
Improving Language Understanding from Screenshots

Anonymous ACL submission

Abstract

An emerging family of language models (LMs),001
capable of processing both text and images002
within a single visual view, has the promise003
to unlock complex tasks such as chart under-004
standing and UI navigation. We name them005
as screenshot language models. Despite their006
appeal, existing screenshot LMs substantially007
lag behind text-only models on language under-008
standing. To close this gap, we focus on a sim-009
plified setting where screenshots are rendered010
from plain text. We propose a novel Patch-011
and-Text Prediction (PTP) objective where012
we mask and recover both image patches of013
screenshots and text within screenshots. We014
also conduct careful ablation studies in mask-015
ing rates, patch sizes, and designs for training016
stability. Our pre-trained model, while solely017
taking visual inputs, achieves comparable per-018
formance with BERT (within 2%) on 6 out of019
8 GLUE tasks and improves up to 8% on spe-020
cific datasets over prior work. Additionally, we021
extend PTP to train autoregressive screenshot022
LMs and demonstrate its effectiveness—our023
models can significantly reduce perplexity by024
utilizing the screenshot context. Together, we025
hope our findings can inspire future research026
on developing powerful screenshot LMs, and027
extending their reach to broader applications.028

1 Introduction029

The capability for language models (LMs) to pro-030

cess both text and images in a single visual input031

will enable a broad range of complex applications,032

such as document understanding (Mathew et al.,033

2021), chart reading (Masry et al., 2022), and UI034

navigation (Liu et al., 2018). Conventional meth-035

ods like adopting an off-the-shelf OCR tool (Huang036

et al., 2022) is prone to error propagation (Kim037

et al., 2022); the multimodal approach that pro-038

cesses images and text separately (Alayrac et al.,039

2022; Liu et al., 2023b, inter alia) loses the spa-040

cial information between different elements. Re-041

Text-only LMs (GPT, LLaMA)

Multimodal LMs (LLaVA, PaLI)

Text-only

Tasks

Text-only

Tasks

Above+      
Image-text Tasks

e.g., Visual QA

Above+          
Visually-situated 
Language Under-
standing

e.g., UI Navigation

Screenshot LMs (Donut, Pix2Struct)

The quick brown fox jumps 
over the lazy dog.

The quick brown fox jumps 
over the lazy dog.

Text-only Screenshot LMs (PIXEL)   Our setting

LM

Multi-modal

LM

Screenshot

LM

Screenshot

LM

Figure 1: Illustrations on different LM paradigms and
their applications. We focus on improving the text un-
derstanding ability of screenshot LMs, and adopt a text-
only screenshot setting for a clear comparison.

gardless, even state-of-the-art LMs such as GPT- 042

4V (OpenAI, 2023) and Gemini (Gemini Team, 043

2023) struggle at recognizing and understanding 044

text within images (Qi et al., 2023), making them 045

unsuitable for the everything-in-image paradigm. 046

Screenshot LMs. A new family of models (Lee 047

et al., 2023; Rust et al., 2023) has emerged that 048

processes text—along with images, tables, etc.— 049

all through one visual input. We refer to them as 050

screenshot LMs. They can be trained and deployed 051

over a vast array of “screenshots”—any images that 052

have a heavy presence of text, such as webpage 053

screenshots, UI images, and document scans. They 054

are designed to handle visually-situated text in an 055

end-to-end manner, and hold the potential to reach 056

broader applications, as illustrated in Figure 1. 057

Challenges in understanding text from screen- 058

shots. Recent development in screenshot LMs has 059

shown promising results in specific scenarios, such 060

as PIXEL (Rust et al., 2023) in multilingual trans- 061

1



The quick brown foxThe<mask> brown fox

Input: The quick brown fox

Patch prediction (PIXEL)

The quick brown fox

Text prediction (Pix2Struct)

Patch and text prediction (ours)

The quick brown fox

Text only

Screenshot

Figure 2: A comparison between existing objectives and
our PTP objective for training screenshot LMs. The blue
grids illustrate how input images are split into patches.

fer, PhD (Borenstein et al., 2023) in historical doc-062

ument understanding, and Pix2Struct (Lee et al.,063

2023) in chart and UI understanding. However,064

the modality mismatch makes it challenging for065

screenshot LMs to effectively process the text in066

the inputs, and they exhibit a noticeable deficiency067

in language understanding tasks when compared to068

text-only LMs: the prior state-of-the-art, PIXEL,069

still has a 7% performance gap on GLUE (Wang070

et al., 2019) when compared to BERT (Devlin et al.,071

2019). This disparity significantly restricts the util-072

ity of screenshot LMs for widespread applications.073

We argue that to integrate screenshot LMs in prac-074

tical, real-world scenarios effectively, it is crucial075

to first close this gap on text-only tasks.076

Our setting. To enhance the language understand-077

ing capability of screenshot LMs, we focus on a078

text-only screenshot setting, where inputs consist079

exclusively of plain text rendered as images. This080

particular setting facilitates direct comparison with081

text-only LMs, enabling us to isolate the impact of082

the quality of the screenshot data and concentrate083

on architecture and training objective changes to084

improve language understanding performance.085

Our contributions. (1) We introduce the Patch-086

and-Text Prediction (PTP) objective. As shown in087

Figure 2, previous works either only predict image088

patches or only predict text. Instead, we mask089

and predict both the screenshot patches and text090

within the screenshot. The choice is backed up by091

the intuition that a patch prediction objective helps092

learn local visual features of the text, while a text093

prediction objective is more effective in learning to094

understand the language.095

(2) We find that screenshot LMs often exhibit096

training instability and are sensitive to hyperpa- 097

rameter choices. We conduct careful ablations on 098

masking rates and patch sizes, as well as exploring 099

designs to stabilize the training of screenshot LMs. 100

Our pre-trained screenshot LM demonstrates 101

strong language understanding capabilities: it 102

achieves comparable performance (within 2%) to 103

BERTbase (Devlin et al., 2019) on 6 out of 8 datasets 104

from GLUE (Wang et al., 2019), improving over 105

previous best by up to 8 points on specific tasks. 106

(3) We also extend our objective to autoregres- 107

sive LMs, by feeding image patches and text tokens 108

to a single decoder to predict both modalities in an 109

autoregressive manner. We show that the autore- 110

gressive screenshot LMs can effectively utilize the 111

screenshot context either by training from scratch 112

or fine-tuning from existing text-only LMs. 113

We hope our findings will inspire future research 114

exploring screenshot LMs and their applications. 115

We also discuss the limitations of current screen- 116

shot LMs, including training instability and ineffi- 117

ciency, as well as possible future directions. 118

2 Problem Setup 119

In this section, we define our text-only screenshot 120

LM setup. For pre-training, we assume a text cor- 121

pus C and we render each text sequence s ∈ C as 122

an image Is. The model is allowed to utilize both 123

s and Is for its pre-training. For evaluation on the 124

downstream dataset D={(xi, yi)}, 1 ≤ i ≤ |D|, 125

we render each input sequence x as Ix and define 126

DI = {(Ix, y)}, (x, y) ∈ D. Then we only fine- 127

tune and test the model on DI . In other words, 128

the model can leverage both the ground truth text 129

and the rendered images for pre-training, but can 130

only take the rendered images as input for down- 131

stream tasks. This is similar to a realistic end-to- 132

end screenshot LM scenario, where the inputs are 133

predominately screenshots at inference time. 134

3 PTP: Patch and Text Prediction 135

We introduce our screenshot LMs and our training 136

objective PTP. All the components of our model 137

are Transformers (Vaswani et al., 2017) or Vision 138

Transformers (ViT; Dosovitskiy et al., 2021) and 139

the architecture details can be found in Appendix B. 140

In the following, we first introduce how the input 141

images are processed, and then we describe the 142

rendering strategy and the training objectives. 143

2



Image Encoder

Image Decoder Text Decoder

<s> The quick brown fox jumps over the lazy

The quick brown fox jumps over the lazy dog

Cross-attention

MSE loss

Image patch embeddings via a linear projection

Text token embedings

Masked patch embeddings

Cross-entropy loss

Figure 3: An illustration of our Patch-and-Text-Prediction (PTP) objective. PTP applies both image patch masking
(the dark blue masks) and text masking (<mask> tokens) to the input. Subsequently, an image decoder is used to
reconstruct the masked patches, and a text decoder is used to recover the corrupted text. The illustration does not
reflect all implementation details (e.g., the CLS token). Appendix C provides more details.

