
SplitNeRF: Split Sum Approximation Neural Field for
Joint Geometry, Illumination, and Material Estimation

Jesus Zarzar
KAUST

Bernard Ghanem
KAUST

Abstract

We present a novel approach for digitizing real-world objects by estimating their ge-
ometry, material properties, and environmental lighting from a set of posed images
with fixed lighting. Our method incorporates into Neural Radiance Field (NeRF)
pipelines the split sum approximation used with image-based lighting for real-time
physically based rendering. We propose modeling the scene’s lighting with a single
scene-specific MLP representing pre-integrated image-based lighting at arbitrary
resolutions. We accurately model pre-integrated lighting by exploiting a novel
regularizer based on efficient Monte Carlo sampling. Additionally, we propose
a new method of supervising self-occlusion predictions by exploiting a similar
regularizer based on Monte Carlo sampling. Experimental results demonstrate the
efficiency and effectiveness of our approach in estimating scene geometry, material
properties, and lighting. Our method attains state-of-the-art relighting quality after
only ∼1 hour of training in a single NVIDIA A100 GPU.

Ground Truth Predictions

Relighting

Figure 1: We visualize the lighting, material properties (albedo, metalness, and roughness), and
geometry predicted by our model in addition to four relighting predictions of the ‘materials’ scene.
Our method predicts high-frequency illumination with only ∼1 hour of training thus enabling the
efficient digitization of relightable objects.

1 Introduction
The idea of creating realistic and immersive digital environments has piqued the imagination of
countless science fiction authors, science fiction directors, and scientists. In the past few years, the
fields of computer graphics and computer vision have advanced so much that we are capable of

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

creating photo-realistic environments [6, 28, 21], as well as capturing real-world environments in
a way that allows us to render new photo-realistic views [25, 32]. However, the creation of digital
twins [9] of objects that can be integrated within photo-realistic environments still requires artists to
meticulously hand-design realistic object meshes, materials, and lighting. While this is feasible for
generating a few scenes, large-scale digitization requires automatic ways of reconstructing real-world
objects along with their corresponding material properties.

In this work, we address the problem of object inverse rendering: extracting object geometry,
material properties, and environment lighting from a set of posed images of the object. Inverse
rendering enables the seamless integration of virtual objects into different environments with varying
illumination conditions from simple image captures taken by commonplace camera sensors.

Neural rendering methods, such as Neural Radiance Fields (NeRF) [18, 1, 34], have revolutionized
novel view synthesis, 3D reconstruction from images, and inverse rendering. By directly modeling
outgoing radiance at each point in 3D space, NeRF methods excel at accurately recovering scene
geometry and synthesizing novel views. However, a drawback of this approach is that the learned
radiance representation entangles environment lighting with the rendered scene’s properties, making
it challenging to recover material properties and illumination. Due to the success of NeRFs in
reconstructing scenes, several works have proposed modifications to enable inverse rendering [29, 3,
16, 10, 41]. These works build upon NeRF by decomposing radiance into a function of illumination
and material properties but differ in their ways of modeling lighting and reflections. We build upon
these methods with the main goal of efficiency without sacrificing reconstruction quality or the ability
to recover high-frequency illumination details.

To achieve these goals, we rely on the split sum approximation [11], which is commonly used in
efficient image-based lighting techniques and has been successfully applied for inverse rendering
before [3, 20]. This approximation involves splitting the surface reflectance equation into two factors:
one responsible for pre-integrating illumination and the other for integrating material properties. The
separation allows us to estimate pre-integrated illumination using a Multi-Layer Perceptron (MLP).
This manner of modeling the pre-integrated illumination function is inspired by the modeling of
radiance fields, which model a complex integral of lighting and material properties using an MLP.
Correspondingly, our illumination representation inherits beneficial properties observed with the
modeling of radiance fields such as smoothness. While MLPs representing pre-integrated illumination
have been previously exploited [14, 13], previous works do not supervise the MLP’s learning, leading
to physically inaccurate illumination representations. We propose a novel regularizer based on Monte
Carlo sampling to ensure accurate learning of illumination.

However, the split sum approximation on its own does not take into account self-occlusions. This
hinders material property estimation since shadows tend to be incorrectly attributed to objects’ albedo.
Thus, we derive an occlusion factor to alleviate the effect of self-occlusions. This factor is then
approximated via Monte Carlo sampling and used to supervise an occlusion MLP.

Altogether, our method is capable of attaining state-of-the-art relighting results with under an hour of
training on a single NVIDIA A100 GPU.

Contributions. We claim the following contributions:

(i) We propose a novel representation for pre-integrated illumination as a single MLP with a corre-
sponding regularization to ensure learning a physically-meaningful representation.

(ii) We derive a method for approximating the effect of self-occlusions on pre-integrated lighting and
use it to supervise an occlusion MLP improving material estimation.

(iii) We demonstrate the effectiveness of our method in extracting environmental lighting, geometry,
and material properties by achieving competitive reconstruction and relighting quality on both
synthetic and real data with under one hour of training on a single NVIDIA A100 GPU.

2 Related works

The problem of digitizing real-world objects and environments has long been a subject of active
research in computer vision and computer graphics. We approach this problem through the lenses
of neural rendering and neural inverse rendering; paradigms with lots of recent attention. We now
provide a brief overview of related works in these areas.

2

2.1 Neural rendering and 3D reconstruction

Novel view synthesis is the task of rendering new views of a scene given a set of observations of
the scene. Neural Radiance Fields (NeRF) [18] and its variants [1, 34, 19, 4, 26] have demonstrated
remarkable success in the task of novel view synthesis. NeRF directly models the volumetric scene
function by predicting radiance and density at each 3D point in space while supervising learning with a
photometric reconstruction loss. Due to its success in implicitly learning accurate 3D reconstructions,
several works have branched out to reconstruct accurate meshes through neural rendering [22, 31].
Signed Distance Function (SDF)-based methods [36, 40, 37, 12] model density as a function of
the SDF to obtain well-defined surfaces. By increasing sharpness during training in the conversion
from SDF to density these methods can transition from volume rendering to surface rendering as
they train. While effective, these methods suffer from entangled representations of scene geometry,
material properties, and lighting. Our work follows the surface rendering pipeline proposed in [36]
but reformulates the radiance prediction to disentangle environment lighting and material properties.

2.2 Neural inverse rendering

The task of inverse rendering is a long-standing problem in computer graphics which consists
of estimating the properties of a 3D scene such as shape, material, and lighting from a set of
image observations. The success of neural rendering methods for novel view rendering and 3D
reconstruction has led to a variety of works [2, 45, 43, 29, 3, 20, 46, 42, 14, 16, 30] exploiting
neural rendering for inverse rendering. Due to the challenging nature of this problem, multiple
simplifying assumptions have been adopted. Some works simplify the modeling of lighting by using
low-frequency representations such as spherical gaussians [2, 45, 43, 29, 46, 39, 10] or low-resolution
environment maps [2, 43, 46]. While this approximation generally allows for closed-form solutions of
the rendering integral, it does not capture natural high-frequency illumination. Our work leverages the
split sum approximation [11], proposed for real-time rendering of image-based global illumination
to enable the learning of high-frequency environment lighting. The split sum approximation has
been adopted by several inverse rendering methods [3, 20, 17, 13, 14]. These works represent pre-
integrated lighting with an autoencoder-based illumination network [3, 13], with a set of learnable
images for different roughness levels [20, 17], or with an MLP with integrated spherical harmonic
encoding as input [14]. Autoencoder-based methods rely on learnt illumination features incompatible
with existing rendering pipelines. Learnable images are susceptible to noise and require re-integrating
illumination whenever the base illumination is updated. Lastly, using integrated encodings to avoid
integrating light leads to a representation that is not physically based. In contrast, we propose
modeling pre-integrated lighting as the output of an MLP paired with a novel regularization, which
ensures the network correctly learns to represent physically–based pre-integrated lighting. An issue
arising from the split sum approximation is that pre-integrated illumination is blind to geometry and
does not account for the occlusion of light sources due to geometry throughout the scene. Our work
tackles this issue by supervising the prediction of ambient occlusion through Monte Carlo sampling.

