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Abstract
Automatic evaluation methods based on large lan-
guage models (LLMs) are emerging as the stan-
dard tool for assessing the instruction-following
abilities of LLM-based agents. The most common
method in this paradigm, pairwise comparisons
with a baseline model, critically depends on the as-
sumption of transitive preferences. However, the
validity of this assumption remains largely unex-
plored. In this study, we investigate the presence
of non-transitivity within the AlpacaEval frame-
work and analyze its effects on model rankings.
We find that LLM judges exhibit non-transitive
preferences, leading to rankings that are sensitive
to the choice of the baseline model. To mitigate
this issue, we show that round-robin tournaments
combined with Bradley-Terry models of prefer-
ence can produce more reliable rankings. Notably,
our method increases both the Spearman corre-
lation and the Kendall correlation with Chatbot
Arena (95.0%→ 96.4% and 82.1%→ 86.3% re-
spectively). To address the computational cost of
round-robin tournaments, we propose Swiss-Wise
Iterative Matchmaking (SWIM) tournaments, us-
ing a dynamic matching strategy to capture the
benefits of round-robin tournaments while main-
taining computational efficiency.

1. Introduction
The growing adoption of large language models (LLMs)
as generalist systems for complex, open-ended tasks (Ope-
nAI et al., 2023; Meta AI, 2024b) presents a critical chal-
lenge: the lack of a universally accepted gold-standard eval-
uation. In many cases, multiple valid responses exist for
a given task, complicating the establishment of effective
benchmarks. Consequently, a new paradigm for evaluating
open-ended tasks focuses on quantifying the alignment of
LLMs with human preferences (Ouyang et al., 2022) — an
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Figure 1. Rankings from baseline-fixed frameworks show high
sensitivity to the choice of baseline. Each entry (x, y) represents
the win rate of model mx against my , where each column reflects
a ranking with the column model as the baseline. Inconsistency
emerges when Llama-3-70B and Claude-3-Opus are used as base-
lines. Appendix C.1 provides the detailed matrix comparing 20
models.

aspect existing automatic metrics cannot adequately assess.
However, human evaluation is costly and lacks scalability
(Karpinska et al., 2021). As a result, LLM-based evaluators
are now widely used to automate the process, with pairwise
comparisons proving particularly effective in aligning with
human ratings (Liusie et al., 2024; Liu et al., 2024; Chiang
et al., 2023; Li et al., 2023; Lin et al., 2025; Zheng et al.,
2023; Samvelyan et al., 2024; Khan et al., 2024).

The typical pipeline for LLM-based automatic evaluation
frameworks is using pairwise comparisons between a target
model and a fixed baseline model, where an oracle model
serves as the judge. By calculating the relative win rate
against the baseline model, such comparisons enable rank-
ing target models. However, it is unclear whether using a
fixed baseline provides consistent results. If the judge ex-
hibits non-transitive preferences, such as favoring A over B,
B over C, but C over A, the resulting rankings can become
sensitive to the choice of the baseline model (Figure 2).
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Figure 2. (Left) Inconsistent rankings are observed in baseline-fixed frameworks based on pairwise comparisons due to non-transitivity in
the judge’s evaluations. Different choices of baselines can lead to varying rankings, undermining the reliability and robustness of this
approach. (Right) We propose a round-robin tournament framework where all models are compared pairwise. The results are used to
capture non-transitivity in the judge’s evaluations and score models using the Bradley-Terry model. This method produces rankings that
are more robust and better aligned with human evaluation.

In this work, we investigate the existence and impact of
non-transitivity within AlpacaEval (Li et al., 2023), which
has been largely overlooked in previous work. AlpacaEval
is a popular pairwise comparison framework that employs
GPT-4-Turbo as the fixed baseline model. We introduce Soft
Non-Transitivity Deviation (SNTD) as a metric to measure
the degree of soft non-transitivity in the judge’s continuous
preferences and find that LLMs exhibit both hard and soft
non-transitive preferences. Additionally, previous studies
have demonstrated that LLMs often exhibit various biases
(Gallegos et al., 2024) such as position bias (Zheng et al.,
2023; Wang et al., 2024; Zhou et al., 2024b), which can
lead to spurious correlations in the judge’s preferences. We
show that the occurrence of non-transitivity is jointly in-
fluenced by position bias and the judge model’s inherent
non-transitive reasoning abilities.

To address the above, we propose the use of round-robin
tournaments in the pairwise comparison setting, overcom-
ing the need for a fixed baseline model. We subsequently
apply the Bradley-Terry model (Bradley & Terry, 1952) to
score models based on tournament outcomes, yielding a
more consistent ranking compared to baseline-fixed rank-
ing. To address the computational cost in the round-robin
tournament, we propose Swiss-Wise Iterative Matchmaking
(SWIM) tournaments to improve efficiency while preserving
the robustness of model comparisons.

Our contributions are as follows: 1) We show that LLMs
exhibit non-transitive preferences when performing pair-
wise comparisons. Additionally, we observe that the ag-
gregation of instruction-level non-transitive relationships

culminates in model-level non-transitivity (Figure 1). We
demonstrate that such non-transitivity makes the ranking
highly sensitive to the choice of the baseline model. Chang-
ing the baseline model makes the rank order inconsistent
and unstable, highlighting the importance of proposing new
ranking methods. 2) We find that while position bias sig-
nificantly contributes to non-transitivity, it is not the sole
cause. Our experiments confirm that position switching out-
performs random assignment in mitigating position bias for
stronger judges when using continuous values for judge’s
preferences, with reductions ranging from 17% to 44%.
3) We demonstrate that applying round-robin tourna-
ments combined with the Bradley-Terry model reduces
the impact of non-transitivity, resulting in more robust
rankings. This method also aligns better with human eval-
uations of model rankings in Chatbot Arena. Finally, we
introduce SWIM, an efficient method for adding models with
nearly identical performance compared to naive round-robin
tournaments.

2. Related Work
LLM-as-a-Judge. The LLM-as-a-Judge (Zheng et al.,
2023) evaluation method leverages frontier models to rank
responses to open-ended queries without explicit ground-
truths. A common approach involves using a fixed baseline
model for pairwise comparisons to assess the performance
of the target model, as seen in frameworks such as VicunaE-
val (Chiang et al., 2023), AlpacaEval (Li et al., 2023), and
Arena-Hard (Li et al., 2024). The target models are then
ranked on the basis of their win rates against the baseline.
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However, an implicit assumption in these frameworks is
that transitivity holds in preference judgments, which has
not been empirically verified. Transitivity requires that if
an LLM judge prefers model mA over mB and mB over
mC , it must consequently prefer mA over mC . Violations
of transitivity can result in unstable rankings that undermine
the evaluation framework’s reliability (Figure 2). To address
this gap, we examine the robustness of current LLM ranking
methodologies by extending the AlpacaEval framework to
investigate the existence of non-transitivity, aiming to es-
tablish a more rigorous foundation for the LLM evaluation
system.

Non-Transitivity in Zero-sum Games. Prior work has ex-
plored non-transitivity in two-player zero-sum games within
multi-agent reinforcement learning. Balduzzi et al. (2019)
characterize agent interactions through convex polytopes, us-
ing their dimensionality to decompose transitive and cyclic
components. Czarnecki et al. (2020) demonstrate that real-
world strategy spaces exhibit a spinning top distribution,
where non-transitivity peaks at middling performance levels
but diminishes at either lower or higher levels. Given the
presence of non-transitivity, evaluating a strategy based on
its performance against a single opponent does not reliably
reflect its true capability. Therefore, previous achievements
in complex games such as StarCraft (Vinyals et al., 2019)
and Dota 2 (OpenAI et al., 2019) employ population-based
self-play training and evaluate agents through tournament-
style competitions against diverse opponents. Mirroring
the population-based evaluation paradigm that succeeded in
non-transitive games, we adopt tournament-based compar-
isons in LLM-as-a-Judge frameworks to mitigate ranking
instability induced by non-transitivity.

3. Methods
3.1. Measuring Non-Transitivity in Pairwise

Comparisons

We employ an LLM, denoted as mJ, to conduct pairwise
comparisons between models mA and mB . The objective
is to determine which of the two outputs, o(i)A or o(i)B , better
follows a given instruction Ii. To facilitate the comparison,
each model output is assigned a unique token identifier. The
antisymmetric judge function ϕ(o

(i)
A , o

(i)
B | mJ , Ii) evalu-

ates pairs of outputs from models and determines the proba-
bility of favoring o

(i)
A as the win rate by applying a softmax

operation to the log probabilities of the corresponding model
tokens. The preference of mA over mB is then quantified
by taking the expected value of the judge function:

J(mA ≻ mB | Ii) = E
[
ϕ(o

(i)
A , o

(i)
B | mJ, Ii)

]
. (1)

Hard Non-Transitive Cases. To quantify non-transitivity
among a triplet of models (mA,mB ,mC), we first com-

pute the Percentage of Non-Transitive cases (PNT) over the
instruction set I, defined as:

PNT =
1

|I|
∑
Ii∈I

1non-trans.(mA,mB ,mC | mJ, Ii), (2)

where the indicator function 1non-trans. returns 1 when the
judge’s preferences violate logical transitivity, and 0 other-
wise. See Appendix B.1 for the complete set of conditions.

