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Abstract

The inner workings of neural networks can be better understood if we can fully
decipher the information encoded in neural activations. In this paper, we argue
that this information is embodied by the subset of inputs that give rise to similar
activations. We propose InversionView, which allows us to practically inspect
this subset by sampling from a trained decoder model conditioned on activations.
This helps uncover the information content of activation vectors, and facilitates
understanding of the algorithms implemented by transformer models. We present
four case studies where we investigate models ranging from small transformers to
GPT-2. In these studies, we show that InversionView can reveal clear information
contained in activations, including basic information about tokens appearing in the
context, as well as more complex information, such as the count of certain tokens,
their relative positions, and abstract knowledge about the subject. We also provide
causally verified circuits to confirm the decoded information.1

1 Introduction

Despite their huge success, neural networks are still widely considered black boxes. One of the most
important reasons is that the continuous vector representations in these models pose a significant
challenge for interpretation. If we could understand what information is encoded in the activations of
a neural model, significant progress might be achieved in fully deciphering the inner workings of
neural networks, which would make modern AI systems safer and more controllable. Toward this
goal, various methods have been proposed for understanding the inner activations of neural language
models. They range from supervised probes [2, 5, 4, 55] to projecting to model’s vocabulary space
[42, 7] to causal intervention [21, 54, 26, 13] on model’s inner states. However, to this date, decoding
the information present in neural network activations in human-understandable form remains a major
challenge. Supervised probing classifiers require the researcher to decide which specific information
to probe for, and does not scale when the space of possible outputs is very large. Projecting to the
vocabulary space is restricted in scope, as it only produces individual tokens. Causal interventions
uncover information flow, but do not provide direct insight into the information present in activations.

Here, we introduce InversionView as a principled general-purpose method for generating hypotheses
about the information present in activations in neural models on language and discrete sequences,
which in turn helps us identify how the information flows through the model—crucial for obtaining
the algorithm implemented by the model. InversionView aims at providing a direct way of reading out

1Code is available at https://github.com/huangxt39/InversionView
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the information encoded in an activation. The technique starts from the intuition that the information
encoded in an activation can be formalized as its preimage, the set of inputs giving rise to this
particular activation under the given model. In order to explore this preimage, given an activation, we
train a decoder to sample from this preimage. Inspection of the preimage, across different inputs,
makes it easy to identify which information is passed along, and which information is forgotten. It
accounts for the geometry of the representation, and can identify which information is reinforced or
downweighted at different model components. InversionView facilitates the interpretation workflow,
and provides output that is in principle amenable to automated interpretation via LLMs (we present a
proof of concept in Section 4).

We showcase the usefulness of the method in three case studies: a character counting task, Indirect
Object Identification, and 3-digit addition. We also present preliminary results on the factual recall
task, demonstrating the applicability of our method to larger models. The character counting task
illustrates how the method uncovers how information is processed and forgotten in a small transformer.
In Indirect Object Identification in GPT2-Small [54], we use InversionView to easily interpret the
information encoded in the components identified by Wang et al. [54], substantially simplifying the
interpretability workflow. For 3-digit addition, we use InversionView to provide for the first time a
fully verified circuit. Across the case studies, InversionView allows us to rapidly generate hypotheses
about the information encoded in each activation site. Coupled with attention patterns or patching
methods, we reverse-engineer the flow of information, which we verify using causal interventions.

2 Methodology

Figure 1: Illustration of the geometry at two differ-
ent activation sites, encoding different information
about the input. Top: the semantics of being on
leave are encoded. Bottom: the information that
the subject of the input sentence is John is encoded.

Interpretation Framework What informa-
tion does an activation in a neural network en-
code? InversionView answers this in terms of
the inputs that give rise to this activation (Fig-
ure 1). For instance, if a certain activation en-
codes solely that “the subject is John” and noth-
ing else (Figure 1, right), then it will remain un-
changed when other parts in the sentence change
while preserving this aspect (e.g., “John is on
leave today.” ⇒ “John has a cute dog.”). From
another perspective, if all sentences where the
subject is John are represented so similarly that
the model cannot distinguish them, given one
of these representations, the only information is
the commonality “the subject is John” (assum-
ing sentences are represented differently when it
does not hold). Building on this intuition, given
an activation, InversionView aims to find those
inputs that give rise to the same activation, and examine what’s common among them to infer what
information it encodes. In realistic networks, different inputs will rarely give rise to exactly the same
activation. Rather, different changes to an input will change the activation to different degrees. The
sensitivity of an activation to different changes reflects the representational geometry: larger changes
make it easier for downstream components to read out information than very small changes. This
motivates a threshold-based definition of preimages, where we consider information as present in an
activation when the activation is sufficiently sensitive to it. Formally speaking, given a space X of
valid inputs, a query input xq ∈ X , a function f that represents the activation of interest as a function
of the input, and a query activation zq = f(xq), define the ϵ-preimage:2

Bzq,f,ϵ = {x ∈ X : D(f(x), zq) ≤ ϵ}, (1)

where ϵ > 0 is a threshold and D(·, ·) is a distance metric. Both ϵ and D(·, ·) are chosen by the
researcher based on representation geometry; we will define these later in case studies. In practice,

2Strictly speaking, when xq is a sequence, we study the vector zq corresponding to a specific position
t in this sequence, i.e. zq = f(xq)t where f(xq)t represents taking the activation from the site of interest
(abstracted by f ) at position t in input sequence xq . In this case, the preimage can more rigorously be defined as
Bzq,f,ϵ = {x : x ∈ X , ∃t ∈ [1, |x|] : D(f(x)t, z

q) ≤ ϵ}.
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Figure 2: (a) The probed model is trained on language modeling objective. (b) Given a trained
probed model, we first cache the internal activations z together with their corresponding inputs and
activation site indices (omitted in the figure for brevity), then use them to train the decoder. The
decoder is trained with language modeling objective, while being able to attend to z. (c) When
interpreting a specific query activation zq, we give it to the decoder, which generates possible inputs
auto-regressively. We then evaluate the distances on the original probed model.

in all our three case studies, we vary ϵ and set it so we can read out coherent concepts from the
ϵ-preimage (Appendix A.4). With a threshold-based definition, we consider only those pieces of
information that have substantial impact on the activation. See more discussion in Appendix A.1.

Conditional Decoder Model In this paper, we study the setting where xq is a sequence. Directly
enumerating Bzq,f,ϵ is in general not scalable, as the input space grows exponentially with the
sequence length. To efficiently inspect Bzq,f,ϵ, we train a conditional decoder model that takes as
input the activation zq and generates inputs giving rise to similar activations in the model under
investigation. In the following, we refer to the original model that we are interpreting as the probed
model, the conditional decoder as the decoder, the place in the probed model from which we take the
activation as the activation site (e.g., the output of ith layer), the inputs generated by the decoder as
samples, and the index of a token in the sequence as position.

We implement the decoder as an autoregressive language model conditioned on zq, decoding input
samples x (see Figure 2, and details in Appendix C). As the decoder’s training objective corresponds
to recovering x exactly, sampling at temperature 1 will typically not cover the full ϵ-preimage.
Thus, for generating elements of the ϵ-preimage, we increase diversity by drawing samples at higher
temperatures and with noise added to zq (details in Appendix A.2). We then evaluate D(f(x), zq) at
each position in each sample x, select the position minimizing D,3 determine membership in Bzq,f,ϵ,
and subsample in-ϵ-preimage and out-of-ϵ-preimage samples for inspection.

An important question is whether this method, relying on a black-box decoder, produces valid
ϵ-preimages. Correctness (are all generated samples in the ϵ-preimage?) is ensured by design,
as we evaluate D(f(x), zq) for each generated sample. The other angle is completeness (are the
samples representative of the ϵ-preimage?). If some groups of inputs in ϵ-preimage are systematically
missing from the generations, one may overestimate the information contained in activations. But
this behavior would be punished by the training objective, since the loss on these examples would be
high. We explicitly verify completeness by enumerating inputs in one of our case studies (Appendix
B). Another approach is to design counter-examples x not satisfying a hypothesis about the content
of Bzq,f,ϵ. In our experiments, we found that these examples were always outside of Bzq,f,ϵ.

3 Discovering the Underlying Algorithm by InversionView

Notation. In the transformer architecture, outputs from each layer are added to their inputs due
to residual connection. The representations of each token are only updated by additive updates,

3In some cases, including Figure 3b 4b, we fix a particular position for interpretation. See Appendix A.3
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(a) (b)

Figure 3: InversionView on Character Counting Task. The model counts how often the target
character (after ’|’) occurs in the prefix (before ’|’). B and E denote beginning and end of sequence
tokens. The query activation conditions the decoder to generate samples capturing its information
content. We show non-cherrypicked samples inside and outside the ϵ-preimage (ϵ = 0.1) at three
activation sites on the same query input. Distance for each sample is calculated between activations
corresponding to the parenthesized characters in the query input and the sample. “True count”
indicates the correct count of the target character in the samples (decoder may generate incorrect
counts). (a) MLP layer amplifies count information. Comparing the distances before (left) and after
(right) the MLP, we see that samples with diverging counts become much more distant from the query
activation. (b) In the next layer (“:” exclusively attends to target character – copying information
from residual stream of target character to the residual stream of “:”), the count is retained but the
identity of the target character is no longer encoded (“c”, “m”, etc. instead of “g”), as it is no
longer relevant for the predicting the count. Therefore, observing the generations informs us of the
activations’ content and how it changes across activation sites.

forming a residual stream [17]. Using notation based on [17] and [40], we denote the residual stream
as xi,{pre,mid,post} ∈ RN×d, where i is the layer (an attention (sub)layer + an MLP (sub)layer)
index, N is the number of input tokens, d is the model dimension, pre, mid, post stand for the
residual stream before the attention layer, between attention and MLP layer, and after the MLP
layer. For example, x0,pre is the sum of token and position embedding, x0,mid is the sum of the
output of the first attention layer and x0,pre, and x0,post is the sum of the output of the first MLP
layer and x0,mid. Note that xi,post = xi+1,pre. We use subscript t to refer to the activation at token
position t, e.g., xi,mid

t ∈ Rd. The attention layer output decomposes into outputs of individual heads
hi,j(·), i.e., xi,mid = xi,pre+

∑
j h

i,j(LN(xi,pre)), where LN(·) represents layer normalization (GPT
style/pre-layer-norm). We denote the attention head’s output as ai,j , i.e., ai,j = hi,j(LN(xi,pre)).

Decoder Architecture. We train a single two-layer transformer decoder across all activation sites
of interest. The query activation zq is concatenated with an activation site embedding e, a learned
embedding layer indicating where the activation comes from, passed through multiple MLP layers
with residual connections, and then made available to the attention heads in each layer of the decoder,
alongside the already present tokens from the input, so that each attention head can also attend to the
post-processed query activation in addition to the context tokens. Each training example is a triple
consisting of an activation vector zq ∈ Rd, the activation site index, and the input, on which the
decoder is trained with a language modeling objective. Appendix C has technical details.

3.1 Character Counting

We train a transformer (2 layers, 1 head) on inputs such as “vvzccvczvvvzvcvc|v:8” to predict the
last token “8”, the frequency of the target character (here, “v”) before the separator “|”. For each
input, three distinct characters are sampled from the set of lowercase characters, and each character’s
frequency is sampled uniformly from 1–9. The input length varies between 7 and 31. We created
1.56M instances and applied a 75%-25% train-test split; test set accuracy is 99.53% (Details in
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Appendix D). We use D(z, zq) = ∥z−zq∥2

∥zq∥2
(i.e., normalized euclidean distance, as the magnitude of

activations varies between layers), where z denotes the aforementioned f(x), and set ϵ = 0.1.

Interpreting via InversionView and attention. In layer 0, the target character consistently attends
to the same character in the previous context, suggesting that counting happens here. In Figure 3a,
we show the ϵ-preimage of x0,mid

tc and x0,post
tc , where the subscript tc denotes the target character.

We show ≈ 10 random samples at a single query input, but our hypotheses are based on—and easily
confirmed by—rapid visual inspection of dozens of inputs across different query inputs.4 On the left
(before the MLP), the activation encodes the target character, as all samples have “g” as the target
character. Count information is not sharply encoded: while the closest activation corresponds to
“g” occurring 3 times, two activations corresponding to a count-4 input (“g” occurring 4 times) are
also close, even closer than a count-3 input. On the other hand, on the right (after the MLP), only
count-3 inputs are inside the ϵ-preimage, and count-4 inputs become much more distant than before.
Comparing the ϵ-preimage before and after the MLP in layer 0, we find that the MLP makes the
count information more prominent in the representational geometry of the activation. The examples
are not cherry-picked; count information is generally reinforced by the MLP across query inputs.

In the next layer, the colon consistently attends to the target character, and InversionView confirms
that count information is moved to the colon’s residual stream (Figure 3b). More importantly, this
illustrates how information is abstracted: We previously found that x0,post

tc encodes identity and
frequency of the target character. However, the colon obtains only an abstracted version of the
information, in which count information remains while the target character is largely (though not
completely) removed. InversionView makes this process visible, by showing that the target character
becomes interchangeable with little change to the activation. See more examples in Appendix D.2.
Overall, with InversionView, we have found a simple algorithm by which the model makes the right
prediction: In layer 0, the target character attends to all its occurrences and obtains the counts. In
layer 1, the colon moves the results from the target character to its residual stream and then produces
the correct prediction. Accounting for other activation sites, we find that the model implements a
somewhat more nuanced algorithm, investigated in Appendix D.4. Overall, InversionView shows
how certain information is amplified, but also how information is abstracted or forgotten.

Quantitative verification. We causally verified our hypothesis using activation patching [53, 21]
on (position, head output) pairs. As the attention head in layer 1 attends almost entirely to the target
character, only head outputs a0,0tc , a0,0: , and a1,0: can possibly play a role in routing count information.
We patch their outputs with activations from a contrast example flipping a single character before
“|”. We patch activations cumulatively, starting either at the lowest or highest layer, with some fixed
ordering within each layer. For example, we patch a0,0: and observe how final logits change compared
to the clean run, then we patch both a0,0: and a0,0tc and do the same, and so forth. By the end of
patching, the model prediction will be flipped. When adding an activation to the patched set, we
attribute to it the increment in the difference of LD before and after patching, where LD denotes the
logit difference between original count and the count in the contrast example. Cumulative patching
allows us to observe dependencies: For instance, as we hypothesize that a1,0: is completely dependent
on a0,0tc , we expect that, when a0,0tc is already patched, patching a1,0: will have no further effect,
whereas when a0,0tc is not patched, patching a1,0: will have a significant effect. Results (Figure 4a)
match our prediction: Patching either of the activation in the hypothesized path (a0,0tc and a1,0: ) is
sufficient to absorb the entire effect on logit differences, confirming the hypothesis. See Appendix
D.3 for further details and D.4 for further experiments.

3.2 IOI circuit in GPT-2 small

To test the applicability of InversionView to transformers pretrained on real-world data, we apply
our method to the activations in the indirect object identification (IOI) circuit in GPT-2 small [48]
discovered by Wang et al. [54]. We apply InversionView to the components of the circuit, read out the
information, and compare it with the information or function that Wang et al. [54] had ingeniously
inferred using a variety of tailored methods, such as patching and investigating effects on logits and

4The reader can check generations conveniently at https://inversion-view.streamlit.app

5

https://inversion-view.streamlit.app


(a) (b)

Figure 4: (a) Character Counting. Activation patching results show that a0,0tc and a1,0: play crucial
roles in prediction, as hypothesized based on Figure 3 and Sec. 3.3. In contrast examples, only one
character differs. Top: We patch activations cumulatively from left to right. We can see patching a0,0tc

accounts for the whole effect, and when a0,0tc is already patched, patching a1,0: has almost no effect.
Bottom: On the other hand, if we patch cumulatively from right to left, a1,0: accounts for the whole
effect while patching a0,0tc has no effect if a1,0: has been patched. So we verified that a1,0: solely relies
on a0,0tc and this path is the one by which the model performs precise counting. The patching effect
is averaged across the whole test set. (b) IOI. InversionView applied to Name Mover Head 9.9 at
“to”; we fix the compared position to “to”. Throughout the ϵ-preimage, “Justin” appears as the IO,
revealing that the head encodes this name. This interpretation is confirmed across query inputs.

attention. We show that InversionView unveils the information contained in the attention heads’
outputs, with results agreeing with those of Wang et al. [54].