3.1 Input Processing144

The input images (screenshots, in our case) are split145

into patches sized ph × pw, where h and w denote146

height and width, respectively. By default, we use147

ph = pw = 16, a setting commonly adopted in148

ViT architectures (Dosovitskiy et al., 2021). Each149

patch in a sequence of n patches can be seen as a150

vector input xi ∈ Rph×pw×c, where i ∈ {1, ..., n}151

and c is the number of channels (by default c = 3).152

These patches are turned into patch embeddings via153

a linear layer, which are then fed as input features154

to the transformer. ViTs use a fixed sine/cosine 2D155

positional embedding (Vaswani et al., 2017).156

For the autoregressive text decoder, we use the157

same tokenization as RoBERTa (Liu et al., 2019)158

and OPT (Zhang et al., 2022).159

3.2 Rendering Screenshots160

We follow PIXEL (Rust et al., 2023) for its render-161

ing strategy: we render the text into an image of162

size ph × npw, where n is the number of patches.163

We replace all the new-line characters with a spe-164

cial symbol and render the text into one line. We165

use the Google Noto Sans fonts collection1.166

We implement our own rendering engine, de-167

scribed in Appendix A. By default, we use a font168

size of 10px, similar to the one used in PIXEL. On169

average, one 16 × 16 patch can fit 0.57 OPT text170

token—this means that to encode the same amount171

of text, a screenshot LM following the above ren-172

dering strategy will need almost twice the number173

of tokens compared to a text-only LM.174

3.3 Training Objectives175

We adopt two training objectives: a masked patch176

prediction objective and a masked text prediction177

objective. While either objective has been explored178

1https://fonts.google.com/noto

Figure 4: An example of the rendered text, the patch
masks (red background; 25% span for images), and the
prediction. The image is one line of text but is cut and
concatenated for better visualization here.

in prior work, we are the first to combine them and 179

we show that it is critical to leverage both objec- 180

tives for a competitive performance of screenshot 181

LMs. The intuition behind combining the two ob- 182

jectives is that patch prediction helps learn the local 183

visual features while text prediction is more effec- 184

tive for language understanding. Figure 3 provides 185

an overview of the training. 186

Patch masking and prediction. We randomly 187

exclude input patches from the image encoder and 188

use a bidirectional image decoder to recover them. 189

An MSE loss is calculated between the predicted 190

and the target pixel values of the masked patches. 191

This paradigm was first proposed in MAE (He et al., 192

2022) for images and later adopted in PIXEL (Rust 193

et al., 2023) for text-rendered screenshots. 194

In addition, we follow Rust et al. (2023) and 195

leverage their span masking strategy. As shown 196

in Figure 4, a single patch mask often leaves out 197

shallow cues where the model can complete the 198

word without learning the semantics. In our pre- 199

liminary experiments, we verified those arguments 200

and hence followed its setting. 201

We adopt a masking rate of 10%, which is dras- 202

tically different from the 75% used in MAE and 203

the 25% used in PIXEL. In Section 4.4, we demon- 204

strate that when combined with the text masking 205

objective, it is important to deploy the image mask- 206

ing objective but best to keep the masking rate low. 207

Text masking and prediction. The image pre- 208

diction objective is effective in training the model 209

3

https://fonts.google.com/noto


to understand the visual representation of the text.210

However, they have several drawbacks: (1) the211

training is often unstable due to the extreme con-212

trast of black and white pixels, especially when the213

masking rate is high; (2) patch masking, even with214

the span masking strategy, still often leaks a signif-215

icant amount of shallow cues; (3) pixel prediction216

does not model uncertainty well—while a text ob-217

jective can model a probability distribution over a218

vocabulary, the image decoder often predicts blurry219

gray pixels, or a superposition of several possible220

words, as shown in Figure 4.221

We believe that a text prediction objective is222

more effective in learning the language, and com-223

bining it with the image prediction can lead to both224

strong visual and text understanding capabilities.225

We first randomly mask out tokens in the input text226

and then render the corrupted text as the screenshot.227

We then add an autoregressive text decoder to re-228

cover the corrupted text, similar to BART (Lewis229

et al., 2020). By default, we use a masking rate230

of 25% with uniform masking, replacing masked231

tokens with a special token <mask>, and merging232

adjacent <mask> tokens.233

3.4 Designs to Stabilize Training234

In our preliminary experiments, we observe that235

training screenshot LMs is often unstable in the236

form of optimization stalling or loss spikes. This237

is likely caused by the highly polarized and imbal-238

anced distribution of pixel values in text-rendered239

images (either black or white, and mostly white).240

We identify several design choices that are criti-241

cal, removing of which can lead to performance242

degradation, training stagnation, or loss spikes.243

Pixel-value preprocessing. We follow Rust244

et al. (2023) and adopt the following preprocess-245

ing: (1) The input pixel values are normalized to246

[0, 1];2 (2) The ground truth pixel values used for247

calculating the MSE loss are standardized by the248

means and standard deviations of the patch, i.e.,249

target′ = (target−mean)/std. While the input nor-250

malization is critical for training stability, we find251

the target standardization significantly improves252

the final performance.253

Attention masks and end-of-sequence patch.254

Following Rust et al. (2023), we mask out atten-255

tions to the white empty patches after the end of256

2The other common strategy is to standardize the input
pixel values, which is adopted by Lee et al. (2023). However,
we find such preprocessing hinders the training stability and
the performance in the text-only screenshot setting.

the text sequence; we also add an end-of-sequence 257

black patch at the end of the text, Removing either 258

will lead to higher chances of training collapse. 259

Text prefix. We observe that the image predic- 260

tion loss of screenshot LMs often goes through 261

a “plateau” phase at the beginning of training, as 262

shown in Figure 6. In this phrase, the model only 263

learns to predict grey blur patches and with a cer- 264

tain chance, the training loss never decreases and 265

the training stagnates. We find that rendering a text 266

prefix at the beginning of the input sequence can 267

reduce the chance of stagnation and start the loss 268

decrease earlier. The intuition is that the text prefix 269

provides the model with an easy and stable target 270

to learn. We also observe that a longer text prefix 271

has more significant effect. In our experiments, all 272

models have a text prefix of “Beginning of the 273

sequence:”. Appendix G shows examples of the 274

rendered screenshots with the text prefix. 275

Embedding layernorm. We observe that a 276

model with higher masking rates has a much higher 277

chance to suffer training collapse. In such cases, 278

adding a layer normalization immediately after the 279

input embeddings can mitigate this problem while 280

not inducing much change in the loss. Though our 281

main model does not have the embedding layer- 282

norm, some of our ablations employ the design 283

to accommodate training stability. We offer more 284

details in Appendix F. 285

3.5 Fine-tuning for Downstream Tasks 286

We evaluate our screenshot models in a similar way 287

as BERT: we fine-tune and evaluate them on natural 288

language understanding datasets. Since our model 289

has an encoder-decoder architecture, there are two 290

ways of fine-tuning: 291

Encoder-only. We simply keep the image encoder 292

and discard both the image and the text decoder. 293

Following PIXEL, we take the average representa- 294

tion of the last layer as the sentence representation, 295

and feed it to a linear layer for classification or re- 296

gression tasks. By default, we use the encoder-only 297

fine-tuning for evaluation. 298

Sequence-to-sequence (s2s). In this setting, we 299

leverage the combination of the image-encoder 300

and the text-decoder for downstream tasks via fine- 301

tuning. The model is trained to directly generate 302

text for these tasks (i.e., “good” or “bad” for a senti- 303

ment classification task). For all the details, please 304

refer to Appendix D. 305

4



Model |θ| PP TP MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

BERT† 110M - - 84.0/84.2 87.6 91.0 92.6 60.3 88.8 90.2 69.5 83.0

DONUT∗ 143M ✗ ✓ 64.0/- 77.8 69.7 82.1 13.9 14.4 81.7 54.0 57.2
CLIPPO♣ 93M ✗ ✗ 77.7/77.2 85.3 83.1 90.9 28.2 83.4 84.5 59.2 74.0
PIXEL† 86M ✓ ✗ 78.1/78.9 84.5 87.8 89.6 38.4 81.1 88.2 60.5 76.0
PIXAR⋄ 85M ✓ ✗ 78.4/78.6 85.6 85.7 89.0 39.9 81.7 83.3 58.5 75.3

⋆PTP 86M ✓ ✓ 80.9/81.1 87.4 89.6 92.0 45.7 87.2 89.7 68.7 80.2

⋆PTPs2s 268M ✓ ✓ 82.2/82.6 87.7 90.4 92.5 48.8 83.8 90.6 67.7 80.5

Table 1: Validation results for PTP and baseline models fine-tuned on GLUE. We report F1 scores for QQP and
MRPC, Matthew’s correlation for CoLA, Spearman’s correlation for STS-B, and accuracy for others. We report
baseline results from Rust et al. (2023)†, Borenstein et al. (2023)∗, Tschannen et al. (2023)♣, and Tai et al. (2024)⋄.
The averaged results are calculated without MNLI-MM. We report the number of parameters |θ| used in fine-tuning.
PP: the model uses patch prediction; TP: the model uses text prediction. “PTP” denotes the encoder-only fine-tuning
and “PTPs2s” denotes the sequence-to-sequence fine-tuning.3

4 Experiments306

4.1 Setup307

Pre-training. We pre-train our models on the En-308

glish Wikipedia and BookCorpus (Zhu et al., 2015)309

corpora for 16 epochs with a batch size of 256310

(roughly 1M steps). For each input instance, we311

render a 256-token text sequence to an image with312

size 16× 8464 (529 patches, consistent with Rust313

et al., 2023). More details on pre-training are pro-314

vided in Appendix C.315

Fine-tuning. We fine-tune our models on datasets316

from the GLUE benchmark (Wang et al., 2019).317

We run grid search and report the average valida-318

tion performance of 3 random seeds. Appendix D319

provides more details on fine-tuning.320

Baselines. We compare our models with several321

text-only and screenshot LM baselines.322

BERT (Devlin et al., 2019). We compare to323

BERT because it is a bidirectional text-only LM324

at a similar scale (110M) and it uses the same pre-325

training corpora as ours. Note that BERT adopts326

more epochs over the training data than ours (40327

epochs vs. our 16 epochs).328

Donut (Kim et al., 2022). Donut is an encoder-329

decoder model that takes document images as input330

and outputs text. It is pre-trained with a pseudo-331

OCR task on IIT-CDIP (Lewis et al., 2006) and332

synthetic images generated from English, Chinese,333

Korean, and Japanese Wikipedia.334

CLIPPO (Tschannen et al., 2023). This is a335

3For Pix2Struct, there are no publicly reported GLUE
results. In our preliminary experiments, the performance on
GLUE tasks significantly lags behind other baselines, so we
leave it out in our comparison.