However, this metric demonstrates a limitation in sensitivity:
given J(mA ≻ mB | I) = 1 and J(mB ≻ mC | I) = 1, it
classifies both J(mA ≻ mC | I) = 0 and J(mA ≻ mC |
I) = 0.49 as non-transitive, despite the latter exhibiting sub-
stantially stronger transitivity tendency as it is closer to the
transitive threshold. Such insensitivity to transitional values
near the decision boundary undermines the metric’s capacity
to capture nuanced deviations from ideal transitivity.

Soft Transitivity Deviation. To address this limitation, we
propose Soft Non-Transitivity Deviation (SNTD) to measure
the degree of non-transitivity for a single instruction with a
triplet of models, defined as:

SNTD(mA,mB ,mC | Ii) =

1

3
× E

[
JSD

(
ϕ(o

(i)
A , o

(i)
B | mJ, Ii)∥ϕ̂(o(i)A , o

(i)
B | mJ, Ii)

)
+ JSD

(
ϕ(o

(i)
B , o

(i)
C | mJ, Ii)∥ϕ̂(o(i)B , o

(i)
C | mJ, Ii)

)
+ JSD

(
ϕ(o

(i)
A , o

(i)
C | mJ, Ii)∥ϕ̂(o(i)A , o

(i)
C | mJ, Ii)

)]
,

(3)
where the Jensen–Shannon divergence (JSD) quantifies the
discrepancy between observed win rates ϕ and estimated
win rates ϕ̂ under transitivity assumptions, as defined below.

Estimated Win Rate. We denote the latent quality of the
outputs from models mA, mB , and mC on instruction Ii
as γ(i)

A , γ(i)
B , and γ

(i)
C , respectively. Given empirical obser-

vations ϕ, Bradley-Terry model estimate the quality gap
as:

s
(i)
AB = γ

(i)
A −γ

(i)
B = ln

(
ϕ(o

(i)
A , o

(i)
B | mJ, Ii)

1− ϕ(o
(i)
A , o

(i)
B | mJ, Ii)

)
. (4)

Based on that, we can estimate the expected win rate ϕ̂
under transitivity between any two models from a triplet
(mA,mB ,mC) by utilizing the observed win rates between
the other two pairs as (See Appendix B.4 for the derivation):

ϕ̂(o
(i)
A , o

(i)
B | mJ, Ii) =

1

1 + e−(s
(i)
AC−s

(i)
BC)

. (5)

3.2. Measuring Model Performance

In this section, we define metrics to quantify and rank model
performance given a model poolM, instruction dataset I,
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and judge mJ.

Win Rate Against Baseline. Through currying the judge
function with a fixed baseline model mbase, we define the
win rate against the baseline model as a rating function:

Rbase(·) =
1

|I|
∑
Ii∈I

E
[
ϕ(·, o(i)mbase

| mJ, Ii)
]
. (6)

Bradley-Terry Coefficients. Given a series of pairwise
comparisons, we employ the Bradley-Terry (BT) model
to convert comparison outcomes into coefficients βi ∈ R
that quantify the strength of model mi. The optimal BT
coefficients β̂ are estimated by maximizing the likelihood:

β̂ = argmax
β

∑
i

∑
j ̸=i

[
Wi,j · ln

(
1

1 + e(βj−βi)

)]
, (7)

where Wi,j represents the number of times model i wins
against model j. Rather than using discrete labels {0, 1} to
count victories, we utilize the judge’s preferences as soft
labels, defining Wi,j =

∑
Ik∈I J(mi ≻ mj | Ik), which

yields more accurate estimations (See Appendix D).

Elo Rating. To establish a standardized measure of model
performance, we convert Bradley-Terry coefficients to Elo
ratings (Elo, 1966) by setting ξi = 400 log10 βi. Under this
system, the probability of model mi winning against model
mj is expressed as:

P (mi ≻ mj) =
1

1 + 10(ξj−ξi)/400
. (8)

3.3. Tournament-Based Ranking

We formalize the LLM-as-a-Judge evaluation as a multi-
player game framework, where evaluated language models
act as players. Each player’s strategy space is defined by
its response generation approach under given instructions.
When the judge exhibits non-transitive evaluation behavior,
model assessment through fixed-opponent comparisons can-
not provide reliable rankings, leading us to characterize this
evaluation framework as a non-transitive game.

Round-Robin Tournament. Tournament-based competi-
tion with diverse opponents has been established as an effec-
tive approach for performance evaluation in non-transitive
games (OpenAI et al., 2019; Vinyals et al., 2019), as it
enables robust assessment of relative capabilities while mit-
igating the impact of non-transitivity. Based on this insight,
we propose a round-robin tournament structure where each
model engages in pairwise evaluation against every other
model in the pool, with evaluations conducted by judge mJ

over instruction set I. This method enables comprehensive
model evaluation through comparisons against a diverse pop-
ulation of models rather than relying on a fixed perspective
for assessment. We subsequently apply the Bradley-Terry

model to comparison outcomes to assign scores, which are
then converted into Elo scores for the final ranking.

Swiss-Wise Iterative Matchmaking Tournament. While
round-robin evaluation yields reliable rankings, it presents
significant computational challenges at scale. Incorporat-
ing a new model into a leaderboard of size M necessitates
M model-level comparisons compared to a single compari-
son in baseline-fixed frameworks. To address this compu-
tational bottleneck, we propose the Swiss-Wise Iterative
Matchmaking (SWIM) tournament (Algorithm 1), drawing
inspiration from binary search and Swiss-system tourna-
ments. Our approach dynamically adjusts matchmaking
based on Bradley-Terry coefficients, focusing comparisons
near model capability boundaries in a logarithmic manner,
thereby reducing the number of comparisons to ⌈log2(M)⌉.

3.4. Evaluation Setup

Datasets. We use the AlpacaEval dataset (Li et al., 2023),
which includes a wide variety of instruction types, such as
information search tasks and coding problems.

Participating models. We evaluate 20 models that appear
on both the AlpacaEval and Chatbot Arena1 leaderboards
(see Appendix A.1 for details).

Scenarios. We denote significant performance advan-
tages with ≫ and marginal advantages with ≈. Based
on relative model performance, we classify model triplets
(mA,mB ,mC) into four categories:

1. Lead & Lead (LL): mA ≫ mB and mB ≫ mC .

2. Lead & Margin (LM): mA ≫ mB and mB ≈ mC .

3. Margin & Lead (ML): mA ≈ mB and mB ≫ mC .

4. Margin & Margin (MM): mA ≈ mB and mB ≈ mC .

For each scenario, we select representative model triplets
based on the win rates of participating models from the
AlpacaEval leaderboard (see Appendix A.2 for details).

Judge models. For consistency with AlpacaEval, we main-
tain the judge configuration and prompt templates. We
examine non-transitivity in judgments using two models:
GPT-4-Turbo2 and GPT-3.5-Turbo (OpenAI et al., 2023),
both with the temperature set to 0. The detailed prompt is
provided in Appendix G.1.

Position Switching. LLMs are known to exhibit biases and
inconsistencies based on the order of outputs presented in
the prompt (Zheng et al., 2023; Pezeshkpour & Hruschka,
2024; Raina et al., 2024). To mitigate this bias, we employ

1Refer to Fully Style-Controlled Chatbot Arena Leaderboard
(2024/09/15)

2GPT-4-Turbo refers to gpt-4-1106-preview in the win
rate matrix to avoid ambiguity.
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Table 1. We measure non-transitivity in four scenarios, evaluated by GPT-4-Turbo and GPT-3.5-Turbo. Orange cells indicate maximum
PNT/SNTD values (highest non-transitivity); blue cells indicate minimum PNT/SNTD values (highest transitivity). When using GPT-
4-Turbo as the judge, more non-transitivity can be observed as evaluated model performance becomes more similar and the highest
non-transitivity occurs when the performances of all three models are similar; however, GPT-3.5-Turbo does not exhibit this pattern.

Scenarios Models GPT-4-Turbo GPT-3.5-Turbo

PNT SNTD PNT SNTD

LL mA = gpt-4o-2024-05-13
21.37mA ≫ mB mB = Qwen1.5-72B-Chat 3.98 0.1121 0.2654

mB ≫ mC mC = Mistral-7B-Instruct-v0.2

LM mA = gpt-4o-2024-05-13
5.96 0.1336 22.48mA ≫ mB mB = Qwen1.5-72B-Chat 0.2586

mB ≈ mC mC = claude-3-sonnet-20240229

ML mA = Yi-34B-Chat
0.1215 0.2625mA ≈ mB mB = Qwen1.5-72B-Chat 3.98 22.86

mB ≫ mC mC = Mistral-7B-Instruct-v0.2

MM mA = Qwen1.5-72B-Chat
0.1431 0.2629mA ≈ mB mB = claude-3-sonnet-20240229 8.45 0.1431 20.87

mB ≈ mC mC = gpt-4-0314

position switching, where each comparison is evaluated
with responses in both orders. The final preference score
is calculated as the mean of these balanced evaluations. To
reduce the impact of API randomness, we invoke the judge
function twice for each order configuration.

4. Non-Transitive Judge Preferences
In this section, we investigate the judge’s non-transitive
behaviors and analyze their underlying mechanisms.