3 Methodology

Our method aims to extract a scene’s geometry, material properties, and illumination from a set
of posed images of the scene. We accomplish this by incorporating a decomposed formulation of
radiance into a surface rendering pipeline. In the following sections, we begin with an overview of the
surface rendering pipeline. We then detail the physically-based radiance formulation, which allows
us to decompose radiance into illumination and material properties. Next, we describe our proposed
MLP representation for illumination along with the additional loss term it requires. Afterward, we
derive a method for estimating an occlusion factor to account for visibility within the split sum
approximation. Finally, we describe additional regularization used to facilitate learning.

3.1 Overview of neural rendering

Neural volume rendering relies on learning two functions: σ(x; θ) : R3 7→ R which maps a point in
space x onto a density σ, and Lo(x, ωo; θ) : R3 ×R3 7→ R3 that maps point x viewed from direction
ωo onto outgoing radiance Lo. The parameters θ that define the density and radiance functions are
typically optimized to represent a single scene by using multiple posed views of the scene. To learn
these functions, they are evaluated at multiple points along a ray r(t) = o− tωo, t ∈ [tn, tf], defined

3

Fixed

Learnable

Figure 2: Proposed architecture. A spatial network maps spatial coordinates x into geometry
(σ), material properties (albedo â, metalness m̂, and roughness ρ̂), and occlusion factors (ô). The
pre-integrated illumination MLP predicts both specular ĝs(ω̂r, ρ̂) and diffuse ĝd(n̂, ρ = 1) terms by
using the predicted normals n̂, roughness, and the reflection vector ω̂r of view direction ωo. Finally,
the specular and diffuse terms are combined with material properties to compute output radiance L̂o.

by the camera origin o ∈ R3, pixel viewing direction ωo, and camera near and far clipping planes tn
and tf . A pixel color for the ray can then be obtained through volume rendering via:

Ĉ(r; θ) =

tf∫
tn

T (t) σ̂(r(t)) L̂o(r(t), ωo) dt, where T (t) = exp

−
t∫

tn

σ̂(r(s)) ds

 . (1)

In practice, a summation of discrete samples along the ray is used to approximate the integral. This
volume rendering process allows us to supervise the learning of implicit functions Lo and σ, in a
pixel-wise fashion through the reconstruction loss:

Lrec(R; θ) =
1

|R|
∑
r∈R

∥∥∥C(r)− Ĉ(r; θ)
∥∥∥2
2
, (2)

where R is a batch of rays generated from a random subset of pixels from training images.

The learned geometry can be improved if, instead of directly predicting density σ, a signed distance
field (SDF) is learned and then mapped to density. To this end, we follow the SDF formulation
proposed in NeuS [36]. Learning a valid SDF requires the use of an additional Eikonal loss term
LEik. For more details, please refer to [36].

Since volume density σ depends only on a point’s position in space while output radiance Lo

depends on both position and viewing direction, neural rendering networks are typically split into
a spatial network and a radiance network. As shown in fig. 2, we maintain the spatial network to
estimate density along with additional material properties but rely on a physically-based [23] radiance
estimation instead of a radiance network.

3.2 Physically-based rendering

Given knowledge of a scene’s geometry, material properties, and illumination, it is possible to model
the outgoing radiance Lo(x, ωo) reflected at any position x of an object’s surface in direction ωo by
integrating over the hemisphere Ω defined by the surface’s normal n using the reflectance equation:

Lo =

∫
Ω

(kd
a

π
+ fs)Li⟨ωi,n⟩dωi, (3)

where Li is the incoming radiance, a is the object’s diffuse albedo, and kd and fs are material
properties dependent on the object’s Bidirectional Reflectance Distribution Function (BRDF). For
clarity, we omit from notation the dependency of incoming radiance on ωi as well as the dependency
of material properties on position x. Radiance Lo has diffuse and specular components Ld and
Ls. Image-based lighting methods often employ the split sum approximation to calculate specular
lighting Ls by splitting the integral into two components: one containing the incoming light Li, and
one depending only on material properties. We use the Disney [11] microfacet BRDF parameterized

4

by albedo, metalness, and roughness. The specular component is modeled with the Cook-Torrance
GGX [33, 35] BRDF, leading to the following approximation:

Ls ≈

∫
Ω

D(ωi, ωr, ρ)Li⟨ωi,n⟩dωi∫
Ω

D(ωi, ωr, ρ)⟨ωi,n⟩dωi

∫
Ω

fs⟨ωi,n⟩dωi = g(ωr, ρ)

∫
Ω

fs⟨ωi,n⟩dωi, (4)

where D(ωi, ωr, ρ) is the microfacet normal distribution function dependent on the direction of light
reflection ωr as well as the surface roughness ρ. The term on the right can be pre-computed as in [11]
since it depends only on the BRDF and not a scene’s lighting. The term on the left in Equation (4)
depends on the scene’s lighting and the microfacet distribution function D(ωi, ωr, ρ). The following
sections refer to this term as g(ωr, ρ) and aim to estimate it with an MLP representation. As shown
in fig. 2, we estimate an object’s albedo â, metalness m̂, and roughness ρ̂ from the spatial network.

G
ro

un
d

T
ru

th

Roughness = 0.0 Roughness = 0.2 Roughness = 0.5 Roughness = 1.0

O
ur

s

Figure 3: Pre-integrated environment illumination. We visualize the pre-integrated illumination
ĝ(ωr, ρ) for varying roughness values along our model’s prediction for the ‘toaster’ scene. Our
pre-integrated illumination MLP accurately approximates pre-integrated lighting across roughness
values thanks to our novel regularization loss based on Monte Carlo sampling.

3.3 Pre-integrated illumination MLP representation

We propose to estimate the pre-integrated lighting g(ωr, ρ) at different roughness levels through a
pre-integrated illumination MLP ĝ(ωr, ρ). Please refer to Appendix A.2 for details on how ĝ(ωr, ρ) is
used to calculate L̂d and L̂s. The predictions ĝ should accurately represent the environment lighting
at different levels of roughness. We achieve this through a loss term based on Monte Carlo estimates ḡ
of the original integral for varying roughness and reflected directions using the predicted environment
map L̂i(ω) which can be extracted from ĝ querying perfect specular reflections ĝ(ω, 0).