The IOI task consists of examples such as “When Mary and John went to the store, John gave a drink
to”, which should be completed with “Mary”. We use S for the subject “John” in the main clause, IO
for the indirect object “Mary” introduced in the initial subclause, S1 and S2 for the first and second
occurrences of the subject, and END for the “to” after which IO should be predicted. To facilitate
comparison, we denote attention heads as in Wang et al. [54] with i.j denoting hi,j . Wang et al. [54]
discover a circuit of 26 attention heads in GPT-2 small and categorize them by their function. In short,
GPT-2 small makes correct predictions by copying the name that occurs only once in the previous
context. For InversionView, we train the decoder on the IOI examples (See details in E.1). Despite
the size of the probed model, we find the same 2-layer decoder architecture as in Section 3.1 to be
sufficient. We use D(z, zq) = 1− z·zq

||z||·||zq|| (i.e., cosine distance), and ϵ = 0.1. Euclidean distance
leads to similar results, but cosine distance is a better choice for this case (Appendix E.4).

We start with the Name Mover Head 9.9, which Wang et al. [54] found moves the IO name to the
residual stream of END. 4b shows the ϵ-preimage at “to”. The samples in the ϵ-preimage share the
name “Justin” as the IO. The head also shows similar activity at some other positions (Appendix A.3).
Results are consistent across query inputs. Therefore, InversionView agrees with the conclusions
of Wang et al. [54] on head 9.9. Applying the same analysis to other heads (Table 2), we recovered
information in high agreement with the information that Wang et al. [54] had inferred using multiple
tailored methods. For example, Wang et al. [54] found S-Inhibition heads were outputting both token
signals (value of S) and position signals (position of S1) by patching these heads’ outputs from a
series of counterfactual datasets. These datasets are designed to disentangle the two effects, in which
token and/or position information are ablated or inverted. These two kinds of information can be
directly read out by InversionView (Figure 19 shows an example for an S-Inhibition head that contains
position information), and there is no need to guess the possible information to design patching
experiments. Overall, among the 26 attention heads that Wang et al. [54] identified, InversionView
indicates a different interpretation in only 3 cases; these (0.1, 0.10, 5.9) were challenging for the
methods used before (Appendix E.3). In summary, InversionView scales to larger models.

3.3 3-Digit Addition

We next applied InversionView to the problem of adding 3-digit numbers, between 100 and 999.
Input strings have the form “B362+405=767E” or “B824+692=1516E”, and are tokenized at the
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Figure 5: InversionView applied to 3-digit addition: Visually inspecting sample inputs inside
and outside the ϵ-preimage of the query allows us to understand what information is contained in
an activation. The color on each token in generated samples denotes the difference in the token’s
likelihood between a conditional or unconditional decoder (Appendix G). The shade thus denotes how
much the generation of the token is caused by the query activation (darker shade means a stronger
dependence). In (a–c), the colored tokens are most relevant to the interpretation. We interpret two
attention heads (a,b) and the output of the corresponding residual stream after attention (c). In (a),
what’s common throughout the ϵ-preimage is that the digits in the hundreds places are 6 and 8. Inputs
outside the ϵ-preimage don’t have this property. In (b), what’s common is that the digits in tens places
are 1, 6, or numerically close. Hence, we can infer that the activation sites a0,0 and a0,3 encode
hundreds and tens place in the input operands respectively; the latter is needed to provide carry to
A1. Also, the samples show that the activations encode commutativity since the digits at hundreds
and tens place are swapped between the two operands. In (c), the output of the attention layer after
residual connection combining information from the sites in (a) and (b) encodes “6” and “8” in
hundreds place, and the carry from tens place. Note that a0,1 and a0,2 contains similar information
as a0,0. These observations are confirmed across inputs. Taken together, InversionView reveals how
information is aggregated and passed on by different model components.

character level. We use F1, F2, F3 to denote the three digits of the first operand and S1, S2, S3 for
the digits of the second operand, and A1, A2, A3, A4 (if it exists) for the three or four digits of the
answer, and C2, C3 for the carry from tens place and ones place (i.e., C2: whether F2+S2≥10, C3:
whether F3+S3≥10). Unlike [47], we do not left-pad answers to have all the same length; hence,
positional information is insufficient to determine the place value of each digit.

The probed model is a decoder-only transformer (2 layers, 4 attention heads, dimension 32). We set
attention dropout to 0. Other aspects are identical to GPT-2. The model is trained for autoregressive
next-token prediction on the full input, in analogy to real-world language models. In testing, the
model receives the tokens up to and including “=”, and greedily generates up to “E”. The prediction
counts as correct if all generated tokens match the ground truth. The same train-test ratio as in
Section 3.1 is used. The test accuracy is 98.01%. For other training details see Appendix F.1.

Interpreting via InversionView and attention. As Section 3.1 we use normalized Euclidean
distance for D(·, ·) and the threshold ϵ = 0.1. We first trace how the model generates the first answer
digit, A1, by understanding the activations at the preceding token, “=”. We first examine the attention
heads at “=” in the 0-th layer (Figure 5). As for the first head (a0,0), only F1 and S1 matter in
the samples – indeed, changing other digits, or swapping their order, has a negligible effect on the
activation (Figure 5). Across different inputs, each of the three heads a0,0, a0,1, a0,2 encode either
one or both of F1 and S1 (Figure 26); taken together, they always encode both. This is in agreement
with attention focusing on these tokens. The fourth and remaining head in layer 0 (a0,3) encodes F2
and S2, which provide the carry from the tens place to the hundreds place. Combining the information
from these four heads, x0,mid consistently encodes F1 and S1; and approximately represents F2,
S2—only the carry to A1 (whether F2+S2≥10) matters here (Figure 5c). Other examples are in
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(a) (b)

Figure 6: 3-Digit Addition Task: (a) Information flow diagram for predicting A1 inferred via
InversionView. The colors denote which places are routed; alternating colors indicate two places
are routed. This is a subfigure of Figure 31. (b) Validation of (a) via activation patching for the
prediction of A1. Like Figure 4a,→ (←) means cumulatively patching activation from left to right
(right to left) on the horizontal axis. Left: Patching with activation containing modified F1 and S1
information. Right: Patching with activation containing modified F2 and S2 information. As we can
see, components from (a) show a substantial increment if and only if they have a not-yet-patched
connection to output (when patching right to left) or input (patching left to right), verifying that
(a) causally describes the flow of information. Therefore, InversionView helps us uncover both
information flow and content of activations.

Figure 27. We can summarize the function of layer 0 at “=”: Three heads route F1 and S1 to the
residual stream of “=” x=. The fourth head routes the carry resulting from F2 and S2. Layer
1 mainly forwards information already obtained in layer 0, and does not consistently add further
information for A1. See more examples in Appendix F.2.

Figure 6a shows the circuit predicting A1. InversionView allows us to diagnose an important
deficiency of this circuit: Even though the ones place sometimes receives attention in layer 1, the
circuit does not consistently provide the carry from the ones place to the hundreds place, which
matters on certain inputs—we find that this deficiency in the circuit accounts for all mistakes made by
the model (Appendix F.3). Taken together, we have provided a circuit allowing the model to predict
A1 while also understanding its occasional failure in doing so correctly. Corresponding findings for
A2, A3, and A4 are in Table 3 and Figure 31. From A2 onwards, InversionView allows us to uncover
how the model exhibits two different algorithms depending on whether the resulting output will have
3 or 4 digits. In particular, when predicting A3, the layer 0 circuit is the same across both cases, while
the layer 1 circuit varies, since this determines whether A3 will be a tens place or ones place. Beyond
figures in the Appendix, we encourage readers to verify our claims in our interactive web application.

Quantitative verification. We used causal interventions to verify that information about the digits
in hundreds and tens place is routed to the prediction of A1 only through the paths determined in
Figure 6a, and none else. Like before, we cumulatively patch the head output on “=” preceding
the target token A1, with an activation produced at the same activation site by a contrast example
changing both digits in a certain place. Results shown in Figure 6b strongly support our previous
conclusions. For example, a0,3 and a1,2 are not relevant to F1 and S1. Important heads detected by
activation patching, a0,0, a0,1, a0,2, a1,1, all contain F1 and S1 according to Figure 6a. Furthermore,
we can also confirm that a1,1 relies on the output of layer 0 as depicted in sub-figure (a): When
heads in layer 0 are already patched, patching a1.1 has no further effect (value corresponding to→ is
zero), but it has an effect when patching in the opposite direction. On the contrary, a1,0 shows little
dependence on layer 0, consistent with Figure 6a. On the right of Figure 6b, we can confirm that a0,3
is important for routing F2 and S2, and the downstream heads in layer 1 rely on it. Findings for other
answer digits are similar (See Appendix F.5). Overall, the full algorithm obtained by InversionView
is well-supported by causal interventions.
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Figure 7: 3-Digit Addition Task: InversionView uncovers
different ways in which digit representation is encoded in ac-
tivations. Left: The digits in the hundreds place are encoded
separately and hence generations denote them as separate
entities. Right: The digits in the tens place are encoded as a
sum (9 in this case) and the generations represent different
2-partitions (7+2, 6+3, 1+8, 5+4, etc.) of that sum.

InversionView reveals granularity
of information. Heads often read
from both digits of a place, but only
the sum matters for addition. Are the
digits represented separately, or only
as their sum? Unlike traditional prob-
ing, InversionView answers this ques-
tion without designing tailored prob-
ing tasks. In Figure 7 (left), a0,2 ex-
actly represents F2 and S2 (here, 2 and
5). Other inputs where F1+S1=5+2
have high D. In contrast, on the right,
F2 and S2 are represented only by
their sum: throughout the ϵ-preimage,
F2+S2=9. In fact, we find such sum-
only encoding only when F2+S2=9—
a special case where the ones place of
operands affects the hundreds place of
the answer via cascading carry. We
hypothesize that the model encodes
them similarly because these inputs
require special treatment. Therefore,
even though encoding number pairs
by their sum is a good strategy for the
addition task from a human perspec-
tive, the model only does it as needed. We also observe intermediate cases (Figure 29).

3.4 Factual Recall

To test whether InversionView can be applied to larger language models, we explore how GPT-2 XL
(1.5B parameters) performs the task of recalling factual associations. In this case study, our intention
is not to provide a full interpretation of the computations performed to solve this task, which we
deem out of scope for this paper. Instead, we show that InversionView produces interpretable results
on larger models by focusing on a relatively small set of important attention heads in upper layers.
The decoder model in this case study is based on GPT-2 Medium, because we expect a more complex
inverse mapping from activation to inputs to be learned. We observe the resulting ϵ-preimage can
express high-level knowledge (Figure 39-44), and sometimes can predict the failure of the model
(Appendix H.6). Using InversionView, we again shed light on the underlying mechanism of the
model. We present detailed findings in Appendix H.

4 Discussion and Related Work

Comparison with other Interpretation Methods Supervised probing classifiers, assessing how
much information about a variable of interest is encoded in an activation site, are arguably the most
common method for uncovering information from activations [e.g. 2, 6, 5, 4, 55, 52, 33, 34]. It
requires a hypothesis in advance and is thus inherently limited to hypotheses conceived a priori by the
researcher. InversionView, on the other hand, helps researchers form hypotheses without any need for
prior guesses, and allows fine-grained per-activation interpretation. Inspecting attention patterns [e.g.
12] is a traditional approach to inferring information flow, and we have drawn on it in our analyses.
More recently, path patching [54, 26, 13, 28, 35] causally identifies paths along which information
flows. While the information flow provides an upper bound on the information passed along by
tracing back to the input token, it is insufficient for determining how information is processed and
abstracted. For instance, in Section 3.1, occurrences of the target character are causally connected to
a0,0tc , which then connects to a1,0: (direct or mediated by MLP layer 0). Without looking at encoded
information, we only know that the information in these paths is related to the occurrences of the target
character, but not whether it is their identity, positions, count, etc. More generally, when a component
reads a component that itself has read from multiple components, connectivity does not tell us which
pieces of information are passed on. Similar considerations apply to other intervention methods.
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Geva et al. [24] intervene on attention weights to study information flow. Activation patching, a
causal intervention method, can be used to study the causal effect of an activation on the output,
and can help localize where information is stored [37, 49], or find alignment between a high-level
causal model and inner states of a neural model [21, 22, 57]. Many recent works obtain insights
about information content by projecting representations or parameters into the vocabulary space
[42, 7, 44, 31, 54, 23, 24, 16]. This technique is sometimes referred to as Direct Logit Attribution
(DLA). We argue that DLA is only suitable for studying model components that directly affect
model’s final output. For those components whose effect is mediated by other components, their
output information is meant to be read by a downstream component, thus not necessarily visible when
projecting to the vocabulary space. We provide further discussion in Appendix I. Generalizing this
approach, Ghandeharioun et al. [25] patch activations into an LLM. Another line of recent research
[10, 51, 14] decomposes activations into interpretable features using sparse autoencoders.

Some other interpretation methods also generate in input space, but differ from InversionView in
goals and methods. This includes feature visualization [43, 41], adversarial or counterfactual example
generation [27, 59, 46, 45], and GAN inversion methods [58]. We discuss the similarities and
differences of these works compared to InversionView in Appendix I.4.

InversionView offers distinctive advantages and makes analyses feasible that are otherwise very hard
to do with other methods. It can also improve the interpretability workflow in coordination with other
methods. For example, one may first use methods such as path patching or attribution [50, 18] to
localize activity to specific components, and then understand the function of these components using
InversionView. In sum, InversionView is worth adding to the toolbox of interpretability research.

Transformer Circuits for Arithmetic Related to Section 3.3, [47] interpret the algorithm imple-
mented by a 1-layer 3-head transformer for n-digit addition (n ∈ {5, 10, 15}), finding that the model
implements the usual addition algorithm with restrictions on carry propagation. In their one-layer
setup, attention patterns are sufficient for generating hypotheses. Lengths of operands and results
are fixed by prepending 0. Our results, in contrast, elucidate a more complex algorithm computed
by a two-layer transformer on a more realistic version without padding, which requires the model
to determine which place it is predicting. We also contribute by providing a detailed interpretation,
including how digits are represented in activations.

Automated Interpretation for InversionView Recent work has started using LLMs to generate
interpretations [8, 10]. The samples produced by InversionView can be easily fed into LLMs for
automated interpretation. We show a proof of concept by using Claude 3 to interpret the model
trained for 3-digit addition. See results in Table 5. The LLM-provided interpretation reflects the main
information in almost all cases of the addition task. Despite some flaws, the outcome is informative
in general, suggesting this as a promising direction for further speeding up hypothesis generation.

Limitations InversionView relies on a black-box decoder, which needs to be trained using relevant
inputs and whose completeness needs to be validated by counter-examples. Also, InversionView,
while easing the human’s task, is still not automated, and interpretation can be laborious when there
are many activation sites. We focus on models up to 1.5B parameters; scaling the technique to large
models is an interesting problem for future work, which will likely require advances in localizing
behavior to a tractable number of components of interest. Fourth, interpretation uses a metric D(·, ·).
The geometry, however, in general could be nonisotropic and treating each dimension equally could
be sub-optimal. We leave the exploration of this to future work.

