B 0.67±
0.00

0.79±
0.01

0.68±
0.00

0.69±
0.01

0.71±
0.01

0.65±
0.01

0.56±
0.00

0.70±
0.01

PaLM2-XXS 0.65±
0.01

0.81±
0.01

0.65±
0.01

0.68±
0.01

0.66±
0.01

0.65±
0.01

0.58±
0.00

0.71±
0.01

PaLM2-XS 0.65±
0.01

0.81±
0.01

0.66±
0.01

0.68±
0.01

0.67±
0.00

0.65±
0.00

0.56±
0.01

0.71±
0.01

PaLM2-S 0.67±
0.01

0.80±
0.01

0.66±
0.01

0.69±
0.00

0.68±
0.01

0.65±
0.01

0.54±
0.00

0.71±
0.00

PaLM2-M 0.67±
0.01

0.80±
0.01

0.67±
0.01

0.70±
0.01

0.70±
0.01

0.65±
0.01

0.52±
0.01

0.72±
0.01

PaLM2-L 0.68±
0.01

0.79±
0.01

0.68±
0.00

0.70±
0.00

0.74±
0.01

0.65±
0.00

0.50±
0.01

0.72±
0.01

Table 6: Hurst exponent H evaluated on the first 2048 tokens, after trimming the first 100 tokens, of
documents belonging to each of the shown domains. Only documents with a minimum length of 4K
tokens are used.

Model OpenWebText2 Github FreeLaw Pile-CC Wikipedia PubMed Mathematics ArXiv

T5-Decoder-110M 0.44±
0.01

0.53±
0.00

0.42±
0.00

0.49±
0.01

0.45±
0.00

0.43±
0.00

0.33±
0.00

0.45±
0.00

T5-Decoder-340M 0.44±
0.02

0.53±
0.00

0.43±
0.00

0.49±
0.00

0.45±
0.01

0.43±
0.00

0.33±
0.00

0.45±
0.00

T5-Decoder-1B 0.43±
0.01

0.53±
0.00

0.43±
0.01

0.49±
0.01

0.45±
0.01

0.42±
0.00

0.33±
0.00

0.45±
0.01

T5-Decoder-5B 0.43±
0.01

0.53±
0.00

0.44±
0.00

0.49±
0.01

0.45±
0.00

0.42±
0.00

0.34±
0.00

0.45±
0.00

PaLM1-8B 0.45±
0.00

0.51±
0.00

0.46±
0.00

0.49±
0.01

0.48±
0.01

0.44±
0.01

0.34±
0.00

0.48±
0.01

PaLM1-62B 0.45±
0.00

0.50±
0.01

0.47±
0.00

0.49±
0.01

0.49±
0.00

0.44±
0.00

0.33±
0.00

0.48±
0.01

PaLM1-540B 0.46±
0.01

0.49±
0.01

0.47±
0.00

0.50±
0.01

0.50±
0.00

0.44±
0.00

0.33±
0.01

0.48±
0.00

PaLM2-XXS 0.44±
0.01

0.50±
0.00

0.45±
0.00

0.50±
0.01

0.48±
0.00

0.45±
0.00

0.34±
0.00

0.49±
0.00

PaLM2-XS 0.45±
0.01

0.50±
0.01

0.46±
0.01

0.49±
0.00

0.48±
0.00

0.44±
0.00

0.33±
0.01

0.49±
0.00

PaLM2-S 0.45±
0.00

0.49±
0.00

0.47±
0.00

0.50±
0.01

0.50±
0.01

0.44±
0.00

0.31±
0.00

0.49±
0.00

PaLM2-M 0.45±
0.01

0.49±
0.01

0.48±
0.01

0.50±
0.01

0.50±
0.00

0.44±
0.00

0.29±
0.00

0.49±
0.01

PaLM2-L 0.46±
0.01

0.49±
0.00

0.49±
0.00

0.50±
0.00

0.52±
0.00

0.44±
0.00

0.28±
0.00

0.49±
0.00

Table 7: Joseph exponent J evaluated on the first 2048 tokens, after trimming the first 100 tokens, of
documents belonging to each of the shown domains. Only documents with a minimum length of 4K
tokens are used.

C Predicting Downstream Performance

Table 8 presents detailed downstream performance results, along with corresponding upstream
metrics.

In Table 9, we repeat the same analysis in Section 3 using the adjusted R2 coefficient, but with the
self-similarity S and Joseph exponents J. Unlike in the median Hurst exponent, we do not observe
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any improvement when combining perplexity scores with the self-similarity exponent S or the Joseph
exponent J.

Model BPB 0S
BBH
Direct

0S
BBH
CoT

0S
MMLU

3S
BBH
Direct

3S
BBH
CoT

5S
MMLU

8S
GSM8K

CoT

0S
BBH

+MMLU

FS
BBH

+MMLU
+GSM8K

T5-Decoder-110M 1.11 0.83 0.11 25.65 21.36 5.69 25.62 0.91 13.06 13.35
T5-Decoder-340M 1.00 0.96 0.17 25.72 23.57 10.03 25.98 1.59 13.14 14.79
T5-Decoder-1B 0.92 1.29 0.14 25.99 24.26 13.19 24.82 1.14 13.35 14.90
T5-Decoder-5B 0.85 2.13 0.48 24.41 24.76 18.05 25.63 2.20 12.86 16.41