LD(θ) =
1

|S|
∑
s∈S

∥ĝ(s)− ḡ(s)∥22 , with ḡ(s) =

∑
ωi∈Ω

D(ωi, ωs, ρs)ĝ(ωi, 0)⟨ωi, ωs⟩∑
ωi∈Ω

D(ωi, ωs, ρs)⟨ωi, ωs⟩
, (5)

where the set S consists of paired samples of directions ωs and roughness ρs. Directions are taken
uniformly on a sphere, and half the roughness samples are taken uniformly in the range [0, 1] with the
other half fixed to 1 to ensure correct learning of diffuse lighting. Please refer to Appendix A.1 for a
detailed derivation of ḡ(s). The set Ω of light direction samples is also taken uniformly on a sphere.
While a different sampling could lead to reduced variance, we utilize uniform spherical sampling for
ωi to be more computationally efficient. Uniform spherical sampling allows us to share light samples
across the batch of predictions, thus reducing the number of evaluation calls to the light function
ĝ(ω, 0). We visualize both g and ĝ in fig. 3 for a specific scene.

3.4 Occlusion factors

The split sum approximation does not consider the occlusion of light sources due to geometry.
Occlusions can be incorporated by multiplying incoming light Li by a binary visibility function Vi:

LV
o =

∫
Ω

(kd
a

π
+ fs)LiVi⟨ωi,n⟩dωi, (6)

5

Albedo
Ground Truth

Albedo
Ours

Occlusion
Ours

Albedo
w/o Occlusion Loss

Occlusion
w/o Occlusion Loss

Figure 4: Occlusion loss visualization. We visualize the albedo and occlusion predicted by our
method with and without the proposed occlusion regularization loss. When no regularization is used,
we observe that the occlusion prediction fails at disentangling shadows from the albedo. Additionally,
darker materials might wind up with lighter albedos due to occlusion overcompensation.

with Vi taking a value of 1 when there are no occlusions and 0 when incoming light is occluded by
geometry. Both diffuse and specular integrals can be rewritten to incorporate visibility via occlusion
factors od(x) and os(x) which multiply the split sum diffuse and specular lighting terms respectively.
We propose learning the occlusion factors o(x) with an MLP by supervising them with Monte Carlo
estimates ō(x) using the predicted geometry. Please refer to Appendix A.3 for the derivation of
Monte Carlo estimates ō(x). Given the Monte Carlo estimates, we supervise the predicted occlusion
terms ô(x) as follows:

Lo(θ) =
1

|X |
∑
x∈X

w ∥ô(x)− ō(x)∥22 , (7)

where the sample set X is a random subset of the points sampled for volume rendering, and the
weights w are the corresponding normalized volume rendering weights. Weighting the loss function
by the volume rendering weights is required so that the occlusion prediction focuses only on learning
surface points. The output radiance at each point in space is then calculated as follows:

L̂o = γ(ôd ∗ L̂d + ôs ∗ L̂s), (8)

where γ maps the predicted output radiance L̂o from linear to sRGB space.

3.5 Material regularization

To better learn material properties, we introduce a soft regularizer to reduce the prediction of metallic
materials. This encourages the model to prefer explaining outgoing radiance through albedo and
roughness whilst still allowing the prediction of metallic materials. We implement this regularization
as a weighted L2 loss with the same weighting as for the occlusion loss in Equation (7). That is,

Lm(θ) =
1

|X |
∑
x∈X

w ∥m̂(x)|22 . (9)

4 Experiments

4.1 Baselines

We compare against Nerfactor [45], NVDiffRec [20], NVDiffRecMC [8], NeRO [14], NMF [16],
and TensoIR [10]. Due to the differing evaluation methodologies among these works, we train all
baseline methods following publicly released code and report metrics as detailed in the following.

6

Table 1: NeRFactor metrics. We evaluate the reconstruction quality of our method against the
baselines using 20 test images and 8 low-frequency illumination maps for each scene from the
NeRFactor dataset. We scale albedo and relit images with a per-channel factor before computing
metrics. Our method attains competitive performance across all metrics with a low runtime.

Method Normals Albedo Relighting Average

MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Runtime
NerFactor 30.49 23.53 0.910 0.109 23.66 0.895 0.120 >20 hr.
NVDiffRec 26.47 23.05 0.901 0.123 21.88 0.880 0.111 0.98 hr.
NVDiffRecMC 25.98 23.84 0.918 0.114 24.06 0.902 0.099 2.95 hr.
NeRO 30.59 22.83 0.897 0.117 23.68 0.907 0.093 18.38 hr.
NMF 24.14 - - - 22.23 0.895 0.093 2.91 hr.
TensoIR 22.90 25.21 0.929 0.087 23.78 0.907 0.100 3.53 hr.
Ours 17.52 25.29 0.924 0.108 27.31 0.941 0.061 0.81 hr.

Table 2: Blender and Shiny Blender metrics. We report the average of relighting reconstruction
metrics and normal error for our extended Blender and Shiny Blender datasets. Metrics are computed
as the average of 20 test views across 7 high-frequency illumination conditions for each scene. We
scale images by a per-channel factor for relighting metrics. Our method outperforms the baselines
across all metrics for the Blender dataset and has a higher PSNR for the Shiny Blender dataset.

Blender Shiny Blender

Method Normals Relighting Normals Relighting

MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NVDiffRec 26.52 20.11 0.857 0.138 23.64 21.39 0.848 0.177
NVDiffRecMC 24.74 22.50 0.884 0.136 13.75 24.60 0.911 0.151
NeRO 31.59 18.47 0.847 0.158 04.11 16.82 0.844 0.203
NMF 20.66 21.21 0.881 0.118 06.85 24.20 0.908 0.136
TensoIR 18.05 22.58 0.891 0.120 13.14 22.33 0.840 0.193
Ours 16.18 22.73 0.906 0.106 09.07 24.96 0.904 0.144

4.2 Experimental setup

Datasets. We report results using the NeRFactor [45] dataset along with extended versions of the
NeRF Blender [18] (Blender) and the RefNeRF Shiny Blender [34] (Shiny Blender) datasets. The
NeRFactor dataset consists of four synthetic scenes, where test images are rendered under eight
different low-frequency lighting conditions. The Blender dataset consists of eight synthetic scenes
representing a mix of glossy, specular, and Lambertian objects, while the Shiny Blender dataset
consists of six highly reflective synthetic scenes. To showcase the ability of our model to estimate
high-frequency environment lighting, we extend the Blender and Shiny Blender datasets by rendering
all objects under seven novel high-frequency lighting conditions. All models are trained using 100
posed images, and evaluated on 20 test images consisting of novel views for each lighting condition.
Finally, we report qualitative results on real-world objects using the CO3D [24] dataset. Each object
in the dataset consists of a set of images captured along a circular path along with automatically
extracted foreground segmentation masks. We estimate each image’s camera pose with Colmap [27].