5 Conclusion

We present InversionView, an effective method for decoding information from neural activations.
In four case studies—character counting, IOI, 3-digit addition, and factual recall—we showcase
how it can reveal various types of information, thus facilitating reverse-engineering of algorithm
implemented by neural networks. Moreover, we compare it with other interpretability methods and
show its unique advantages. We also show that the results given by InversionView can in principle be
interpreted automatically by LLMs, which opens up possibilities for a more automated workflow.
This paper only explores a fraction of the opportunities this method offers. Future work could apply
it to subspaces of residual stream, to larger models, or to different modalities such as vision.
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A Practical Guidelines

A.1 Observing Larger Neighborhoods is Important

Here, we illustrate the importance of inspecting ϵ-preimages up to the threshold ϵ, rather than just
top-k nearest neighbors of the query activation. In Figure 8, an initial glance at the samples on
the left may suggest that the residual stream of “+” encodes F1 and F2. However, observing a
broader neighborhood (as depicted on the right) reveals that this conclusion is not even robust to
tiny perturbations of the activation. Indeed, after a more comprehensive calculation over all possible
x0,post
+ , we find that the maximum possible metric value between any pair of x0,post

+ is 0.0184. So
for any ϵ ≥ 0.0184 the ϵ-preimage covers the entire input space. Hence, the activation is unlikely to
contain usable information.

We further prove this by causal intervention. We found that x0,post
+ has no effect on the model’s

output. Concretely we patch x0,post
+ with its mean on the test set (mean ablation [54]) and for each

prediction target (A1, A2 etc.), we compare 1) the KL divergence between the distribution before
and after patching. 2) logit decrement rate, which is the difference between the maximum logit value
before patching and the logit value of the same target token after patching, divided by the former.
E.g., 1.0 means the logit is reduced to zero (assuming it is originally positive). The results are shown
in Table 1. We can see the effect of x0,post

+ is negligible.

A1 A2 A3 A4/E
KL divergence 8.1× 10−8 5.4× 10−7 2.5× 10−8 3.6× 10−9

Logit decrement rate −2.3× 10−5 8.7× 10−7 1.4× 10−5 2.8× 10−7

Table 1: Activation patching results for x0,post
+ .

A.2 Sampling with Decoder Model

In Section 2, we mentioned that the distribution p(x|zq) is modeled by the decoder. Strictly speaking,
p(x|zq) represents the data distribution in the ϵ-preimage defined by ϵ = 0. For example, when the
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Figure 8: Addition Task: Inspecting ϵ-preimage avoids pitfall of inspecting simple top-k similar
activations. Generation based on query activation x0,post

+ of a random example. Contents after “+” is
omitted since they do not affect the activation due to causal masking.

probed model is using causal masking, and a certain activation is relevant to all previous context
(by non-zero attention weights), then p(x|zq) is the distribution over those inputs that share the
same previous context (i.e., they have same prefix). This requires that the decoder can distinguish
any tiny difference in activation and decode the full information (imagine a token attended with
0.0001 attention weight). Such a decoder must be very powerful and perhaps trained without any
regularization. But in practice, the decoder is a continuous function of activation and tiny changes
in activation are not perceivable by the decoder. We observe that the decoder rarely generates the
sample that lies at the same point (producing the same activation) as the query input in vector space,
instead it usually generates samples that are in the neighborhood of the query input. Because we
need to observe the whole neighborhood of the query input and prevent samples from being too
concentrated, we adjust the sampling temperature to control how concentrated they are. Importantly,
even if the decoder is too powerful and can always recover the same activation, we can still obtain the
neighborhood by adding random noise to the query activation before giving it to the decoder. This
motivates decoding with temperature and noise, as described in the next paragraph.

Increasing Coverage by Temperature and Noise. In our experiments, we use both ways to control
the generation, i.e., by adjusting the temperature and adding random noise to the query activation.
We denote temperature as τ and noise coefficient as η. The noise vector consists of independent
random variables sampled from the standard normal distribution and then multiplied by std(zq) · η
where std(·) stands for standard deviation. In our web application, we provide multiple sampling
configurations: four configurations in which τ = {0.5, 1.0, 2.0, 4.0} and η = 0.0 (only for addition
task); one figuration named “Auto" which is sampled by following procedure: we iterate over a few
predefined τ (ranging from 0.5 to 2.0) and η (0.0 or 0.1) and sample a certain amount of inputs (e.g.,
250) for each parameter combination. We then calculate the metric value for all inputs collected
from different sampling configurations. We then randomly choose a small part of them (100) with
different probability for in-ϵ-preimage inputs and out-of-ϵ-preimage inputs. We dynamically adjust
the probability such that the in-ϵ-preimage inputs account for 60%-80% of the chosen set of inputs
(when this is possible). Note that we use different noise in factual recall task, which will be described
later in Appendix H.4.

When inspecting the samples, we choose a configuration for which the distances D(·, ·) to the query
activation best cover the interval [0, ϵ]. The choice is usually specific to the activation site that we are
inspecting and can be performed manually in the web application.
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Figure 9: IOI: InversionView applied to Name Mover Head 9.9 at “to”; Unlike Figure 4b, here
the position minimizing D(·, ·) is in parentheses. The head also copies the name “Justin” in other
circumstances, e.g., at “gave”. The name “Justin” is always contained

A.3 Selecting Position in Samples

As the decoder outputs an input but not the position of the activation, we then assign the position
minimizing D(·, ·) to the query activation. Usually, there is only one position with a small D(·, ·),
matching the structural position (not necessarily the absolute position) of the position the query
activation was taken from (e.g., the target character in Figure 3a). In certain cases, we visualize
D(·, ·) for an activation from a position not minimizing D(·, ·) for expository purposes. For example,
in Figure 3b, because the target character exclusively attends to itself in layer 1, resulting a1,0tc ≈ a1,0: ,
so sometimes the metric value of a1,0tc is smaller than a1,0: . Throughout the appendix and our web
application, we use italic font and rounded bars to visualize D(·, ·) in such cases.

We also find that selecting the position minimizing D(·, ·) can reveal that components are active in
similar ways at other positions than the one originally investigated. For example, in Figure 9, we can
see sometimes “gave” is selected. This is reasonable, because the IO is also likely to appear right
after “gave” and the head needs to move the IO name for this prediction. We can see that activation at
the period “.” can also be somewhat similar to the query activation, this is not surprising. Because
the model needs to predict the subject for the next sentence and copying a name from the previous
context is helpful. In summary, the copying mechanism can be triggered in circumstances different
from IOI, selecting position minimizing D(·, ·) reveals more information about this.

A.4 Threshold-Dependence of Claims about Activations

One question people may have is whether our conclusion about the information in activation depends
significantly on the threshold we choose. To address this potential concern, we show more details
about the geometry of the vector space in Figure 10. On the one hand, we can see that with different
thresholds ϵ we can make different conclusions about the query activation. On the other hand, the
conclusions made with different thresholds are “in alignment”. In other words, the conclusions do
not differ fundamentally, instead, the difference between them is about granularity or the amount of
details being ignored.

Specifically, in Figure 10a, ϵ1 results in the conclusion that the count is 5, the target character is either
’t’ or ’m’, and also approximate sequence length is retained. ϵ2 results in a conclusion only about
the count and the sequence length. In Figure 10b, if we set the threshold to ϵ1 (i.e., a value between
0.000 and 0.009), the obtained information will be F1=5, S1=7. If we set the threshold to ϵ2, the
information will be 5 and 7 are in the hundreds place. If we set the threshold to ϵ3 the information
will be "5 is in the hundreds place". In Figure 10c, ϵ1 results in conclusion that 9, 8 are in hundreds
place and 2, 7 are in tens place; ϵ2 results in conclusion that 9, 8 are in hundreds place and F2+S2=9;
ϵ3 results in conclusion that F1+S1≈17 and F2+S2≈9. Therefore, changing the threshold value will
not lead us in a different direction, because the ϵ-preimage is based on the same underlying geometry.
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(a) (b) (c)

Figure 10: (a) Activation site a1,0. (b) Activation site a0,2. (c) Activation site a1,3. In all three cases,
we use normalized Euclidean distance as the distance metric. We use ϵ1, ϵ2, · · · to mark varying
threshold values by which different interpretations will be made.
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In practice, rather than selecting a threshold first and treating inputs in a black-and-white manner,
we first observe the geometry of the vector space and obtain a broad understanding of the encoded
information, then choose a reasonable threshold that best summarizes our findings. In other words,
the threshold value is used to simplify our findings so that we can focus more on the big picture of
the model’s overall algorithm, and it should also be set according to the difference that is likely to be
readable for the model. As the interpretation progresses, one can see if the chosen threshold leads to
a plausible algorithm and can adjust it if necessary. Finally, verification experiments are conducted to
verify the hypothesis.

B Experimental Verification of Completeness

In Section 2, we described that an ideal strategy for obtaining samples in the ϵ-preimage satisfies
two desiderata: it only provides samples that are indeed within the ϵ-preimage (Correctness), and it
provides all such samples at reasonable probability (Completeness). As further described there, we
can directly ensure Correctness by evaluating D(·) for every sample. Ensuring completeness is more
challenging, due to the exponential size of the input space; the most general approach is to design
counterexamples not satisfying a hypothesis about the content of the ϵ-preimage, and verifying that
D(·) is indeed large.

Here, we provide a direct test of completeness in one domain (3-digit addition). The primary concern
with completeness is that, if some groups of inputs in Bzq,f,ϵ are systematically missing from the
generated samples, one may overestimate the information contained in activations. To see if may
happen in reality, we plotted log-probability against distance, each of which includes all inputs in 3
digit addition task, as shown in Figure 11. We next evaluated the sampling probability for different
sampling configurations, as described in Appendix A.2. When adding noise, we calculate probability
of an input using a Monte Carlo estimate: Concretely, because the probability of inputs is conditioned
on the noise vector added to the query activation, we randomly sample 500 noise vectors from the
normal distribution (with the standard deviation described in Appendix A.2) and calculate input
probability given these noise vectors, then average to obtain the estimated probability, and then
compute the logarithm.

Across setups, we can see that there is a triangular blank area in the bottom left corner, i.e., the bottom
left frontier stretches from the upper left towards the lower right. In all sub-figures, not a single input
close to the query input is assigned disproportionately low probability. All inputs in the ϵ-preimage
(the dots on the left of the red vertical line) are reasonably likely to be sampled from the decoder, with
probability decreasing as the input becomes more distant, alleviating concerns about completeness
for these query activations. On the other hand, some inputs distant from the query input are also
likely to appear in samples, but this is not a problem for our approach, as we can easily tell that they
are not in the ϵ-preimage by calculating the distance (correctness is ensured).

We can see that sometimes the distribution of the decoder itself (at temperature 1 and no noise) is
quite sharp, and in-ϵ-preimage inputs can have low probability as they are near the boundary of
preimage. By comparing the sub-figures, we can see both increasing the temperature and adding
noise substantially smooth the distribution within the ϵ-preimage, lowering the difference of the
probability of inputs that are at similar distance.

C Decoder Model

The overall training and sampling pipelines are shown in Figure 2. In this section, we describe the
architecture of the decoder model in detail.

The decoder model is basically a decoder-only transformer combined with some additional MLP
layers. In order to condition the decoder on the query activation, the query activation is first passed
through a stack of MLP layers to decode information depending on the activation sites and then made
available to each attention layer of the transformer part of the decoder, as depicted in Figure 12.

Processing Query Activation. The query activation zq ∈ Rd is first concatenated with a trainable
activation site embedding eact ∈ Rdsite , producing the intermediate representation z(0) = [zq; eact].
We chose dsite to be the number of possible activation sites in the training set. The result z(0) is

20



(a)

(b)

(c)

Figure 11: Addition Task: Exhaustive verification of the decoder’s completeness for 8 random query
activation. Failure of completeness would mean that some inputs result in an activation very close to
the query activation but nonetheless are assigned very small probability. Here, we show that this does
not happen, by verifying that all inputs within the ϵ-preimage are assigned higher probability by the
decoder than most other inputs. We also show that by increasing the temperature and adding random
noise, we can increase the probability of inputs near the boundary of ϵ-preimage. Each sub-figure
– (a), (b), (c) – contains 8 scatter plots, each of which contains 810000 dots representing all input
sequences in the 3-digit addition task. The y-axis of scatter plots is the log-probability of the input
sequence given by the decoder (which reads the query activation), the x-axis is the distance between
the query input and the input sequence. As before, distance is measured by the normalized Euclidean
distance between the query activation (the activation site, query input, and selected position are shown
in the scatter plot title) and the most similar activation along the sequence axis. In addition, the red
vertical line represents the threshold ϵ, which is 0.1 in the case study. (a) Temperature τ = 1.0,
no noise is added. (b) Temperature τ = 2.0, no noise is added. (c) Temperature τ = 1.0, noise
coefficient η = 0.1 (See Appendix A.2 for explanation of η).
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Figure 12: The decoder model architecture used in this paper. The query activation is processed
by a stack of MLP layers before being available as part of the context in attention layers. We use
transparent blocks to represent model components inherited from original decoder-only transformer
model.

then fed through multiple MLP layers (each layer indexed by p ∈ {0, 1, · · · , P − 1}) with residual
connections:

z(p+1) = MLP(LN(z(p))) + z(p) (2)

where LN represents layer normalization. For each MLP layer, the input, hidden and output dimen-
sions are d+ dsite, d, and d+ dsite, respectively. The activation function is ReLU. There is also a
final layer normalization, z(fn) = LN(z(P )).

Integrating Query Activation. As we want to make the query activation available to each attention
layer of the decoder, we separately customize it to the needs of each layer using a linear layer. That
is, for each layer of the transformer part of the decoder (indexed by ℓ, so ℓ ∈ {0, 1, · · · , L − 1}),
we define a linear layer Linear(ℓ) : Rd+dsite → Rddecoder and a layer normalization LN(ℓ), where
ddecoder is the model dimension of the decoder model:

ẑ(ℓ) = LN(ℓ)(Linear(ℓ)(z(fn))) (3)

We add superscript (ℓ) to the model components to emphasize they are layer-specific. In the ℓ-th layer
of the transformer part, ẑ(ℓ) is concatenated with the input of the attention layer along the length axis
before computing keys and values, so that each attention head can also attend to ẑ(ℓ) in addition to the
context tokens. This means that each head in the ℓ-th layer, instead of attending to x

(ℓ)
1 , x

(ℓ)
2 , ..., now

computes its attention weights over ẑ(l), x(ℓ)
1 , x

(ℓ)
2 , .... Here x

(ℓ)
t is the residual stream corresponding

to the t-th token input into the ℓ-th layer.

Motivation for Architecture Design. At the beginning, we train separate decoders for each
activation site, but this is not very scalable when there are many activation sites. In the architecture
above mentioned, we use activation site embedding eact as a signal to trigger different processing,
and functions or model components that are needed for all activation sites are shared. Similar reason
applies to the linear layer Linear(ℓ), we expect the zq should be transformed differently for each
transformer layer, but having separate MLP stacks to process zq for each layer would largely increase
the number of parameters. In preliminary experiments, we also try “encoder-decoder” attention
layer. That is, instead of providing query activation in self attention layer, we add new attention
layers that analogous to the encoder-decoder attention layer in original transformer architecture,
where each token can attend to the processed query activation as well as a blank representation
(similar to the function of “BOS", so that “no-op" is possible). However, we do not find significant
difference between this design and the aforementioned one. Therefore, other than adding components
for processing zq, we do not modify the decoder-only transformer architecture, so that we can also
choose to use pretrained models. We note that there are other possible choices for conditioning the
generation on the activation, and we didn’t optimize this choice thoroughly.
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Decoder Hyperparameters. Regarding processing query activation, the decoder has 6 MLP layers,
i.e., P = 6. The decoder model has 2 transformer layers (L = 2), 4 heads per layer, and a model
dimension of 256. The attention dropout rate is 0. Other settings are the same as the GPT-2. We
use the this architecture for the 3 tasks—character counting, IOI, and 3-digit addition— in the paper.
Regarding the factual recall task, we use the same architecture for processing query activation, i.e.
P = 6, and use pretrained GPT-2 Medium (24 layers) as the transformer part of the decoder.

Training Details. We construct the training dataset by feeding in-domain inputs to the probed
model, and collect activations from random activation sites and random position as query activations
(the choice of activation sites and position is specific to each task and is described later), we also
record the activation site they come from. For each input, we could obtain many possible training
examples because of many choices of activation sites and position. So we do not iterate over all
possible training examples. We sample certain amount of examples to train the decoder for 1 epoch,
using constant learning rate of 0.0001 and AdamW optimizer with weight decay of 0.01. Other
details (e.g., amount of examples, training steps) are task-specific, and can be found later in their own
section.