variant of CLIP (Radford et al., 2021) that utilizes 336

one single vision encoder to process both images 337

and text that is rendered as images. We report 338

the GLUE performance of CLIPPO trained on We- 339

bLI (Chen et al., 2023) and 25% C4 (Raffel et al., 340

2020), which is a significantly larger pre-training 341

corpus than ours. 342

PIXEL (Rust et al., 2023). PIXEL is a screen- 343

shot LM that is trained with only a patch masking 344

and prediction objective. The other configurations 345

(e.g., pre-training corpora and hyperparameters) are 346

mostly the same as ours. A comparison between 347

PIXEL and our model can help us understand the 348

effect of our new training objective. 349

PIXAR (Tai et al., 2024). PIXAR is a concur- 350

rent work that explores autoregressive extensions 351

of PIXEL. To be able to generate text via gener- 352

ating images, PIXAR adopts adversarial training 353

and uses OCR softwares to extract the text. PIXAR 354

uses the same training data as PIXEL. 355

4.2 Main Results: PTP Outperforms Other 356

Screenshot LMs Significantly 357

Table 1 shows the main results on the validation sets 358

of the GLUE benchmark. We also report the full 359

results with standard deviation in Table 13 and the 360

test results of our models and reproduced baselines 361

in Table 14. Firstly, compared to previous state- 362

of-the-art screenshot LMs, our PTP achieves sig- 363

nificantly better performance on almost all GLUE 364

tasks, indicating that our objective leads to better 365

language understanding capabilities. Our model 366

improves upon the previous state-of-the-art by up 367

to 8% on specific tasks and more than 4% on av- 368

erage. Comparing PTP to BERT, the performance 369

gap is substantially reduced—on 6 out of the 8 370

5



PM PP TM TP MNLI SST-2 MRPC RTE

✓ ✓ ✗ ✗ 78.6 89.2 88.5 66.5
✓ ✗ ✗ ✓ 79.5 90.0 88.7 66.7
✗ ✗ ✓ ✓ 82.4 90.9 86.5 62.0
✓ ✗ ✓ ✓ 81.1 91.0 88.1 63.8
✓ ✓ ✓ ✓ 80.9 92.0 89.7 68.7

Table 2: Ablations on different training objectives. PM:
patch masking; PP: patch prediction; TM: text masking;
TP: text prediction. The patch masking rate is 10% with
span masking and the text masking rate is 25%.

tasks, the difference is within 2% (for the previous371

best model, this number is 1 out of the 8 tasks).372

4.3 Ablation on Training Objectives373

Several previous works explored patch masking374

and text masking separately (Rust et al., 2023; Lee375

et al., 2023), while we combine both for the first376

time. Here we conduct ablations to study the ef-377

ficacy of (1) patch masking, (2) patch prediction,378

(3) text masking, and (4) text prediction. Table 2379

demonstrates a clear comparison: while using the380

text objective alone is better than predicting im-381

age patches, combining both leads to significantly382

improved results, showing that the model trained383

with both objectives can better understand the text384

within the screenshot images.385

4.4 Ablation on Masking Rates386

Table 3 shows the comparison with different mask-387

ing rates. The first unique phenomenon we observe388

is that a high patch masking rate (e.g., 40%) leads389

to frequent loss spikes and training collapses. We390

then see that with a smaller patch masking rate391

(10%) and a 25% text masking rate, the model can392

achieve the best fine-tuning performance. We hy-393

pothesize that the patch masking mostly helps learn394

the visual representations of the text (hence no need395

for a very high masking rate), while the text mask-396

ing and prediction objective plays a pivotal role in397

facilitating learning the language. We also show in398

Table 16 that using span patch masking improves399

over uniform patch masking.400

4.5 Ablation on Patch Sizes401

Table 4 shows that the best patch size varies de-402

pending on the masking rates: when using a patch403

masking rate of 25% (span), a larger patch size of404

16× 32 is better; when using a patch masking rate405

of 10% (span), the smaller 16× 16 is better; using406

larger patches (e.g., 16 × 64) leads to significant407

but non-catastrophic performance drops, yet they408

also come with efficiency gains by reducing the409

Mask Rate MNLI SST-2 MRPC RTE
Patch Text

5% 25% 79.2 90.0 85.7 62.3
10% 10% 80.0 90.2 88.7 64.5
10% 25% 80.9 92.0 89.7 68.7
25% 25% 80.8 90.7 88.6 65.3
10% 40% 79.6 90.2 85.1 62.2
25% 40% 80.6 90.9 88.9 67.9

Table 3: Results on different masking rates. All patch
masking has span masking.

PM Patch Size MNLI SST-2 MRPC RTE

25%
16× 16 80.8 90.7 88.6 65.3
16× 32 80.7 91.6 89.7 67.4

10%
16× 16 80.9 92.0 89.7 68.7
16× 32 80.4 91.2 89.4 66.5
16× 64 76.7 88.5 88.1 64.4

Table 4: Ablation study on patch sizes. We show that
the optimal patch size depends on the masking rates.
“PM” refers to the span patch masking rate of the input
image. All models here use a 25% text masking rate.

number of tokens needed to encode the same in- 410

formation. We hypothesize that patch sizes have 411

a twofold effect: while a larger patch size reveals 412

less superficial clues, it also reduces the sequence 413

length and leaves the model less compute to pro- 414

cess the input. Note that one factor we ignore is that 415

changing the patch size modifies the span masking 416

behavior—larger patch sizes are effectively larger 417

spans at a smaller patch size—and we leave it out 418

for future research. 419

5 Extension to Autoregressive 420

Screenshot LMs 421

Autoregressive LMs have become the predominate 422

form of large LMs due to their powerful genera- 423

tion capabilities and emerging properties such as 424

in-context learning (Brown et al., 2020; OpenAI, 425

2023; Touvron et al., 2023). Nevertheless, existing 426

screenshot LMs4 are built with an encoder-decoder 427

architecture. In this section, we explore the fea- 428

sibility of extending PTP to decoder-only, autore- 429

gressive screenshot LMs. 430

5.1 Methods 431

Inspired by Bavishi et al. (2023), we employ a sin- 432

gle decoder architecture, where both visual and 433

4Concurrent work PIXAR (Tai et al., 2024) also explores
autoregressive screenshot LMs but they generate images and
rely on OCR softwares to turn them into text.

6



Autoregressive Decoder

Linear projection

Linear projection LM head

jumps

jumps

<img> \n

\n

</img>

</img>

over

over

the

dog

lazy

the lazy

word embeddings from a lookup table

patch embeddings from a linear projection

Figure 5: Our autoregressive screenshot LM.

textual inputs are first mapped into token embed-434

dings and then processed by the same Transformer435

backbone. The input of the model encompasses436

two segments: the first segment is a sequence of437

patches that collectively constitutes a screenshot,438

while the second segment is a sequence of text to-439

kens that follows the screenshot content. Unlike440

Bavishi et al. (2023) which only trains the model441

to predict the text segment, we apply an autoregres-442

sive objective on both the screenshot and the text443

segments. Figure 5 illustrates our autoregressive444

model and details are as follows.445

Input format. Given a text sequence with m text446

tokens, we first split it into the screenshot seg-447

ment (ms tokens) and the text segment (mt tokens),448

where ms +mt = m. The screenshot image is of449

size ph × npw, where n is the number of patches.450

We insert three special tokens into the screenshot451

segment: a beginning-of-image token <img>, an452

image new line token \n5, and an end-of-image453

token </img>. The special tokens aim to inform454

the model the boundary between the screenshot455

and text segments. In our experiments, we set456

ms = mt = 256 and n = 512.457

By default, we use the same rendering strate-458

gies as our encoder-decoder model: we use the459

Google Noto Sans fonts, a font size of 10 and a460

line space of 6. On average, one token produced by461

the LLaMA (Touvron et al., 2023) tokenizer takes462

1.28 patches when the patch size is 16× 16.463

Architecture. We follow the same architecture as464

LLaMA (Touvron et al., 2023), one of the most465

popular open-source autoregressive LMs. We ex-466

periment with two model sizes: (1) a smaller model467

with 380M parameters which we train from scratch,468

and (2) a larger model with 1.3B parameters which469

we continue training from a pre-trained Sheared-470

5This is to follow Bavishi et al. (2023) which allows the
model to know that there is a new line of patches without
using two-dimension positional embedding.

Model Context PPL

Text only None 10.28
Ours 256 text tokens (in screenshots) 9.66
w/o patch pred 256 text tokens (in screenshots) 10.77

Text only 256 text tokens (in text) 8.60

Table 5: Comparisons between 380M LMs trained from
scratch. The input consists of two parts: a segment of
additional “context”, and subsequent 256 text tokens
which the perplexity (PPL) is evaluated on. “w/o patch
pred”: without the patch prediction objective.

Model Context PPL

Text only None 10.20
Ours 256 text tokens (in screenshots) 9.09

Text only 256 text tokens (in text) 7.68

Table 6: Comparison between 1.3B LMs fine-tuned
from Sheared-LLaMA (Xia et al., 2023).