Relighting evaluation. We extract geometry from our model in the form of a triangular mesh
by using marching cubes [15]. At each predicted mesh vertex, we estimate material properties in
the form of an albedo, metalness, and roughness. We then render the predicted geometry using
Blender’s [5] physically-based shader. Material properties across faces are obtained by interpolating
the predicted vertex material properties. We utilize the same Blender rendering pipeline to compute
relighting metrics for baselines where explicit meshes and material properties are extracted. Otherwise,
predictions are rendered using the provided relighting methodology. Before evaluating metrics, a
per-channel scaling factor is computed for each scene to compensate for the albedo-lighting ambiguity.
We evaluate the predicted scenes for the NeRFactor, Blender, and Shiny Blender datasets and report
the average Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) [38],
and Learned Perceptual Image Patch Similarity (LPIPS) [44] in table 1 and table 2. Metrics are
reported as an average across 20 test images and across all illumination maps for each dataset. This
metric gives an aggregated performance measure for geometry and material property estimation. Our
method attains competitive relighting performance while maintaining a low runtime.

7

Ground Truth Pred. Render Albedo Metalness Roughness Normals Pred. Env. Map

Figure 5: Qualitative real-world results. We present qualitative results on four scenes from
the CO3D dataset. Our method can successfully recover object geometry, material properties, and
illumination even for challenging scenes captured in the wild.

Albedo evaluation. In addition to overall relighting quality, we evaluate the ability of our method to
recover albedo. We report reconstruction metrics (PSNR, SSIM, and LPIPS) on the predicted albedo
in table 1. As with the relighting metrics, we apply a per-scaling factor to the albedo predictions
before computing reconstruction metrics. Metrics are reported as an average across all 20 test images
for each scene in the NeRFactor dataset. We do not report albedo metrics for other datasets due
to the lack of ground truth. We exclude results from NMF [16] since the albedo in their lighting
formulation is not comparable to the other methods. Thanks to our proposed occlusion factor and
material regularization, our method is on average better able to reconstruct albedo.

Normals evaluation. We measure the pixel-wise Mean Absolute Error (MAE) between ground truth
and predicted normal images to evaluate geometric reconstruction quality. The MAE is weighted
by ground truth alpha values to lower the effect of prediction errors at object borders. Our method
recovers a good estimate of geometry for most scenes as evidenced in tables 1 and 2.

Real-world qualitative results. In real-world scenes, the far-field illumination assumption is violated
and objects don’t follow any specific BRDF model as opposed to synthetic scenes. Both of these
differences make inverse rendering from real-world data a much more challenging task than with
synthetic data. Therefore, we provide qualitative results in fig. 5 to validate our method on real-world
captures from the CO3D dataset. It can be observed that even in this challenging scenario our method
is capable of recovering accurate object geometry, as well as providing a reasonable estimation of
material properties and environment maps.

5 Discussions

5.1 Ablations

Occlusion loss. We visualize the effects of the proposed occlusion loss in fig. 4. Learning an
occlusion factor without supervision leads to errors in the albedo predictions due to the inability to
disentangle shadows from object color. By explicitly supervising an occlusion factor we observe
better albedo color predictions such as visualized in the blue box in the hotdog example, and all boxes
in the drums example. Additionally, shadows are better disentangled from albedo as observed in the
red and green boxes for the hotdog example. Quantitatively, we measure the importance of adding the
occlusion loss to our model in table 3, where it improves both relighting and albedo reconstruction.

Occlusion averaging. The occlusion factor we derive is a per-channel factor that depends on
estimated lighting. However, since both are being learned jointly, we observe that training can be
noisy. We find in table 3 that relighting and albedo reconstruction both improve when we supervise
the occlusion factors ôd and ôs with their per-channel averages instead. Assuming that all channels
of the occlusion factor are equal is equivalent to assuming only white light with varying intensities,
which reduces noise during training and uses fewer parameters.

8

Table 3: NeRFactor ablation results. We report reconstruction and relighting metrics for different
variations of our methodology on the NeRFactor dataset. While the proposed regularizations do not
have a noticeable effect on geometry, they all lead to improvements in albedo and relighting quality.

Method Normals Albedo Relighting

MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Ours (w/o Occ. Avg.) 17.23 24.73 0.919 0.109 27.25 0.941 0.061
Ours (w/o Occ. Loss) 17.29 22.13 0.900 0.122 26.40 0.936 0.064
Ours (w/o Met. Reg.) 17.82 23.92 0.916 0.123 26.56 0.936 0.066
Ours 17.52 25.29 0.924 0.108 27.31 0.941 0.061

D
ru

m
s

Ground Truth Ours NVDiffRec NVDiffRecMC NMF TensoIR

M
at

er
ia

ls
H

el
m

et
T

ea
po

t

Figure 6: Blender and Shiny Blender illumination visualizations. We visualize the predicted
illumination environment maps for our method and baselines for two scenes in the Blender dataset
and two scenes in the Shiny Blender dataset. Illumination is scaled by a per-channel factor to account
for albedo-illumination ambiguity. Our proposed illumination inherits smoothness from the MLP
representation but still captures high-quality details such as trees.

Material regularization. We measure the effect of the material regularization in table 3. Penalizing
metalness prediction discourages our model from explaining radiance through environment lighting
with overpredicted metallic surfaces. This leads to improved albedo predictions as shown in table 3.
However, as visualized in fig. 1, the loss coefficient is small enough such that our model is still
capable of correctly predicting metallic surfaces.

6 Conclusion and limitations

In conclusion, we present a novel and efficient method for inverse rendering based on neural surface
rendering and the split sum approximation for image-based lighting. Owing to our proposed integrated
illumination MLP, we can jointly estimate geometry, lighting, and material properties in under one
hour using a single NVIDIA A100 GPU. Physical accuracy of our pre-integrated MLP representation
is ensured thanks to the proposed illumination regularization. Additionally, we define occlusion
factors for diffuse and specular lighting so that self-occlusions are accounted for with the split sum
approximation. Finall, we propose a way of supervising occlusion MLPs to learn the proposed
occlusion estimators. Altogether, our method produces high-quality estimates of geometry, lighting,
and material properties as measured by rendering objects under unseen views and lighting conditions.

However, due to the highly complex problem that inverse rendering presents, our method comes with
some limitations. The major assumptions we rely on come from using image-based lighting, the split
sum approximation, and Monte Carlo sampling. Image-based lighting assumes that light sources
are located infinitely far away from the scene, leading to errors when this assumption is violated.
While we have tackled the problem of missing self-occlusions within the split sum approximation,
we disregard the effect of indirect illumination. This has a noticeable impact on albedo for reflective
surfaces such as the ’toaster‘ scene. Additionally, we only consider the reflection of light and don’t
model transmission and subsurface scattering effects. Finally, we use a low number of uniform Monte
Carlo samples for the occlusion loss leading to errors due to strong and small light sources. This is
mostly noticeable in albedo predictions for objects in the synthetic Blender dataset, where shadows
can still be noticed in the albedo predictions. We hope future works will tackle these limitations.

9

7 Acknowledgements

The research reported in this publication was supported by funding from King Abdullah University
of Science and Technology (KAUST) - Center of Excellence for Generative AI, under award number
5940.