During training, we regularly calculate the in-preimage rate, which serves as a proxy for generation
quality. Concretely, for a fixed set of query activations used for testing, the decoder generates samples
with temperature=1, we then compute the fraction of samples inside of ϵ-preimage (with ϵ = 0.1, D
as normalized Euclidean distance). The rate is calculated for each activation site. We usually observe
difference between the ratios for each activation site, indicating some inverse mappings are easier to
learn (we also observe these activation sites tend to have clearer information). Overall, we usually
see a continuous improvement on the average rate during training.

D Character Counting: More Details and Examples

D.1 Implementation Details

To construct the dataset, we enumerate all the 3-combinations from the set of lowercase characters
defined in ASCII. For each combination, we generate 600 distinct data points by varying the occur-
rence of each character and the order of the string. The occurrences are sampled uniformly from 1-9
(both inclusive). So the length of the part before the pipe symbol (“|”) lies in [3, 27] (not considering
“B”). Like 3-digit addition, we split the dataset into train and test sets, which account for 75% and
25% of all data respectively. The input is tokenized on the character level.

The model is a two-layer transformer with one head in each layer, the model dimension is 64. All
dropout rates are set to 0. The model is trained with cross-entropy loss on the last token, the answer
of the counting task. The model is trained with a batch size of 128 for 100 epochs, using a constant
learning rate of 0.0005, weight decay of 0.01, and AdamW [36] optimizer. The training loss is shown
in Figure 13, we can see the stair-like pattern. An interesting future direction is to investigate what
happens when the loss rapidly decreases using InversionView.

With regard to the decoder model, the architecture is described in C. We select
x0,pre, xi,mid, xi,post, ai,j ,mi as the set of activation sites we are interested in, where i ∈ {0, 1}, j ∈
{0}, and m denotes MLP layer output. The query activation is sampled from those activations
corresponding to only the target character and colon. We sample 100 million training examples (all
activation sites are included) and train the decoder with batch size of 512, resulting in roughly 200K
steps. During training, as we mentioned before in C, we test the generation quality by measuring
in-preimage rate. For those activation sites for which the decoder has a low generation quality, we
increase their probability of being sampled in the training data. The final in-preimage rate averaged
across activation sites is 67.7%.

D.2 More Examples of InversionView

See Figures 14 and 15. Here, we show results similar to Figure 3 for other query inputs.
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Figure 13: Training loss of the Character Counting task. Each data point is the averaged loss over an
epoch.

Figure 14: ϵ-preimage showing function of MLP layer 0

Figure 15: ϵ-preimage of a1,0: . As we mentioned, we hypothesize that the attention head is reading
the subspace where the count information is stored. One can presumably find this “count subspace”
by optimizing a projection matrix such that after projecting the activation there is only pure count
information in the ϵ-preimage, and compare it with the subspace read by the value matrix of the
attention head. Therefore, InversionView can be potentially useful for subspace study.
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Figure 16: Results of activation patching for model trained on character counting task. Same figure as
4a with intermediate steps of calculation shown using line plot. Note that the gray lines correspond to
the y-axis on the right. In contrast examples, only one character differs. LD stands for logit difference
between the original count and the count in the contrast example. LDpch and LDorig correspond to
the LD with and without patching, respectively. Top: We patch activations cumulatively from left to
right, flipping the sign of LD. The “none” on the left end of x-axis denotes the starting point, i.e.,
nothing is patched. Bottom: We patch from right to left. Similarly, “none” on the right end of x-axis
denotes the starting point.

D.3 Causal Intervention Details

For an input example xorig with torig as the count (final token), we construct a contrast example xcon
with a different count tcon by changing a random character before “|”. The contrast example is a valid
input (the count token is the count of the target character). We also ensure that the contrast example
is within the dataset distribution (the count is in the range [1-9] and there are 3 distinct characters in
the input).

We run three forward passes. 1) The model takes as input xorig and produces logit values for count
prediction, we record the logit difference LDorig between torig and tcon (former minus latter). 2) We
feed the model with xcon and store all activations. 3) We run a forward pass using xorig , replacing the
interested activations (e.g, {a0,0: , a0,0tc }) with the stored activation in the same position and activation
sites, and record the new logit difference LDpch. Because the model can make the right prediction
in most cases, we can see that average LDpch changes from positive to negative values as we patch
more and more activations. We do the same for all inputs in the test set and report the average results.

Figure 16 shows the LDorig and LDpch. We cumulatively patch the activations we study. For
example, on the top of the figure, we patch {a0,0: }, {a0,0: , a0,0tc }, {a0,0: , a0,0tc , a1,0: } respectively.
Patching more activation results in increases of LDorig − LDpch, we attribute the increment to the
newly patched activation. Hence, the causal effect of each activation is measured conditioned on
some activations already being patched.

We sort the activations according to their layer indices and show the results of patching from bottom to
top (→) and from top to bottom (←). In this way, we can verify the dependence between activations
in the top and bottom layer. For example, at the top of Figure 16, when a0,0tc is already patched,
patching a1,0: has almost no effect. On the bottom, we also see patching a0,0tc has no effect if a1,0: has
been patched. So we verified that a0,0tc is the only upstream activation that a1,0: relies on, and a1,0: is
the only downstream activation that reads a0,0tc .
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Figure 17: Results of activation patching for model trained on character counting task. → and←
means the same as previously. Left: Patching with activation from examples with different counts.
Right: Patching with activation from examples in which only one character differs.

D.4 Extended Algorithm with Positional Cues

In Section 3.1, we verified the information flow by an activation patching experiment in which the
contrast example only differs by one character. These experiments verified that the algorithm we
described is complete in distinguishing between such minimally different contrast examples. We now
show that the model implements a somewhat more complex algorithm that combines this algorithm
with position-based cues, which become visible once we consider contrast example that differ in
more than one character, in particular, those that differ in length.

To show this, we conduct another activation patching experiment in which the contrast example is a
random example in the dataset with a different count. In other words, everything can be different in
contrast examples, including the sequence length and the target character. Thus, we cumulatively
patch four places:

1. epostc and epos: , where epos stands for position embedding, because the final count correlates
with positional signal, so the model may utilize it. They are patched together because the
attention pattern of the colon in layer 1 relies on their adjacency.

2. a0,0tc (as before) and etkntc , where etkn stands for token embedding. They are patched together
because patching only one of them would result in a conflict between character information
in the patched and the un-patched activation;

3. 3) a0,0: ; (as before)

4. a1,0: (as before).

The result is shown on the left of Figure 17. We can see that, besides the components we had detected
previously based on minimal contrast examples (a0,0tc , a1,0: ), some other signal also contributes notably
to the final logits. We compare with patching experiments for the same set of activations on contrast
examples that differ in one character, shown on the right of Figure 17.

Overall, besides the algorithm identified in Section 3.1, we find other 3 sources of information
influencing the model’s output. 1) The position embedding, epostc and epos: . This is observable on the
left of Figure 17, from which we can also know a1,0: contains the position information (because the
bars of epostc and epos: are not symmetric). This is confirmed by InversionView. As shown in Figure 18,
we see the inputs in ϵ-preimage roughly follow the query input length, being independent of the count.
Therefore, the model is also utilizing the correlation between the count and the sequence length. 2)
Attention output of colon, a0,0: , which attends to all previous token equally. From InversionView, we
observe it contains fuzzy information about the length (same as position signal), and the characters
that occur in the context, as well as their approximate count. Our causal experiment also shows that
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Figure 18: ϵ-preimage of a1,0: to show the position information is also encoded and is independent of
count information.

it does not contain a precise count. Therefore, it contributes to the model’s prediction in manner
similar to the position signal. 3) Attention output of the pipe sign, a0,0| . From the attention pattern we
observe sometimes in layer 0, pipe sign attends selectively to one type of character, e.g. “x”, “k”,
or “j”. InversionView shows that it indeed contains the approximate count in that case (though the
decoder has not been trained on activation corresponding to pipe sign). In next layer, the colon also
attends to the pipe sign if target character is the same as the character attended by pipe sign in layer 0.
This explains why we can observe nonzero effect of patching a1,0: when other activation is already
patched (the red bar corresponding to a1,0: on both sub-figures of Figure 17).

Whereas patching with minimally different contrast examples allowed us to extract an algorithm
sufficient for solving the task in Section 3.1, patching with arbitrarily different contrast examples
allowed us to uncover that the model combines this algorithm with position-based cues. The model
performs precise counting using the algorithm we found earlier in Section 3.1, while it also makes
use of simple mechanisms such as correlation to obtain a coarse-grained distribution over counts.
Overall, we have found the full algorithm by alternating between different methods – InversionView,
traditional inspection of attention patterns, and causal interventions, and confirming results from one
with others.

E IOI Task: Details and Qualitative Results

E.1 Implementation Details

In order to train a decoder model, we construct a dataset that consists of IOI examples. We used the
templates of IOI examples from ACDC [13] implementation. For example, “Then, [B] and [A] went
to the [PLACE]. [B] gave a [OBJECT] to [A]”, in which “[B]” and “[A]” will be replaced by two
random names (one token name), “[PLACE]” and “[OBJECT]” will also be replaced by random
item from the predefined set. Besides “BABA” template (i.e., S is before IO) we also use “ABBA”
templates (S is after IO) by swapping the first “[B]” and “[A]”. We generate 250k data points.

The architecture of the decoder model is the same as before, as described in Appendix C. The set
of activation sites the decoder is trained on consists of the output of all attention heads and MLP
layers (no residual stream). Note that when producing query activation using GPT-2, we always add
the “< |endoftext| >” token as the BOS token. We do so as during the training of GPT-2 this or
multiple such tokens that usually appear in the previous context can be used as a BOS token, which is
possibly important to the model’s functioning. We use a new token “[EOS]” as the EOS token when
training the decoder. The query activation is sampled uniformly from all positions excluding EOS
and padding tokens, and uniformly from all activation sites the decoder is trained for. We sample 20
million training examples (all activation sites are included) and train the decoder with batch size of
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Figure 19: ϵ-preimage of S-Inhibition Head 7.3. The relative position of S1–but not its identity–is
contained in the head output (together with some template information). That means, in the samples
within the ϵ-preimage, S1 always appears before the IO. While the relative position is encoded, the
absolute position can vary, as can the identities of the names.

Figure 20: ϵ-preimage of Duplicate Token Head 0.1. S name is contained in head output.

256, resulting in roughly 80K steps. The final average in-preimage rate is 58.0%, despite that the
decoder is trained for 157 activation sites.

E.2 More Examples of InversionView

See Figures 19, 20, 21.

E.3 Qualitative Examination Results

The qualitative examination results is shown in Table 2. We summarize the description in [54] of
each head category to facilitate comparison. Figure 22 shows the IOI circuit in GPT-2 small, which is
taken from their paper. For more details, please refer to [54].

There are some heads for which InversionView indicates a different interpretation. First, Head 0.1
and 0.10: [54] only shows that they usually attend to the previous occurrence of a duplicate token and
validates the attention pattern on different datasets. However, there is no evidence for the information
moved by these heads. Thus they only hypothesize that the position of previous occurrence is copied.
Second, Head 5.9: The path patching experiments in [54] show that head 5.9 influences the final
logits notably via S-Inhibition Heads’ keys. But there are no further experiments to explain the
concrete function of this head. While the authors refer to it as a Fuzzy Induction Head, the induction
score (measured by the attention weight from a token T to the token after T ’s last occurrence) of
this head shows a very weak induction pattern. Even if such pattern occurs, it cannot tell us what
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Figure 21: ϵ-preimage of Induction Head 5.5. Position – but not identity – of the current token (token
in parenthesis)’s last occurrence is contained in head output

Figure 22: IOI circuit in GPT-2 small. Figure 2 from [54]

information is captured by this head. Interpretation with InversionView suggests that the head barely
contains any information, within the input space of IOI-like patterns. One possibility is that head 5.9
recognizes the IOI pattern (i.e., there are two names and one is duplicated in the previous context),
so that if an IOI-like pattern exists, S2 should be attended to by S-Inhibition heads. As the decoder
model is trained on IOI examples and generates mostly IOI examples – that is, the input space X in
(1) consists of IOI-like inputs, this information is by definition not visible. Expanding the input space
to arbitrary language modeling would allow capturing such information; we leave this to future work.

E.4 Choice of Distance Metric in IOI

As described in Section 3.2, we used cosine distance for the IOI task, while for the other two tasks,
we use normalized Euclidean distance. In this section, we show that both distance metrics produce
similar interpretations while cosine distance makes the meaningful patterns easier to identify.

In Figure 23 and 24 we show two examples of using normalized Euclidean distance as the distance
metric. Readers can see more examples on our web application. We see that the samples generated
by the decoder tend to have larger distances under normalized Euclidean distance. Nonetheless, we
can still see the top-ranked samples show meaningful commonalities – indeed if we set ϵ = 0.4, we
obtain the same interpretation as the one we obtain based on Figure 4b and 19.

While normalized Euclidean distance can produce a similar interpretation, we have to set a much
larger ϵ, which we find less intuitive. We believe this to be because of the differences in the activation
dimensionality, which is 768 in the IOI task, much larger than in character counting (64) and addition
(32) tasks: Under Euclidean distance, the ratio of all close samples to all possible samples becomes
lower and lower when the dimension becomes higher. In other words, the volume of the ϵ-preimage
accounts for a very tiny proportion of the whole space in the high-dimensional case. By using cosine
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Head
Category

Function
According to [54] Position Observation

from InversionView

Whether
Consis-
tent

Name Mover
Heads

Copy whatever it attends to (in-
crease its logit). It will always
attend to IO because of previous
components.

END 9.9 9.6 10.0: IO name Yes

Negative Name
Mover Heads

Copy whatever it attends to (de-
crease its logit), it attends to IO END 10.7 11.10: IO name Yes

S-Inhibition
Heads

Move info about S and cause
Name Mover Heads to attend
less to S. They attend to S2.
They adds two signals to resid-
ual stream, one is token value
of S, the other is position of S1,
and position signal has a greater
effect.

END

7.3 8.6: Position of S1 (relative
position to IO, same for the fol-
lowing part when we say posi-
tion)
7.9: S name; Position of S1
8.10: S name; Position of S1
(most of the time)

Yes

Duplicate To-
ken Heads

Attend from S2 to S1, more gen-
erally, attend to previous dupli-
cate token, and copy the position
of this previous occurrence.

S2

0.1 0.10: S name (instead of
position)
3.0: Position of the duplicated
name

Partly

Previous Token
Heads

Attend the previous token, move
the token (name) to S1+1, then
this information is used as key
of S1+1 in Induction Heads

S1+1

2.2: S name (most of the time,
sometimes attend to “and” when
S1 is after IO and make S name
less important)
4.11: S name; Position of the
previous token (relative to the
other name)

Yes

Induction
Heads

Attend to S1+1 and move posi-
tion signal (similar to the func-
tion of Duplicate Token Heads,
while different from normal in-
duction heads)

S2

5.5 6.9: Position of the current
token’s last occurrence
5.8: Position of the current to-
ken’s last occurrence (most of
the time)
5.9: Almost no info, possibly
some info about the template.

