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Abstract
Driven by the complementary information fusion of optical and
synthetic aperture radar (SAR) images, the optical-SAR imagematch-
ing has drawn much attention. However, the significant radiomet-
ric differences between them imposes great challenges on accurate
matching. Most existing approaches convert SAR and optical im-
ages into a shared feature space to perform the matching, but these
methods often fail to achieve the robust matching since the feature
spaces are unknown and uninterpretable. Motivated by the inter-
pretable latent space of diffusion models, this paper formulates an
optical-SAR image translation and matching framework via a dy-
namically conditioned diffusion model (DCDM) to achieve the in-
terpretable and robust optical-SAR cross-modal image matching.
Specifically, in the denoising process, to filter out outlier match-
ing regions, a gated dynamic sparse cross-attention module is pro-
posed to facilitate efficient and effective long-range interactions of
multi-grained features between the cross-modal data. In addition,
a spatial position consistency constraint is designed to promote
the cross-attention features to perceive the spatial corresponding
relation in different modalities, improving the matching precision.
Experimental results demonstrate that the proposed method out-
performs state-of-the-art methods in terms of both the matching
accuracy and the interpretability.

CCS Concepts
• Computing methodologies → Artificial intelligence; Com-
puter vision; Computer vision problems; Matching.

Keywords
Image matching, Synthetic aperture radar images, Diffusion prob-
abilistic model

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10…$15.00
https://doi.org/10.1145/3664647.3681700

ACM Reference Format:
ShuipingGou, XinWang, XinlinWang, and Yunzhi Chen. 2024. Interpretable
Matching of Optical-SAR Image via Dynamically Conditioned Diffusion
Models. In Proceedings of the 32nd ACM International Conference on Mul-
timedia (MM ’24), October 28-November 1, 2024, Melbourne, VIC, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3664647.3681700

1 Introduction
With the rapid development of remote sensing technology, differ-
ent image sensors are constantly emerging and provide rich image
data for the earth observation. Owing to the complementary prop-
erty between different modality images, the multi-source informa-
tion integration is widely explored. Especially, the synthetic aper-
ture radar (SAR) and optical sensing images have been increasingly
explored and applied to mapping [45], object detection [36], and
etc. Therefore, effectively integrating and exploiting optical and
SAR images is the focus, in which the optical-SAR image matching
is the core issues.However, due to their different imaging mecha-
nisms, there exist remarkable geometric differences and nonlinear
radiometric variations between optical and SAR images. As a re-
sult, the optical and SAR image matching still remains challenging.

To solve the task, researchers devote themselves to the chal-
lenge and propose various algorithms. In the early stages, tradi-
tional image matching methods are widely used, including region-
based and feature-based methods. Region-based methods use sim-
ilarity metrics, such as normalized mutual information (NMI) [2]
and normalized cross-correlation (NCC) [20], to find the correspon-
dence between the template and the reference images. The kind
of approaches only leverage the global pixel intensity information
within a window to calculate the similarity of the corresponding
region, which is sensitive to the image intensity differences and
the noise. To this end, feature-based image matching methods are
developed, which aims to extract keypoints of each image and find
matching points.The representative algorithm is the scale-invariant
feature transform (SIFT) [23], which detect keypoints in different
scales by utilizing its description in terms of the scale, the gradient
magnitude, and direction. Based on the SIFT algorithm, some vari-
ants, such as BFSIFT [38], AAGSIFT [37], and RIFT [21], have been
derived. In addition, to overcome the nonlinear radiometric differ-
ences in SAR and optical images, structural similarity-based de-
scriptors have been proposed, such as histogram of oriented phase
coherence (HOPC) [43], and channel feature of oriented gradients
(CFOG) [42]. However, the potential of hand-designed features for
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improving the matching performance is very limited considering
the remarkable differences between SAR and optical images.

Thanks to the considerable achievements made by the convolu-
tional neural networks (CNNs) in computation vision tasks, and
the launch of the publicly available remote sensing data [31, 34,
41], deep-learning-based cross-modal image matching approaches
have constantly emerged[16, 24–26, 44]. Existing deep-learning-
based optical-SAR image matching methods includes two kinds:
the Siamese network-based feature mapping, and the generative
adversarial network(GAN)-based cross-modality translation. The
Siamese network-based methods [24–26, 44] exploit the effective
feature extraction ability of CNN to map the multi-modal images
into the common feature spaces, and perform similarity metrics on
the mapped features spaces. However, the mapping feature spaces
are not visual, and lack of interpretability. Furthermore, thesemeth-
ods fail to extract useful features for the matching when there are
more textureless regions in the images. In contrast, the GAN-based
approaches [13, 28] attempt to translate the SAR or optical image
from onemodality to the other by the adversarial learning between
generators and discriminators. But, GAN trains the model through
the mutual game between the generator and discriminator, which
easily causes the model to fall into a local minimum, generating
unstable translations on the cross-modal images with large differ-
ences. Moreover, GAN-based matching methods are not end-to-
end.