References

[1] Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.:
Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. ICCV (2021)

[2] Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.P.: Nerd: Neural reflectance
decomposition from image collections. In: IEEE International Conference on Computer Vision
(ICCV) (2021)

[3] Boss, M., Jampani, V., Braun, R., Liu, C., Barron, J.T., Lensch, H.P.: Neural-pil: Neural
pre-integrated lighting for reflectance decomposition. In: Advances in Neural Information
Processing Systems (NeurIPS) (2021)

[4] Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In: European
Conference on Computer Vision. pp. 333–350. Springer (2022)

[5] Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam (2018), http://www.blender.org

[6] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open urban driving
simulator. In: Proceedings of the 1st Annual Conference on Robot Learning. pp. 1–16 (2017)

[7] Guo, Y.C.: Instant neural surface reconstruction (2022), https://github.com/bennyguo/instant-
nsr-pl

[8] Hasselgren, J., Hofmann, N., Munkberg, J.: Shape, Light, and Material Decomposition from
Images using Monte Carlo Rendering and Denoising. arXiv:2206.03380 (2022)

[9] Jiang, Y., Yin, S., Li, K., Luo, H., Kaynak, O.: Industrial applications of digital twins. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
379, 20200360 (08 2021). https://doi.org/10.1098/rsta.2020.0360

[10] Jin, H., Liu, I., Xu, P., Zhang, X., Han, S., Bi, S., Zhou, X., Xu, Z., Su, H.: Tensoir: Tensorial
inverse rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2023)

[11] Karis, B., Games, E.: Real shading in unreal engine 4. Proc. Physically Based Shading Theory
Practice 4(3), 1 (2013)

[12] Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.: Neuralangelo:
High-fidelity neural surface reconstruction. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2023)

[13] Liang, R., Chen, H., Li, C., Chen, F., Panneer, S., Vijaykumar, N.: Envidr: Implicit differentiable
renderer with neural environment lighting. arXiv preprint arXiv:2303.13022 (2023)

[14] Liu, Y., Wang, P., Lin, C., Long, X., Wang, J., Liu, L., Komura, T., Wang, W.: Nero: Neural
geometry and brdf reconstruction of reflective objects from multiview images. In: SIGGRAPH
(2023)

[15] Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction
algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987)

[16] Mai, A., Verbin, D., Kuester, F., Fridovich-Keil, S.: Neural microfacet fields for inverse
rendering (2023)

[17] Mao, S., Wu, C., Shen, Z., Zhang, L.: Neus-pir: Learning relightable
neural surface using pre-integrated rendering. CoRR abs/2306.07632 (2023).
https://doi.org/10.48550/ARXIV.2306.07632, https://doi.org/10.48550/arXiv.
2306.07632

[18] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM
65(1), 99–106 (2021)

10

http://www.blender.org
https://doi.org/10.48550/arXiv.2306.07632
https://doi.org/10.48550/arXiv.2306.07632

[19] Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multireso-
lution hash encoding. ACM Transactions on Graphics (ToG) 41(4), 1–15 (2022)

[20] Munkberg, J., Hasselgren, J., Shen, T., Gao, J., Chen, W., Evans, A., Müller, T., Fidler, S.:
Extracting Triangular 3D Models, Materials, and Lighting From Images. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 8280–8290
(June 2022)

[21] Müller, M., Casser, V., Lahoud, J., Smith, N., Ghanem, B.: Sim4cv: A photo-realistic simulator
for computer vision applications. International Journal of Computer Vision 126(9), 902–919
(2018). https://doi.org/10.1007/s11263-018-1073-7

[22] Oechsle, M., Peng, S., Geiger, A.: Unisurf: Unifying neural implicit surfaces and radiance fields
for multi-view reconstruction. In: International Conference on Computer Vision (ICCV) (2021)

[23] Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implemen-
tation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edn. (2016)

[24] Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.: Common
objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In:
International Conference on Computer Vision (2021)

[25] Rematas, K., Liu, A., Srinivasan, P.P., Barron, J.T., Tagliasacchi, A., Funkhouser, T., Ferrari, V.:
Urban radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 12932–12942 (2022)

[26] Rojas, S., Zarzar, J., Pérez, J.C., Sanakoyeu, A., Thabet, A., Pumarola, A., Ghanem, B.: Re-rend:
Real-time rendering of nerfs across devices. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 3632–3641 (October 2023)

[27] Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 4104–4113 (2016)

[28] Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical simulation
for autonomous vehicles. In: Field and Service Robotics (2017), https://arxiv.org/abs/
1705.05065

[29] Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: Nerv: Neural
reflectance and visibility fields for relighting and view synthesis. In: CVPR (2021)

[30] Sun, C., Cai, G., Li, Z., Yan, K., Zhang, C., Marshall, C., Huang, J.B., Zhao, S., Dong,
Z.: Neural-pbir reconstruction of shape, material, and illumination. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). pp. 18046–18056 (October
2023)

[31] Sun, J., Chen, X., Wang, Q., Li, Z., Averbuch-Elor, H., Zhou, X., Snavely, N.: Neural 3d
reconstruction in the wild. In: ACM SIGGRAPH 2022 Conference Proceedings. pp. 1–9 (2022)

[32] Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P., Barron, J.T.,
Kretzschmar, H.: Block-NeRF: Scalable large scene neural view synthesis. arXiv (2022)

[33] Torrance, K.E., Sparrow, E.M.: Theory for off-specular reflection from roughened surfaces∗. J.
Opt. Soc. Am. 57(9), 1105–1114 (Sep 1967). https://doi.org/10.1364/JOSA.57.001105, https:
//opg.optica.org/abstract.cfm?URI=josa-57-9-1105

[34] Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF:
Structured view-dependent appearance for neural radiance fields. CVPR (2022)

[35] Walter, B., Marschner, S.R., Li, H., Torrance, K.E.: Microfacet models for refraction through
rough surfaces. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques.
p. 195–206. EGSR’07, Eurographics Association, Goslar, DEU (2007)

[36] Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689
(2021)

[37] Wang, Y., Skorokhodov, I., Wonka, P.: Hf-neus: Improved surface reconstruction using high-
frequency details. Advances in Neural Information Processing Systems 35, 1966–1978 (2022)

[38] Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visi-
bility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004).
https://doi.org/10.1109/TIP.2003.819861

11

https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://opg.optica.org/abstract.cfm?URI=josa-57-9-1105
https://opg.optica.org/abstract.cfm?URI=josa-57-9-1105

[39] Wu, H., Hu, Z., Li, L., Zhang, Y., Fan, C., Yu, X.: Nefii: Inverse rendering for re-
flectance decomposition with near-field indirect illumination. In: 2023 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 4295–4304 (2023).
https://doi.org/10.1109/CVPR52729.2023.00418

[40] Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. In:
Thirty-Fifth Conference on Neural Information Processing Systems (2021)

[41] Zhang, J., Yao, Y., Li, S., Liu, J., Fang, T., McKinnon, D., Tsin, Y., Quan, L.: Neilf++:
Inter-reflectable light fields for geometry and material estimation. International Conference on
Computer Vision (ICCV) (2023)

[42] Zhang, K., Luan, F., Li, Z., Snavely, N.: Iron: Inverse rendering by optimizing neural sdfs and
materials from photometric images. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 5565–5574 (2022)

[43] Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: PhySG: Inverse rendering with spherical
gaussians for physics-based material editing and relighting. In: The IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2021)

[44] Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effective-
ness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 586–595. IEEE Computer Society, Los
Alamitos, CA, USA (jun 2018). https://doi.org/10.1109/CVPR.2018.00068, https://doi.
ieeecomputersociety.org/10.1109/CVPR.2018.00068

[45] Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: Nerfactor:
Neural factorization of shape and reflectance under an unknown illumination. ACM Transactions
on Graphics (TOG) (2021)