LLaMA checkpoint (Xia et al., 2023). For detailed 471

configurations, please refer to Appendix E. 472

For the image patch input, we use a linear projec- 473

tion to map the pixel values to patch embeddings; 474

For the text token input, we use their corresponding 475

word embeddings. The patch and text embeddings 476

are jointly fed into the Transformer blocks. 477

Training objectives. We adopt both a next patch 478

prediction and a next token prediction objective, 479

as illustrated in Figure 5. For the next patch pre- 480

diction, we take the last layer representation, use 481

a linear projection to map it to pixel values, and 482

calculate the MSE loss. For the next text token 483

prediction, we use an LM head and calculate the 484

cross-entropy loss. 485

5.2 Experiment Results 486

Evaluation setting. Our main goal is to verify 487

whether the autoregressive screenshot LMs can un- 488

derstand the text from the screenshot context. The 489

screenshot LM is given 256 text tokens in screen- 490

shot context and 256 text tokens in the text format, 491

and its text-only counterpart is given just 256 text 492

tokens. Then we measure perplexity on the last 256 493

text tokens. If the screenshot LM can effectively 494

utilize the screenshot context, it will achieve lower 495

perplexity compared to the text-only baseline. 496

Training from scratch. We train 380M parameter 497

LLaMA-based models from scratch on the English 498

Wikipedia and BookCorpus (Zhu et al., 2015) cor- 499

pora for 16 epochs. Details are in Appendix E. 500

Table 5 shows that our autoregressive screen- 501

7



shot LM is able to effectively utilize the screen-502

shot context and reduce the validation perplexity503

(10.28 → 9.66). We also conduct an ablation with-504

out the patch prediction objective, which performs505

significantly worse. When compared to the text-506

only baseline using the same additional context but507

in text modality, there is still a significant gap. We508

hypothesize that the gap comes from two aspects:509

(1) training on screenshots is less effective than510

training on plain text; (2) it is more challenging to511

process the content in screenshots than in text.512

Fine-tuning pre-trained LMs. We also fine-513

tune a pre-existing text-only LM, Sheared-LLaMA-514

1.3B (Xia et al., 2023), with our autoregressive515

screenshot objective on RedPajama (TogetherAI,516

2023) for 5 billion tokens. More details are pro-517

vided in Appendix E.518

Table 6 shows that our objective can be effec-519

tively deployed for fine-tuning an existing LM,520

where our model improves the perplexity by us-521

ing the additional screenshot context. Though the522

screenshot model still has a substantial gap to the523

text-only baseline when the text-only model uses524

the same context in text, it is a first step towards525

effective autoregressive screenshot modeling.526

6 Related Work527

Multimodal LMs. A majority of work along528

the line focuses on effective adaptation of visual529

representations—acquired via a separate visual en-530

coder (Radford et al., 2021; Dosovitskiy et al.,531

2021)—into the text LMs. One approach is to532

incorporate the visual representations via cross-533

attention (Alayrac et al., 2022; Li et al., 2023b; Bai534

et al., 2023). More works directly use visual em-535

beddings as input “tokens” of LMs (Lu et al., 2019;536

Liu et al., 2023b,a; Zhang et al., 2023; Gao et al.,537

2023; Wang et al., 2023; Chen et al., 2023; Driess538

et al., 2023), sometimes with additional process-539

ing (Li et al., 2023c; Dai et al., 2023; Zhu et al.,540

2023a). Bavishi et al. (2023); Li et al. (2023a)541

instead directly process the patches with a linear542

layer and use the embeddings as input, omitting the543

additional visual encoder.544

Screenshot LMs. Two motivations inspire the de-545

velopment of screenshot LMs in previous litera-546

ture. The first one is to develop tokenizer-free547

models for the purpose of better cross-lingual trans-548

ferability. Early work dates back to Meng et al.549

(2019) which explore glyph embedding for Chi-550

nese characters; Salesky et al. (2021) adopt visual 551

text representations on machine translation tasks 552

to improve robustness. The representative work 553

along this line is PIXEL, where Rust et al. (2023) 554

train a ViT-MAE model over text-rendered images 555

with masked patch prediction. Compared to its 556

text-only counterpart, PIXEL achieves better per- 557

formance on non-Latin languages and is more ro- 558

bust toward orthographic noises, but it lags behind 559

on English tasks. Subsequent literature explores 560

rendering strategies (Lotz et al., 2023), extension to 561

historical documents (Borenstein et al., 2023), and 562

generating text via generating images (Tai et al., 563

2024; Li et al., 2023d). 564

The second motivation is to build end-to-end sys- 565

tems for understanding visually-situated text, for 566

example, scanned documents, webpages, or UIs. 567

Early works are mostly pipeline systems where 568

they use OCR tools (Huang et al., 2022; Powal- 569

ski et al., 2021; Appalaraju et al., 2021) or feed 570

view hierarchy information (Li et al., 2020; Bai 571

et al., 2021). Recent works explore end-to-end 572

models that take in solely visual inputs and gener- 573

ate text (Li and Li, 2023; Davis et al., 2022; Aggar- 574

wal et al., 2023; Kim et al., 2022; Zhu et al., 2023b). 575

Pix2Struct (Lee et al., 2023), as one of the latest 576

development, pre-trains encoder-decoder models 577

on large-scale webpage screenshots by masking out 578

certain HTML elements and predicting the masked 579

HTML code. It achieves state-of-the-art perfor- 580

mance on several visually-situated language under- 581

standing tasks and inspires followup works on ta- 582

ble understanding (Alonso et al., 2023), UIs (Shaw 583

et al., 2023), and more. 584

7 Conclusion 585

We introduce PTP, a new objective for training 586

screenshot LMs by predicting both masked im- 587

age patches and masked text. Our model achieves 588

the state-of-the-art results on GLUE and for the 589

first time pushes the performance of screenshot 590

LMs close to their text-only counterparts. We also 591

demonstrate the effectiveness of our objective on 592

autoregressive screenshot LMs. 593

Numerous challenges persist in the development 594

of screenshot LMs: for example, the patch predic- 595

tion objective often makes the training unstable; 596

the model is less efficient than the text-only LMs 597

due to the longer input; We hope that our work 598

will inspire more effort in the domain, and we look 599

forward to stronger screenshot LMs in the future. 600

8



Limitations601

Our work focuses on text-only screenshot LMs,602

which is a simplified setting of the general screen-603

shot LMs. Though we argue that understanding604

text is the most challenging and fundamental as-605

pect of screenshot LMs, we acknowledge that our606

findings may not generalize to the real screenshot607

scenarios. We will explore extending our models608

to real-world screenshots as a future direction.609

Our ablation study, though extensive, is not ex-610

haustive. For example, due to limited computa-611

tional resources, we are unable to explore all pos-612

sible combinations of masking rates and masking613

strategies. Considering that changing the patch614

size will also affect the masking (larger patches615

will essentially lead to more span masking), a more616

comprehensive study is needed to fully understand617

the effect of masking and the optimal setting. We618

also did not thoroughly explore the pre-training hy-619

perparameters and simply followed existing works.620

Regardless, we believe that the above limitations621

do not affect our main findings and contributions.622

Ethical Considerations623

We do not foresee any direct ethical concerns aris-624

ing from our work. Our research involves training625

and evaluating language models, which carry the626

same ethical considerations as other LM research,627

including but not limited to bias from pre-training628

data, bias towards the English language, and envi-629

ronmental impact from the large amount of compu-630

tation required for the experiments.631

References632

Kriti Aggarwal, Aditi Khandelwal, Kumar Tanmay,633
Owais Khan Mohammed, Qiang Liu, Monojit Choud-634
hury, Hardik Chauhan, Subhojit Som, Vishrav Chaud-635
hary, and Saurabh Tiwary. 2023. DUBLIN: Visual636
document understanding by language-image network.637
In Empirical Methods in Natural Language Process-638
ing (EMNLP), pages 693–706.639

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,640
Antoine Miech, Iain Barr, Yana Hasson, Karel641
Lenc, Arthur Mensch, Katherine Millican, Mal-642
colm Reynolds, Roman Ring, Eliza Rutherford,643
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Saman-644
gooei, Marianne Monteiro, Jacob Menick, Sebastian645
Borgeaud, Andrew Brock, Aida Nematzadeh, Sa-646
hand Sharifzadeh, Mikolaj Binkowski, Ricardo Bar-647
reira, Oriol Vinyals, Andrew Zisserman, and Karen648
Simonyan. 2022. Flamingo: a visual language model649
for few-shot learning. In Advances in Neural Infor-650
mation Processing Systems.651

Iñigo Alonso, Eneko Agirre, and Mirella Lapata. 2023. 652
Pixt3: Pixel-based table to text generation. arXiv 653
preprint arXiv:2311.09808. 654

Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota, 655
Yusheng Xie, and R Manmatha. 2021. Docformer: 656
End-to-end transformer for document understanding. 657
In Proceedings of the IEEE/CVF international con- 658
ference on computer vision, pages 993–1003. 659

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas 660
Sunkara, Abhinav Rastogi, Jindong Chen, and 661
Blaise Agüera y Arcas. 2021. Uibert: Learning 662
generic multimodal representations for ui understand- 663
ing. In International Joint Conference on Artificial 664
Intelligence (IJCAI). 665

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, 666
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, 667
and Jingren Zhou. 2023. Qwen-vl: A versatile vision- 668
language model for understanding, localization, text 669
reading, and beyond. 670

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, 671
Danilo Giampiccolo, Bernardo Magnini, and Idan 672
Szpektor. 2006. The second PASCAL recognising 673
textual entailment challenge. 674

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, 675
Maxwell Nye, Augustus Odena, Arushi Somani, and 676
Sağnak Taşırlar. 2023. Fuyu-8b: A multimodal archi- 677
tecture for ai agents. 678

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo 679
Giampiccolo. 2009. The fifth PASCAL recognizing 680
textual entailment challenge. In TAC. 681

Nadav Borenstein, Phillip Rust, Desmond Elliott, and 682
Isabelle Augenstein. 2023. PHD: Pixel-based lan- 683
guage modeling of historical documents. In Em- 684
pirical Methods in Natural Language Processing 685
(EMNLP), pages 87–107. 686

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie 687
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 688
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 689
Askell, et al. 2020. Language models are few-shot 690
learners. In Advances in Neural Information Process- 691
ing Systems (NeurIPS). 692

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez- 693
Gazpio, and Lucia Specia. 2017. SemEval-2017 694
task 1: Semantic textual similarity multilingual and 695
crosslingual focused evaluation. In the 11th Interna- 696
tional Workshop on Semantic Evaluation (SemEval- 697
2017). 698