Partly

Backup Name
Mover Heads

Do not move IO normally, but
act as Name Mover Heads when
they are knocked out.
There are 4 categories:
9.0, 10.1, 10.10, 10.6: similar to
Name Mover
10.2, 11.9: attend to both S1 and
IO, and move both
11.2: attends to S1 and move S
9.7: attends to S2 and writes
negatively

END

9.0 10.1 10.10: IO name
10.6 : S and/or IO name (Most
of the time: IO, sometimes: IO
and S, occasionally: S)
10.2: S and IO name (most of
the time), S or IO name (some-
times)
11.9: S and/or IO name (no ob-
vious difference in frequency)
11.2: S and IO name (most of
the time), S name (sometimes)
9.7: S name

Yes

Table 2: Column “Position” means the query activation is taken from that position. “S1+1” means
the token right after S1. Rows are ordered according to the narration in the original paper. When
we say “S name”, it means the the name of S in the query input, but the name is not necessarily S in
the samples. This also applies to “IO name”. The information learned by InversionView which is
different from the information suggested by Wang et al. [54] is in bold.
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Figure 23: ϵ-preimage of the same activation as Figure 4b using normalized Euclidean distance
instead of cosine similarity (Appendix E.4). The line shown in the figure still represents threshold of
0.1. While at ϵ = 0.1, some query inputs do result in a substantial number of in-ϵ-preimage samples,
many cases result in very small or even empty (as here) sample sets, suggesting that the ϵ-preimage
at 0.1 – at least as accessible to the decoder – is extremely small in this model, which we speculate
is related to the models higher dimensionality compared to the other tasks (768 vs 32/64), which
tends to make Euclidean distances large except for extremely similar vectors (see Appendix E.4 for
more discussion). We find it more convenient and natural to use similar thresholds (ϵ = 0.1) across
tasks and account for the different geometries using different distance metrics. What is key, however,
is that for an appropriately higher ϵ (e.g., ϵ = 0.4) we again always obtain a substantial number of
samples, and – most importantly – these samples lead to the same interpretation as we obtained in our
main experiments with the cosine similarity. Here, for example, we can obtain the same interpretation
by setting ϵ = 0.4, i.e., the IO name is encoded in the activation.

Figure 24: ϵ-preimage of the same activation as Figure 19 using normalized Euclidean distance. The
line shown in the figure still represents the threshold of 0.1. As explained in Figure 23, due to the
representation geometry, normalized Euclidean distance tends to require a much higher threshold to
obtain a sufficient sample size for interpretation. Importantly, as also explained there, we still obtain
the same interpretation as in our main experiments if we use normalized Euclidean distance but take
a higher threshold (e..g, ϵ = 0.4): here, the relative position of S1 is encoded in the activation.
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Figure 25: Training loss of the 3-digit addition task. Each data point is the averaged loss over an
epoch. The final loss is still big since the two operands of the addition is unpredictable.

similarity, we allow more input samples to lie in a close distance with the query input, as cosine
similarity ignores the magnitude difference. This suggests cosine similarity may overall be more
suitable when applying InversionView in high-dimensional activations.

F 3-Digit Addition: More Details and Examples

F.1 Implementation Details

We constructed 810,000 instances and applied a random 75%-25% train-test split. The probed model
is trained with a constant learning rate of 0.0001, a batch size of 512, for 50 epochs (59350 steps).
We save the last checkpoint as the trained model, and test it on the test set. We use the AdamW [36]
optimizer with weight decay of 0.01. The training loss is shown in Figure 25.

With regard to the decoder model, we select x0,pre, xi,mid, xi,postai,j as the set of activation sites
we are interested, where i ∈ {0, 1}, j ∈ {0, 1, 2, 3}. When sampling training data, we select an
activation site and a token position uniformly at random. We sample 100 million training examples
(all activation sites are included) and train the decoder with batch size of 512, resulting in roughly
200K steps. The final average in-preimage rate is 88.6%.

F.2 More Examples of InversionView

See Figures 26 to 29.5

F.3 Model Deficiency

In Section 3.3, we mention that there is no firm and clear path of obtaining the carry from ones to
tens, so the model may make wrong prediction. We examine those instances for which the model
makes wrong prediction and find they all satisfy one condition: F2+S2=9. In other words, it fails to
make the right prediction because the ones place matters. This is consistent with our interpretation
of the model. Furthermore, we check the model’s accuracy on this special subset where F2+S2=9,
and find that it is significantly higher than chance level. The accuracy on training subset (training
data where F2+S2=9) is 80.45%, and on test subset is 80.06%, while chance level is 50%. So, we
can infer that the probed model obtains some information about the ones place by means other than
memorization. Indeed, we observe fuzzy information about ones place in a1,0 and a1,1 occasionally
(See Figure 30).

5We have also tried value-weighted attention pattern [32]; it makes a negligible difference, so we always
show the original attention pattern in our paper.
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Figure 26: The ϵ-preimage of a0,1= , a0,2= and x0,post
= for the same query input as Figure 5.

Figure 27: The ϵ-preimage of x0,mid
= of different examples.

F.4 Qualitative Examination Results

We present our overall qualitative results in Figure 31 and Table 3. We have found that the model
obtains required digits by attention, and primary digits are assigned more heads than secondary
digits, e.g., a0,0, a0,1, a0,2 for hundreds and a0,3 for tens when predicting A1. More importantly, the
primary digits are encoded precisely while the secondary digits are encoded approximately in the
residual stream. In addition, the model routes the information differently based on whether A1=1, i.e.,
the length of the answer is 3 or 4. When predicting A2, this information is known before layer 0, thus
paths differ from the start. On the contrary, when predicting A3, the information is obtained in layer
0, thus paths differ only in layer 1. Furthermore, in Figure 31, sub-figure (c) and (d) are very similar,
indicating model uses almost the same algorithm to predict digit in tens place. While sub-figure (e)
shares the layer 0 with (d), its layer 1 is similar to (f).

F.5 Causal Intervention: Details and Full Results

We use similar activation patching method as character counting task, described in D.3. In Figure
31, we split the overall algorithm into individual ones for digits in the answer, under different
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Pred
Target A1 A2 A3 A4 / E

a0,0 1-2 digits from F1
and S1

whether A1=1
whether A1=1, so the
model knows A3 is in
tens or ones place

whether A1=1, so the
model knows the next
token is A4 or E

a0,1

If A1=1: Almost no
info
Else: 1-2 digits from
F2 and S2

1-2 digits from F2
and S2 1-2 digits from F3

and S3

a0,2

If A=1: both F1 and
S1
Else: 1-2 digits from
F2 and S2

a0,3
1-2 digits from F2
and S2; C2

If A=1: 1-2 digits
from F1 and S1
Else: 1-2 digits from
F3 and S3; C3

1 digit from F3 and
S3 (2 when F3=S3);
C3

x0,mid F1 and S1; C2
A1
If A1=1: F1 and S1
Else: F2 and S2; C3

A2; F2 and S2; C3;
whether A1=1

A3; F3 and S3;
whether A1=1

x0,post same as x0,mid same as x0,mid same as x0,mid same as x0,mid

a1,0

Fuzzy info about F1,
S1 and C2;
Fuzzy info about F3
and S3 (sometimes)

If A1=1: F1 and S1
(sometimes fuzzy);
C2 (sometimes)
Else: 1-2 digits from
F2 and S2;

If A1=1: 1-2 digits
from F2 and S2; C3
(sometimes);
For a1,2, also 1-2
digits from F1 and S1
(fuzzy);
Else: 1-2 digits from
F3 and S3

1-2 digits from F3
and S3;
For a1,0 and a1,1,
they also contain info
about whether next
token should be E

a1,1

If A1=1 (likely to be):
1-2 digit from F1 and
S1 (sometimes their
sum); C2;
Else: Fuzzy info,
including some info
about F3 and S3
(sometimes)

If A1=1: Uncertain.
F1 and S1 (some-
times); 1 digit from
F3 and S3 (some-
times)
Else: F2 and S2

a1,2
Fuzzy info about F2
and S2 (sometimes)

1-2 digits from F1
and S1 (sometimes
fuzzy); 1-2 digits
from F2 and S2
(sometimes fuzzy);

a1,3
1-2 digits from F1
and S1 (sometimes
fuzzy)

If A1=1: F1 and S1
(sometimes fuzzy);
C2
Else: F2 and S2

x1,mid same as x0,mid
If A1=1: info from
x0,mid + C2
Else: same as x0,mid

If A1=1: same as
x0,mid

Else: info from
x0,mid + F3 and S3

same as x0,mid

x1,post same as x0,mid

same as x1,mid except
that current input to-
ken A1 is less impor-
tant

same as x1,mid except
that current input to-
ken A2 is less impor-
tant

same as x0,mid except
that current input to-
ken A3 is blurred

Table 3: Summary of our observations for each activation site and position. “same as” denotes that
there is no obvious difference between the two sites for indicated position.
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Figure 28: ϵ-preimage of more examples

Figure 29: Some examples where we can see intermediate states between representing digits separately
and representing digits as their sum. In these examples, we see in the ϵ-preimage the digits in hundreds
place are either (2,8) or (3,7), while the digits in tens place are mostly encoded as their sum.

condition. Each algorithm predict target token based on multiple types of information (digits in
hundreds/tens/ones place).

In order to verify the paths responsible for routing each type of information, we construct contrast
examples as follows: Given a prediction target (e.g., A1), a set of tokens that can be changed Tchg

(corresponds to a certain type information, e.g., F1 and S1), we construct a contrast example xcon that
contains a different token tcon as prediction target by changing tokens in Tchg . Note that the contrast
example still follows the rule that the answer is the sum of the two operands.

We now give a detailed explanation for Figure 6b shown in the main paper, in which prediction
target is A1 and we patch head output corresponding to the preceding token “=”. On the left of
Figure 6b, Tchg = {F1,S1}. So in the contrast examples the F1 and S1 are changed and other
digits in operands remains the same. In the third run where we calculate LDpch, activations are
replaced by new activations from contrast example, so the new activations contain modified F1 and
S1 information. Therefore, for activations that contributes to routing F1 and S1 (e.g., a0,0= ), patching
them with new activations can effect model’s prediction. On the contrary, patching a0,3= has no effect
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Figure 30: Some examples where information about ones place is also encoded.

Figure 31: The information flow diagrams for predicting the digits in answer. F1 and S1 are aligned,
F2 and S2 are aligned, and so forth. Color of the lines represents the information being routed, and
alternating color represents a mixture of information. The computation is done from left to right
(or simultaneously during training), and from bottom to top in each sub-figure. Note that the figure
represents what information we find in activation, rather than the information being used by the
model. Also note that the graphs are based on our qualitative examination using InversionView and
attention pattern, and are an approximate representation of reality. We keep those stable paths that
almost always occur. Inconsistently present paths such as routing the ones place when predicting A1
are not shown.
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Figure 32: Causal verification results for the information flow in sub-figure (b) in Figure 31: predicting
A2 when A1=1. We only consider data in xorig where A1=1. The constructed contrast data xcon also
satisfies this constraint. Left: Tchg = {F1,S1}. Right: Tchg = {F2,S2}. Note that the included data
from xorig all satisfy F1+S1≥10, because, if F1+S1=9 and A1=1, no contrast example obtained by
changing F2 and S2 would satisfy the constraint. The results confirm that information about the digits
in hundreds and tens places is routed through the paths that we hypothesized based on InversionView
in Figure 31b.

Figure 33: Causal verification results for the information flow in sub-figure (c) in Figure 31: predicting
A2 when A1 ̸= 1. We exclude those data in xorig where A1=1. The constructed contrast data xcon
also satisfies this constraint. Left: Tchg = {F2,S2}. Right: Tchg = {F3,S3}. We further exclude
those data in xorig where F1+S1=9 and F2+S2=9 because we cannot find a contrast example in those
cases. The results confirm that information about the digits in hundreds and tens places is routed
through the paths that we hypothesized based on InversionView in Figure 31c.

because it contains information about F2 and S2, which are the same in contrast examples. On the
right of Figure 6b, Tchg = {F2,S2}, so we are verifying the activations that plays a role in routing
F2 and S2. Note that we exclude those data in xorig where F1+S1≥10, because changing F2 and S2
cannot change A1 in those cases.

Activation patching results for other cases are shown in Figures 32 to 36.

Overall, among all the intervention experiments and their corresponding information flow diagrams
in Figure 31, the activation with the highest increment not included in the information flow diagram
is a1,1A1 in Figure 32 (right), accounting for only 5.92% of the cumulative increment. In this sense, the
information flow diagrams coupled with interpretations present an almost exhaustive characterization
of the algorithm used by the model to predict the answer digits.
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Figure 34: Causal verification results for the information flow in sub-figure (d) in Figure 31: predicting
A3 when A1 = 1. We exclude those data in xorig where A1̸=1. The constructed contrast data xcon
also satisfies this constraint. Left: Tchg = {F2,S2}. Right: Tchg = {F3,S3}. We further exclude
those data in xorig where F1+S1=9 and F2+S2=9 because we cannot find a contrast example in those
cases.

Figure 35: Causal verification results for the information flow in sub-figure (e) in Figure 31: predicting
A3 when A1 ̸= 1. Tchg = {F3,S3}. We exclude those data in xorig where A1=1. The constructed
contrast data xcon also satisfies this constraint.

G Decoder Likelihood Difference

In figures of addition task, we also show the decoder likelihood difference for each token in generated
samples. It indicates what might be relevant to the activation. It is calculated as follows: During
generation, we sample the next token from the distribution produced by the decoder model, and we
record the probability of the sampled token in that distribution. We denote it as pact. Then, we run
the decoder again with the same input tokens, but this time it is fed with a “blank” activation (the
activation corresponding to BOS token from the same activation site: because of the causal masking of
the probed model, this activation does not contain any information). Therefore, it produces a different
distribution. The probability of the same token (the token already sampled in the normal run) in the
new distribution is pblank. The difference pact − pblank indicates if the decoder model can be more
confident about a token when it receives the information from the activation. If pact− pblank > 0, the
color is blue, and if pact − pblank < 0 it is red. The depth of color is proportional to the magnitude
of the value. Therefore, it highlights what can be learned from the query activation, in addition to
what is in the context.
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Figure 36: Causal verification results for the information flow in sub-figure (f) in Figure 31: predicting
A4/E. Left: Tchg = {F3,S3}. We exclude those data in xorig where A1̸=1, since in that case the
prediction the target position is almost always E (end of the text). Changing F3 and S3 will not
change E. Even when it does, i.e., when F1+S1=9 and F2+S2=9 and F3+S3<9, changing F3 and S3
will cause A1 to change. But we need to keep other variables the same. Based on the same reason,
the contrast examples should also satisfy the constraint A1=1. Right: Tchg = {F1,S1}. We change
F1 and S1 in order to change A1, thus changing A4 to E or vise versa. There is no constraint in this
case, since we can always find contrast examples.

Note that the decoder has learned how to handle the activation of BOS, since it also appears in the
training set because we sample uniformly at random among all tokens in the input (as in IOI and
addition task).

Importantly, unlike the distance metric value, the decoder likelihood difference depends on the
capability of the decoder model, and we should bear in mind that it might be inaccurate. We
caution that this difference does not necessarily highlight the directly relevant part, complicating
its interpretation. As shown in Figure 37, the color highlights digits in the second operand, which
does not reflect the actual flow of information. In these examples the query activation corresponds
to digits in answer. For example, in the left most sub-figure, x0,pre contains the information “6 is
at the position of A1”, but the color does not highlight A1. This is because, on one hand, decoder
predicts S1 conditioned on F1, so knowing their sum will significantly increase the confidence of
S1, and S1 is highlighted. On the other hand, when predicting A1, the previous digits can already
determine the answer. There is a high confidence even without knowing A1, thus it is not highlighted.
In essence, the information contained in a query activation may manifest itself early, and the decoder
likelihood difference does not necessarily align with the part of the input from which the information
has actually been obtained.

An interesting direction for future work could be developing decoders that generate samples in a
permuted order, and generate most confident tokens first, possibly based on architectures like XLNet
[60].

H Factual Recall: Detailed Findings

H.1 Background

We use InversionView to investigate how GPT-2 XL (1.5B parameters) performs the task of recalling
factual associations. In recent research [24, 11, 20], the task has been formalized in terms of triples
(s, r, a), where s, r, a are subject, relation, attribute respectively. The model should predict a based
on input containing s and r in natural language. E.g., given the prompt: “LGA 775 is created by", the
model is expected to predict “Intel". In this section of the paper, we refer the last token as END, and
the last subject token as SUBJ. In the above example, END is “by" and SUBJ is “75". Geva et al.
[24] found a high-level pattern that GPT-2 XL uses in solving this task: Early-middle MLP layers
at SUBJ integrate information about the subject into its residual stream. Meanwhile, the relation
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Figure 37: The ϵ-preimage of x0,pre. Here the information contained is A1, A2, A3 respectively,
while the decoder likelihood difference highlights digits in operands. Because given the first operand
and the final sum, the digits in second operand can be inferred.

information is incorporated into END’s residual stream through early attention layers. In upper layers,
the correct attribute is moved from SUBJ to END’s residual stream by attention layers.