[46] Zhang, Y., Sun, J., He, X., Fu, H., Jia, R., Zhou, X.: Modeling indirect illumination for inverse
rendering. In: CVPR (2022)

A Appendix

A.1 Derivation of illumination loss

In this section, we go through the derivation for the Monte Carlo approximation of pre-integrated
illumination ḡ used in eq. (5). We first split the specular light integral into two terms:

Ls =

∫
Ω

fsLi⟨ωi,n⟩dωi∫
Ω

fs⟨ωi,n⟩dωi

∫
Ω

fs⟨ωi,n⟩dωi. (10)

As mentioned in section 3.2, the term on the right can be precomputed so we focus on calculating an
approximation for the term on the left, which we denote g(ωr, ρ).

g(ωr, ρ) =

∫
Ω

fsLi⟨ωi,n⟩dωi∫
Ω

fs⟨ωi,n⟩dωi
. (11)

This term requires us to make two approximations to the Cook-Torrance GGX BRDF fs

fs =
DFG

4⟨ωo,n⟩⟨ωi,n⟩
, (12)

to be able to approximate g as blurred environment maps as per the split sum approximation. The first
approximation on the BRDF consists of assuming the multiplication between fresnel and geometric
shadowing terms is approximately equal to the dot product between the normal and viewing directions:
FG ≈ ⟨ωi,n⟩. Thus, we have that

12

https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00068
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00068

fs ≈
D

4⟨ωo,n⟩
, g(ωr, ρ) ≈

∫
Ω

DLi⟨ωi,n⟩dωi∫
Ω

D⟨ωi,n⟩dωi
, (13)

as shown in Equation (4). The GGX (Trowbridge-Reitz) microfacet distribution function D is defined
as:

D(ωi, ωo,n, ρ) =
ρ2

π(⟨h,n⟩2(ρ2 − 1) + 1)2
, (14)

where h is the half vector between ωi and ωo. The second approximation assumes the normal and
viewing directions to be equal to the reflection direction. That is, n ≈ ωr and ωo ≈ ωr. This leaves
us with the following simplified D:

D(ωi, ωr, ρ) ≈
ρ2

π(1+⟨ωi,ωr⟩
2 (ρ2 − 1) + 1)2

, (15)

which now does not depend on either the normal or viewing directions. Approximating both integrals
with Monte Carlo sampling and taking the same number of samples, we arrive at the following
expression:

g(ωr, ρ) ≈

∑
Ω

D(ωi, ωr, ρ)Li⟨ωi, ωr⟩∑
Ω

D(ωi, ωr, ρ)⟨ωi, ωr⟩
. (16)

We finally obtain the expression for ḡ in eq. (5) by replacing Li with the estimates from ĝ querying
perfect specular reflections ĝ(ω, 0). A side effect of the approximations used is that for ρ = 1 in
eq. (15), we have that D(ωi, ωr, 1) ≈ 1

π and together with eq. (13) we obtain that

g(n, 1) ≈ 1

π

∫
Ω

Li⟨ωi,n⟩dωi. (17)

This allows us to reuse the same network ĝ used to approximate Ls also approximate Ld as follows:

L̂d = ĝ(n̂, 1)k̂dâ. (18)

A.2 BRDF details

The only remaining terms to compute for obtaining diffuse and specular components are the precom-
puted BRDF integral and the diffuse coefficient kd which we compute following [11]. Given our
material property estimates we can compute kd as follows:

F̂0 = (1− m̂) ∗ 0.04 + m̂ ∗ â,
F̂r = F̂0 + (1− ρ̂− F̂0) ∗ (1− ⟨n̂, ωo⟩)5,
k̂d = (1− m̂) ∗ (1− F̂r).

(19)

Finally, we store two coefficients F1 and F2 in a two-dimensional lookup table as per [11] and
compute the BRDF integral as follows:∫

Ω

fs⟨ωi,n⟩dωi = F̂r ∗ F1 + F2. (20)

The final expressions for the diffuse and specular coefficients are thus

L̂d = ĝ(n̂, 1)k̂dâ, L̂s = ĝ(ω̂r, ρ̂) ∗ (F̂r ∗ F1 + F2). (21)

13

A.3 Derivation of occlusion factor approximation

We now go over the derivation of the occlusion factor Monte Carlo approximation. We aim to
approximate occlusion factors od(x) and os(x) such that the diffuse/specular components with
visibility, LV

d and LV
s , can be computed as a multiplication between the diffuse/specular components

without visibility, Ld and Ls, and their respective occlusion factors. For the diffuse component,

LV
d = kd

a

π

∫
Ω

LiVi⟨ωi,n⟩dωi =

∫
Ω

LiVi⟨ωi,n⟩dωi∫
Ω

Li⟨ωi,n⟩dωi
kd

a

π

∫
Ω

Li⟨ωi,n⟩dωi. (22)

Thus, LV
d = od(x)Ld with od(x) =

∫
Ω

LiVi⟨ωi,n⟩dωi∫
Ω

Li⟨ωi,n⟩dωi
. (23)

To incorporate this information, we learn this factor for the diffuse radiance. We propose learning
the occlusion factor od(x) with an MLP, supervising it with Monte Carlo estimates ōd(x) using the
predicted geometry. We approximate od(x) with Monte Carlo sampling by taking the same number
of ωi samples for both integrals:

ōd(x) =

∑
ωi∈Ω

LiVi∑
ωi∈Ω

Li
, (24)

with ωi taken from a cos-weighted sampling of the hemisphere around the normal n at location x.
The probability density function sampled is given by:

pdf(ωi;n) =
⟨ωi,n⟩

π
, (25)

This cos-weighted sampling aids in reducing variance by eliminating the dot product factor from the
estimation.

Similarly, for the specular component we have that

LV
s =

∫
Ω

fsLiVi⟨ωi,n⟩dωi =

∫
Ω

fsLiVi⟨ωi,n⟩dωi∫
Ω

fsLi⟨ωi,n⟩dωi

∫
Ω

fsLi⟨ωi,n⟩dωi. (26)

Thus, LV
s = os(x)Ls with os(x) =

∫
Ω

fsLiVi⟨ωi,n⟩dωi∫
Ω

fsLi⟨ωi,n⟩dωi
. (27)

We then use the approximation for fs in eq. (13), leading to the following Monte Carlo estimate for
ōs(x):

ōs(x) =

∑
ωi∈Ω

LiVi⟨ωi,n⟩∑
ωi∈Ω

Li⟨ωi,n⟩
, (28)

where ωi is now obtained by sampling the GGX distribution to reduce variance by eliminating the
factor D from both integrals. The probability density function sampled in this case is the following:

pdf(ωi;ωr, ρ) =
D(ωi, ωr, ρ)⟨n, ωh⟩

4⟨n, ωo⟩
, (29)

which relies on the second approximation used in the previous section, and where ωh is the half-vector
angle between ωi and ωo.