4.1. Increased Non-Transitivity with Similar Model

As shown in Table 1, non-transitivity emerges across all
four scenarios when GPT-4-Turbo serves as the judge. Both
PNT and SNTD generally increase as the performance gap
between model pairs (mA,mB) or (mB ,mC) narrows. No-
tably, while scenarios LL and ML have identical PNT
scores, scenario ML exhibits a higher SNTD value, indi-
cating more non-transitivity. This discrepancy highlights
the limitation of the PNT—it fails to capture the continu-
ous nature of judge preferences in assessing non-transitivity.
Notably, we observe similar trends across other judges and
datasets, confirming the generality of the finding (See Ap-
pendix B.2).

Weaker Judge is More Non-Transitive. Replicating our
evaluation with GPT-3.5-Turbo as the judge reveals an in-
triguing pattern (Table 1): both PNT and SNTD values are
consistently higher than those observed with GPT-4-Turbo
and remain relatively stable across all scenarios, suggesting
a persistent and substantial level of non-transitivity.

Previous studies have demonstrated that GPT-4-Turbo pos-

sesses stronger reasoning capabilities and exhibits signifi-
cantly less bias compared to GPT-3.5-Turbo (Zheng et al.,
2023). We hypothesize that the strong non-transitivity ob-
served with GPT-3.5-Turbo stems from its inability to dis-
tinguish the quality differences among outputs, as it is gen-
erally considered to have weaker instruction-following abil-
ities than most participating models (Chiang et al., 2024;
Lin et al., 2025; Li et al., 2023; White et al., 2025). This
inability leads to preferences driven by bias predominantly,
which is empirically validated in Section 4.3.

4.2. Aggregate Non-Transitivity

We use J(mA ≻ mB) = 1
|I|
∑

Ii∈I J(mA ≻ mB | Ii)
to denote the averaged pairwise preference, representing
the model-level win rate between mA and mB . We subse-
quently perform pairwise comparisons across all models and
present the win rate matrix in Figure 1 with GPT-4-Turbo as
the judge to assess whether instance-level non-transitivity
extends to the model-level.

Hard Non-Transitivity at Model Level is Mild. Surpris-
ingly, we detect no instances of hard non-transitivity (e.g.,
ma ≻ mb, mb ≻ mc, and ma ≺ mc) at the model level,
which we partially attribute to the effectiveness of calibra-
tion and randomness mitigation techniques. When imple-
menting a more aggressive approach—where positions are
randomly assigned for each evaluation, reducing the pro-
cess to a single call—we observe occurrences of hard non-
transitivity (see Appendix C.2). Nevertheless, model-level
non-transitive cases remain notably rare. We hypothesize
that this scarcity stems primarily from the low proportion
of non-transitive evaluations when using GPT-4-Turbo as
the judge. Given the sparsity of non-transitive comparisons,
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Figure 4. Non-transitivity becomes more pronounced as the
model performance gap approaches the origin. We find that
both PNT and SNTD peak near the origin when GPT-4-Turbo
serves as the judge.

their aggregated effect is likely overwhelmed by the pre-
dominance of transitive evaluations, thus preventing the
emergence of observable non-transitivity at the model level.

Despite this, notable instances of soft non-transitivity re-
main evident, leading to inconsistent ranking as shown by
an example in Figure 1. Specifically, while GPT-4-Turbo
achieves a win rate of 0.50 against GPT-4o, and GPT-4o
wins against Claude-3-Opus with a rate of 0.68, transitivity
would predict a win rate of 0.68 for GPT-4-Turbo against
Claude-3-Opus. However, the observed rate of 0.72 reveals
a subtle violation of transitivity at the model level.

Limitations of the Baseline-Fixed Framework. We further
quantify the sensitivity of baseline-fixed frameworks. For
each participating model m, we apply the rating function
Rm(·) to generate rankings, resulting 20 distinct ranking
lists. We find that only 20% of models maintain consistent
rank positions across all rankings. Moreover, when compar-
ing any pair of ranking lists, only 61% of models preserve
their rank positions on average. These findings demonstrate
that rankings are highly sensitive to the choice of baseline,
indicating that baseline-fixed frameworks produce inconsis-
tent and unreliable model evaluations.

Influence of Model Performance Difference. We further
investigate the relationship between non-transitivity and the
performance gap among model triplets within all partici-
pating models. For each triplet, we define the x-axis as
the win rate difference between models mA and mB from
the AlpacaEval leaderboard and the y-axis as the difference
between mB and mC . The computed PNT and SNTD val-
ues, visualized in Figure 4, demonstrate that non-transitivity
intensifies as the win rate differences between both model
pairs decrease. Both metrics peak near the origin, indicating
that non-transitivity is most pronounced when comparing
models of similar capabilities (See Appendix B.5 for imple-
mentation details).

4.3. Non-Transitivity is Jointly Influenced by Position
Bias and Judge’s Inherent Reasoning Abilities

Position Bias in Judge Preferences. During the evaluation,
we observe that both judges exhibit position bias. Specifi-
cally, when evaluating two models on a given instruction,
we define a preference as consistent if the judge’s preference
maintains its relationship to 0.5 (either consistently above or
below) with position switching. We report the proportion of
consistent preferences in each scenario, using GPT-4-Turbo
and GPT-3.5-Turbo as judges (Figure 3).

In all scenarios except MM, both judges show the highest
preference consistency when comparing mA and mC , at-
tributable to the substantial performance gap. A potential
explanation is that AlpacaEval may have limited discrim-
inative ability when evaluating models with similar capa-
bilities, meaning the presumed performance gap does not
hold. Moreover, GPT-3.5-Turbo shows a markedly lower
preference consistency than GPT-4-Turbo, indicating that
its evaluations are primarily driven by position bias rather
than comparing output qualities.

Factors of Non-Transitivity. We further categorize instruc-
tions into two groups: ambiguous and consistent. An in-
struction is considered consistent only when the preferences
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Figure 5. Proportion of (non-)transitive instructions across all scenarios, as evaluated by GPT-4-Turbo and GPT-3.5-Turbo. When
evaluating model triplets with GPT-3.5-Turbo as judge, over 96% of instructions exhibit position bias effects. In contrast, GPT-4-Turbo
demonstrates substantially higher evaluation consistency. Our analysis reveals that position switching provides more effective bias
mitigation than random assignment for less position-biased judges.

between (mA,mB), (mB ,mC), and (mA,mC) are all con-
sistent, implying that all comparisons are not influenced by
position bias. Otherwise, the instruction is categorized as
ambiguous, as at least one of the comparisons is affected
by position bias. We report the proportion of non-transitive
cases in Figure 5. We find that ambiguous instruction ex-
hibits significantly higher non-transitivity rates compared
to consistent instructions, suggesting position bias is indeed
a contributing factor. Furthermore, when using GPT-3.5-
Turbo as the judge, the proportion of ambiguous instructions
exceeds 96%, validating that it exhibits a much stronger po-
sition bias than GPT-4-Turbo.

Interestingly, we find non-transitivity still occurs within
consistent instructions, with GPT-4-Turbo serving as the
judge, indicating that position bias is not the sole cause of
non-transitivity. Therefore, we argue that non-transitivity
arises from two primary factors. The first is the inherent rea-
soning capability of the model, which is non-transitive due
to the judge’s latent comparison criteria. When the quality
of the outputs is similar, the judge may display preferences
akin to a rock-paper-scissors dynamic. The second factor
is the position bias, which affects the judge’s preferences.
These two factors interact and compound the occurrence of
non-transitivity.

Stronger Position Bias Increases Non-Transitivity. To
investigate the impact of position bias, we introduce Po-
sition Difference (PD). Given an instruction Ii and a
model triplet (mA,mB ,mC), we define this measure as
PD(mA,mB , Ii) + PD(mB ,mC , Ii) + PD(mA,mC , Ii),
ranging from 0 to 3, where PD(mA,mB , Ii) is defined as∣∣∣E[ϕ(o(i)A , o

(i)
B | mJ, Ii)]− E[ϕ(o(i)B , o

(i)
A | mJ, Ii)]

∣∣∣. Using
GPT-4-Turbo as the judge, we evaluate all triplet permuta-
tions and partition PD values into bins. As shown in Figure
6-Left, the proportion of non-transitive cases increases with
PD, demonstrating a strong positive correlation.

Usefulness of Position Switching. Instead of using position
switching, we repeat the experiment by randomly assigning
the positions of the outputs in the prompt (Figure 5). Since
all preferences in the consistent instruction are consistent,
the proportion of non-transitive cases remains unchanged.
However, for ambiguous instructions, we observe divergent
effects: GPT-4-Turbo exhibits a significant increase in non-
transitivity, while GPT-3.5 shows a slight decrease.

The distributions of judge preference (see Appendix B.6)
show distinct evaluation patterns between judges. When
mitigating GPT-3.5-Turbo’s position bias through position
switching, the model tends to generate more uncertain out-
comes (averaged preference ≈ 0.5). In contrast, GPT-
4-Turbo exhibits different characteristics: while position
switching occasionally introduces uncertainty, its debiased
preferences generally maintain clear output distinctions.
This finding suggests that position switching can reduce
non-transitivity for stronger judges that are less affected by
position bias, with reductions ranging from 17% to 44%.
However, for weaker judges that are more susceptible to
position bias, it may have the opposite effect.

Prompting Strategies to Mitigate Non-transitivity. We ex-
plore various prompting strategies to address non-transitivity
in model judgments. Our analysis focuses on Scenario MM,
where the capabilities of the compared models are closely
matched, making it easier to observe both non-transitive
behaviors and the effects of different prompts. Our find-
ings show that providing judges with a structured evaluation
checklist (Cook et al., 2024) would marginally reduce non-
transitive cases. Interestingly, while incorporating Chain-of-
Thought reasoning (Wei et al., 2022) helps mitigate position
bias, it also leads to a higher incidence of non-transitive
preferences. Moreover, allowing the judge to declare ties
not only increases position bias but also further amplifies
non-transitivity. See Appendix C.3 for detailed results.
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Table 2. Correlation comparison between the round-robin-based
framework and AlpacaEval, with and without length control (LC).