PaLM1-8B 0.78 6.46 1.21 23.53 32.18 27.60 24.56 5.16 13.68 19.87
PaLM1-62B 0.70 13.79 0.83 51.86 39.51 39.70 54.78 29.57 29.59 41.32
PaLM1-540B 0.66 23.26 4.72 67.78 52.44 56.02 70.50 56.79 40.89 60.51

PaLM2-XXS 0.81 8.99 0.13 25.26 30.71 26.08 24.72 2.96 14.91 18.69
PaLM2-XS 0.73 16.68 0.95 49.69 38.28 37.64 47.42 22.14 29.25 35.84
PaLM2-S 0.67 23.60 4.24 69.89 48.88 50.88 68.12 50.49 41.91 56.16
PaLM2-M 0.65 21.32 5.70 69.62 52.49 56.04 69.33 59.21 41.57 60.94
PaLM2-L 0.61 24.00 10.19 79.10 66.34 66.66 78.64 80.36 48.10 75.17

Table 8: Full downstream few-shot evaluation results compared to upstream BPB. Here, BPB is
computed over The Pile validation split using the first 2048 tokens of every document. All evaluation
results are reported as raw (un-normalized) accuracy.

Please note that our results are not directly comparable to all previous published results for
the same models; please cite the original results from [12, 6]. Here, we only aim for a fair comparison
between models: only pretrained models without instruction tuning are used, we do not optimize any
prompts for each model, and we evaluate all models using only a 2K sequence length.

BPB S J BPB+S BPB+J

0S BBH Direct 0.785 -0.060 0.673 0.761 0.794
0S MMLU 0.653 -0.067 0.426 0.614 0.614
0S BBH+MMLU 0.685 -0.065 0.472 0.650 0.651

3S BBH Direct 0.767 -0.030 0.599 0.744 0.754
3S BBH CoT 0.881 -0.026 0.678 0.870 0.879
5S MMLU 0.660 -0.044 0.421 0.624 0.622
8S GSM8K CoT 0.654 -0.037 0.427 0.619 0.616
FS BBH + MMLU+GSM8K 0.717 -0.036 0.489 0.687 0.686

Table 9: Adjusted R2, which measures the proportion of variation in downstream performance (row)
that is predictable from the given input(s) (column) using a trained linear regressor. Unlike in the
median Hurst exponent, we do not observe any improvement when combining BPB scores with the
self-similarity exponent S or the Joseph exponent J.

D Gemma-2B Results

In this section, we present empirical results using the publicly released Gemma-2B checkpoint [65].
Results are shown in Figures 8 and 9.

Gemma-2B is much smaller than all of the models we have used previously. Yet, we generally
observe similar conclusions. First, we have a self-similar structure with near perfect linear fits in a
log-log plots. Second, we also observe power laws using the rescaled-range analysis, with a Hurst
exponent of about 0.7 in most domains except DM Mathematics (smallest Hurst exponent of about
0.58) and GitHub (largest Hurst exponent of about 0.82), in general agreement to the rest of the
models. Both the self-similarity and Hurst parameters are provided in Table 10.

E Comparison to n-Gram Models

Here, we report some early investigations that examine how fractal parameters change as one
includes longer contexts during inference. The setup used in this experiment is slightly different
from what we use throughout the rest of the paper. Specifically, we take the Wikipedia dataset
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Figure 8: Here, we follow a similar setup to Figure 2, but using the publicly released Gemma-2B
checkpoint [65], where the y-axis is the peak probability. We continue to observe linear fits in a
log-log scale over at least two orders of magnitude, thus confirming a self-similar structure.
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Figure 9: Here, we follow a similar setup to Figure 3, but using the publicly released Gemma-2B
checkpoint [65], where the y-axis is the rescaled-range (R/S). We continue to observe linear fits in a
log-log scale over at least two orders of magnitude.

(wikipedia/20230601.en) dataset [67]. We split each document of length >4K words along
word boundaries and constrain the context length during inference in PaLM-8B to n words, for
n ∈ {1, 16, 32, 64, 128, 256, 512, 1024, 2048}. Hence, the language model now resembles an n-gram
model. We calculate probability scores and calculate fractal parameters accordingly. Figure 10 shows
how both the self-similarity exponent S and the Hurst parameter H change as a function of n.

We observe that H increases monotonically with context length as expected, since it implies more
predictability. However, even in a 1-gram model, H can be larger than 1/2 because the words
themselves are not independent of each other, so the sequence of probability scores can still contain
dependence over time in a 1-gram model.
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OpenWebText2 Github FreeLaw Pile-CC Wikipedia PubMed Mathematics ArXiv

S

0.55± 0.02 0.63± 0.01 0.60± 0.02 0.58± 0.02 0.57± 0.02 0.57± 0.02 0.50± 0.02 0.61± 0.02

H

0.65± 0.01 0.83± 0.01 0.67± 0.01 0.68± 0.01 0.65± 0.01 0.64± 0.01 0.58± 0.01 0.69± 0.01

Table 10: Self-similarity exponent (S) and the Hurst parameter (H) when using Gemma-2B. These
values compare well to the ones obtained using the other models.
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Figure 10: S and H plotted for different constructions of bits, as we vary the prefix length during
inference.
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paper’s contributions and scope?

Answer: [Yes]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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depend on implicit assumptions, which should be articulated.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

22

https://neurips.cc/public/EthicsGuidelines


• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work studies the fractal structure of language. We do not foresee any
potential negative societal impact this work.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: We cite the original creators/owners of all datasets and model checkpoints that
we use in our analysis.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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