14

A.4 Implementation details

We embed our proposed lighting decomposition within an efficient implementation of NeuS [7]. We
train our models for 20, 000 steps using a warmup learning rate scheduler for the first 500 steps
followed by an exponential decay scheduler. After every 2000 steps, we estimate the current geometry
by using marching cubes [15] to extract the isosurface at SDF level-set 0. The estimated geometry
is used with 64 samples for the Monte Carlo estimation of occlusion factors. We use a random
subset of 10% of the points from volume rendering to supervise the occlusion network to reduce
time and memory requirements. 8129 light samples are used for computing illumination loss Monte
Carlo estimates. The final loss is calculated as a linear combination of the proposed losses, with the
following coefficients: λrec = 10.0, λD = 10.0, λo = 0.01, λEik = 0.1, and λm = 0.001. We run
all experiments on a single A100 GPU with 60GB RAM and 6 CPU workers using an AMD EPYC
7713 64-Core processor for a total training time of ∼1 hour.

Network implementation details. We implement the spatial network using the progressive hash
grid encoding from [12]. The hash grid consists of 16 levels with 2 features per level and a hashmap
size of 219 entries. The base grid spatial resolution is 32 voxels, increasing by ∼1.32 each level. An
MLP with a single 64-channel hidden layer is used to produce spatial features with 13 channels along
with the SDF predictions. Spatial features are then input to an MLP with two hidden layers of 256
channels each and ReLU activations to produce material property (metalness, roughness, and albedo)
predictions. A separate but identical MLP is used to produce occlusion factor predictions. A sigmoid
is used to map the MLP outputs to the occlusion factor and material properties’ ranges of [0, 1]. The
illumination network consists of an MLP with five hidden layers with 256 channels each and ReLU
activations. Both the direction and roughness vectors used as input to the illumination network are
first positionally encoded as proposed in [18], using 10 frequencies for the directional input and 5
for the roughness input. A softplus function is used to map the illumination network’s output to the
range (0, inf).

A.5 Per-scene quantitative results

We report per-scene metrics for geometry, albedo, and relighting reconstruction using the NeRFactor
dataset in tables 4 to 6. We report per-scene metrics for geometry and relighting using the Blender
dataset in tables 7 to 10, and using the Shiny Blender dataset in tables 11 to 14. Additionally, we
present qualitative results of our method visualizing the learnt illumination, material properties
(metalness, roughness, and albedo), geometry, and relit renderings from our method’s predictions for
the Blender dataset in figs. 7 to 14 and for the Shiny Blender dataset in figs. 15 to 19.

A.6 CO3D qualitative relighting results

We present qualitative results of our method visualizing the learnt illumination, material properties
(metalness, roughness, and albedo), geometry, and relit renderings from our method’s predictions
for the CO3D dataset in figs. 20 to 23. Even in this challenging real-world setting where images are
taken from a user-captured video, our method provides good-quality results.

A.7 Additional qualitative videos

Please refer to the included video files for additional qualitative videos showing predicted renders,
material properties, and relighting for the Blender, Shiny Blender, and CO3D datasets. All videos
follow the same camera trajectory at a fixed distance from the center of the scene. Please note that
due to objects in CO3D lacking training images viewing the upper or lower surfaces of objects,
the reconstruction quality at these locations suffers. This issue could be alleviated with better
video-capturing trajectories.

15

Method MAE ↓
avg. drums ficus hotdog lego

NerFactor 30.49 30.27 45.37 16.95 29.37
NVDiffRec 26.47 26.37 29.39 13.28 36.86
NVDiffRecMC 25.98 28.81 30.88 13.12 31.11
NeRO 30.59 22.00 50.69 19.78 29.90
NMF 24.14 20.62 39.00 10.85 26.10
TensoIR 22.90 18.30 36.38 14.21 22.74
Ours 17.52 18.33 17.19 10.41 24.13

Table 4: NeRFactor per-scene MAE.

Method PSNR ↑ SSIM ↑ LPIPS ↓
avg. drums ficus hotdog lego avg. drums ficus hotdog lego avg. drums ficus hotdog lego

NerFactor 23.66 20.01 23.71 26.15 24.77 0.895 0.879 0.932 0.914 0.854 0.120 0.130 0.090 0.118 0.141
NVDiffRec 21.88 20.72 20.09 24.64 22.09 0.880 0.890 0.907 0.892 0.831 0.111 0.097 0.085 0.124 0.137
NVDiffRecMC 24.06 21.56 21.38 29.05 24.24 0.902 0.899 0.910 0.938 0.862 0.099 0.094 0.079 0.089 0.134
NeRO 23.68 20.73 23.58 25.28 25.14 0.907 0.900 0.936 0.908 0.884 0.093 0.110 0.062 0.093 0.108
NMF 22.23 21.54 21.36 22.47 23.58 0.895 0.906 0.934 0.876 0.863 0.093 0.075 0.063 0.120 0.116
TensoIR 23.78 22.49 23.07 25.58 23.97 0.907 0.915 0.933 0.895 0.886 0.100 0.077 0.081 0.129 0.113
Ours 27.31 24.72 27.45 29.04 28.02 0.941 0.935 0.964 0.947 0.920 0.061 0.058 0.041 0.069 0.075

Table 5: NeRFactor per-scene relighting metrics.

Method PSNR ↑ SSIM ↑ LPIPS ↓
avg. drums ficus hotdog lego avg. drums ficus hotdog lego avg. drums ficus hotdog lego

NerFactor 23.53 20.75 22.05 27.75 23.58 0.910 0.878 0.923 0.937 0.903 0.109 0.132 0.098 0.093 0.112
NVDiffRec 23.05 19.47 23.67 28.20 20.87 0.901 0.880 0.938 0.942 0.844 0.123 0.118 0.090 0.110 0.174
NVDiffRecMC 23.84 20.28 22.16 29.27 23.65 0.918 0.892 0.923 0.950 0.905 0.114 0.118 0.105 0.100 0.134
NeRO 22.83 20.52 20.05 26.70 24.03 0.897 0.889 0.910 0.923 0.868 0.117 0.116 0.106 0.100 0.147
NMF - - - - - - - - - - - - - - -
TensoIR 25.21 24.48 22.75 27.58 26.05 0.929 0.936 0.920 0.936 0.925 0.087 0.058 0.079 0.088 0.122
Ours 25.29 23.73 29.41 24.68 23.33 0.924 0.922 0.974 0.929 0.870 0.108 0.099 0.051 0.121 0.160

Table 6: NeRFactor per-scene albedo metrics.

Method MAE ↓
avg. chair drums ficus hotdog lego materials mic ship

NVDiffRec 26.52 20.71 28.70 28.96 15.46 40.53 22.37 21.39 34.04
NVDiffRecMC 24.74 16.47 28.69 38.18 16.36 34.84 12.04 21.04 30.27
NeRO 31.59 13.47 29.45 51.33 13.13 29.20 71.22 19.00 25.95
NMF 20.66 13.18 20.24 36.61 13.97 26.38 08.69 20.68 25.56
TensoIR 18.05 11.69 17.88 30.63 15.16 19.18 13.51 17.31 19.02
Ours 16.18 11.65 20.96 17.38 13.20 21.17 08.93 14.37 21.76

Table 7: Blender per-scene MAE.