H.2 Selecting Activation Sites

As we mentioned earlier, our goal here is not to provide a full interpretation of the computations
performed to solve this task; rather, it is to test whether InversionView can successfully produce
interpretable results on larger models. As the factual recall task is complex and involves many
model components [61, 11], we decide to focus on 25 attention heads in the upper part of the model
(layer 24-47) that contribute most frequently to the final prediction. We select these activation sites
because the attribute retrieval tends to happen there [24] and we expect more abstract information in
ϵ-preimage. Here, we note that preliminary experiments revealed that it is necessary to restrict the
number of activation sites that the decoder is trained for, given a limited compute budget, as more
activation sites require the decoder to learn more a complex overall inverse mapping from activations
to inputs. Scaling the approach to apply to many activation sites simultaneously is left to future work.

Concretely, we use the attribution method introduced in [18] to estimate the head importance at END
position. Formally, given y = z1 + · · · zm, the importance of each term zj to the sum y is estimated
as follows:

importance(zj , y) =
proximity(zj , y)∑
k proximity(zk, y)

, (4)

proximity(zj , y) = max(−∥zj − y∥1 + ∥y∥1, 0). (5)
Regarding the intuition and estimation quality of this method, please refer to [18]. In our case,
xi,mid

END = xi,pre
END +

∑
j a

i,j
END, we calculate importance(ai,jEND, x

i,mid
END ) on each example on a subset of

COUNTERFACT [37]. The subset contains around 1,000 factual prompts known by GPT-2 XL (we
used the same subset as described in [37] Appendix B.1). We consider an attention head activated
on a certain input prompt if its importance is higher than the threshold of 0.02, and calculate the
frequency of being activated over the subset. Finally we select top 25 most frequent heads in model’s
upper layers.6

There are multiple methods that can be used to find important attention heads [38, 39, 50, 29], because
we do not have strict requirements for finding the most important heads, we choose this one because
of its simplicity.

6h31,0, h33,0, h38,22, h29,9, h37,7, h32,12, h31,8, h24,24, h28,3, h25,7, h28,21, h27,16, h42,24, h31,4, h34,20,
h30,23, h24,8, h30,8, h25,10, h33,9, h32,15, h30,1, h29,20, h36,17, h35,19, ordered by frequency, last one is the
most frequent
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H.3 Decoder Training

To train the decoder model, we collect text from 3 datasets, including the factual statements from
COUNTERFACT [37]7 and BEAR [56] 8, as well as general text from MiniPile [30]. The factual
statements we used are complete sentences containing the final attribute. Note that in COUNTERFACT,
for each attribute, there are always multiple different subjects associated with it. So if the information
contained is solely the attribute, a well-trained decoder should generate different subjects. Regarding
MiniPile, we randomly select 10% of it, and split the text into sentences [9] and remove sentences
longer than 100 characters.

Importantly, for each head we selected, we extract a separate subset of sentences from the collected
data on which the head is “activated". By being “activated" we mean the attention weight on BOS
token is less than 0.69. We find this is important based on preliminary experiments, because in many
cases attention heads in higher layers execute “no-op" by exclusively attending to BOS, resulting in
attention output containing no information. Training decoder on these activations discourages it to
learn to read information from the query activation. So each head correspond to a subset of text, on
which the head output will be captured to create training data. The number of sentences in subsets
ranges from 0.6 to 2.6 million.

The training data for decoder consists of two parts, each of which accounts for 50%. In one part,
the activations are taken from GPT-2 XL when processing factual statements from COUNTERFACT
and BEAR, and activations correspond to the END position (the sentence structure is provided in
these datasets). In the other part, the activations correspond to text from all 3 datasets (thus mainly
composed of MiniPile text), and correspond to the position with least attention weight on BOS token.
By doing so, we emphasize the importance of factual statements domain while covering a large
variety of text.

We use GPT-2 Medium as the backbone model for decoder. Concretely, the newly added components
in the decoder architecture (e.g. those parts responsible for processing query activation as shown
in Figure 12) are trained from scratch, but the transformer layers in the decoder are equipped with
pretrained weights. In this way, we also make use of the existing capacity of language models. Note
that in other case studies, we use a small 2 layer transformer as decoder. The reason why we use a
much larger decoder for this task is we expect a much more complex inverse mapping to be learned.
Specifically, we expect ϵ-preimage for some activation sites to contain multiple different subjects
sharing a certain attribute, the decoder needs to generate these subjects given the attribute. So it needs
enough capacity to memorize the knowledge.

Similar as before, we always add the “< |endoftext| >” token as the BOS token when capturing
query activation from GPT-2 XL. We again use a new token “[EOS]” as the EOS token when training
the decoder. We sample query activation with equal probability of activation sites. We sample 32
million training examples (all activation sites are included) and train the decoder with batch size of
512, resulting in roughly 60K steps. The final average in-preimage rate is 36.0%.

H.4 Sampling from Decoder

Similar as before, when using decoder to generate samples, we perturb the query activation before
feeding it to the decoder in order to cover the neighbourhood around the query. In this larger model
with high-dimensional activations, we found it useful to craft this process more carefully and use
different disturbance. In preliminary experiments, we found that cosine similarity usually produces
more interpretable ϵ-preimages, therefore, we randomly sample activations that have a certain angle
θ to the query activations, and then randomly scale it so that its magnitude ranges from e−1 · ∥zq∥2
to e · ∥zq∥2. We repeat this process for different θ values with in the range cos θ ∈ [0.75, 0.9]. To
further encourage diversity, we lower the probability of tokens that have already appeared too many
times in the generated samples.10

7We make use of all prompts of each data point. Besides the "prompt", we also include "paraphrase_prompts",
"neighborhood_prompts", and "attribute_prompts" concatenated with their corresponding answer.

8We use BEARbig
9we do not experiment with other values

10We chose a simple and heuristic approach, without any attempt at optimizing it: Any token that has appeared
> 5 times in the same position, while appearing less than 50K times in the miniPile training set, has its
probability set to zero at this position.
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Figure 38: ϵ-preimage for head output a24,24, showing encoded information is the relation. On
the left, the relation “developed by" appears throughout the ϵ-preimage. On the right, the relation
“domain of work is" is consistent ϵ-preimage.

We use the first 200 examples of the aforementioned subset of COUNTERFACT (the subset containing
examples known by GPT-2 XL) as query inputs and generate samples. The results are also available
in our web application.

H.5 Observation

Choice of Threshold. We use the same distance metric as in IOI task, and we set the threshold
ϵ = 0.25. As we mentioned earlier, larger threshold produces more coarse-grained information.
Because we observe that the trained decoder in many cases does not generate enough and diverse
samples within a close distance (e.g., 0.1), we increase the threshold in order to draw more reliable
conclusions.

A priori, the sparsity of sampled ϵ-preimages at smaller thresholds may reflect multiple possibilities.
One is that there indeed are no close neighbors for the query input. For example, if the subject’s text
is copied, then only samples containing the same subject or the same token will lie in ϵ-preimage.
Such a phenomenon may generally reflect the high-dimensional geometry of larger models. Another
one is that the decoder is not complete; and that it would either require more training or more capacity,
or more training data.11 Training larger decoders on more data would mitigate this problem, which
can be done in future work. Nevertheless, in some cases, we do observe a substantial number of
diverse samples even within ϵ = 0.1, allowing us to infer information at a higher level of granularity
in these cases.

Some heads have fixed behavior We observe that some heads’ outputs almost always contain only
relation information, if they contain any information at all (being “activated”).12 In Figure 38, we
show two examples for one of these heads. We can see that samples in ϵ-preimage share the same
relation. The results are consistent across query inputs. We can infer that the these heads move the
relation information to END’s residual stream.

On the other hand, some other heads almost always move information about the subject, when they
are “activated”.13. Figure 39 shows one of these heads. We can see that the information is only about
the subject – so the function of these heads can be summarized as moving information about subject.
Interestingly, while a head can move certain attribute about the subject (e.g., nationality, or profession,
etc), the attributes it moves for different subjects are diverse. For instance, while a head might, on a
certain input, move information that the subject plays certain kind of sports, it may, on another input,
move information that the subject is an electronic product. One head, 31.0 tends to usually show

11For example, if the query activation contains information “related to Amazon and related to audio”, there
are only a few satisfactory subjects in the dataset (“Audible.com", “Amazon Music").

12h24,24, h25,7, h27,16, h28,21, h29,20, h33,9

13h29,9, h30.8, h32,12, h33,0, h37.7
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Figure 39: ϵ-preimage for head output a29,9, which contains information about the subject. On the left,
Czech-related words are common throughout the ϵ-preimage, e.g., “Czech", “Prague", “Bohem...",
so the information contained is the subject is “Czech-related". On the right, “Nokia" is shared in
ϵ-preimage, so the information is simply “Nokia".

Figure 40: ϵ-preimage for head output a35,19, which exhibit different information on different inputs.
On the left, Philippines-related words are common throughout the ϵ-preimage. For example, “Cebu":
a city in Philippines, “TV Patrol Southern Tagalog": a TV program in Philipines, “Enrile": A
municipality of Philippines and a surname of many famous Filipinos, “GMA": a Philippine television
channel / broadcasting company. So the information contained is the subject is “Philippines-related".
Note that because the samples are generated, the fact stated in sample is not true in many cases. On
the right, the relation “performs on" is encoded.

nationality or language information about the subject, but usually the heads we studied show no clear
preference for a type of attribute. In addition, these is no obvious correlation between the subject
attributes encoded by such heads and the attribute queried by the relation.

Other heads exhibit a mix of behaviors The other heads among the 25 heads we inspect, when
“activated”, move information about subject or relation (in some cases, both). Which behavior is
exhibited varies between inputs. Figure 40 shows one of these heads. On the left of the figure, the
head moves information about subject, while on the right it moves information about the relation.

Relation-agnostic retrieval In the factual recall task, only one specific attribute is sought. Geva
et al. [24] found evidence that the model “queries” the residual stream at SUBJ for the specific
attribute asked by the relation part of the prompt, and the representation at END can be viewed as
such a relation query. In other words, the attribute extracted from the subject representation depends
on the relation. However, we do not observe reliable evidence for this phenomenon among the 25
heads we inspect. In the figures we have shown so far, we can see the commonality shared between
samples in ϵ-preimage is not the attribute requested in the prompt. This still holds if one reduces the
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Figure 41: Examples showing relation-agnostic retrieval. On the left, the information encoded is
“soccer", which is indeed the requested attribute. However, the first sample shows this is not dependent
on the relation, since the “soccer" is still retrieved when relation is “speaks language". On the right,
the information “audio-related" is encoded, while the relation in the query input is “owned by".

Figure 42: Examples showing different attributes of the same subject are extracted by different
heads. In the query input, “Joseph Schumpeter" is an Austrian political economist. On the left, the
information encoded is “economist". On the right, the information is about language/nationality
(areas around Austria). Again, we emphasize that the facts stated in the sample are not necessarily
true.

threshold. Figure 41 shows two more examples showing this characteristic. In general, we find that
the information moved by the 25 attention heads tends to be the most important attribute or the “main”
attribute about the subject. On the left of Figure 41, the most important attribute coincides with the
requested attribute. We know this is a coincidence because the closest sample in ϵ-preimage has a
different relation. Note that other attributes about the subject could be moved by heads that we have
not studied.

In addition, while heads that attend to subject usually move the most important attribute, we do
observe sometimes different attributes are moved by different heads. In Figure 42, we show that
information about profession and information about language/nationality of the subject are extracted
by two heads. In fact, we observe that head h31,0 tends to extract language/nationality information in
general. But we do not find other obvious pattern of attribute category extracted by other heads.

Our findings echo those from [11], who argue that the primary mechanism for the factual recall task is
additive. With our running example “LGA 775 is created by”, simply speaking, some heads promote
attributes associated with the subject (chip, hardware, Intel, etc.), some heads promote attributes
associated with the relation (Apple, Nintendo, Intel, etc). When the results from these independent
mechanisms are added together, the intersection (Intel) will stand out. Therefore, the model can
solve the task by adding two simple circuits, while humans find Q-composition [17] (i.e., relation
information is used as queries in attention heads) more intuitive. From another perspective, this
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Figure 43: ϵ-preimage showing information about the subject moved by the attention head. On the
left, the information is “cpu/computer-hardware-related". On the right, the information is “island
country". Note that some statements are not correct.

mechanism implies vector arithmetic. Instead of vector addition in vocabulary space, we can think of
it as first summing two vectors (e.g., the output of subject heads and the output of relation heads) and
then projecting them to vocabulary space.

The evidence found by Geva et al. [24] can also be explained by this mechanism. They use DLA
to inspect attention layers’ updates to END’s residual stream, and find that the token most strongly
promoted by each update usually matches the attribute predicted at the final layer. In other words,
after projecting attention layer’s output to vocabulary space, the top-1 token is usually the exact
requested attribute. Because their experiments study attention layer’s output as a whole, instead of
individual heads, an alternative explanation is the additive mechanism mentioned above. Importantly,
because we only inspect 25 heads, other mechanisms including Q-composition are also possible.
Moreover, different mechanism can exist in other models, readers should not draw strong conclusions.

H.6 More Examples of InversionView

See Figure 43, Figure 44. Interestingly, when inspecting the ϵ-preimage shown on the right of Figure
44, we also find an example showing InversionView can detect a flaw of the model. Our interpretation
for this activation is “Canada-related", and we can see “York University” (which is in Canada) inside
the preimage, while “University of York" (a different university, located in England) is outside of the
preimage. However, we find that the “U of York" is inside the preimage.

Checking the model’s prediction about “U of York", we find that the model indeed believes “U
of York" is in Canada. More specifically, given the prompt “U of York is located in", the top-12
predictions for the next token are: the, Toronto, York, downtown, a, one, New, central, Canada,
North, Scarborough, London. On the contrary, with the prompt “University of York is located in" the
model’s top-12 predictions are: the, York, North, East, central, Yorkshire, north, a, northeast, London,
England, northwest.

I Notes on Attention, Path Patching, DLA and others

I.1 InversionView Reveals Information from Un-attended Tokens

In Section 4, we mention that attention pattern is not sufficient to form hypothesis when the model
has more than one layer. Because unlike in layer 0 each residual stream contains information only
about the corresponding token, in higher layers each residual stream contains a mixture of tokens
from the context, making it difficult to determine what information is routed by attention. Besides
this point, we also find that sometimes attention pattern can be misleading even in layer 0.

InversionView reveals how components can know more than what they attend to. At the top of
Figure 45, we show the attention weights of head h0,3. Here, “=” attends almost solely to S2, so the
head output a0,3 should only contain information that there is an “8” in tens place. The generated
ϵ-preimage, however, shows that it contains information about F2: The number in tens place other
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Figure 44: ϵ-preimage showing different information of subject is moved by different head. On the
left, the information is superficial text content “York" and/or “University". Samples containing these
words are in ϵ-preimage, such as “University of York", even though it is a different university located
in England. This can be confirmed by the fact that “Wellington, Ontario" is far away. On the right,
the information is “Canada-related", which is more high-level. We can also see “University of York"
is outside of the preimage.