Method Spearman Correlation Kendall Correlation

w/o. LC w. LC ∆ w/o.LC w. LC ∆

AlpacaEval 2.0 81.4% 95.0% +13.6% 63.2% 82.1% +18.9%

Round-Robin 85.4% 96.4% +10.0% 68.4% 86.3% +17.9%

∆ +4.0% +1.4% +5.2% +4.2%
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Figure 6. (Left) Non-transitivity strongly correlates with position
difference. (Right) Both round-robin and SWIM tournaments
achieve nearly identical performance, consistently outperform-
ing AlpacaEval in all cases. We compare the performance
between tournament-based ranking and AlpacaEval leaderboard
across different numbers of participating models. For each model
count, we randomly sample models and conduct 2000 trials, re-
porting the mean correlation with a 95% confidence interval.

5. Results of Tournament-Based Ranking
We conduct a round-robin tournament to obtain pairwise
comparisons and apply the Bradley-Terry model to compute
ratings, which are then converted to Elo scores. The result-
ing Elo scores and rankings for all 20 evaluated models are
presented in Table 9 in the Appendix.

To assess the effectiveness of our framework, we consider
the human preference ranking from the Chatbot Arena as
the reference. We compute the Spearman and Kendall cor-
relations between our round-robin-based ranking and the
Chatbot Arena. We also compare these correlations with
those between the AlpacaEval and the Chatbot Arena. As
shown in Table 2, our method achieves higher correlations,
with a 4% increase in Spearman correlation and a 5.2%
increase in Kendall correlation.

Length-Controlled Winrate. To mitigate verbosity bias
and ensure a fair comparison, we adopt the generalized
linear model with the same weights as Length-Controlled
AlpacaEval (Dubois et al., 2024) to derive length-controlled
preferences. Using these preferences, we compute the
length-controlled Bradley-Terry coefficients, which are then
converted to length-controlled Elo scores. Table 2 shows
that our length-controlled round-robin ranking further im-
proves correlations, with a 1.4% increase in Spearman corre-

lation and a 4.2% increase in Kendall correlation compared
to length-controlled AlpacaEval.

Performance of SWIM. We demonstrate that both round-
robin-based ranking and SWIM-based ranking outperform
AlpacaEval, as shown in Figure 6-Right. We do not com-
pare performance under length control, as the generalized
linear model is an empirical approach that may be less inter-
pretable, potentially affecting fairness.

6. Limitations and Future Work
Our study has several limitations. While AlpacaEval pro-
vides diverse instructions, it may not fully capture real-world
open-ended tasks, necessitating validation of our method
across broader domains. Additionally, extending our find-
ings to judge models beyond GPT-4-Turbo and GPT-3.5-
Turbo is an important direction for future work. Further-
more, while our benchmark relies on human rankings from
Chatbot Arena, inherent human biases (Chen et al., 2024)
may introduce non-transitivity in human preferences, fun-
damentally limiting the achievable alignment between auto-
mated and human evaluations.

Secondly, our focus on pairwise comparisons leaves open
questions about non-transitivity in pointwise evaluations.
While pointwise methods inherently avoid position bias
caused by output ordering, converting these scores to pair-
wise comparison (A > B if score(A) > score(B)) may intro-
duce new forms of non-transitivity, depending on the granu-
larity and consistency of rating criteria. Future work should
investigate whether such conversions preserve transitivity
and identify conditions that modulate cyclic preferences.

Finally, our analysis relies on the Bradley-Terry model,
which assumes transitive model-level preferences by assign-
ing each model a global scalar score. While we do observe
instance-level non-transitivity in our pairwise comparisons,
these cases are relatively rare, and hard non-transitivity in
the aggregated model-level preferences is mild. Therefore,
we find the Bradley-Terry model sufficient for our ranking
purposes. Nevertheless, we acknowledge that this imple-
mentation may not fully capture the nuanced capabilities of
models. We leave this as a direction for future work, focus-
ing on more expressive alternatives that parameterize model
capabilities in a multi-dimensional space (Duan et al., 2017),
which remains a promising and under-explored approach for
improving the robustness of LLM-as-a-judge evaluations.

7. Conclusion
In this paper, we comprehensively study the impact of non-
transitivity in the current LLM-based framework with pair-
wise settings, filling a gap in this area of research. Our find-
ings show that non-transitivity can be observed at the instruc-
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tion level during judgment and is related to the reasoning
capability of the judge. The aggregation of instruction-level
non-transitivity further leads to model-level non-transitivity,
revealing the limitations of the baseline-fixed framework, as
the rankings in this setting depend on the choice of the base-
line model. Our analysis also demonstrates that position bias
is a key factor in non-transitivity, with systematic position
switching proving more effective than random assignment
in reducing non-transitivity for stronger judges.

To address the above, we propose a baseline-free frame-
work utilizing round-robin tournaments with Bradley-Terry
model, which captures non-transitivity patterns and demon-
strates better alignment with human. Recognizing the com-
putational constraints of round-robin tournaments, which
require O(nm2) instruction-level comparisons for rank-
ing m models across n instructions, we propose SWIM
tournaments. This approach achieves O(nm logm) com-
plexity through dynamic matching, substantially reducing
computational cost while maintaining nearly identical per-
formance. The code and data are available at https:
//github.com/yix8/llm-nontransitivity.
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A. LLM Details.
In this section, we provide detailed information about all models participating in the ranking evaluation for our experiments.

A.1. Participating LLMs.

The experimental model set consists of 20 LLMs encompassing a range of top proprietary models, large open-source
models, and small open-source models. All models are concurrently presented on the AlpacaEval leaderboard and the Fully
Style-Controlled Chatbot Arena (2024/09/15). The AlpacaEval leaderboard supplies pre-generated outputs for each model
on the AlpacaEval dataset, allowing us to avoid the computational costs associated with output generation and focus solely
on the costs involved in the evaluation process. The Fully Style-Controlled Chatbot Arena provides human preference
rankings, which we use as a reference for calculating the agreement. A detailed list of participating LLMs is presented
below:

• Proprietary models includes four OpenAI models: gpt-4-1106-preview, gpt-4o-2024-05-13,
gpt4_0314, gpt-4-turbo-2024-04-09 (OpenAI et al., 2023); three Anthropic models: claude-2,
claude-3-opus-20240229, claude-3-sonnet-20240229 (Anthropic, 2023; 2024); two Mistral mod-
els: mistral-large-2402, mistral-medium (Jiang et al., 2023); one Google model: gemini-pro (Gemini
Team Google, 2023); and one Yi model: yi-large-preview (01.AI, 2024).

• Large open-source models includes Yi-34B-Chat (01.AI et al., 2024), Llama-3.1-405B-Instruct-Turbo
(Meta AI, 2024b), Llama-3-70B-Instruct (Meta AI, 2024a), Qwen1.5-72B-Chat (Qwen Team, 2024),
wizardlm-70b (Xu et al., 2024).

• Small open-source models includes Meta-Llama-3-8B-Instruct (Meta AI, 2024a), vicuna-13b (Chiang
et al., 2023), Starling-LM-7B-alpha (Zhu et al., 2024), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023).

A.2. Selection of Representative Model Triplets across Scenarios.

For each scenario, we select representative model triplets based on the win rates of participating models (shown in
parentheses) from the AlpacaEval leaderboard:

1. LL: GPT-4O-2024-05-13 (51.3%) as mA, QWEN1.5-72B-CHAT (26.5%) as mB , and MISTRAL-7B-INSTRUCT-
V0.2 (14.7%) as mC .

2. LM: GPT-4O-2024-05-13 (51.3%) as mA, QWEN1.5-72B-CHAT (26.5%) as mB , and CLAUDE-3-SONNET-
20240229 (25.6%) as mC .

3. ML: YI-34B-CHAT (29.7%) as mA, QWEN1.5-72B-CHAT (26.5%) as mB , and MISTRAL-7B-INSTRUCT-V0.2
(14.7%) as mC .

4. MM: QWEN1.5-72B-CHAT (26.5%) as mA, CLAUDE-3-SONNET-20240229 (25.6%) as mB , and GPT-4-0314
(22.1%) as mC .

B. Non-Transitivity in Preference
B.1. Conditions for Non-Transitivity

In this section, we define the conditions under which non-transitivity arises in pairwise model comparisons. Consider a
triplet of models, (mA,mB ,mC), and the corresponding pairwise comparisons on instruction Ii:

J(mA ≻ mB | Ii), J(mB ≻ mC | Ii), J(mA ≻ mC | Ii)

where J(mx ≻ my | Ii) denotes the preference of the judge that model mx outperforms model my under instruction Ii.