Method PSNR ↑
avg. chair drums ficus hotdog lego materials mic ship

NVDiffRec 20.11 21.70 19.41 20.32 21.17 21.84 21.26 18.48 16.69
NVDiffRecMC 22.50 24.64 20.57 21.27 26.37 24.77 24.57 18.95 18.91
NeRO 18.47 22.73 13.51 21.12 19.99 21.81 12.73 17.82 18.04
NMF 21.21 22.53 21.38 22.62 20.52 22.05 24.87 18.34 17.41
TensoIR 22.58 25.21 22.10 23.90 22.01 26.18 23.00 18.79 19.45
Ours 22.73 25.00 22.62 26.40 20.94 23.88 25.38 18.75 18.88

Table 8: Blender per-scene PSNR.

16

Method SSIM ↑
avg. chair drums ficus hotdog lego materials mic ship

NVDiffRec 0.857 0.886 0.852 0.902 0.894 0.834 0.866 0.927 0.695
NVDiffRecMC 0.884 0.918 0.877 0.902 0.930 0.865 0.904 0.924 0.750
NeRO 0.847 0.905 0.774 0.912 0.899 0.856 0.755 0.920 0.754
NMF 0.881 0.908 0.890 0.934 0.890 0.863 0.913 0.926 0.722
TensoIR 0.891 0.929 0.899 0.935 0.891 0.906 0.871 0.934 0.763
Ours 0.906 0.937 0.908 0.952 0.914 0.901 0.930 0.937 0.769

Table 9: Blender per-scene SSIM.

Method LPIPS ↓
avg. chair drums ficus hotdog lego materials mic ship

NVDiffRec 0.138 0.099 0.134 0.083 0.141 0.141 0.132 0.092 0.283
NVDiffRecMC 0.136 0.084 0.135 0.093 0.118 0.147 0.112 0.097 0.306
NeRO 0.158 0.099 0.229 0.088 0.115 0.132 0.218 0.095 0.291
NMF 0.118 0.093 0.103 0.066 0.135 0.108 0.081 0.087 0.271
TensoIR 0.120 0.082 0.102 0.076 0.148 0.087 0.130 0.088 0.251
Ours 0.106 0.065 0.096 0.050 0.116 0.097 0.075 0.077 0.269

Table 10: Blender per-scene LPIPS.

Method MAE ↓
avg. car coffee helmet teapot toaster

NVDiffRec 23.64 40.01 21.46 18.14 07.73 30.86
NVDiffRecMC 13.75 10.83 23.34 12.73 08.77 13.08
NeRO 04.11 05.72 04.72 01.29 03.27 05.54
NMF 06.85 07.38 12.22 02.42 04.67 07.58
TensoIR 13.14 11.44 09.56 18.00 10.97 15.72
Ours 09.07 07.21 23.44 02.56 02.29 09.86

Table 11: Shiny Blender per-scene MAE.

Method PSNR ↑
avg. car coffee helmet teapot toaster

NVDiffRec 21.39 24.85 18.29 19.07 29.39 15.36
NVDiffRecMC 24.60 24.25 22.93 22.86 32.70 20.25
NeRO 16.82 15.36 17.21 14.09 25.31 12.12
NMF 24.20 24.58 17.88 27.48 30.66 20.41
TensoIR 22.33 25.31 18.42 19.45 31.35 17.14
Ours 24.96 26.86 18.70 21.51 38.13 19.62

Table 12: Shiny Blender per-scene PSNR.

Method SSIM ↑
avg. car coffee helmet teapot toaster

NVDiffRec 0.848 0.913 0.799 0.848 0.972 0.705
NVDiffRecMC 0.911 0.917 0.921 0.908 0.983 0.827
NeRO 0.844 0.837 0.867 0.835 0.964 0.717
NMF 0.908 0.917 0.843 0.946 0.982 0.849
TensoIR 0.840 0.899 0.857 0.784 0.970 0.692
Ours 0.904 0.942 0.883 0.877 0.993 0.827

Table 13: Shiny Blender per-scene SSIM.

17

Method LPIPS ↓
avg. car coffee helmet teapot toaster

NVDiffRec 0.177 0.102 0.237 0.209 0.046 0.290
NVDiffRecMC 0.151 0.101 0.195 0.182 0.039 0.241
NeRO 0.203 0.152 0.248 0.259 0.049 0.305
NMF 0.136 0.092 0.208 0.142 0.032 0.206
TensoIR 0.193 0.125 0.203 0.277 0.048 0.313
Ours 0.144 0.072 0.204 0.195 0.017 0.234

Table 14: Shiny Blender per-scene LPIPS.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 7: Qualitative results on the Blender ‘chair’ scene.

18

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 8: Qualitative results on the Blender ‘drums’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 9: Qualitative results on the Blender ‘ficus’ scene.

19

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 10: Qualitative results on the Blender ‘hotdog’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 11: Qualitative results on the Blender ‘lego’ scene.

20

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 12: Qualitative results on the Blender ‘materials’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 13: Qualitative results on the Blender ‘mic’ scene.

21

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 14: Qualitative results on the Blender ‘ship’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 15: Qualitative results on the Shiny Blender ‘car’ scene.

22

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 16: Qualitative results on the Shiny Blender ‘coffee’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 17: Qualitative results on the Shiny Blender ‘helmet’ scene.

23

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 18: Qualitative results on the Shiny Blender ‘teapot’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 19: Qualitative results on the Shiny Blender ‘toaster’ scene.

24

Pred Envmap Metalness Roughness

Pred Render Albedo Normals

Courtyard Interior Sunrise

Figure 20: Qualitative results on the CO3D car scene ‘421_58407_112553’.

Pred Envmap Metalness Roughness

Pred Render Albedo Normals

Courtyard Interior Sunrise

Figure 21: Qualitative results on the CO3D car scene ‘112_13250_22955’.

25

Pred Envmap Metalness Roughness

Pred Render Albedo Normals

Courtyard Interior Sunrise

Figure 22: Qualitative results on the CO3D ball scene ‘373_41665_83166’.

Pred Envmap Metalness Roughness

Pred Render Albedo Normals

Courtyard Interior Sunrise

Figure 23: Qualitative results on the CO3D cup scene ‘34_1428_4472’.

26

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims made in the abstract and introduction are backed by experimental
results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of the limitations of our work in section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

27

Justification: We provide the derivation along as assumptions made for our proposed
illumination regularization and occlusion factors in appendices A.1 and A.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the implementation details in appendix A.4. Additionally, we
provide the code as supplementary material and will make the code public upon acceptance.
All datasets used are publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

28

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided as a zip file along with the supplementary material. All
datasets used are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the implementation details in appendix A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not provide error bars due to the runtime cost. While training for a scene
is relatively fast for our method (1 A100 GPU hour), the total runtime including training
and evaluation for all baselines in our main experiment becomes prohibitively expensive for
computing error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the average compute time and computational resources used for
each experiment. [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive societal impacts in section 1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

30

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the owners of data used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

31

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

32

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Related works
	Neural rendering and 3D reconstruction
	Neural inverse rendering

	Methodology
	Overview of neural rendering
	Physically-based rendering
	Pre-integrated illumination MLP representation
	Occlusion factors
	Material regularization

	Experiments
	Baselines
	Experimental setup

	Discussions
	Ablations

	Conclusion and limitations
	Acknowledgements
	Appendix
	Derivation of illumination loss
	BRDF details
	Derivation of occlusion factor approximation
	Implementation details
	Per-scene quantitative results
	CO3D qualitative relighting results
	Additional qualitative videos