Recently, the diffusion model [17] has received considerable at-
tention on generative models, which has a diffusion process to
gradually add Gaussian noise to the data and a denoising process
to learn to remove it. Driven by its stable trainingmanner and high-
quality generation results, the diffusionmodels have been explored
to the optical-SAR image translation. Bai et al. [5] utilizes a condi-
tional diffusion model to efficiently translate SAR images into opti-
cal images, and Shi et al. [32] proposes self-attention and long skip
connections in denoising networks to enhance feature extraction,
which demonstrates the potential of diffusion models in translat-
ing SAR images. However, existing diffusion model-based optical-
SAR translationmethods only focus on generating cross-modal im-
ages for enhancing human visual perception, and have not yet ex-
plored the downstream cross-modal image matching task. In fact,
using the generated image for matching requires elaborate design
of matching methods, since there still exist different attributes be-
tween the generated remote sensing images and the real images,
which deteriorates the matching performance and the speed.

To address the above problem, this paper formulates the optical-
SAR cross-modal image matching as a dynamically conditioned
diffusion model (DCDM), which aims to learn the posterior distri-
bution of regions with dense correspondences. Specifically, the op-
tical template and SAR search image pairs are taken as conditions
to respectively provide the content for the better generation and
the texture details for the accurate matching. Moreover, a gated
dynamic sparse cross-attention (GDSC) module is designed to dy-
namically inject reliable conditional information into the genera-
tive network and accelerate denoising process. On this basis, to
enhance the perception of matching positions, we introduce the
spatial position consistency constraint. In the matching, to reduce
the computational effort, the latent features of the generated SAR
are directly matched with features of the search SAR, instead of

decoding them into images and then matching them.The contribu-
tions of this paper are summarized as follows:

• Wepropose an end-to-end cross-modal imagematching frame-
work, dynamically conditioned diffusion model (DCDM). It
not only translates cross-modal images, but also completes
the pixel-level matching in the latent space.

• A gated dynamic sparse cross-attention module is present
to perform the controlled and efficient cross-interaction be-
tween the template and the search, aiming to filter out the
outliermatching regionswhile improving the computational
efficiency.

• A spatial position consistency constraint is designed to en-
hance the detail perception of the cross-attention to gener-
ate more accurate cross-modal features for matching. Exper-
imental results on twomatching datasets quantitatively and
qualitatively demonstrates the effectiveness and the inter-
pretability of the proposed approach.

2 RELATEDWORKS
2.1 Learning-based multimodal remote sensing

image matching
In learning-based multimodal image matching models often lever-
age intensive interactions between two modalities to capture effec-
tive matching features.The studies [7, 14] apply the cross attention
to perform long-range interactions of cross-modal features, thus
capturing features suitable for matching. Other methods [9, 26]
slide the template features on the reference features pixel by pixel
to calculate the similarity heatmap, which is computationally in-
tensive, especially for large images. Fang et al. [12] leverages U-Net
[30] to extract high-resolution features, and use the Fast Fourier
Transform (FFT) to implement the NCC similarity metric in the fre-
quency domain to accelerate, which has been widely used. Mu et
al. [26] proposes a two-stage feature extraction network to achieve
precise localization from coarse to fine, which designs a suppres-
sion network and a triple loss to suppress false matching position.
Zhang et al. [44] presents to fuse low-level fine-grained localiza-
tion features with high-level semantic features to enhance feature
discrimination. Michele et al. [15] extracts features from full-size
and half-size images, and then fuses these features to construct
pixel-level features for matching.

Despite the advances in matching accuracy, these methods still
face challenges of the uninterpretable feature spaces, the indiscrim-
inate matching for textureless regions, and the large amounts of
computation requirements. In contrast, we propose the gated dy-
namical sparse attention under the latent diffusion paradigm to
efficiently extract cross-modal features with consistent represen-
tation, achieving interpretable and robust matching.