Non-transitivity occurs if the results of these comparisons form any of the following patterns:

• mA ≻ mB , mB ≻ mC , mA ∼ mC
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• mA ≻ mB , mB ≻ mC , mA ≺ mC

• mA ≻ mB , mB ∼ mC , mA ∼ mC

• mA ≻ mB , mB ∼ mC , mA ≺ mC

• mA ∼ mB , mB ≻ mC , mA ∼ mC

• mA ∼ mB , mB ≻ mC , mA ≺ mC

• mA ∼ mB , mB ∼ mC , mA ≻ mC

• mA ∼ mB , mB ∼ mC , mA ≺ mC

• mA ∼ mB , mB ≺ mC , mA ≻ mC

• mA ∼ mB , mB ≺ mC , mA ∼ mC

• mA ≺ mB , mB ≻ mC , mA ≻ mC

• mA ≺ mB , mB ≻ mC , mA ∼ mC

• mA ≺ mB , mB ≺ mC , mA ≻ mC

• mA ≺ mB , mB ≺ mC , mA ∼ mC

where ≻ means the left side wins against the right, ≺ means the left side loses to the right, and ∼ represents a tie between
the two sides.

Threshold Setting. In practice, given the continuous nature of probability estimates, ties where J(mx ≻ my | Ii) = 0.5
occur with negligible frequency. Therefore, we introduce the following thresholds to determine the outcome of pairwise
comparisons:

1. If 0.475 ≤ J(mx ≻ my | Ii) ≤ 0.525, the outcome is treated as a tie (∼).

2. If J(mx ≻ my | Ii) > 0.525, the outcome is classified as a win for Mx (≻).

3. If J(mx ≻ my | Ii) < 0.475, the outcome is classified as a loss for Mx (≺).

Notably, even without threshold settings, the non-transitivity patterns observed across all four scenarios remain consistent
with Section 4, which is shown in Appendix B.3.

B.2. Results Under Varying Judges and Datasets

To further assess the robustness of our findings, we evaluate the same four scenario settings on the AlpacaEval dataset using
GPT-4o-mini3 as the judge. As shown in Table 3, the results align closely with those obtained using GPT-4-Turbo: the
SNTD metric confirms that non-transitivity increases as the performance gap between model pairs narrows. In addition,
based on the Chatbot Arena rankings (Chiang et al., 2024), GPT-4o-mini is ranked higher than GPT-4-Turbo, suggesting
that it serves as a stronger judge. Across almost all scenarios, GPT-4o-mini exhibits lower SNTD and PNT values than
GPT-4-Turbo, indicating more transitive judgments. These results provide further empirical support for our claim that
stronger judges tend to exhibit less non-transitivity.

To evaluate whether this pattern holds across datasets, we also conduct experiments on the Arena-Hard-Auto (Li et al.,
2024) dataset, which consists of 500 high-quality prompts curated from Chatbot Arena. Due to computational constraints,
we sample 200 prompts for evaluation. We utilize GPT-4-Turbo, GPT-3.5-Turbo, and GPT-4o-mini as judges under the
four-scenario framework, selecting models based on their rankings in the Arena-Hard-Auto leaderboard. As shown in the
Table 4, the results remain consistent with those observed on AlpacaEval: the SNTD metric confirms that non-transitivity
intensifies as the performance gap narrows, particularly for stronger judges. In contrast, GPT-3.5-Turbo exhibits high
non-transitivity across all scenarios, due to its inability to reliably distinguish quality differences among the outputs. This
consistency suggests that the non-transitive behavior of LLM judges is robust across datasets.

3Specifically, gpt-4o-mini-2024-07-18 is used for evaluation.
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Table 3. We measure non-transitivity on the AlpacaEval dataset across four scenarios, evaluated by GPT-4o-mini. Orange cells indicate
maximum PNT/SNTD values (highest non-transitivity); blue cells indicate minimum PNT/SNTD values (highest transitivity). Consistently,
more non-transitivity can be observed as evaluated model performance becomes more similar and the highest non-transitivity occurs when
the performances of all three models are similar.

Scenarios Models GPT-4o-mini

PNT SNTD

LL mA = gpt-4o-2024-05-13
mA ≫ mB mB = Qwen1.5-72B-Chat 3.35 0.1006
mB ≫ mC mC = Mistral-7B-Instruct-v0.2

LM mA = gpt-4o-2024-05-13
3.60 0.1070mA ≫ mB mB = Qwen1.5-72B-Chat

mB ≈ mC mC = claude-3-sonnet-20240229

ML mA = Yi-34B-Chat
0.1036mA ≈ mB mB = Qwen1.5-72B-Chat 3.98

mB ≫ mC mC = Mistral-7B-Instruct-v0.2

MM mA = Qwen1.5-72B-Chat
3.60mA ≈ mB mB = claude-3-sonnet-20240229 0.1173

mB ≈ mC mC = gpt-4-0314

Table 4. We measure non-transitivity on the Arena-Hard-Auto dataset across four scenarios, evaluated by GPT-4-Turbo, GPT-3.5-Turbo,
and GPT-4o-mini. Orange cells indicate maximum PNT/SNTD values (highest non-transitivity); blue cells indicate minimum PNT/SNTD
values (highest transitivity). We observe a similar pattern as on the AlpacaEval dataset.

Scenarios Models GPT-4-Turbo GPT-3.5-Turbo GPT-4o-mini

PNT SNTD PNT SNTD PNT SNTD

LL mA = gpt-4o-2024-05-13
0.2071mA ≫ mB mB = Qwen1.5-72B-Chat 2.00 0.0820 17.00 1.00 0.0813

mB ≫ mC mC = Mistral-7B-Instruct

LM mA = gpt-4o-2024-05-13
3.00 0.1083 17.50 1.50 0.0880mA ≫ mB mB = Mistral-Large-2402 0.2002

mB ≈ mC mC = Qwen1.5-72B-Chat

ML mA = Mistral-Large-2402
2.50 0.0945 24.50 0.1085mA ≈ mB mB = Qwen1.5-72B-Chat 0.2370 5.50

mB ≫ mC mC = Mistral-7B-Instruct

MM mA = gpt-4-0613
0.1431 0.2294 5.00mA ≈ mB mB = Mistral-Large-2402 5.00 0.1270 28.00 0.1181

mB ≈ mC mC = Qwen1.5-72B-Chat
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Figure 7. Proportion of (non-)transitive instructions across all scenarios (without the threshold of ties), as evaluated by GPT-4-Turbo and
GPT-3.5-Turbo. When evaluating model triplets with GPT-3.5-Turbo as judge, over 96% of instructions exhibit position bias effects. In
contrast, GPT-4-Turbo demonstrates substantially higher evaluation consistency.

B.3. Results with Preferences without the Threshold of Ties

Table 5. We measure non-transitivity (without the threshold of ties) on the AlpacaEval dataset across four scenarios, evaluated by
GPT-4-Turbo and GPT-3.5-Turbo. Orange cells indicate maximum PNT/SNTD values (highest non-transitivity); blue cells indicate
minimum PNT/SNTD values (highest transitivity). When using GPT-4-Turbo as the judge, more non-transitivity can be observed as
evaluated model performance becomes more similar and the highest non-transitivity occurs when the performances of all three models are
similar; however, GPT-3.5-Turbo does not exhibit this pattern.

Scenarios Models GPT-4-Turbo GPT-3.5-Turbo

PNT SNTD PNT SNTD

LL mA = gpt-4o-2024-05-13
1.12mA ≫ mB mB = Qwen1.5-72B-Chat 0.25 0.1121 0.2654

mB ≫ mC mC = Mistral-7B-Instruct-v0.2

LM mA = gpt-4o-2024-05-13
1.24 0.1336mA ≫ mB mB = Qwen1.5-72B-Chat 0.25 0.2586

mB ≈ mC mC = claude-3-sonnet-20240229

ML mA = Yi-34B-Chat
0.1215 0.2625mA ≈ mB mB = Qwen1.5-72B-Chat 0.99 1.86

mB ≫ mC mC = Mistral-7B-Instruct-v0.2

MM mA = Qwen1.5-72B-Chat
0.1431 0.2629mA ≈ mB mB = claude-3-sonnet-20240229 2.86 0.1431 1.99

mB ≈ mC mC = gpt-4-0314

We observe the same pattern from the table 5 as in the main text, which is with the threshold for ties. When GPT-4-Turbo
serves as the judge, both PNT and SNTD increase as the performance gap between any pair of models, (mA,mB) or
(mB ,mC), decreases. In cases where all three models exhibit similar performance, such as in scenario MM, the incidence
of non-transitivity rises significantly. We attribute this to the increased uncertainty judges face when assessing quality
differences between similar outputs. When the comparisons between mA and mB , mB and mC , and mA and mC are all
uncertain, non-transitivity reaches its highest level. Replicating our evaluation with GPT-3.5-Turbo as judge reveals an
intriguing pattern: while the PNT remains minimal across scenarios, the consistently high SNTD values indicate substantial
non-transitivity. This observation motivates us to define the tie threshold, as ties can serve as an indicator of model
uncertainty.

To explain the low number of hard non-transitive cases when using GPT-3.5-Turbo as the judge with position switching in
Figure 5, we hypothesize that GPT-3.5-Turbo is also affected by other biases (Zhou et al., 2024a), such as verbosity bias
(Saito et al., 2023) and token bias (Alzahrani et al., 2024). Since GPT-3.5-Turbo struggles to accurately assess the quality of
outputs, these combined biases influence the judge’s preferences. As a result, even though position switching mitigates the
position bias, the averaged preference is still not determined by the actual quality of the outputs but rather by other fixed
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biases in the prompt, leading to transitive preferences. This observation also motivates us to define the threshold, as it can be
used to reduce the impact of other biases.