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Pier- 699
giovanni, Piotr Padlewski, Daniel Salz, Sebastian 700
Goodman, Adam Grycner, Basil Mustafa, Lucas 701
Beyer, Alexander Kolesnikov, Joan Puigcerver, Nan 702
Ding, Keran Rong, Hassan Akbari, Gaurav Mishra, 703
Linting Xue, Ashish V Thapliyal, James Bradbury, 704
Weicheng Kuo, Mojtaba Seyedhosseini, Chao Jia, 705
Burcu Karagol Ayan, Carlos Riquelme Ruiz, An- 706
dreas Peter Steiner, Anelia Angelova, Xiaohua Zhai, 707

9

https://doi.org/10.18653/v1/2023.emnlp-industry.65
https://doi.org/10.18653/v1/2023.emnlp-industry.65
https://doi.org/10.18653/v1/2023.emnlp-industry.65
https://openreview.net/forum?id=EbMuimAbPbs
https://openreview.net/forum?id=EbMuimAbPbs
https://openreview.net/forum?id=EbMuimAbPbs
https://arxiv.org/abs/2311.09808
https://openaccess.thecvf.com/content/ICCV2021/papers/Appalaraju_DocFormer_End-to-End_Transformer_for_Document_Understanding_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Appalaraju_DocFormer_End-to-End_Transformer_for_Document_Understanding_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Appalaraju_DocFormer_End-to-End_Transformer_for_Document_Understanding_ICCV_2021_paper.pdf
https://arxiv.org/abs/2107.13731
https://arxiv.org/abs/2107.13731
https://arxiv.org/abs/2107.13731
https://arxiv.org/abs/2107.13731
https://arxiv.org/abs/2107.13731
http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966
http://arxiv.org/abs/2308.12966
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.8552&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.8552&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.8552&rep=rep1&type=pdf
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1231&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1231&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1231&rep=rep1&type=pdf
https://doi.org/10.18653/v1/2023.emnlp-main.7
https://doi.org/10.18653/v1/2023.emnlp-main.7
https://doi.org/10.18653/v1/2023.emnlp-main.7
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/S17-2001.pdf
https://aclanthology.org/S17-2001.pdf
https://aclanthology.org/S17-2001.pdf
https://aclanthology.org/S17-2001.pdf
https://aclanthology.org/S17-2001.pdf


Neil Houlsby, and Radu Soricut. 2023. PaLI: A708
jointly-scaled multilingual language-image model.709
In International Conference on Learning Representa-710
tions (ICLR).711

Ido Dagan, Oren Glickman, and Bernardo Magnini.712
2005. The PASCAL recognising textual entailment713
challenge. In the First International Conference on714
Machine Learning Challenges: Evaluating Predic-715
tive Uncertainty Visual Object Classification, and716
Recognizing Textual Entailment.717

Wenliang Dai, Junnan Li, Dongxu Li, Anthony718
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,719
Boyang Li, Pascale Fung, and Steven Hoi. 2023. In-720
structblip: Towards general-purpose vision-language721
models with instruction tuning.722

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and723
Christopher Ré. 2022. Flashattention: Fast and724
memory-efficient exact attention with io-awareness.725
Advances in Neural Information Processing Systems726
(NeurIPS), 35:16344–16359.727

Yann N Dauphin, Angela Fan, Michael Auli, and David728
Grangier. 2017. Language modeling with gated con-729
volutional networks. In International Conference on730
Machine Learning (ICML), pages 933–941. PMLR.731

Brian Davis, Bryan Morse, Brian Price, Chris Tens-732
meyer, Curtis Wigington, and Vlad Morariu. 2022.733
End-to-end document recognition and understanding734
with dessurt. In European Conference on Computer735
Vision, pages 280–296. Springer.736

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and737
Kristina Toutanova. 2019. BERT: Pre-training of738
deep bidirectional Transformers for language under-739
standing. In North American Chapter of the Associa-740
tion for Computational Linguistics (NAACL).741

William B. Dolan and Chris Brockett. 2005. Automati-742
cally constructing a corpus of sentential paraphrases.743
In the Third International Workshop on Paraphrasing744
(IWP2005).745

Alexey Dosovitskiy, Lucas Beyer, Alexander746
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,747
Thomas Unterthiner, Mostafa Dehghani, Matthias748
Minderer, Georg Heigold, Sylvain Gelly, Jakob749
Uszkoreit, and Neil Houlsby. 2021. An image750
is worth 16x16 words: Transformers for image751
recognition at scale. In International Conference on752
Learning Representations (ICLR).753

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey754
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan755
Wahid, Jonathan Tompson, Quan Vuong, Tianhe756
Yu, Wenlong Huang, Yevgen Chebotar, Pierre Ser-757
manet, Daniel Duckworth, Sergey Levine, Vincent758
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus759
Greff, Andy Zeng, Igor Mordatch, and Pete Florence.760
2023. Palm-e: an embodied multimodal language761
model. In International Conference on Machine762
Learning (ICML).763

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie 764
Geng, Aojun Zhou, Wei Zhang, Pan Lu, Conghui 765
He, Xiangyu Yue, Hongsheng Li, and Yu Qiao. 2023. 766
Llama-adapter v2: Parameter-efficient visual instruc- 767
tion model. arXiv preprint arXiv:2304.15010. 768

Gemini Team. 2023. Gemini: a family of highly 769
capable multimodal models. arXiv preprint 770
arXiv:2312.11805. 771

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and 772
Bill Dolan. 2007. The third PASCAL recognizing 773
textual entailment challenge. In the ACL-PASCAL 774
Workshop on Textual Entailment and Paraphrasing. 775

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Pi- 776
otr Dollár, and Ross Girshick. 2022. Masked autoen- 777
coders are scalable vision learners. In Proceedings of 778
the IEEE/CVF Conference on Computer Vision and 779
Pattern Recognition (CVPR), pages 16000–16009. 780

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and 781
Furu Wei. 2022. Layoutlmv3: Pre-training for doc- 782
ument ai with unified text and image masking. In 783
Proceedings of the 30th ACM International Confer- 784
ence on Multimedia, pages 4083–4091. 785

Wenzel Jakob, Jason Rhinelander, and Dean 786
Moldovan. 2016. pybind11 — seamless 787
operability between c++11 and python. 788
Https://github.com/pybind/pybind11. 789

Geewook Kim, Teakgyu Hong, Moonbin Yim, 790
JeongYeon Nam, Jinyoung Park, Jinyeong Yim, Won- 791
seok Hwang, Sangdoo Yun, Dongyoon Han, and 792
Seunghyun Park. 2022. Ocr-free document under- 793
standing transformer. In European Conference on 794
Computer Vision, pages 498–517. Springer. 795

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexi- 796
ang Hu, Fangyu Liu, Julian Martin Eisenschlos, Ur- 797
vashi Khandelwal, Peter Shaw, Ming-Wei Chang, 798
and Kristina Toutanova. 2023. Pix2struct: Screen- 799
shot parsing as pretraining for visual language under- 800
standing. In International Conference on Machine 801
Learning (ICML), pages 18893–18912. 802

David Lewis, Gady Agam, Shlomo Argamon, Ophir 803
Frieder, David Grossman, and Jefferson Heard. 2006. 804
Building a test collection for complex document in- 805
formation processing. In Proceedings of the 29th 806
annual international ACM SIGIR conference on Re- 807
search and development in information retrieval, 808
pages 665–666. 809

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 810
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 811
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 812
BART: Denoising sequence-to-sequence pre-training 813
for natural language generation, translation, and com- 814
prehension. In Association for Computational Lin- 815
guistics (ACL), pages 7871–7880. 816

Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang, 817
Fanyi Pu, and Ziwei Liu. 2023a. Otterhd: A high- 818
resolution multi-modality model. 819

10

https://openreview.net/forum?id=mWVoBz4W0u
https://openreview.net/forum?id=mWVoBz4W0u
https://openreview.net/forum?id=mWVoBz4W0u
https://kdd.cs.ksu.edu/Courses/Fall-2008/CIS798/Handouts/06-dagan05pascal.pdf
https://kdd.cs.ksu.edu/Courses/Fall-2008/CIS798/Handouts/06-dagan05pascal.pdf
https://kdd.cs.ksu.edu/Courses/Fall-2008/CIS798/Handouts/06-dagan05pascal.pdf
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/2305.06500
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
http://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
http://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
http://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
https://arxiv.org/pdf/2203.16618.pdf
https://arxiv.org/pdf/2203.16618.pdf
https://arxiv.org/pdf/2203.16618.pdf
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/I05-5002.pdf
https://aclanthology.org/I05-5002.pdf
https://aclanthology.org/I05-5002.pdf
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://dl.acm.org/doi/10.5555/3618408.3618748
https://dl.acm.org/doi/10.5555/3618408.3618748
https://dl.acm.org/doi/10.5555/3618408.3618748
https://arxiv.org/abs/2304.15010
https://arxiv.org/abs/2304.15010
https://arxiv.org/abs/2304.15010
https://arxiv.org/pdf/2312.11805.pdf
https://arxiv.org/pdf/2312.11805.pdf
https://arxiv.org/pdf/2312.11805.pdf
https://aclanthology.org/W07-1401.pdf
https://aclanthology.org/W07-1401.pdf
https://aclanthology.org/W07-1401.pdf
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
https://arxiv.org/pdf/2204.08387.pdf
https://arxiv.org/pdf/2204.08387.pdf
https://arxiv.org/pdf/2204.08387.pdf
https://arxiv.org/abs/2111.15664
https://arxiv.org/abs/2111.15664
https://arxiv.org/abs/2111.15664
https://arxiv.org/abs/2210.03347
https://arxiv.org/abs/2210.03347
https://arxiv.org/abs/2210.03347
https://arxiv.org/abs/2210.03347
https://arxiv.org/abs/2210.03347
https://dl.acm.org/doi/10.1145/1148170.1148307
https://dl.acm.org/doi/10.1145/1148170.1148307
https://dl.acm.org/doi/10.1145/1148170.1148307
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2311.04219
http://arxiv.org/abs/2311.04219
http://arxiv.org/abs/2311.04219


Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,820
Jingkang Yang, and Ziwei Liu. 2023b. Otter: A821
multi-modal model with in-context instruction tuning.822
arXiv preprint arXiv:2305.03726.823

Gang Li and Yang Li. 2023. Spotlight: Mobile UI824
understanding using vision-language models with825
a focus. In International Conference on Learning826
Representations (ICLR).827

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.828
2023c. Blip-2: Bootstrapping language-image pre-829
training with frozen image encoders and large lan-830
guage models.831

Junyi Li, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong832
Wen. 2023d. Renderdiffusion: Text generation as833
image generation. arXiv preprint arXiv:2304.12519.834

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason835
Baldridge. 2020. Mapping natural language instruc-836
tions to mobile UI action sequences. In Association837
for Computational Linguistics (ACL), pages 8198–838
8210.839

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and840
Percy Liang. 2018. Reinforcement learning on web841
interfaces using workflow-guided exploration. In In-842
ternational Conference on Learning Representations843
(ICLR).844

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae845
Lee. 2023a. Improved baselines with visual instruc-846
tion tuning.847

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae848
Lee. 2023b. Visual instruction tuning. In NeurIPS.849

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-850
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,851
Luke Zettlemoyer, and Veselin Stoyanov. 2019.852
RoBERTa: A robustly optimized BERT pretraining853
approach. arXiv preprint arXiv:1907.11692.854

Ilya Loshchilov and Frank Hutter. 2017. SGDR:855
Stochastic gradient descent with warm restarts. In In-856
ternational Conference on Learning Representations.857

Ilya Loshchilov and Frank Hutter. 2019. Decoupled858
weight decay regularization. In International Confer-859
ence on Learning Representations.860

Jonas Lotz, Elizabeth Salesky, Phillip Rust, and861
Desmond Elliott. 2023. Text rendering strategies862
for pixel language models. In Empirical Methods863
in Natural Language Processing (EMNLP), pages864
10155–10172.865

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.866
2019. Vilbert: Pretraining task-agnostic visiolinguis-867
tic representations for vision-and-language tasks. Ad-868
vances in Neural Information Processing Systems869
(NeurIPS), 32.870

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, 871
and Enamul Hoque. 2022. ChartQA: A benchmark 872
for question answering about charts with visual and 873
logical reasoning. In Findings of the Association for 874
Computational Linguistics: ACL 2022, pages 2263– 875
2279. 876

Minesh Mathew, Dimosthenis Karatzas, and CV Jawa- 877
har. 2021. Docvqa: A dataset for vqa on document 878
images. In Proceedings of the IEEE/CVF winter con- 879
ference on applications of computer vision, pages 880
2200–2209. 881

Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, 882
Fan Yin, Muyu Li, Qinghong Han, Xiaofei Sun, and 883
Jiwei Li. 2019. Glyce: Glyph-vectors for chinese 884
character representations. Advances in Neural Infor- 885
mation Processing Systems (NeurIPS), 32. 886

OpenAI. 2023. GPT-4 Technical Report. 887

Rafał Powalski, Łukasz Borchmann, Dawid Jurkiewicz, 888
Tomasz Dwojak, Michał Pietruszka, and Gabriela 889
Pałka. 2021. Going full-tilt boogie on document un- 890
derstanding with text-image-layout transformer. In 891
Document Analysis and Recognition–ICDAR 2021: 892
16th International Conference, Lausanne, Switzer- 893
land, September 5–10, 2021, Proceedings, Part II 16, 894
pages 732–747. Springer. 895

Zhangyang Qi, Ye Fang, Mengchen Zhang, Zeyi Sun, 896
Tong Wu, Ziwei Liu, Dahua Lin, Jiaqi Wang, and 897
Hengshuang Zhao. 2023. Gemini vs gpt-4v: A 898
preliminary comparison and combination of vision- 899
language models through qualitative cases. arXiv 900
preprint arXiv:2312.15011. 901

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 902
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 903
try, Amanda Askell, Pamela Mishkin, Jack Clark, 904
et al. 2021. Learning transferable visual models from 905
natural language supervision. In International Con- 906
ference on Machine Learning (ICML), pages 8748– 907
8763. 908

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 909
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 910
Wei Li, and Peter J Liu. 2020. Exploring the limits 911
of transfer learning with a unified text-to-text Trans- 912
former. The Journal of Machine Learning Research 913
(JMLR), 21(140). 914

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 915
Percy Liang. 2016. SQuAD: 100,000+ questions 916
for machine comprehension of text. In Empirical 917
Methods in Natural Language Processing (EMNLP). 918

Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Eliz- 919
abeth Salesky, Miryam de Lhoneux, and Desmond 920
Elliott. 2023. Language modelling with pixels. In In- 921
ternational Conference on Learning Representations 922
(ICLR). 923

Elizabeth Salesky, David Etter, and Matt Post. 2021. 924
Robust open-vocabulary translation from visual text 925
representations. In Empirical Methods in Natural 926
Language Processing (EMNLP), pages 7235–7252. 927

11

https://arxiv.org/abs/2305.03726
https://arxiv.org/abs/2305.03726
https://arxiv.org/abs/2305.03726
https://openreview.net/forum?id=9yE2xEj0BH7
https://openreview.net/forum?id=9yE2xEj0BH7
https://openreview.net/forum?id=9yE2xEj0BH7
https://openreview.net/forum?id=9yE2xEj0BH7
https://openreview.net/forum?id=9yE2xEj0BH7
http://arxiv.org/abs/2301.12597
http://arxiv.org/abs/2301.12597
http://arxiv.org/abs/2301.12597
http://arxiv.org/abs/2301.12597
http://arxiv.org/abs/2301.12597
https://arxiv.org/pdf/2304.12519.pdf
https://arxiv.org/pdf/2304.12519.pdf
https://arxiv.org/pdf/2304.12519.pdf
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2023.emnlp-main.628
https://doi.org/10.18653/v1/2023.emnlp-main.628
https://doi.org/10.18653/v1/2023.emnlp-main.628
https://proceedings.neurips.cc/paper_files/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://openaccess.thecvf.com/content/WACV2021/papers/Mathew_DocVQA_A_Dataset_for_VQA_on_Document_Images_WACV_2021_paper.pdf
https://openaccess.thecvf.com/content/WACV2021/papers/Mathew_DocVQA_A_Dataset_for_VQA_on_Document_Images_WACV_2021_paper.pdf
https://openaccess.thecvf.com/content/WACV2021/papers/Mathew_DocVQA_A_Dataset_for_VQA_on_Document_Images_WACV_2021_paper.pdf
https://arxiv.org/pdf/1901.10125.pdf
https://arxiv.org/pdf/1901.10125.pdf
https://arxiv.org/pdf/1901.10125.pdf
http://arxiv.org/abs/2303.08774
https://arxiv.org/pdf/2102.09550.pdf
https://arxiv.org/pdf/2102.09550.pdf
https://arxiv.org/pdf/2102.09550.pdf
https://arxiv.org/pdf/2312.15011.pdf
https://arxiv.org/pdf/2312.15011.pdf
https://arxiv.org/pdf/2312.15011.pdf
https://arxiv.org/pdf/2312.15011.pdf
https://arxiv.org/pdf/2312.15011.pdf
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D16-1264/
https://aclanthology.org/D16-1264/
https://aclanthology.org/D16-1264/
https://openreview.net/forum?id=FkSp8VW8RjH
https://aclanthology.org/2021.emnlp-main.576
https://aclanthology.org/2021.emnlp-main.576
https://aclanthology.org/2021.emnlp-main.576


Peter Shaw, Mandar Joshi, James Cohan, Jonathan Be-928
rant, Panupong Pasupat, Hexiang Hu, Urvashi Khan-929
delwal, Kenton Lee, and Kristina Toutanova. 2023.930
From pixels to UI actions: Learning to follow instruc-931
tions via graphical user interfaces. In Advances in932
Neural Information Processing Systems (NeurIPS).933

Noam Shazeer. 2020. Glu variants improve transformer.934
arXiv preprint arXiv:2002.05202.935

Richard Socher, Alex Perelygin, Jean Wu, Jason936
Chuang, Christopher D. Manning, Andrew Ng, and937
Christopher Potts. 2013. Recursive deep models for938
semantic compositionality over a sentiment treebank.939
In Empirical Methods in Natural Language Process-940
ing (EMNLP).941

Yintao Tai, Xiyang Liao, Suglia Alessandro, and An-942
tonio Vergari. 2024. Pixar: Auto-regressive lan-943
guage modeling in pixel space. arXiv preprint944
arXiv:2401.03321.945

TogetherAI. 2023. Redpajama: An open source recipe946
to reproduce llama training dataset.947

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier948
Martinet, Marie-Anne Lachaux, Timothée Lacroix,949
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal950
Azhar, et al. 2023. LLaMA: Open and Effi-951
cient Foundation Language Models. arXiv preprint952
arXiv:2302.13971.953

Michael Tschannen, Basil Mustafa, and Neil Houlsby.954
2023. Clippo: Image-and-language understanding955
from pixels only. In Proceedings of the IEEE/CVF956
Conference on Computer Vision and Pattern Recog-957
nition, pages 11006–11017.958