2.2 Denoising diffusion model
Theemergence of the denoising diffusion probabilisticmodel (DDPM)
[17] has led to the widespread use of diffusion models in computer
vision [4], natural language processing [3], interdisciplinary appli-
cations [1], and audio processing [18], which outperforms the cur-
rent GAN-based generative models in image synthesis [27]. DDPM
is a parametric Markov chain that incrementally adds noise to the
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Figure 1: The pipeline of the proposed dynamically conditioned diffusion model, which aims to generate and match SAR
template in the latent space conditioned on the optical template and the search SAR images.

data during forward diffusion until the original signal is completely
corrupted, and then reconstructs the signal during reverse diffu-
sion.The denoising diffusion implicit model (DDIM) [33] is evolved
from DDPM, which introduces non-Markov chain diffusion pro-
cess. This innovation reduces the number of steps required in the
inference process. Furthermore, to train denoising diffusion mod-
els on limited computational resourceswhilemaintaining their qual-
ity and flexibility, the latent diffusion model (LDM) [29] applies
DDPM to the latent space extracted by the powerful pre-trained
autoencoders. Compared to other diffusion models, LDM signifi-
cantly reduces computational requirements, and achieves efficient
cross-modal generation. Therefore, our approach adopts LDM as
the base framework to develop the optical-SARmatching algorithm.

2.3 Sparse Attention
Over the past few years, the transformers have been exploded in
the computer vision community[6, 10]. Contrary to the convolu-
tion operation that extract local features, transformers exploit self-
attention mechanisms to capture long-distance dependencie, and
have global receptive fields[35]. However, such a property comes
at the cost of having a high computational complexity and a large
memory footprint. To mitigate this problem, the sparse attention
[8] has been proposed, in which each query focuses on only a small
number of key-value pairs instead of all key-value pairs. Several
hand-crafted sparse patterns have been proposed, such as limiting
attention in localized windows [22], expanding the windows [39],
and etc. Recently, a novel dynamic sparse attention, Biformer, [46]
has been proposed, whose two-layer routing architecture performs
the dynamic computational allocation through information aware-
ness, effectively reducing the computational complexity.

All of the above approaches focus on designing sparse self-attention
by reducing the number of key-value tokens. In fact, for the cross-
attention in remote sensing image matching task, filtering queries
related to the template is also important, since invalid queries bring
interferences. Hence, this paper presents a gated dynamic sparse
cross-attention by dynamically selecting both effective queries and
keys for efficient computation and matching.

3 THE PROPOSED METHOD
To achieve the cross-modal optical-SAR image matching, we for-
mulate a dynamically conditioned diffusion model to translate the
optical templates into SAR templates, and perform the matching.
The pipeline of the proposedmethod is illustrated in Figure 1. Firstly,
we continuously add Gaussion noise to the ground-truth SAR tem-
plate in each diffusion step, and then generate the SAR template via
training a U-Net-based denoising network. To generate more real-
istic SAR images, the corresponding optical template is adopted as
a condition to provide the scene content. Simultaneously, a task-
oriented condition, the search SAR image, is introduced to provide
the texture details for the accurate matching. Afterwards, apply
the gated dynamic sparse cross-attention module and the spatial
position consistency constraint to achieve the effective and effi-
cient cross-modal feature interaction and aggregation. Finally, FFT-
based NCC [12] is adopted to perform the matching between the
generated SAR template and the search SAR in the latent space.

3.1 SAROPT-conditioned Latent Diffusion
The optical-SAR cross-modal image matching task aims to find the
corresponding spatial position of the optical image in the SAR im-
age. To reduce the influence of modality differences, this paper
proposes a dynamically conditioned diffusion model (DCDM) to
formulate the generative process to translate optical images. How-
ever, using noise only to generate SAR image is intractable, since
remote sensing images contains rich targets. Fortunately, optical
images contain object information, which can provide the content
information. Thus, the optical template 𝑇𝑂 is treated as the condi-
tion to guide the generation of the real SAR template. In addition,
the texture details is important for the matching. Considering that
the generated SAR template is matched with the search SAR, we
further take the search SAR image as another condition to supple-
ment the texture details.

However, denoising in pixel space is time-consuming and resource-
shortcoming. Inspired by the LDM [29], we utilize an auto-encoder
[11] to learn a latent space of the perceptual compression of SAR
images, and perform diffusion process in latent space to reduce
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Figure 2: The gated dynamic sparse cross-attention module.

the computational complexity. Specifically, the encoder is respec-
tively applied to the real SAR template image 𝑇𝑆 and the search
SAR image patches 𝑆𝑆 to obtain their emdeddings 𝑥0, and 𝑐𝑠𝑎𝑟 . Cor-
respondingly, the optical template 𝑇𝑂 is encoded to 𝑐𝑜𝑝𝑡 by two
convolutional layers. Notable, to speed up the perceptual compres-
sion, the search SAR images are splitted into smaller patches 𝑆𝑆
to input the encoder, and stitched after the encoding. In the for-
ward diffusion process, continuously add Gaussian noise into 𝑥0 in
each diffusion step to obtain 𝑥𝑡 . In the reverse diffusion, denoise
𝑥𝑡 given conditions 𝑐𝑜𝑝𝑡 and 𝑐𝑠𝑎𝑟 , which is expressed as:

𝑝𝜃
(
𝑥𝑡−1 | 𝑥𝑡 , 𝑐𝑜𝑝𝑡 , 𝑐𝑠𝑎𝑟

)
= 𝑁

(
𝑥𝑡−1; 𝜇𝜃

(
𝑥𝑡 , 𝑡, 𝑐𝑜𝑝𝑡 , 𝑐𝑠𝑎𝑟

)
, 𝜎2𝑡 I

)
(1)

The SAROPT-conditioned latent diffusion model not only in-
creases the denoising speed, but also make the matching to be end-
to-end, instead of constructing the SAR template and then extract-
ing features for the matching.