B.4. Derivation of Expected Win Rate

The Bradley-Terry model (Bradley & Terry, 1952) provides a probabilistic framework for estimating pairwise win rates
based on these latent quality scores. Specifically, the probability that model mA outperforms model mB on instruction Ii is
given by:

ϕ(o
(i)
A , o

(i)
B | mJ, Ii) =

1

1 + e−(γ
(i)
A −γ

(i)
B )

= σ(s
(i)
AB), (9)

where we denote s
(i)
AB = γ

(i)
A − γ

(i)
B as the quality gap. Conversely, this quality gap can be calculated from empirical

observations ϕ as:

s
(i)
AB = ln

(
ϕ(o

(i)
A , o

(i)
B | mJ, Ii)

1− ϕ(o
(i)
A , o

(i)
B | mJ, Ii)

)
. (10)

Based on that, we can estimate the expected win rate ϕ̂ under transitivity between any two models from a triplet
(mA,mB ,mC) by utilizing the observed win rates between the other two pairs. For instance, to estimate the win rate for
model mA beating model mB on instruction Ii without direct observations, we assume that the observed win rates for the
remaining pairs reflect true performance differences and compute the estimated win rate as:

ϕ̂(o
(i)
A , o

(i)
B | mJ, Ii) =

1

1 + e
−
(
(γ

(i)
A −γ

(i)
C )−(γ

(i)
B −γ
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B.5. Heatmap Implementation

In this experiment, we aim to investigate the relationship between non-transitivity and the performance gap between two
models being compared. From the pool of 20 models, we generate all possible tuples (mA,mB ,mC) by computing
P (20, 3) = 20!

17! = 6, 840 permutations. For each tuple, we calculate the number of hard non-transitive cases and the
degree of soft non-transitivity. The results are visualized as a 2D heatmap, where the x-axis represents the performance gap
between model mA and model mB , measured by their win-rate difference on AlpacaEval. Similarly, the y-axis represents
the win-rate difference between model mB and model mC . A positive win-rate difference indicates that the former model
performs better, whereas a negative difference suggests that the latter outperforms the former.

According to the AlpacaEval leaderboard, yi-large-preview achieves the highest relative win rate of 57.5%, while
vicuna-13b records the lowest at 5.8%. This establishes a win rate differential range of [-51.7%, +51.7%], which we
partition into a 35 × 35 grid. For each grid cell, we compute the mean number of PNT and SNTD across all possible model
triplet permutations. We apply a Gaussian filter (σ = 1) to reduce noise in the resulting data, and then perform quadratic
interpolation to generate the final heatmap.

B.6. Preference Distributions of Judge

All scenario assumes that mA outperforms mB , mB outperforms mC , and mA outperforms mC . Consequently, we expect
the judge’s preference distribution to exhibit a heavy-tailed pattern concentrated around 1. In scenario LL, because the
models differ significantly in performance, the judge should tend to select the superior output. However, under the random
assignment setting, GPT-3.5-Turbo exhibits a U-shaped distribution across all scenarios (Figure 8), validating that it fails to
distinguish response quality and is instead primarily driven by position bias. As a result, after applying position switching,
its preference distribution changes significantly, forming a sharp peak at 0.5 while rapidly decaying away from it, leading to
a large number of ties.

By contrast, GPT-4-Turbo’s distributions vary across scenarios (Figure 9). In scenario LL, where mA,mB , and mC have
large performance gaps, the distribution precisely follows a heavy-tailed pattern concentrated at 1, indicating that when
GPT-4-Turbo perceives a substantial quality difference, it strongly favors the superior response. In LM and ML scenarios,
where one model pair has a clear performance gap while the other is closer in quality, increased uncertainty arises when
evaluating the latter, causing the tail to shift towards 0. In MM, GPT-4-Turbo also exhibits a U-shaped distribution. However,
unlike GPT-3.5-Turbo, it retains 38% of its preferences distributed across the full range from 0 to 1, demonstrating that its
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Figure 9. Preference distribution of GPT-4-Turbo across scenarios (from top to bottom: LL, LM, LM, MM). (Left) Distribution with
random assignment. (Right) Distribution with position switching.
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preferences are guided by reasoning rather than solely by position bias. Thus, position switching smooths its preference
distribution while preserving a considerable proportion of decisive judgments (non-ties), reflecting that GPT-4-Turbo still
distinguishes quality differences

This also explains why position switching is least effective in Scenario MM, reducing non-transitivity by only 17%.

C. Additional Experimental Results
C.1. Full Pairwise Comparison Matrix (Position Switching and Two API Calls per Order)
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Figure 10. Win rate matrix for 20 models using default settings (Position Switching and Two API Calls per Order).

C.2. Position Switching and Multiple API Calls Reduce the Occurrence of Non-transitivity at the Model Level.

We hypothesize that the absence of observed hard non-transitivity in Figure 10 is due to the use of position switching and two
API calls per order, which help ensure the consistency of judgments. To validate this hypothesis, we adopt a more aggressive
approach by randomly assigning positions for each evaluation, reducing the process to a single API call to mitigate position
bias. However, since the preference between each model pair for a given instruction is determined by log probability rather
than a binary label (0 or 1), we argue that random assignment may not fully eliminate position bias. As a result, this setup is
expected to perform worse than position switching, leading to lower judgment consistency compared to the original setting.

To reduce computational costs, the judge’s new preference can be interpreted as a random sample from the four API calls
made in the original experiment. In other words, in this ablation experiment, the judge’s preference is equivalent to selecting
one random sample from the pre-computed preferences in Section 4.2.

Figure 11 presents the corresponding win rate matrix from this ablation. In contrast to Figure 10, we now observe the occur-
rence of a hard non-transitive case at the model level. Specifically, Qwen1.5-72B-Chat outperforms Yi-34B-Chat,
and Yi-34B-Chat outperforms claude-3-opus-20240229. However, claude-3-opus-20240229 outper-
forms Qwen1.5-72B-Chat, thus exhibiting a clear case of non-transitivity.
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Figure 11. Win rate matrix for 20 models using ablated settings (random assignment and a single API call per order). Hard non-transitivity
is observed compared to Figure 1. For instance, Qwen1.5-72B-Chat outperforms Yi-34B-Chat, and Yi-34B-Chat outperforms
claude-3-opus-20240229. However, claude-3-opus-20240229 outperforms Qwen1.5-72B-Chat, highlighting the
presence of non-transitive relationships among the models.

To further verify that the observation of non-transitivity in the ablated setting is not merely due to randomness, we repeat
this ablation experiment 50 times. We quantify the degree of soft non-transitivity in the win rate matrix in a manner similar
to Equation 3, but applied at the model level. Specifically, for a set of 20 models, we first compute all possible permutations
of triples (mA,mB ,mC). For each triplet, we sequentially select two pairs of models and extract their corresponding
values from the win rate matrix as ground truth. We then calculate the expected win rate for the remaining model pair and
measure the associated SNTD at the model level. Finally, we average the results across all permutations to assess the overall
non-transitivity in the win-rate matrix.

Table 6. Comparison of the degree of soft non-transitivity between the original and random assignment settings. The values represent the
mean SNTD, with the standard deviation reported for the random assignment setting based on 50 independent trials.

Experiment Setting SNTD

Position Switching and Two API Calls per Order 4.00× 10−4

Random Assignment and One API Call (50 times) (5.38± 0.04)× 10−4

As shown in Table 6, the degree of non-transitivity in the ablated experiment is significantly higher than in the original
experiment. This finding demonstrates that by employing position switching and multiple API calls, we can improve the
consistency of the judge’s evaluations and thereby reduce the occurrence of non-transitivity at the model level.
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C.3. More Prompting Strategies

We evaluate six prompting strategies in Scenario MM to encourage the judge to exhibit more transitive preferences from a
prompting perspective (≈≈). The prompt templates are provided in Appendix G.1.

1. Direct Comparison: Standard binary choice comparison identical to our previous experimental setup, serving as the
baseline.

2. CoT Comparison: Requires the judge to output its reasoning through Chain-of-Thought (Wei et al., 2022) before
making a decision.

3. Direct Comparison with Checklist: Provides a detailed evaluation checklist (Cook et al., 2024) for the judgment
without explicit reasoning.

4. CoT Comparison with Checklist: Combines a detailed evaluation checklist with Chain-of-Thought reasoning before
judgment.

5. CoT Comparison (Tie Allowed): Extends the binary choice to three options by introducing the possibility of ties,
while maintaining the Chain-of-Thought reasoning process.

6. CoT Comparison with Checklist (Tie Allowed): Incorporates both the three-choice option and evaluation checklist
while preserving Chain-of-Thought reasoning.

Table 7. Comparison of different prompting strategies, judged by GPT-4-Turbo. Red cells indicate the lowest consistency (most affected
by position bias); green cells represent the highest consistency (least affected by position bias). Orange cells denote the highest number
of non-transitive cases (greatest non-transitivity), while blue cells indicate the lowest number of non-transitive cases (greatest transitivity).
The values in parentheses represent the number of non-transitive cases in consistent instructions (left) and ambiguous instructions (right).