Figure 45: For activation site a0,3, InversionView reveals how activations can encode information
without an attention edge: (a) Even though, on this input, h0,3 attends only to one tens place digit,
it also encodes the approximate identity (range 4–8) of another tens place digit. It encodes that the
sum of tens places is greater than ten. (b) We verify our hypothesis by manually create some samples
and calculate D. (c) Attention patterns for manually created inputs outside of the ϵ-preimage. The
attention pattern differs from that of the query input. In the query input, the attention head infers
information about the second tens place digit from the absence of an attention edge.

than “8” is always in a certain range (≥ 4), resulting in a carry to the hundreds place. To verify
this, we manually constructed examples (rightmost column in Figure 45) where the other number is
outside of the range, and found that, for these, the activation distance is indeed very large, confirming
the information suggested by the decoder. In layer 0, how does the model obtain information about
a token without attending it? At the bottom of Figure 45, we show the attention weights of those
manually inserted examples. So the answer is: a different attention pattern would arise if F2 is not in
that range. Information can be passed not only by values, but also by queries and keys. InversionView
successfully shows this hidden information, even without comparing across different examples.
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I.2 Additional Discussion about Path Patching

Besides our argument in Section 4, another important aspect of circuit discovery methods is that,
in many tasks (including our character counting task), the computational nodes do not correspond
to fixed positions, and directly applying path patching is problematic. It’s not really clear how to
apply path patching when varying input positions matter, as the literature on circuit discovery defines
circuits in terms of components, not in terms of input positions. In the case of Character Counting
Task, such an interpretation would just define a circuit linking the embeddings, attention heads, and
MLPs, without capturing the role of different positions, and the fact that characters from varying
positions feed into the computation. Such a view would not provide any nontrivial information about
the mechanics of the implemented algorithm. This reflects a more general conceptual challenge of
circuit discovery: When different input positions are relevant on different inputs, as in the Character
Counting Task, one could either define a single circuit across inputs in which every input position
is connected to a single node that performs a potentially complex computation, or define per-input
circuits where the wiring is input-dependent; however, per-sample path patching is not very scalable,
and resulting per-input circuits would require further interpretation to understand how they are formed
across inputs.

I.3 Additional Discussion about DLA

Direct Logit Attribution (DLA) extends the logit lens method to study individual model components.
Specifically, it projects the output of a model component (thus an update on the residual stream) into
vocabulary space, and interpret the component by inspecting the tokens it promotes or suppresses.
This method has gained popularity in recent years [23, 54, 16, 19], especially in the research of
interpreting factual recall in language models [24, 62, 11, 61]. However, in this section, we argue
that DLA is only suitable for studying model components that directly affect the model’s final output,
and is not well-suited for components whose effect is mediated by other components. In the circuits
found by path patching [54, 13], we can see many components that do not connect to the final output
directly, which suggests a substantial part of their effect on the final predictions is mediated by further
components. DLA shows their direct effect, which may even be non-causal “side effects". Intuitively
speaking, some information is meant to be read by a downstream component, e.g., the S-Inhibition
Heads’ output in IOI circuit is meant to be read by the query matrix of Name Mover Heads, and such
information may not necessarily be visible when projecting to the vocabulary space. Dao et al. [15]
also point out such limitations of DLA.

In Table 4 we show the results of applying DLA to attention heads’ output in IOI circuit. We can see
that the expected information is not visible in most cases. The best result comes from the S-Inhibition
head 8.10, with only 7.5% of cases where the expected name is in the top-30 tokens and there is no
other name being suppressed more than it. The rare cases where the expected name is visible can
also be explained by the small direct effect on the final output as depicted by Figure 3(b) in [54].

Therefore, researchers should be cautious when using DLA and should be aware of its limitations.
A good usage example is the IOI circuit [54], where the authors first identify those attention heads
directly affecting the final logits, and only apply DLA to them and design other experiments to
interpret other components. Importantly, in the context of factual recall task, we find that the
information given by InversionView about the upper layer attention heads is often visible via DLA,
indicating these heads contribute to model’s output directly. Thus, our results can serve as confirmation
that prior results relying on DLA in this task are generally reliable.

I.4 Methods Generating in Input Space

Feature visualization [43, 41] generates inputs maximally activating a certain neural network unit,
and interprets an individual neural network unit (e.g., neurons) to understand its general role across
inputs, while InversionView interprets specific values of inner representations, by finding inputs that
result in the same vector. When the input changes, the value and thus the interpretation may change.
Adversarial or counterfactual example generation methods [27, 59, 46, 45] generate input that is
similar to the original input but results in different outcome. Some of them are also used to explain
the model. While similar in input space, the adversarial/counterfactual input is likely to be quite
different in internal representation space, leading to a different output. In contrast, we are interested
in how different inputs in input space are represented very similarly in internal representation space.
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Attn Head,
position

Info by
InversionView
(See Table 2)

Top 30
promoted

rate

Top 30
promoted &
1st name rate

Top 30
suppressed

rate

Top 30
suppressed &
1st name rate

9.9, END IO name 99.5% 98.8% 0% 0%

7.9, END S name;
Position of ... 0% 0% 3.2% 3.2%

8.10, END
S name;

Position of ...
(most of time)

0% 0% 27.4% 7.5%

0.1, S2 S name 0% 0% 0% 0%
0.10, S2 S name 0% 0% 0% 0%

2.2, S1+1 S name
(most of time) 0% 0% 0% 0%

4.11, S1+1 S name;
Position of ... 0% 0% 0% 0%

Table 4: Applying DLA to the heads in IOI circuit. Except the first row, all heads do not directly
connect to final output according to the IOI circuit, the results show DLA cannot decode their
information. We do not include those heads in which only position information is encoded. “Top
30 promoted (suppressed) rate" means the fraction of input examples where the expected name (IO
name for the first row, S name for other rows) is inside the top 30 tokens promoted (suppressed) by
the head’s output. “Top 30 promoted (suppressed) & 1st name rate" means the expected name is
not only inside the top 30 promoted (suppressed) tokens, but also the most promoted (suppressed)
name among a list of common and single-token names, so it does not count when another name is
ranked higher. Note that a name can be associated with two tokens (with and without a space before
it), when calculating the rate, either of them satisfying the condition will count. The rate is calculated
over 1000 random IOI examples. As we can see, except for the first row, the expected name is not
observable most of the time.

Similar to InversionView, GAN inversion methods [58] also study the mapping between input space
and representation space, with a focus on interpreting the semantics of GAN’s latent space and
manipulating generation.

J Automated Interpretability

We further explore whether the process of obtaining the common information from a collection of
inputs can be automated by LLMs. We use Claude 314 [3] In preliminary experiments we also try
GPT-4 [1] but we find Claude 3 works better in our case. In the prompt given to Claude 3, we first
describe the task it needs to perform, the terminology we are using (e.g., F1, F2, etc.), the rules (e.g.,
the pattern it finds should be applicable to each inputs in the ϵ-preimage), input and output form, and
the crucial steps it should follow. In addition, we also provide it with 3 demonstrating examples in
conjunction with the correct answers. Each example corresponds to a specific activation site and
token position (e.g., a0,0, A1). In each example, there are 2-3 specific query inputs, each query input
is accompanied with 20 (sometimes less) samples that are inside the ϵ-preimage. Claude 3 needs to
find the pattern for each query input, and summarize its findings across several query inputs, which is
the information contained in general in that activation. In addition to the content described above
(the common part shared between prompts), we give it a questioning example, which is the content
we would like it to interpret. The questioning example shares the same form as the demonstrating
example, except that it contains 5 query inputs and their corresponding samples. In addition, when
two separate interpretations are needed based on different A1 value, we run the generation twice with
examples of different A1 value, instead of giving the model a mixture of two cases and resorting to
its own capacity.

We think the following findings from our experiments are worth mentioning: 1) It’s hard for the model
to align digits of the same place (e.g., comparing all F1 digits), because the samples are presented as
a single flattened string instead of a 2-dimensional table. We find that explicitly adding the variable
name can largely mitigate this problem, they may serve as certain kind of keys. For example, “7(F1)

14Version: claude-3-opus-20240229
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1(F2) 1(F3) + 9(S1) 9(S2) 4(S3)”. 2) The generated interpretation is sometimes not consistent. The
model may generate different conclusion even with the same prompt, but this usually only happens to
less important information. 3) The model does not strictly follow the rule, i.e., the common pattern
should match all inputs, even though we state this repeatedly in different ways in the prompt. The
model will say “always” even when there is a counterexample. We should keep 2) and 3) in mind
when reading the results.

We run the generation for each entry in Table 3 once, using the samples generated from the cor-
responding activation. The results are shown in Table 5, accompanied with human interpretation
for comparison. The interpretation given by Claude 3 reflects the main information in almost all
cases. Even when the information becomes more complex in layer 1, the interpretation quality does
not significantly decline. This implies that automated interpretation by LLM is promising. On the
other hand, we can also see there are some problems: 1) Some of the model’s claims are spurious,
these claims are usually ranked low by the model, indicating they are not very obvious. 2) The
model sometimes does not explain in a desirable manner. For example, for the entry “x0,mid, A3”,
the information includes A2 and whether A1=1, which means when A1=1, the sum of F1 and S1
is known. Thus Claude 3 concludes that (F1, S1) is approximately represented. Though this is
somewhat true, it is not a fundamental piece of information, and there is a more concise summary. 3)
The interpretation tends to be verbose, even though we ask the model to be succinct and provide it
with some examples. Despite the problems, we think the automatically generated interpretation is by
and large satisfactory and informative, and we think some of the problems can probably be solved or
mitigated by engineering better prompts.

Start of Table 5
Entry in
Table 3

Interpretation
from Table 3 Interpretation by Claude 3

a0,0, A1 1-2 digits from
F1 and S1 *used as example in the prompt

a0,1, A1 1-2 digits from
F1 and S1

F1 and S1 (sometimes exactly and sometimes approximately. Their order
can sometimes vary)

a0,2, A1
1-2 digits from
F1 and S1

the digits in the hundreds place (F1 and S1): - They tend to be large single
digits (7, 8, 9) that add up to 10 or more - Sometimes one or both are fixed
to a certain single digit value - Sometimes their values can swap positions
between F1 and S1 There are no strong consistent patterns observed for
the digits in the tens or ones places (F2, S2, F3, S3). No other types of
patterns (e.g. on A1 or carries) are consistently observed.

a0,3, A1 1-2 digits from
F2 and S2; C2

F2 and S2 (fuzzy, interchangeable); F3 (sometimes fuzzy); S2 (sometimes
fuzzy)

x0,mid, A1 F1 and S1; C2

1) F1 and S1 are either the same digit, or a pair of digits that always
appear together in the hundreds place (sometimes with order swapped).
2) Whether F2+S2 produces a carry (the value of C2) is often consistent
in each example, either always 0 or always 1. 3) There is no consistent
pattern found for the ones digits F3 and S3.

x0,post,
A1 F1 and S1; C2

1) F1 and S1, either exactly or an approximate version, with order some-
times varying 2) S2, usually 3) C2, occasionally F3, S3 and other parts
of the addition rarely contain any mutual information between the query
and generated strings.

a1,0, A1

Fuzzy info about
F1, S1 and C2;
Fuzzy info about
F3 and S3 (some-
times)

1) F1 and S1 digits (sometimes exact match, sometimes approximate
match). 2) Whether the sum of F2 and S2 is greater than or equal to 10
(i.e. the value of C2). 3) F3 and/or S3 digits are often preserved from the
query to the generated strings.
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Continuation of Table 5
Entry in
Table 3

Interpretation
from Table 3 Interpretation by Claude 3

a1,1, A1

If A1=1 (likely
to be): 1-2 digit
from F1 and S1
(sometimes their
sum); C2;
Else: Fuzzy info,
including some
info about F3
and S3 (some-
times)

If A1=1: 1. F1 and S1 digits from the query string appear in the generated
strings, but their order may be swapped. 2. Occasionally some other
information is shared, such as the carry digit C2, or a specific digit like
F3, but this is not consistent across all examples. In summary, the key
common information is the two digits that appear in the hundreds place
of the query and generated strings, while their specific positions as F1 or
S1 may vary.
Else: The amount of information shared between the query and generated
strings varies by example. In some cases, there are clear patterns like
certain digits being consistently shared (e.g. S1, S3). Other digits may
share approximate rather than exact values (e.g. F1). Some digits tend to
vary more (e.g. F2, S2). Occasionally, the carry C2 is also shared. When
there are too few generated strings, it is hard to conclusively identify
patterns. More generated strings allow more confidence in the patterns
found.

a1,2, A1
Fuzzy info about
F2 and S2 (some-
times)

1. F1 and S1 (sometimes fuzzy representation, their order can vary) 2.
F2 and/or S2 (sometimes only one of them, sometimes partially match) 3.
Occasionally F3 and/or S3 (partially match, their order can vary)

a1,3, A1
1-2 digits from
F1 and S1 (some-
times fuzzy)

1) F1 and S1 values, either exactly or approximately. Their order can
sometimes be swapped. 2) To a lesser extent, F2 and S2 values, either
exactly or approximately. Patterns for F3/S3 are rarely seen. Other
aspects like C2 are occasionally but not consistently shared. The level
of correspondence varies a lot between examples. Examples with many
missing values are hard to find patterns in.

x1,mid, A1 F1 and S1; C2

1) The values of F1 and S1, either the exact values or their sum 2) The
value or presence/absence of S2 3) The relationship between F2 and S2
(which is greater, or whether there is a carry) 4) Which digits are missing
in the result (A1 or A2)

x1,post,
A1 F1 and S1; C2

the F1 and S1 values from the query can be found in either order (F1,
S1) or (S1, F1) in all generated strings for that query. In some cases, C2
(carry from tens place) is also consistent between query and generated
strings, being either 0 or 1 in all strings for that query. F3 and S3 values
do not seem to have any limitations or correspondence between query
and generated strings.

a0,0, A2 whether A1=1

- Sometimes A1 is consistent (always the same value) between query and
generated strings - Sometimes the exact or approximate F3 and S3 values
from the query appear together frequently in the generated strings - In
some examples, there is no clear common information The values of (F1,
S1) and (F2, S2) do not seem to be consistently shared between query
and generated strings in these examples.

a0,1, A2

If A1=1: Almost
no info
Else: 1-2 digits
from F2 and S2

If A1=1: F2 (sometimes fuzzy); A1
Else: 1) The exact values or range of values for F2 and/or S2 2) The
value of C2 (whether F2+S2≥10) 3) Occasionally F1/S1 or F3/S3, but
not as common as F2/S2 4) A1 is usually not shared The most commonly
shared information is the exact values or ranges for F2 and S2, as well as
the resulting C2. F1/S1 and F3/S3 are less commonly shared.

a0,2, A2

If A=1: both F1
and S1
Else: 1-2 digits
from F2 and S2

If A=1: 1. F1 and S1 from the query string always appear in generated
strings in the hundreds place, but their order may be swapped. 2. A1 is
always the same in query and generated strings.
Else: 1) F2 and S2 (sometimes S2 is fuzzy) 2) Number of digits in the
final sum (related to whether A1 is shown in query) Less commonly, F1
and S1 are shared in a fuzzy way.
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Continuation of Table 5
Entry in
Table 3

Interpretation
from Table 3 Interpretation by Claude 3

a0,3, A2

If A=1: 1-2 dig-
its from F1 and
S1
Else: 1-2 digits
from F3 and S3;
C3

If A=1: 1) F1 and S1 are often the same pair of digits (sometimes with a
bit of variation). The order of the two digits may vary. 2) A1 is always
the same digit. 3) In some cases, the presence or absence of a carry from
the tens place (C2) is consistent. The digits in the ones place (F3 and S3)
are usually not shared between the query and generated strings.
Else: 1) F3 and/or S3 often have specific shared values between the query
and generated strings. The shared digit is usually in the range 2-9. 2)
Occasionally other patterns exist in generated strings (e.g. ones place of
answer) but are not truly shared with the query. 3) Besides the ones place
operands, no other consistent patterns were found across F1/S1, F2/S2 or
the answer digits.

x0,mid, A2

A1
If A1=1: F1 and
S1
Else: F2 and S2;
C3

If A1=1: 1) F1 and S1 have fixed values in each example, although the
values differ between examples. Their order can vary. 2) A1 is always
“1” in all examples. 3) In some examples, there is a consistent carry or
lack of carry from the sum of F2 and S2 (C2). But this is not true for all
examples. 4) There are no consistent patterns in the values of F2, S2, F3,
S3 across all examples.
Else: A1 is always exactly shared, the middle digits F2 and S2 are often
approximately shared, and usually one of the first digits (F1/S1) and
one of the last digits (F3/S3) from the query appears frequently in the
generated strings.