3.2 Gated Dynamic Sparse Cross-Attention
Despite denoising in the latent space, it is still requires a large
computations in conditional features interaction. Particularly, the
search image is relatively larger. In addition, conditional remote
sensing images contains a large number of textureless regions, re-
sulting in tedious similarity calculation, and even a negative effect.
Therefore, we present a gated dynamic sparse cross-attention mod-
ule to dynamically select effective regions to perform the cross-
modal conditional interaction, shown in Figure 2. It firstly exploits
the coarse-grained routing block (CRB) to efficiently calculate the
sparse cross-attention map, and then utilizes the attention calibra-
tion block (ACB) to smooth the cross-attention map, and finally
leverages an attention gate (AG) to control the preference between
the conditional information interaction and the denoising genera-
tion. The details are elaborated on the following.

Coarse-GrainedRoutingBlock. Recently, Biformer [46] presents
the sparse self-attention to save both computation and memory.
Benefiting from the idea, we downsample the feature map in the
U-Net encoder to obtain cross attention on coarse-grained feature
map, and then filter out redundant similar feature regions. After-
wards, the fine-grained cross attention is performed on the remain-
ing feature regions, thus reducing the computational overhead.

As shown in Figure 3, the template feature maps 𝑋 , and the
search image feature maps 𝑌 are respectively divided into 𝑠 and
𝑆 feature patches as 𝑋 ∈ R𝑠×𝑃×𝐶 and 𝑌 ∈ R𝑆×𝑃×𝐶 . Afterwards,
the query𝑄 , key 𝐾 , and value𝑉 , are calculated through the linear
projection𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣 :

𝑄 = 𝑋𝑊𝑞, 𝐾 = 𝑌𝑊𝑘 , 𝑉 = 𝑌𝑊𝑘 (2)
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Figure 3: The coarse-grained routing block.

Then, find patches in the 𝐾 that should be attended for each
given patch in the𝑄 . Specifically, we obtain the coarse-grained fea-
tures of 𝑄 and 𝐾 in the encoder, denoted as 𝑄𝑐 ∈ R𝑠×𝐶 and 𝐾𝑐 ∈
R𝑆×𝐶 . Herein, the average of each feature patch is adopted to in-
tegrate its information. Thus, the importance of feature patches of
projected features𝐾 of𝑌 can be represented by the coarse-grained
cross-attention map𝑀𝑎𝑝𝑌 , formulated as:

𝑀𝑎𝑝𝑌 =
𝑏𝑚𝑚

(
𝑄𝑐 , 𝐾𝑐

𝑇
)

√
𝐶

(3)

Notably, in the decoder stage, we directly input the cross-attention
map of the previous layer into the next layers, instead of recalcu-
lating the coarse-grained cross-attention map of next layer high-
resolution features. It not only avoids duplicate calculations, but
also exploits the cross-attention map obtained by rich semantics.

Besides, we calculate the importance of each feature patch in the
template features 𝑋 . Different from the calculation of 𝑌 , we define
a score to measure the important feature patches of 𝑋 . It is known
that patches with rich matching information tend to have higher
variance values. Hence, the variance of each patch is adopted as a
metric of information importance. But, some outlier feature patches
inevitably obtain high variances, which causes negative effects. To
avoid selecting patches with high variances but side effects, we
further exploit two learnable weights, 𝑀𝑐 and 𝑀𝑠 , to dynamically
interact with each feature patch of 𝑋 in the spatial and channel
dimensions, respectively. Thus, a learnable importance score is ob-
tained. Finally, use the learnable score to refine the variance score.
The process is expressed as follows:

𝑠𝑐𝑜𝑟𝑒𝑣 =
1

𝐶 · 𝑃

𝐶∑
𝑗=1

𝑃∑
𝑖=1

(
𝑋𝑖, 𝑗 −

1
𝑃

𝑃∑
𝑖

𝑋𝑖, 𝑗

)2
𝑠𝑐𝑜𝑟𝑒𝑙 = Sigmoid

(
Mean (𝑋𝑀𝑐 ) +Mean

(
𝑋𝑇𝑀𝑠

))
𝑠𝑐𝑜𝑟𝑒𝑋 = 𝑠𝑐𝑜𝑟𝑒𝑣 × 𝑠𝑐𝑜𝑟𝑒𝑙

(4)

where 𝑠𝑐𝑜𝑟𝑒𝑣 is the variance measured importance, 𝑠𝑐𝑜𝑟𝑒𝑙 is the
learned importance, and 𝑠𝑐𝑜𝑟𝑒𝑋 ∈ R1×𝑠 is the refined importance
metric.𝑋 ∈ R𝑠×𝑃×𝐶 represents template features.𝑀𝑐 ∈ R𝐶×𝑀 and
𝑀𝑠 ∈ R𝑃×𝑀 denote learnable weights of linear layers (1D-Conv),
and𝑀 is the specified dimension. In experiments, we set𝑀 = 𝐶 .

Based on the feature patch importance𝑀𝑎𝑝𝑌 ∈ R𝑠×𝑆 and 𝑠𝑐𝑜𝑟𝑒𝑋 ∈
R1×𝑠 of 𝑌 and 𝑋 , the feature patches are selected. In experiments,
we set a hyperparameter 𝛾 (0∼1) to control the number of selected
tokens. Assuming that the number of feature patches of a feature
map is 𝑁 , the top 𝑁 × 𝛾 tokens, i.e., 𝑁𝛾 tokens are selected. More-
over, 𝛾 is in inverse proportion to the feature resolution to ensure



Interpretable Matching of Optical-SAR Image via Dynamically Conditioned Diffusion Models MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

𝜎

Map Variance × O

Linear

𝑡𝑒𝑚𝑏

Linear

Avgpool

Conv2d

Upsample

Conv2d

×

Conv2d

𝜎

Shift Alignment 

Shift Recovery

𝑀𝑎𝑝𝑓

M𝑎𝑝𝑓_𝑠𝑚

𝑀𝑎𝑝𝑓𝑎_𝑠𝑚

𝑀𝑎𝑝𝑓𝑎_𝑠𝑚

𝑋𝑎0

Figure 4: The attention calibration block and the attention
gate.

smaller computation and progressive refinement in the decoder.
The token selection process is formulated as:

𝐼𝑥 = topkIndex (𝑠𝑐𝑜𝑟𝑒𝑋 )
𝑀𝑎𝑝𝑦 = gather (𝑀𝑎𝑝𝑌 , 𝐼𝑥 )
𝐼𝑦 = topkIndex

(
𝑀𝑎𝑝𝑦

) (5)

where ’topkIndex’ is used to obtain the indexes of top 𝐾 values in
a feature map. ’gather’ is used to select feature patches based on
the index. 𝐼𝑥 ∈ R𝑠𝛾 is the indexes of the top 𝑠𝛾 = 𝑠 × 𝛾 feature
patches in 𝑋 . 𝑀𝑎𝑝𝑦 represents the selected row tokens of 𝑀𝑎𝑝𝑌 .
𝐼𝑦 ∈ R𝑠𝛾 ×𝑆𝛾 is indexes of 𝑆𝛾 patches in 𝑌 that should be attended
for each patch in the sparsed𝑋 . Based on the coarse-grained index
matrix 𝐼𝑥 and 𝐼𝑦 , the fine-grained projection features of the query,
key, and value are obtained:

𝑄 𝑓 = gather (𝑄, 𝐼𝑥 )
𝐾𝑓 = gather

(
𝐾, 𝐼𝑦

)
𝑉𝑓 = gather

(
𝑉 , 𝐼𝑦

) (6)

Then, the sparse fine-grained cross-attentionmap𝑀𝑎𝑝 𝑓 ∈ R𝑠𝛾𝑃×𝑆𝛾𝑃

(𝑆𝛾𝑃 = 𝑆𝛾 × 𝑃) is calculated using the 𝑄 𝑓 ∈ R𝑠𝛾 ×𝑃×𝐶 , 𝐾𝑓 ∈
R𝑠𝛾 ×𝑆𝛾𝑃×𝐶 , and 𝑉𝑓 ∈ R𝑠𝛾 ×𝑆𝛾𝑃×𝐶 :

𝑀𝑎𝑝 𝑓 =
𝑏𝑚𝑚

(
𝑄 𝑓 , 𝐾𝑓

𝑇
)

√
𝐶

(7)

where 𝑏𝑚𝑚 is the batch matrix multiplication, the 𝑇 denotes the
transpose operation.

Attention Calibration Block. All the selected coarse-grained
feature patches have similar semantics, but the corresponding mul-
tiple fine-grained features contain different information, which lead
to the fact that the fine-grained features in the same coarse-grained
feature patch focus on inconsistent positions after cross-attention.
To overcome the problem, we use a calibration module to locally
smooth the cross-attention map, as shown in Figure 4.