Method A vs B B vs C A vs C # of Consistent # of Non-trans. # of Non-trans.
(consist.) (consist.) (consist.) Instr. (w. threshold) (w/o. threshold)

Direct 473 496 476 217 (1, 67) (1, 22)
Direct w. Chk 478 506 440 227 (0, 64) (0, 23)
CoT 572 577 560 301 (1, 152) (1, 46)
CoT w. Chk 548 571 535 268 (5, 172) (5, 47)
CoT w. Tie 474 496 493 210 (5, 139) (5, 87)
CoT w. Chk&Tie 466 479 456 181 (10, 183) (10, 129)

For the checklist-based method, we first use GPT-4-Turbo to generate a checklist—a set of YES/NO questions assessing
different aspects of the given instruction. The corresponding prompt is provided in Appendix G.2.

As shown in Table 7, providing the judge with a checklist slightly reduces non-transitivity. This aligns with our earlier
assertion that the judge’s latent comparison criteria are inherently non-transitive for closely matched models. While
introducing explicit criteria helps guide the judge toward more transitive preferences, the effect remains limited, likely
because the automatically generated checklists lack the granularity to capture subtle output differences.

Meanwhile, although Chain-of-Thought prompting reduces position bias and improves overall preference consistency, it
increases non-transitivity for ambiguous instructions and can introduce additional non-transitive cases even in consistent
instructions. Additionally, when combining CoT with a checklist, we observe more inconsistency, suggesting that CoT
elicits the judge’s latent reasoning criteria, which may conflict with the explicitly provided checklist. Furthermore, allowing
the judge to declare ties increases non-transitivity, as the judge may opt for ties instead of identifying subtle differences
between outputs.

D. Soft Bradley-Terry Model Yields More Accurate Rankings
We explored three methods for computing Wi,j in Equation (7). The first method, referred to as hard-BT, directly derives
discrete win rates from the judge’s continuous preferences. In this approach, if J(mi ≻ mj | Ik) > 0.5, the outcome is
counted as a win (1); if J(mi ≻ mj | Ik) < 0.5, it is counted as a loss (0); and if J(mi ≻ mj | Ik) = 0.5, it is considered
a tie (0.5).
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The second method, rounded-BT, incorporates a threshold to refine the win/loss definition. Specifically, if J(mi ≻ mj |
Ik) > 0.525, it is considered a win (1); if J(mi ≻ mj | Ik) < 0.475, it is considered a loss (0); and if J(mi ≻ mj | Ik)
falls within the range [0.475, 0.525], it is treated as a tie (0.5).

The final method, soft-BT, follows the formulation presented in the main text. Instead of discretizing preferences into
fixed categories, it directly uses the judge’s continuous preference scores to compute Wi,j , allowing for a more nuanced
representation of the relative strength between models:

Wi,j =
∑
Ik∈I

J(mi ≻ mj | Ik).

We evaluate these methods by computing rankings from a round-robin tournament involving 20 models, using GPT-4-Turbo
as the judge, and measuring their correlation with the Chatbot Arena rankings as metrics.

Table 8. Comparison between Round Robin based framework with Bradley-Terry model and AlpacaEval 2.0.

RR + Soft-BT RR + Hard-BT RR + Rounded-BT

Spearman Correlation 85.4% 84.4% 84.8%
Kendall Correlation 68.4% 66.3% 67.4%

Table 8 shows that soft-BT produces the most aligned ranking, demonstrating its ability to better capture the relative strength
of models from continuous preferences.

E. Swiss-Wise Iterative Matchmaking tournaments

Algorithm 1 Swiss-Wise Iterative Matchmaking (SWIM) tournament

1: Input: M unranked models, a dataset I and a judge model MJ .
2: Output: An ordered ranking of all M models.
3: R← empty set ∅ to store ranked models
4: U ← set of all M models
5: X ← a random model from U
6: R← R ∪ {X}, U ← U \ {X}
7: while U ̸= ∅ do
8: P ← a random model from U
9: U ← U \ {P}

10: s← |R|, c← ⌈max(log2(s), 1)⌉
11: X ← a random model from R
12: T ← R \ {X}
13: for all Ii ∈ I do
14: Compute J(mP ≻ mX | Ii)
15: end for
16: β ← update BT coefficient for R ∪ {P}
17: for j = 1 to c− 1 do
18: O ← argminO∈T |βO − βP |
19: T ← T \ {O}
20: for all Ii ∈ I do
21: Compute J(mP ≻ mO | Ii)
22: end for
23: β ← update BT coefficient for R ∪ {P}
24: end for
25: R← R ∪ {P}
26: end while
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F. ELO Scores
We conduct a round-robin tournament to obtain pairwise comparisons and apply the Bradley-Terry model to compute ratings,
which are then converted to Elo scores.

Table 9. Evaluation Results of LLMs in Fully Style-Controlled Chatbot Arena, Round-Robin Tournament and AlpacaEval.

Model Names FSC Arena Elo Round-Robin + BT AlpacaEval 2.0

Elo LC Elo Win Rate LC Win Rate

gpt-4o-2024-05-13 1262 1325 1227 51.3% 57.5%
gpt-4-turbo-2024-04-09 1241 1306 1217 46.1% 55.0%
gpt-4-1106-preview 1234 1337 1206 50.0% 50.0%
yi-large-preview 1204 1377 1205 57.5% 51.9%
claude-3-opus-20240229 1238 1180 1156 29.1% 40.5%

Llama-3.1-405B-Instruct-Turbo 1250 1264 1136 39.1% 39.3%
gpt4_0314 1200 1137 1117 22.1% 35.3%
claude-3-sonnet-20240229 1197 1152 1110 25.6% 34.9%
Qwen1.5-72B-Chat 1148 1168 1108 26.5% 36.6%
Llama-3-70B-Instruct 1193 1210 1093 33.2% 34.4%

mistral-large-2402 1158 1110 1090 21.4% 32.7%
claude-2 1144 1043 1060 17.2% 28.2%
mistral-medium 1141 1109 1059 21.9% 28.6%
Yi-34B-Chat 1100 1169 1026 29.7% 27.2%
gemini-pro 1132 1074 1020 18.2% 24.4%

Llama-3-8B-Instruct 1141 1110 988 22.6% 22.9%
wizardlm-70b 1106 1036 964 14.4% 17.6%
Mistral-7B-Instruct-v0.2 1067 1019 947 14.7% 17.1%
Starling-LM-7B-alpha 1083 1021 925 14.2% 14.7%
vicuna-13b 1060 800 800 6.7% 10.5%
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Table 10. Ranking of LLMs based on evaluation results from the Fully Style-Controlled Chatbot Arena, Round-Robin Tournament, and
AlpacaEval. The numbers in parentheses indicate changes in model rankings after applying the length-controlled debiasing technique,
where ↑ denotes an increase, ↓ denotes a decrease, and – indicates no change in ranking.

Model Names FSC Arena Rank Round-Robin + BT AlpacaEval 2.0

Rank LC Rank Rank LC Rank

gpt-4o-2024-05-13 1 3 1 (2 ↑) 2 1 (1 ↑)
gpt-4-turbo-2024-04-09 3 4 2 (2 ↑) 4 2 (2 ↑)
gpt-4-1106-preview 5 2 3 (1 ↓) 3 4 (1 ↓)
yi-large-preview 6 1 4 (3 ↓) 1 3 (2 ↓)
claude-3-opus-20240229 4 7 5 (2 ↑) 8 5 (3 ↑)

Llama-3.1-405B-Instruct-Turbo 2 5 6 (1 ↓) 5 6 (1 ↓)
gpt4_0314 7 11 7 (4 ↑) 12 8 (4 ↑)
claude-3-sonnet-20240229 8 10 8 (2 ↑) 10 9 (1 ↑)
Qwen1.5-72B-Chat 11 9 9 (0 –) 9 7 (2 ↑)
Llama-3-70B-Instruct 9 6 10 (4 ↓) 6 10 (4 ↓)

mistral-large-2402 10 12 11 (1 ↑) 14 11 (3 ↑)
claude-2 12 16 12 (4 ↑) 16 13 (3 ↑)
mistral-medium 13 14 13 (1 ↑) 13 12 (1 ↑)
Yi-34B-Chat 17 8 14 (6 ↓) 7 14 (7 ↓)
gemini-pro 15 15 15 (0 –) 15 15 (0 –)

Llama-3-8B-Instruct 14 13 16 (3 ↓) 11 16 (5 ↓)
wizardlm-70b 16 17 17 (0 –) 18 17 (1 ↑)
Mistral-7B-Instruct-v0.2 19 19 18 (1 ↑) 17 18 (1 ↓)
Starling-LM-7B-alpha 18 18 19 (1 ↓) 19 19 (0 –)
vicuna-13b 20 20 20 (0 –) 20 20 (0 –)

G. Prompt Template.
G.1. Judge Prompts

Direct Comparison - Identical to AlpacaEval 2.0 (Li et al., 2023)
[System Part]
You are a highly efficient assistant, who evaluates and selects the best large language

model (LLMs) based on the quality of their responses to a given instruction. This
process will be used to create a leaderboard reflecting the most accurate and human-
preferred answers.

[User Part]
I require a leaderboard for various large language models. I’ll provide you with prompts

given to these models and their corresponding outputs. Your task is to assess these
responses, and select the model that produces the best output from a human perspective
.

## Instruction

{
"instruction": """{instruction}""",

}

## Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
{

"model_identifier": "m",
"output": """{output_1}"""

},
{

24



Investigating Non-Transitivity in LLM-as-a-Judge

"model_identifier": "M",
"output": """{output_2}"""

}
}

## Task

Evaluate the models based on the quality and relevance of their outputs, and select the
model that generated the best output. Answer by providing the model identifier of the
best model. We will use your output as the name of the best model, so make sure your
output only contains one of the following model identifiers and nothing else (no
quotes, no spaces, no new lines, ...): m or M.