x0,post,
A2

A1
If A1=1: F1 and
S1
Else: F2 and S2;
C3

If A1=1: - F1 and S1 always match, although their order can be swapped.
In some cases, the carry C2 (whether F2+S2 is ≥ 10) is also shared
between the query and generated strings.
Else: 1) The digits in the tens place (F2, S2), either the exact digits or
their sum (carry C2). 2) The ones digit of the answer (A1). 3) Sometimes
the digits in the ones place (F3, S3), either the exact digits or their sum
(carry C3).

a1,0, A2

If A1=1: F1
and S1 (some-
times fuzzy); C2
(sometimes)
Else: 1-2 digits
from F2 and S2;

If A1=1: *used as example in the prompt
Else: - F2 and S2 often have fixed values that are shared between the
query and generated strings - A1 and A2 (when present) are consistently
single digits in both query and generated strings

a1,1, A2

If A1=1: Un-
certain. F1 and
S1 (sometimes);
1 digit from F3
and S3 (some-
times)
Else: F2 and S2

If A1=1: - Some or all digits from the hundreds place (F1 and S1),
sometimes exactly, sometimes approximately - The carry to the hundreds
place (C2), in some examples - The first digit of the answer (A1) The
digits in the tens and ones place (F2, S2, F3, S3) usually vary and are
not consistently shared. When no generated strings are provided, the
common information is uncertain.
Else: - F2 and S2 are often fixed to specific values in the query and
generated strings of each example. - The sum of F2 and S2 determines the
value of C2, which is consistent between the query and generated strings
within each example. - A1 is usually a single digit but can sometimes
expand to 2 digits if the sum reaches or exceeds 100 in the generated
strings. The specific digits of A1 are not always shared.

a1,2, A2

1-2 digits from
F1 and S1 (some-
times fuzzy); 1-
2 digits from F2
and S2 (some-
times fuzzy);

- F1 and S1 often approximately match between the query and generated
strings, but their exact values and order can vary. - In some cases, F2 and
S2 also approximately match, but less frequently and consistently than F1
and S1. - A1 always exactly matches between the query and generated
strings.

a1,3, A2

If A1=1: F1
and S1 (some-
times fuzzy); C2
Else: F2 and S2

If A1=1: 1) F1 and S1, their order can vary 2) Sometimes F2 and S2,
either the exact values or approximate range of values 3) A1 is often the
same F3 and S3 usually don’t exhibit obvious patterns. The amount of
shared information varies in different examples, with some having more
(e.g. exact F2 and S2 values) while others have less.
Else: 1) One or both digits in the tens place (F2 and/or S2) 2) One or
more digits in the answer (A1 and/or A2) Less frequently, there are also
patterns shared in the ones place (F3 and S3). The hundreds place (F1
and S1) least often contain common patterns.
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Entry in
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Interpretation
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x1,mid, A2

A1
If A1=1: F1 and
S1; C2
Else: F2 and S2;
C3

If A1=1: 1. F1 and S1 are always the same two digits but their order can
vary. 2. The sum of F2 and S2 is always the same, implying the carry C2
is consistent. 3. A1 is always the same digit “1”. There is no consistent
pattern found for F3 and S3.
Else: 1. F1 and S1: their specific values in query often show up in
generated strings in an approximate way, and their order can sometimes
vary. 2. F2 and S2: the specific values or a small range of values are
often shared. 3. F3 and S3: a fuzzy version is often shared, meaning the
specific values may vary but are close to those in query. 4. A1: often
exactly the same between query and generated strings.

x1,post,
A2

If A1=1: F1 and
S1; C2
Else: F2 and S2;
C3

If A1=1: - F1 and S1 have two possible values that are swapped between
F1 and S1. In other words, (F1, S1) have two possible combinations that
are the reverse of each other. - A1 is always the same in the query and
all generated strings in each example. Sometimes the carry C2 (whether
F2+S2≥10) is also shared between query and generated strings.
Else: 1) Specific digits are often fixed or highly common in certain places
(e.g. F2, S2) across query and equations. 2) The answer digit A1 is often
the same or highly consistent across query and equations. 3) The carry
C2 from tens place is sometimes consistent (0 or 1) across examples. 4)
Other than above, the digits and relationships seem to vary substantially
between examples.

a0,0, A3 whether A1=1

1. Digits in the answer part (A1, A2, etc.), either the exact digit or a
range. This is observed in all 5 examples. 2. The range that F1 and S1
can take, and sometimes they can swap positions. This is observed in
2 out of 5 examples. Digits in F2, S2, F3, S3 do not show consistent
patterns across examples.

a0,1, A3 1-2 digits from
F2 and S2

- When the sum is a 2-digit number, A1 is sometimes shared between
query and generated strings - When the sum is a 3-digit number, A2 is
often (but not always) shared - If there is a shared A2, its value often
matches the query - If both A1 and A2 are present, A1A2 is between
10-19 There are no consistent patterns in the operand digits F1/S1, F2/S2,
F3/S3 or their sums.

a0,2, A3 1-2 digits from
F2 and S2

1) S2 or F2 sometimes takes on a consistent value (like 0, 9, 7) in the
query and many generated strings. 2) The equations are often incomplete,
with A1 and/or A2 missing in many generated strings. 3) When present,
A2 sometimes has a consistent value (like 1, 2, 6) in the query and
generated strings, but not always. 4) No consistent patterns were found
for the (F1, S1) and (F3, S3) digit pairs.

a0,3, A3
1 digit from F3
and S3 (2 when
F3=S3); C3

1) Certain digits from F3 and/or S3, although the order of F3 and S3 may
vary in generated strings compared to the query. 2) The existence of A1
and A2 in complete equations, but not always. Other patterns like digits
from F1, S1, F2, S2 are rarely shared.

x0,mid, A3
A2; F2 and S2;
C3; whether
A1=1

1. An exact or approximate representation of (F1, S1), sometimes with
order varying 2. Specific values or range of values for F2 and S2, some-
times along with their sum (C2) 3. Sometimes specific values for F3
and/or S3 4. Often an exact or approximate representation of (A1, A2)
The amount and type of information shared varies between examples.
But in general, there are usually some constraints on the digits in each
place value shared by the query and generated strings.

x0,post,
A3

A2; F2 and S2;
C3; whether
A1=1

1. F1 and S1: exact match or fuzzy match, order of F1 and S1 may vary
2. F2 and S2: exact match or fuzzy match, order of F2 and S2 may vary,
sometimes have size relationship (like F2 ≤ S2) 3. F3: exact match or
fuzzy match 4. S3: exact match or fuzzy match 5. A1: exact match 6. A2:
exact match Not every example has all the above common information.
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a1,0, A3

If A1=1: 1-2 dig-
its from F2 and
S2; C3 (some-
times);
Else: 1-2 digits
from F3 and S3

If A1=1: 1. F2 and/or S2 (sometimes their roles as F2 or S2 can vary) 2.
A pattern about A1 and A2: when A1 is a specific value (usually “1”),
A2 is provided; otherwise A2 is not provided 3. Sometimes A1 4. Rarely
A2 when A1 is a specific value
Else: - Fuzzy/approximate matching of F3 and S3 values - Exact match-
ing of F3, S2, S3 values in some cases - Partial matching of A2 (last digit)
in some cases Overall, ones place digits (F3, S3) and occasionally other
digits (S2, A2) tend to be shared in a fuzzy or exact manner. Hundreds
place digits (F1, S1, A1) are rarely shared.

a1,1, A3

If A1=1: 1-2 dig-
its from F2 and
S2; C3 (some-
times);
Else: 1-2 digits
from F3 and S3

If A1=1: F2 and S2 are always certain fixed digits in each example,
shared by the query and all generated strings in that example. Sometimes
the first answer digit A1 is also shared between query and some generated
strings, but this is not fully consistent. The last answer digit shows no
consistency between query and generated strings.
Else: 1) S3 (sometimes F3) 2) Fuzzy representation of (A1, A2) in some
cases The ones place digit (F3 or S3) tends to be exactly preserved,
while the answer (A1, A2) is sometimes preserved approximately but not
exactly. Other digits and the carry do not show consistent patterns.

a1,2, A3

If A1=1: 1-2 dig-
its from F2 and
S2; C3 (some-
times); 1-2 digits
from F1 and S1
(fuzzy);
Else: 1-2 digits
from F3 and S3

If A1=1: 1. F1 and S1 (order may vary, values may be fuzzy or exact
match) 2. F2 (may be exact or fuzzy match) 3. S2 (may be exact or fuzzy
match, may appear in F2 or S2) 4. A1 (always exact match) 5. A2 (may
be exact match or not present) The amount of shared information varies
across examples. F3, S3 are not shared.
Else: Across the examples, the most common pattern is that either F3 or
S3 has a fixed single digit value shared by the query and all generated
strings in that example. The specific digit varies between examples but is
consistent within each example.

a1,3, A3

If A1=1: 1-2 dig-
its from F2 and
S2; C3 (some-
times);
Else: 1-2 digits
from F3 and S3

If A1=1: 1. (F1, S1), but usually in an approximate or fuzzy way. Their
exact values and order may vary in generated strings. 2. (F2, S2), usually
exactly the same as in query string. In a few cases, they are shared in an
approximate way. 3. A1, sometimes shared between query and generated
strings. 4. S3, occasionally shared if it is present. The amount and type
of shared information seem to vary from example to example. Some only
share (F2, S2), while others share (F1, S1) and A1 as well, although in
an approximate manner.
Else: - The last digit of F (F3) is often shared between query and gen-
erated strings - The last digit of the answer (A2 for 2-digit answer, A3
for 3-digit answer) is very frequently shared - Sometimes S3 or other
answer digits are also shared, but less reliably In general, the ones place
digits of the operands and answer tend to be shared between the query
and generated strings in each example.

x1,mid, A3

If A1=1: A2;
F2 and S2; C3;
whether A1=1
Else: A2; F2 and
S2; F3 and S3;
whether A1=1

If A1=1: F1 and S1 (sometimes fuzzy values or ranges); F2 and S2
(sometimes unordered); F3 (rarely); A1; A2
Else: F3 and S3, sometimes only appearing in an approximate manner
and sometimes their relative order can vary; A2, always precisely shared
between the query string and generated strings.

x1,post,
A3

If A1=1: A2;
F2 and S2; C3;
whether A1=1
Else: A2; F2 and
S2; F3 and S3;
whether A1=1

If A1=1: 1. Approximate or exact values of F1 and S1, their order can
vary 2. Exact values or a couple possible values of F2 and S2, their order
can vary 3. Exact or approximate values of A1 and A2 The information
about F3 and S3 does not seem to be shared.
Else: - Some or all digits in F2, F3, S2, S3 (F2 and S2, F3 and S3 can be
swapped) - The last digit of the answer (A2) - Whether there is a carry
from tens place to hundreds place (C2)

a0,0, A4/E whether A1=1

1) The value of A1 (in 4 out of 5 examples) 2) An approximate or exact
match of (F1, S1) pair (in 2 out of 5 examples) 3) The sum of F3 and
S3 (in 1 out of 5 examples) Other occasional commonalities include the
value of A2 and whether A3 is complete.
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a0,1, A4/E 1-2 digits from
F3 and S3

Across the examples, the most consistent commonality is in the ones
place (F3 and S3). They often have the same or very similar values in the
query and generated strings.
Sometimes a digit in a certain place of the final answer is also shared
between query and many/all generated strings, like the first digit (A1) or
last digit (A3). But this is not always the case.
The hundreds place (F1/S1) and tens place (F2/S2) digits usually vary
without a clear mutual pattern between the query and generated strings.

a0,2, A4/E 1-2 digits from
F3 and S3

1) F3 and S3 digits (sometimes approximately). Present in 4 out of 5
examples. 2) A1 and/or A2 digits (only in example 0).

a0,3, A4/E 1-2 digits from
F3 and S3

- Certain digit positions (often F3 or S3) having the same value in the
query and all/most generated strings - When sums are shown, certain
digits (often A1 or A3) being restricted to a small set of values or range
The specific digit positions and values/ranges vary between examples,
but the general pattern of certain positions being fixed or constrained is
consistent.

x0,mid,
A4/E

A3; F3 and S3;
whether A1=1

- F1 and S1 sometimes appear in generated strings with their order
swapped - F3 and S3 sometimes appear in generated strings with their
order swapped - F3, S3 and A3 of the query string often appear unchanged
in the same position in generated strings

x0,post,
A4/E

A3; F3 and S3;
whether A1=1

- F3 is often shared between the query string and generated strings - S3 is
sometimes shared between the query string and generated strings - A3 is
consistently the same value in the query string and all generated strings
for each example There is no strong pattern for F1, S1, F2 or S2.

a1,0, A4/E

1-2 digits from
F3 and S3;
whether next
token is E

1. Specific digits or narrow ranges in F3 and S3 2. The value or a narrow
range of A1 3. The ending digits or a narrow range of ending digits in
A3 4. Sometimes the carry C1 or C2 The digits in F1, S1, F2, S2 and the
full value of A2, A3 are usually not shared.

a1,1, A4/E

1-2 digits from
F3 and S3;
whether next
token is E

1) F3 (always the same or frequently appears) 2) S3 (always the same or
frequently appears) 3) One or more answer digits, especially the last one
A3 (always the same or frequently appears)

a1,2, A4/E 1-2 digits from
F3 and S3

The ones digit (F3) of the query string consistently shows up in the ones
place (either F3 or S3) of the generated strings. Sometimes the other
ones digit in generated strings has a specific value when query F3 is in a
certain place. Occasionally, the carry (C3) from the ones place addition
is also shared between the query and generated strings.

a1,3, A4/E 1-2 digits from
F3 and S3

only the ones digits (F3 and sometimes S3) are consistently shared, while
the other parts of the addition problems vary between the query and
generated strings in each example.

x1,mid,
A4/E

A3; F3 and S3;
whether A1=1

- F3 and S3 have some fixed values (varying by example) that always
sum to the same total. The order of the two digits doesn’t matter. - As a
result, A3 is always a fixed value for each example. - There is sometimes
a consistent carry over amount from the tens to hundreds place, resulting
in a fixed A1 value.

x1,post,
A4/E

F3 and S3;
whether A1=1

- Specific digits in the answer (A3) - Specific digits in the operands (F3,
S3) - Whether there is a carry in a certain place (C2, C3) The shared
information varies across examples, but usually relates to the ones or tens
place digits and carries.

Table 5: Interpretation for 3 digit addition produced by Claude 3, compared with human interpretation
from Table 3. In general, the automated information is very informative, and the human interpretations
3 is contained in almost all cases, though the output tends to be more verbose. The LLM outputs,
with some human post-checking, can thus further speed up interpretation.

K Compute Resources

We ran all experiments on NVIDIA A100 cards. The decoder is trained for 4-6 hours on 2 GPUs
for the first three case studies, without exhaustively tuning efficiency of the implementation, which
we believe could further speed up training. Regarding the factual recall task, we train the decoder
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for less than 1 day on 4 GPUs. Generation of ϵ-preimage samples (including forward passes on the
probed model to calculate distance metric) is fast for the first 3 tasks, and it takes around 9 hours on 4
GPUs for factual recall task (for 200 query inputs). Patching experiments run quickly, as they are
done for small models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We ensured that all claims made in abstract and introduction are well supported
by our results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a “Limitations” paragraph in the Discussion section, where we discuss
limitations of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper includes no theorems or other non-empirical claims.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Besides explaining all experimental details, we also provide the code and the
probed models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have attached the code with the submission. No new data were created.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all relevant details, and also include the code for reproducibility,

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: All quantitative results have sample sizes of hundreds of thousands of data
points, and error bars would be very small, thus not add substantial information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include an appendix section on Compute Resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is foundational research on neural networks, and we anticipate no societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not see any risk of misuse of our research results.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the GPT-2 Small model and IOI templates, both of which we cite. We
use no other existing models or data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We document the new assets, which are models of character counting and
addition.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper involves no crowdsourcing or human subjects experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper involves no crowdsourcing or human subjects experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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