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob959
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz960
Kaiser, and Illia Polosukhin. 2017. Attention is all961
you need. Advances in Neural Information Process-962
ing Systems (NIPS), 30.963

Alex Wang, Amanpreet Singh, Julian Michael, Felix964
Hill, Omer Levy, and Samuel R Bowman. 2019.965
GLUE: A multi-task benchmark and analysis plat-966
form for natural language understanding. In Inter-967
national Conference on Learning Representations968
(ICLR).969

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi970
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,971
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi972
Li, Yuxiao Dong, Ming Ding, and Jie Tang. 2023.973
Cogvlm: Visual expert for pretrained language mod-974
els.975

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-976
man. 2019. Neural network acceptability judgments.977
Transactions of the Association of Computational978
Linguistics (TACL), 7.979

Adina Williams, Nikita Nangia, and Samuel Bowman.980
2018. A broad-coverage challenge corpus for sen-981
tence understanding through inference. In North982

American Chapter of the Association for Computa- 983
tional Linguistics: Human Language Technologies 984
(NAACL-HLT). 985

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic- 986
tor Sanh, Clement Delangue, Anthony Moi, Pier- 987
ric Cistac, Morgan Funtowicz, Joe Davison, Sam 988
Shleifer, et al. 2020. Transformers: State-of-the-art 989
natural language processing. In Empirical Methods 990
in Natural Language Processing (EMNLP): System 991
Demonstrations. 992

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 993
Chen. 2023. Sheared llama: Accelerating language 994
model pre-training via structured pruning. arXiv 995
preprint arXiv:2310.06694. 996

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Ao- 997
jun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hong- 998
sheng Li, and Yu Qiao. 2023. Llama-adapter: Effi- 999
cient fine-tuning of language models with zero-init 1000
attention. arXiv preprint arXiv:2303.16199. 1001

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 1002
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 1003
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 1004
Opt: Open pre-trained transformer language models. 1005
arXiv preprint arXiv:2205.01068. 1006

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and 1007
Mohamed Elhoseiny. 2023a. Minigpt-4: Enhancing 1008
vision-language understanding with advanced large 1009
language models. arXiv preprint arXiv:2304.10592. 1010

Wang Zhu, Alekh Agarwal, Mandar Joshi, Robin Jia, 1011
Jesse Thomason, and Kristina Toutanova. 2023b. 1012
Efficient end-to-end visual document understand- 1013
ing with rationale distillation. arXiv preprint 1014
arXiv:2311.09612. 1015

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut- 1016
dinov, Raquel Urtasun, Antonio Torralba, and Sanja 1017
Fidler. 2015. Aligning books and movies: Towards 1018
story-like visual explanations by watching movies 1019
and reading books. In Proceedings of the IEEE in- 1020
ternational conference on computer vision, pages 1021
19–27. 1022

12

https://openreview.net/forum?id=3PjCt4kmRx
https://openreview.net/forum?id=3PjCt4kmRx
https://openreview.net/forum?id=3PjCt4kmRx
https://arxiv.org/pdf/2002.05202.pdf
https://aclanthology.org/D13-1170.pdf
https://aclanthology.org/D13-1170.pdf
https://aclanthology.org/D13-1170.pdf
https://arxiv.org/abs/2401.03321
https://arxiv.org/abs/2401.03321
https://arxiv.org/abs/2401.03321
https://www.together.ai/blog/redpajama
https://www.together.ai/blog/redpajama
https://www.together.ai/blog/redpajama
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2212.08045.pdf
https://arxiv.org/pdf/2212.08045.pdf
https://arxiv.org/pdf/2212.08045.pdf
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
http://arxiv.org/abs/2311.03079
http://arxiv.org/abs/2311.03079
http://arxiv.org/abs/2311.03079
https://aclanthology.org/Q19-1040.pdf
https://aclanthology.org/N18-1101.pdf
https://aclanthology.org/N18-1101.pdf
https://aclanthology.org/N18-1101.pdf
https://arxiv.org/pdf/2310.06694.pdf
https://arxiv.org/pdf/2310.06694.pdf
https://arxiv.org/pdf/2310.06694.pdf
https://arxiv.org/abs/2303.16199
https://arxiv.org/abs/2303.16199
https://arxiv.org/abs/2303.16199
https://arxiv.org/abs/2303.16199
https://arxiv.org/abs/2303.16199
https://arxiv.org/pdf/2205.01068.pdf
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2311.09612
https://arxiv.org/abs/2311.09612
https://arxiv.org/abs/2311.09612
https://arxiv.org/pdf/1506.06724.pdf
https://arxiv.org/pdf/1506.06724.pdf
https://arxiv.org/pdf/1506.06724.pdf
https://arxiv.org/pdf/1506.06724.pdf
https://arxiv.org/pdf/1506.06724.pdf


A Rendering Strategy 1023

There are two rendering strategies: (1) pre-rendering the text and storing the screenshots, or (2) rendering 1024

the text on-the-fly during training. While the first one is more efficient (for training), it requires a large 1025

amount of storage space and has limited flexibility (e.g., we need to regenerate the whole dataset if we 1026

need to change the font). We choose to render the text in an online fashion, and thus we need a fast 1027

renderer to avoid data processing becoming a bottleneck. 1028

At the time of writing, various renderers are available that provide varying combinations of features. 1029

However, they are either too slow or not compatible with PyTorch’s multi-process data loading. We then 1030

developed our own in-house renderer. Our renderer is implemented in C++ and meshed to Python via 1031

PyBind11 (Jakob et al., 2016). We use the FreeType library to get the glyphs for the characters. It is 1032

helpful that FreeType already provides the horizontal and vertical offsets to be applied to each character, 1033

so we can simply render each character in turn. We allow the caller to control the font, font size, height, 1034

width, line spacing, word spacing, and margins. We observed roughly a 6.4× speedup compared to 1035

PyGame6, a renderer used by Rust et al. (2023). 1036

B Model Architectures 1037

Our model architecture mainly consists of three components: (1) an image encoder; (2) an image decoder; 1038

and (3) a text decoder. All of these components are based on transformers. Following Rust et al. (2023), 1039

we add a CLS token at the beginning for the encoder input. During pre-training, the image encoder takes 1040

input from unmasked image patches. The encoder output is used by the image decoder (along with masked 1041

tokens, represented by a mask embedding). The image decoder predicts only on the masked patches. The 1042

text decoder uses cross attention to attend to outputs of the image encoder (hence only the unmasked 1043

image patches). 1044

We strictly follow Rust et al. (2023); He et al. (2022) for the image encoder and the image decoder 1045

settings. They are standard ViTs with pre-layer normalizations. For the text decoder, we follow Lee et al. 1046

(2023), which uses a GLU (Gated Linear Unit; Dauphin et al., 2017) version of MLP (Shazeer, 2020). We 1047

also change the positional embedding of the text decoder to a learnable absolute positional embedding for 1048

simplicity. For “our text LM”, we use the same configurations as our encoder-decoder model except that 1049

we also use GLU for the text encoder. Specific hyperparameter settings for the architecture are provided 1050

in Table 7. Note that for our 16× 16 patch models, to form a direct comparison with PIXEL, we follow 1051

the setting of Rust et al. (2023) and use an input image size of 16× 8464; for other patch size, we use an 1052

image size of 16× 8192. 1053

In our preliminary experiments, we find that adding a layernorm after the input linear projection will 1054

lead to more stable training and fewer loss spikes, while not changing the final performance much. We 1055

adopt the input layernorm for some of the ablation models demonstrated in Table 15. 1056

Component Image Encoder Image Decoder Text Decoder

Image patch size 16 × 16 - -
Hidden size 768 512 768
Intermediate size 3072 2048 3072
#Attention heads 12 16 12
#Layers 12 8 12

Table 7: Architecture configurations of PTP.

C Pre-training Details 1057

We use Huggingface’s Tranasformers package (Wolf et al., 2020) to perform all our pre-training and 1058

fine-tuning experiments. We provide the data and optimization hyperparameters during the pre-training of 1059

6https://github.com/pygame/pygame

13

https://github.com/pygame/pygame


our PTP model in Table 8. We use FlashAttention (Dao et al., 2022) to speedup training. We also have1060

several special design choices: (1) We always render a black patch at the end of the text, indicating the end1061

of the sequence (following PIXEL); (2) we do not attend to the white patches after the end-of-sequence1062

black patch (following PIXEL); (3) we normalize the input pixel values and standardize the target pixel1063

values in each patch before calculating the MSE loss (following PIXEL); (4) we always render a prefix text1064

Beginning of the sequence: at the beginning, which serves as an “anchor point” and helps warmup1065

the training (new compared to PIXEL). We find that the above designs are crucial for making the training1066

stable and avoiding stalling or loss spikes.1067

Parameter Value

Data
Image size (height, width) (16, 8464)
Image mode RGB
Font Google Noto Sans
Font size 10
Line space 6
Newline symbol ////
Patch masking rate 10%
Patch span masking true
Patch span masking max length 6
Patch span masking cumulative weights {0.2, 0.4, 0.6, 0.8, 0.9, 1}
Text masking rate 25%
Text masking token <mask>
Merge consecutive text masks true

Optimization
Learning rate 1.5e− 4
Minimum learning rate 1.0e− 5
Warmup 50K steps
Learning rate scheduler Cosine decay (Loshchilov and Hutter, 2017)
Batch size 256
Optimizer AdamW (Loshchilov and Hutter, 2019)
Mixed precision training fp16
Number of epochs 16 (roughly 1M steps)

Table 8: Hyperparameters in PTP pretraining.