## Best Model Identifier

Direct Comparison with Checklist
[System Part]
You are a highly efficient assistant, who evaluates and selects the best large language

model (LLMs) based on the quality of their responses to a given instruction and the
corresponding criteria. This process will be used to create a leaderboard reflecting
the most accurate and human-preferred answers.

[User Part]
I require a leaderboard for various large language models. I will provide you with prompts

given to these models and their corresponding outputs. I will also provide one
specific evaluation checklist which contains a list of specific criteria that a good
output should fulfill. Your task is to assess these responses to see whether they
satisfy the requirements of the checklist and select the model that produces the best
output from a human perspective based on the provided checklist.

## Instruction

{
"instruction": """{instruction}""",

}

## Checklist
Here is the checklist that contains the conditions specified in the question for a good

output. The more requirements an output meets, the better it is considered.

{
checklist: """{checklist}""",

}

## Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
{

"model_identifier": "m",
"output": """{output_1}"""

},
{

"model_identifier": "M",
"output": """{output_2}"""

}
}

## Task

Evaluate the models based on the quality and relevance of their outputs, and select the
model that generated the best output based on the checklist. Answer by providing the
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model identifier of the best model. We will use your output as the name of the best
model, so make sure your output only contains one of the following model identifiers
and nothing else (no quotes, no spaces, no new lines, ...): m or M.

## Best Model Identifier

CoT Comparison - Identical to AlpacaEval 2.0 (Li et al., 2023)
[System Part]
You are a highly efficient assistant, who evaluates and selects the best large language

model (LLMs) based on the quality of their responses to a given instruction. This
process will be used to create a leaderboard reflecting the most accurate and human-
preferred answers.

[User Part]
I require a leaderboard for various large language models. I’ll provide you with prompts

given to these models and their corresponding outputs. Your task is to assess these
responses, and select the model that produces the best output from a human perspective
.

## Instruction

{
"instruction": """{instruction}""",

}

## Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
{

"model_identifier": "m",
"output": """{output_1}"""

},
{

"model_identifier": "M",
"output": """{output_2}"""

}
}

## Task

Evaluate the models based on the quality and relevance of their outputs, and select the
model that generated the best output. Answer by first providing a concise explanation
and then end your answer by providing the model identifier of the best output. We will
use the last character of your output ‘output[-1]‘ as the name of the best model, so

make sure you finish with the token of the model identifiers and nothing else: ‘m‘ or
‘M‘ (no quotes, no dots, no backticks, no new lines, ...). For example:

### Concise explanation
...some text...

### Which is best, m or M?
M

Now is your turn.

## Your answer: "Concise explanation" followed by "Which is best, m or M?"

CoT Comparison (Tie Allowed)
[System Part]
You are a highly efficient assistant, who evaluates and selects the best large language

model (LLMs) based on the quality of their responses to a given instruction. This
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process will be used to create a leaderboard reflecting the most accurate and human-
preferred answers.

[User Part]
I require a leaderboard for various large language models. I’ll provide you with prompts

given to these models and their corresponding outputs. Your task is to assess these
responses, and select the model that produces the best output from a human perspective
. If you determine that both outputs are of equal quality or are unable to decide
which one is better, you should indicate a tie by providing the identifier ‘D‘.

## Instruction

{
"instruction": """{instruction}""",

}

## Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
{

"model_identifier": "m",
"output": """{output_1}"""

},
{

"model_identifier": "M",
"output": """{output_2}"""

}
}

## Task

Evaluate the models based on the quality and relevance of their outputs, and select the
model that generated the best output. Answer by first providing a concise explanation
and then end your answer by providing the model identifier of the best output. If you
determine that both outputs are of equal quality or cannot decide which one is better,
indicate a tie by using the identifier ‘D‘. We will use the last character of your

output ‘output[-1]‘ as the name of the best model, so make sure you finish with the
token of the model identifiers and nothing else: ‘m‘, ‘M‘ or ‘D‘ (no quotes, no dots,
no backticks, no new lines, ...). For example:

### Concise explanation
...some text...

### Which is best, m, M or D?
M

Now is your turn.

## Your answer: "Concise explanation" followed by "Which is best, m, M or D?"

CoT Comparison with Checklist
[System Part]
You are a highly efficient assistant, who evaluates and selects the best large language

model (LLMs) based on the quality of their responses to a given instruction and the
corresponding criteria. This process will be used to create a leaderboard reflecting
the most accurate and human-preferred answers.

[User Part]
I require a leaderboard for various large language models. I will provide you with prompts

given to these models and their corresponding outputs. I will also provide one
specific evaluation checklist which contains a list of specific criteria that a good
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output should fulfill. Your task is to assess these responses to see whether they
satisfy the requirements of the checklist and select the model that produces the best
output from a human perspective based on the provided checklist.

## Instruction

{
"instruction": """{instruction}""",

}

## Checklist
Here is the checklist that contains the conditions specified in the question for a good

output. The more requirements an output meets, the better it is considered.

{
checklist: """{checklist}""",

}

## Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
{

"model_identifier": "m",
"output": """{output_1}"""

},
{

"model_identifier": "M",
"output": """{output_2}"""

}
}

## Task

Evaluate the models based on the quality and relevance of their outputs, and select the
model that generated the best output based on the checklist. Answer by first providing
a concise explanation and then end your answer by providing the model identifier of
the best output. We will use the last character of your output ‘output[-1]‘ as the
name of the best model, so make sure you finish with the token of the model
identifiers and nothing else: ‘m‘ or ‘M‘ (no quotes, no dots, no backticks, no new
lines, ...). For example:

### Concise explanation
...some text...

### Which is best, m or M?
M

Now is your turn.

## Your answer: "Concise explanation" followed by "Which is best, m or M?"

CoT Comparison with Checklist (Tie Allowed)
[System Part]
You are a highly efficient assistant, who evaluates and selects the best large language

model (LLMs) based on the quality of their responses to a given instruction and the
corresponding criteria. This process will be used to create a leaderboard reflecting
the most accurate and human-preferred answers.

[User Part]
I require a leaderboard for various large language models. I will provide you with prompts

given to these models and their corresponding outputs. I will also provide one
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specific evaluation checklist which contains a list of specific criteria that a good
output should fulfill. Your task is to assess these outputs to see whether they
satisfy the requirements of the checklist and select the model that produces the best
output from a human perspective based on the provided checklist. If you determine that
both outputs are of equal quality or are unable to decide which one is better, you

should indicate a tie by providing the identifier ‘D‘.

## Instruction

{
"instruction": """{instruction}""",

}

## Checklist
Here is the checklist that contains the conditions specified in the question for a good

output. The more requirements an output meets, the better it is considered.

{
checklist: """{checklist}""",

}

## Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
{

"model_identifier": "m",
"output": """{output_1}"""

},
{

"model_identifier": "M",
"output": """{output_2}"""

}
}

## Task

Evaluate the models based on the quality and relevance of their outputs, and select the
model that generated the best output based on the checklist. Answer by first providing
a concise explanation based on the checklist and then end your answer by providing
the model identifier of the best output. If you determine that both outputs are of
equal quality or cannot decide which one is better, indicate a tie by using the
identifier ‘D‘. We will use the last character of your output ‘output[-1]‘ as the name
of the best model, so make sure you finish with the token of the model identifiers

and nothing else: ‘m‘, ‘M‘ or ‘D‘ (no quotes, no dots, no backticks, no new lines,
...). For example:

### Concise explanation
...some text...

### Which is best, m, M or D?
M

Now is your turn.

## Your answer: "Concise explanation" followed by "Which is best, m, M or D?"

G.2. Checklist Generation

We follow Cook et al. (2024)’s prompt tepmplate to generate checklists.
[System Part]
Please help judge an AI assistant’s response to an instruction by providing an evaluation
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checklist.
To write a specific evaluation checklist, you get given the following entity each time:
INSTRUCTION: An instruction that has been given to an AI assistant.

[User Part]
## Task Details
Your task is to come up with an evaluation checklist list for a given INSTRUCTION.
This evaluation checklist should be a list of questions that ask whether or not specific

criteria relevant to the INSTRUCTION were met by an AI assistant’s response.
Criteria covered by your checklist could be explicitly stated in the INSTRUCTION, or be

generally sensible criteria for the problem domain.
You should, however, try to be concise and not include unnecessary entries in your

checklist.

Checklist questions should:
- **Be answerable by ’yes’ or ’no’**, with ’yes’ meaning that the response successfully

met the corresponding requirement.
- **Be comprehensive, but concise**, meaning that all criteria directly relevant to the

INSTRUCTION should be represented by a question, but only questions that are very
clearly relevant should be included.

- **Be precise**, meaning that checklist questions should avoid vague wording and evaluate
specific aspects of a response, directly using the phrasing of the INSTRUCTION where

appropriate.

You should always analyse the INSTRUCTION before providing an evaluation checklist.

## Response Format
Analysis: xxx
Answer: CHECKLIST QUESTIONS (each question should appear on a new
line)

## Examples

{examples}

## Real Task

### INSTRUCTION
{message}

### Response
Please analyse the instruction and provide an answer in the correct format.
Remember that each question should be phrased such that answering with ’yes’ would mean

that the response **successfully** fulfilled the criteria being assessed by the
question.

In most cases, your checklist should contain at least two questions, but no more than
eight.
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