Due to the fact that the cross-attentionmap represents thematch-
ing position of template features 𝑄 𝑓 to the search features 𝐾𝑓 ,
the distribution of highlighted values in the cross-attention map
is diagonal sparse and discrete, shown in Figure 5. Therefore, each
row of the cross-attention map𝑀𝑎𝑝 𝑓 is firstly circularly shifted to
achieve spatial alignment attention map𝑀𝑎𝑝 𝑓 according to 𝐼𝑥 and
𝐼𝑦 .Then, three convolution operations𝐾1 ∈ R1×𝐶 ,𝐾2 ∈ R1×𝐶 , and
𝐾3 ∈ R𝐶×1 are performed on the spatially aligned attention map

for smoothing, expressed as:

𝑀𝑎𝑝 𝑓 𝑎 = Align
(
𝑀𝑎𝑝 𝑓

)
𝐴𝑤 = Sigmoid

(
Up(AvgPool(𝑀𝑎𝑝 𝑓 𝑎) ∗ 𝐾1)

)
𝑀𝑎𝑝 𝑓 𝑎_𝑠𝑚 =

((
𝑀𝑎𝑝 𝑓 𝑎 ∗ 𝐾2

)
· 𝐴𝑤

)
∗ 𝐾3

(8)

whereAvgPool(·) is average pooling with pooling size 2×2, and its
step size is 2. UP(·) is a bilinear interpolation.

After obtaining the smoother attention map, the cross-attention
map is reset to the origin spatial position by cyclic shifting to cal-
culate the attention features, represented as:

𝑀𝑎𝑝 𝑓 _𝑠𝑚 = InvAlign
(
𝑀𝑎𝑝 𝑓 𝑎_𝑠𝑚

)
𝑋𝑎 = bmm

(
Softmax(𝑀𝑎𝑝 𝑓 _𝑠𝑚),𝑉𝑓

)
𝑋𝑎0 = Padding (𝑋𝑎, 0)

(9)

where 𝑋𝑎0 denotes the features padded the unselected feature re-
gions with 0. It has the same size as the original feature 𝑋 . As a
note, the calibration module is lightweight, since it performed on
2-D cross-attention map.

AttentionGate. The remote sensing images often contain plain
areas, which is textureless. Hence, using the kind of images as con-
ditions is ineffective and even cause a negative effect on the de-
noising generation. In the situation, the denoising network should
focus on using the input itself to autonomously generate, instead
of relying on the information in conditions. Considering that, we
design an attention gate to control the inflow of conditional infor-
mation, as shown in Figure 4.

In detail, the smaller the variance of the spatially aligned cross-
attention map, the better the attention. Hence, the variance is cal-
culated to measure the attention effect. Moreover, conditional fea-
tures at different steps have different perceptual abilities, the time
step 𝑡 is also introduced to control the usage of conditions in 𝑡𝑡ℎ
step. Given the spatially aligned and smoothed cross-attentionmap
𝑀𝑎𝑝 𝑓 𝑎_𝑠𝑚 ∈ R𝐼× 𝐽 (𝐼 = 𝑠𝛾𝑃 , 𝐽 = 𝑆𝛾𝑃 ), the step time embed-
ding 𝑡𝑒𝑚𝑏 ∈ R𝐶/2, the linear encoding layers 𝐿1 ∈ R1×𝐶/2 and
𝐿2 ∈ R𝐶×𝐶 , the attention gate is expressed as:

𝑣𝑎𝑟 =
1

𝐼 × 𝐽

𝐽∑
𝑗=1

𝐼∑
𝑖=1

(
𝑀𝑎𝑝 𝑓 𝑎_𝑠𝑚𝑖,𝑗

− 1
𝐼

𝐼∑
𝑖

𝑀𝑎𝑝 𝑓 𝑎_𝑠𝑚𝑖,𝑗

)2
𝑂 = 𝑋𝑎0 · Sigmoid (𝐿2 (concat [𝑡emb, 𝐿1 (𝑣𝑎𝑟 )]))

(10)

3.3 Spatial position consistency constraint
There exists great scattering characteristic differences in cross-modal
images, the randommatching position, andmultiple similar match-
ing, which leads to incorrect attention.Therefore, the paper further
design a spatial position consistency constraint to constrain the
correspondence relationships in the cross-attention map. We use
the cross-entropy loss to constrain the predicted heatmap 𝑝 and
ground-truth attentional map 𝑝 , express as:

𝐿𝑠𝑝𝑐𝑐 = −
∑
𝑖

𝑝𝑖 · log (𝑝𝑖 ) + (1 − 𝑝𝑖 ) · log (1 − 𝑝𝑖 ) (11)
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Figure 5: The generation of ground-truth cross-attention
maps.