D Fine-tuning Hyperparameters1068

We fine-tune our models on datasets from the GLUE benchmark (Wang et al., 2019), including SST-1069

2 (Socher et al., 2013), CoLA (Warstadt et al., 2019), MNLI (Williams et al., 2018), QNLI (Rajpurkar1070

et al., 2016), RTE (Dagan et al., 2005; Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,1071

2009), MRPC (Dolan and Brockett, 2005), QQP7 and STS-B (Cer et al., 2017). We did not include WNLI1072

due to its abnormal data distribution issue noted on the GLUE website8. We run grid search for fine-tuning1073

and report the average of the best validation results over three seeds. Table 9 shows the hyperparameters1074

used for fine-tuning. For rendering, we use the same rendering engine, font, and font size as in pre-training.1075

We also add the trailing black patch and the prefix text to be consistent with pre-training. We mask out the1076

attention to the white patches after the end-of-sequence black patch. We use an image size of (16, 8192)1077

for MNLI, QQP, QNLI, and RTE, and (16, 4096) for the rest. We evaluate the model every 100 steps for1078

MRPC, STS-B, and CoLA, every 250 steps for RTE, and every 500 steps for the remaining tasks. Unlike1079

text models like BERT, we find that screenshot LMs are sensitive to the number of optimization steps1080

instead of epochs of data, thus we control the total number of training steps, similar to Rust et al. (2023).1081

7https://www.quora.com/q/quoradata/
8https://gluebenchmark.com/faq

14

https://www.quora.com/q/quoradata/
https://gluebenchmark.com/faq


For sentence pair tasks, we render a //// between the two sentences. We replace all newlines in the 1082

text with ////. For the sequence-to-sequence setting, we show the corresponding label text for each task 1083

in Table 10. Specifically, for STS-B (a regression task), we follow the setting from T5 (Raffel et al., 2020), 1084

where we round up all the values to the nearest increment of 0.2; during evaluation, we convert the output 1085

text to floats and compute the metric using the original label values. 1086

Parameter Value

Optimizer AdamW
Warmup steps 100
Learning rate scheduler Linear decay
Mixed precision training fp16
Random seeds {42, 43, 44}
Learning rate {1e− 5, 3e− 5, 5e− 5}
Batch size {32, 64, 256}
Training steps {8000, 15000, 30000}

Table 9: Hyperparameters in PTP fine-tuning.

Task Label Text

MNLI yes,maybe,no
QNLI, QQP, MRPC, RTE, CoLA yes,no
SST-2 good,bad
STS-B 0.0,0.2,0.4,...

Table 10: Label text for the sequence-to-sequence setting of GLUE fine-tuning.

E Autoregressive Screenshot LMs 1087

For both the train-from-scratch and the fine-tuning-from-Sheared-LLaMA settings, we set each training 1088

instance to consist of 512 image patches (rendered from a text sequence with 256 text tokens) and its 1089

subsequent 256 text tokens. We also train text baselines with the same configuration, except that its inputs 1090

are sequences of 512 text tokens. 1091

Table 11 shows the configurations of our 380M models and our 1.3B models. Both the screenshot ver- 1092

sions and the text-only versions follow these configurations. Note that the 1.3B configuration follows Xia 1093

et al. (2023), as we fine-tune the models from Sheared-LLaMA-1.3B. 1094

Component 380M 1.3B

Image patch size 16 × 16 16× 16
Hidden size 1024 2048
Intermediate size 2816 5504
#Attention heads 16 16
#Layers 24 24

Table 11: Architecture configurations of our autoregressive models.

We follow most of the settings from the encoder-decoder experiments: we use FlashAttention to 1095

speedup training; we render the text with Google Noto Sans font, size 10, line space 6; we replace all the 1096

newline symbols with ////; we set an attention mask to avoid attending to the white patches at the end; 1097

we normalize the pixel inputs and standardize the target pixels in each patch before calculating the MSE 1098

loss. There are also several differences: we do not use the prefix text or the end-of-sequence black patch, 1099

as we find autoregressive training is more stable and does not require these design choices. 1100

15



Table 12 shows the hyperparameters used for training our 380M and 1.3B models. Note that the data1101

for the two settings are different: we use Wikipedia and BookCorpus for the 380M train-from-scratch1102

setting, and RedPajama (TogetherAI, 2023) for the fine-tuning from Sheared-LLaMA setting. In both1103

cases, each training instance contains 512 text tokens; for a screenshot autoregressive model, the first 2561104

tokens are rendered as a 16× 8192 image, which leads to 512 patch tokens with a patch size of 16× 16.1105

Parameter Value (380M / 1.3B)

Learning rate 1.5e− 4
Minimum learning rate 0
Warmup 50K / 2K
Learning rate scheduler Cosine decay
Batch size 256
Optimizer AdamW
Mixed precision training fp16
Number of steps 16 epochs (roughly 500K steps) / 50K steps

Table 12: Hyperparameters in autoregressive screenshot LM training.

F More Results1106

Training loss curve. Figure 6 shows the image prediction loss curve of our main PTP model. Distinct1107

from text-only LMs whose loss usually drops quickly at the beginning of the training, screenshot LMs1108

first go through a “plateau” phase (roughly 20K steps) and then the loss starts to decrease.1109

Figure 6: The patch prediction loss curve of our PTP model.

Main experiments. Table 13 shows our main GLUE results with standard deviation, averaged over three1110

seeds. Table 14 shows the GLUE test results of our models. We select the best performing model on the1111

validation set (with seed 42) and submit the test prediction results to the GLUE leaderboard.1112

We also add a new text-only LM baseline named Our text LM, for a more fair comparison in terms of1113

both the amount of training data and the objective. This is a text-only encoder-decoder model with the1114

same text objective as our screenshot LMs—we randomly mask 25% of the text tokens, replace them with1115

<mask>, and use a decoder to recover the original sequence.1116

Embedding layernorm ablation. Table 15 shows the effect of using embedding layernorm on models1117

with different masking rates. Note that the training stability results may vary depending on the hardware,1118

software, and random seeds used. As the table has demonstrated, higher masking rates or larger patch1119

sizes lead to an increased chance of training instability. Using embedding layernorm can prevent loss1120

spikes in most cases.1121

16



Model |θ| MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

Our text LM 115M 85.40.2 / 85.40.0 88.30.1 92.20.0 92.60.3 56.30.4 90.10.1 90.80.4 62.52.1
Our text LMs2s 297M 86.00.1 / 86.00.3 88.50.0 92.40.1 92.70.2 58.81.5 89.30.1 91.60.3 74.20.9

PTP 86M 80.90.1 / 81.10.1 87.40.2 89.60.2 92.00.3 45.71.4 87.20.2 89.70.3 68.70.2
PTPs2s 268M 82.20.1 / 82.60.1 87.70.1 90.40.0 92.50.2 48.80.7 83.80.2 90.60.2 67.70.3

Table 13: GLUE validation results with standard deviation.

Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

BERT 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4

PIXELreproduced 73.5/73.7 69.7 85.0 88.7 9.9 79.4 85.1 56.8
PTP 79.9/79.4 69.8 88.4 90.0 37.9 79.4 85.7 62.0
PTPs2s 81.8/80.9 70.5 89.3 91.6 43.1 87.9 87.5 61.7

Table 14: GLUE test results.

Patch Size Mask Rate w.o. Embedding LN w. Embedding LN
Patch Text

16× 16

10% 25% ✓ ✓

10% 40% ✓ ✓

25% 25% ✓ ✓

25% 40% ✗ ✓

16× 32 10% 25% ✗ ✓

16× 64 10% 25% ✗ ✓

Table 15: Effects of using embedding layernorm. ✓ indicates that the training can be completed smoothly while ✗
indicates that the training collapsed due to loss spikes. Note that this result may vary depending on the hardware,
software versions, and random seeds.

Span masking. Table 16 shows the comparison between using span masking vs. not using span masking 1122

on image patches. We observe that at this masking rate, using span masking for image patches leads to a 1123

significantly better result. 1124

Span Masking MNLI SST-2 MRPC RTE

✓ 80.9 92.0 89.7 68.7
✗ 80.5 90.9 89.3 64.9

Table 16: Ablation on span masking. Both models use a 10% patch masking rate and a 25% text masking rate.

17



G Examples1125

Figure 7, Figure 8, and Figure 9 show how the prediction of our main model evolves during pre-training.1126

The model becomes more and more capable of predicting longer masked spans.1127

Figure 7: The prediction of our main model at 100K training step.

Figure 8: The prediction of our main model at 500K training step.

Figure 9: The prediction of our main model at 1M training step.

Figure 10 shows the prediction of the 25%span/25% (patch/text) masking model with 16×16 patch size.1128

With more masking, accurately predicting the masked patches becomes increasingly difficult. Figure 111129

shows the prediction of the 10%span/25% (patch/text) masking model with 16× 32 patch size. The larger1130

patch size essentially leads to more “span” masking, making the pre-training task more challenging.1131

Figure 10: The prediction of the 25%span/25% (patch/text) masking model with 16× 16 patch size.

Figure 11: The prediction of the 10%span/25% (patch/text) masking model with 16× 32 patch size.

18


	Introduction
	Problem Setup
	PTP: Patch and Text Prediction
	Input Processing
	Rendering Screenshots
	Training Objectives
	Designs to Stabilize Training
	Fine-tuning for Downstream Tasks

	Experiments
	Setup
	Main Results: PTP Outperforms Other Screenshot LMs Significantly
	Ablation on Training Objectives
	Ablation on Masking Rates
	Ablation on Patch Sizes

	Extension to Autoregressive   Screenshot LMs
	Methods
	Experiment Results

	Related Work
	Conclusion
	Rendering Strategy
	Model Architectures
	Pre-training Details
	Fine-tuning Hyperparameters
	Autoregressive Screenshot LMs
	More Results
	Examples