The ground-truth attention map 𝑝 is generated as shown in Fig-
ure 5. Assuming that the template image (the red box) (128×128)
is matched on the position of (x=40, y=40) in the search image
(256×256), the ground-truth matching position in the 32× down-
sampling feature map is a decimal. In general, we regard the at-
tention value of the matching region is 1, while the non-matching
region’s is 0. Hence, we divide 1 into different weights according
to the ratio of each pixel of the template (4×4) to each pixel of the
search (8×8), resulting in 16×64 ground truth matches values to
constrain the attention map.

3.4 Loss functions
The optimization of the proposed dynamically conditioned diffu-
sion model involves two parts: the denoising network, and the spa-
tial position consistency constraint. To optimize the denoising net-
work, the 𝐿2 loss and the SSIM[40] loss are adopted, expressed as:

𝐿𝑑𝑒𝑛 = ∥ 𝑓𝜃 (𝑥𝑡 , 𝑡) − 𝑥0∥2 + SSIM (𝑓𝜃 (𝑥𝑡 , 𝑡) , 𝑥0) (12)
In summary, the total loss 𝐿 is the sum of the denoising loss 𝐿𝑑𝑒𝑛

and the spatial position consistency constraint loss 𝐿𝑠𝑝𝑐𝑐 (refer to
Equation (11) ):

𝐿 = 𝐿𝑑𝑒𝑛 + 𝐿𝑠𝑝𝑐𝑐 (13)

4 EXPERIMENTS AND ANALYSES
4.1 Datasets
Sentinel-1 and Sentinel-2 (SEN1-2) datasets: TheSEN1-2 dataset
[31] contains a total of 282,384 aligned SAR and optical image
pairs with the size of 256×256. The SAR images are acquired from
the dual-polarized SAR data of Sentinel-1. The optical images are
acquired from the multispectral images of Sentinel-2. The fourth,
third and second bands are used to generate RGB images.The dataset
is collected from four seasons.The images have a spatial resolution
of 10m. In experiments, 4088 image pairs are randomly selected
from the spring season data for evaluation. The training, testing
and validation sets are splitted by a ratio of 7:2:1. The SAR images
with the size of 256×256 are treated as the search images, and the
optical images cropped 128×128 as the template.
OSdataset: The OSdataset [41] consists 2673 image pairs with
a resolution of 512×512, and 10692 image pairs with the size of
256×256. This dataset collects images of scenes from cities around
the world. The SAR images are captured by the sensor of Gaofen-3
(GF-3) multipolar C-band SAR satellite, and the optical images are
obtained from the Google Earth platform with a spatial resolution
of 1m. In experiments, 2673 image pairs are used for evaluation.
The ratio of the training, validation and testing sets is 7:2:1. The

Table 1: The comparison of the state-of-the-arts on SEN1-2
dataset.

Methods CMR(T=5) RMSE(T=5) RMSE(All) Time(s)
NCC 0.4068 2.2905 38.3845 60.1576
NMI 0.5739 1.3213 26.8528 86.2218
CFOG 0.6667 1.5395 19.1622 0.1672
RIFT 0.8043 1.6044 15.7632 0.2114
Psiam 0.6884 1.986 22.2338 95.4723

VSMatch 0.7174 1.3156 20.6323 87.155
OSMNet 0.9168 2.3086 4.7457 0.0568

MARU-Net 0.9056 1.4007 5.2601 0.0346
Ours 0.9302 1.3496 4.5227 0.0621

SAR images with the size of 512×512 are chosen as the search im-
age, and the optical images cropped as 256×256 are treated as the
template.

4.2 Experimental Settings
Implementation details: The method is implemented based on
the PyTorch framework, and run on Nvidia Geforce RTX4090 GPU
and Core i7-12700KF CPU.The feature stride of the autoencoder is
4. The feature strides of each feature layer in the denoising U-Net
are {1, 2, 4, 8}. The gated dynamical sparse cross-attention module
is used at the end of the feature layer with stride of {2, 4, 8}. The
sparsity parameter 𝛾 is fixed to 1 when feature stride is 8, since
this layer features have rich semantics and few tokens. To train
the denoising U-Net, we set the minimum time step 𝑡 to 0.001. The
model is trained using the AdamW optimizer for 30k iterations.
The decay rate ranges from 5e-5 to 5e-6.
Evaluationmetrics: In experiments, the Root Mean Square Error
(RMSE) and Correct Matching Rate (CMR) are used as evaluation
metrics. The RMSE measures the average Euclidean distance be-
tween the prediction and the ground-truth. The CMR denotes the
correctmatching ratewhen the RMSE is less than a given threshold
𝑇 , denoted as CMR(T). In the heterogenous reomote sensing image
matching task, the matching error is less than or equal to 5 pixels
is regarded as the successful matching. Therefore, we choose CMR
(T=5) and RMSE (T=5) to evaluate the proposed approach. To fur-
ther evaluate the overall matching performance, the average mean
squared error of all samples, RMSE (all), is also adopted.

4.3 Comparison with State-of-the-arts
Quantitative comparison. To evaluate the performance of the
proposed method, we compare it with state-of-the-arts on SEN1-2
and OSdataset.The compared approaches include traditional meth-
ods, NCC [20], NMI [2], CFOG [42], RIFT [21], and deep-learning-
based methods, PSiam [19], VSMatch [9], SCMatch [26], OSMNet
[44], MARU-Net [15].

Table 1 shows the matching performance of state-of-the-arts
on SEN1-2 dataset. It is seen that the proposed method achieves
93.02% on CMR(T=5), performing best. Compared to the state-of-
the-art approach OSMNet, our method improves 1.34%. The deep-
learning based method, VSMatch, achieves the best RMSE(T=5) of
1.3156, which has a slight improvement of 0.034 compared to our
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Table 2: The comparison of the state-of-the-arts on OS-
dataset.

Methods CMR(T=5) RMSE(T=5) RMSE(All) Time(s)
NCC 0.1083 2.8915 79.7331 1034.1178
NMI 0.275 2.0746 62.1353 1250.2496
CFOG 0.5417 1.5922 22.9735 1.1465
RIFT 0.7583 1.9245 17.0226 6.6118
Psiam 0.5128 1.8952 27.6463 519.1755

VSMatch 0.6496 1.7437 24.2316 451.2569
SCMNet 0.7833 1.318 12.1056 63.4261
OSMNet 0.8043 2.4922 9.2731 0.0913

MARU-Net 0.8357 2.2495 6.9049 0.0895
Ours 0.8491 2.29 7.61 0.1093
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Figure 6: The comparison of two samples’ matching similar-
ity map.

algorithm. For the matching time, the feature-based approaches,
CFOG and RIFT, and the deep-learning based methods, OSMNet,
MARU-Net, and our methods, takes less time.TheMARU-Net only
takes 0.0346s.

Compared to the overall performance on the SEN1-2 dataset, the
OSdataset has a drop, since images in the OSdataset have higher
spatial resolution, containing noises. Table 2 compares the match-
ing results on the OSdataset. It is obvious that the region-based
methods, NCC and NMI, perform poorly and take more time. The
NCC only obtains 10.83% on CMR(T=5), and 2.8915 RMSE(T=5).
Compared to region-based methods, the feature-based methods
achieve a large improvement, where RIFT has 75.83% on CMR(T=5).
The learning-based algorithms, Psiam, SCMNet and VSmatch are
under 80% on the CMR(T=5). Whereas, the SCMNet achieves the
best result on RMSE(T=5), reaching 1.318.Moreover, the threemeth-
ods have quite long inference times compared to other learning-
based and feature-based methods, since they slide the template
by pixel over the search image and feed into the matching model
to compute the similarity of matches. On the contrary, OSMnet,
MARU-Net and our method take very short matching time. Fur-
thermore, ourmethod achieves 84.91% onCMR(T=5), having a 1.34%
gains compare to the state-of-the art approach MARU-Net.
Qualitative comparison of similarity maps. Figure 6 qualita-
tively shows the similarity maps produced by different methods
on the two samples. In the similarity map, the higher the response
value, the brighter the color. The location corresponding to the
peak value is the best matching position. The red boxes in the first
column ’Ground truth’ denote the ground-truth matching areas.
The red dots in other approaches represent the ground-truth offset
coordinates in the matching map.

Rural farmland area Urban road area 

Search S Template S

Template 𝑂′

Search 𝑆′

Template 𝑂′
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Template መ𝑆 Template 𝑂′ Template 𝑂′
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Search 𝑆′ Search 𝑆′

Template S

Cross-correlation Cross-correlation Cross-correlation Cross-correlation

MARU-Net MARU-NetProposed Proposed

Template O Search STemplate O

Figure 7:The visualization comparison of extracted features
and similarity maps.

The first-row sample shows a pair of optical-SAR image in the
rural farmland. The image has little texture and multiple similar
regions, which makes optical-SAR matching be challenging. The
comparison methods obtain similar responses in parallel linear di-
rections, which is difficult to produce focused similarity maps. Es-
pecially, there exists a large highlight regions of similarity map
obtained by NMI. VSMatch fails to correctly focus on, and the fo-
cused peak of MARU-Net is relatively unremarkable. Whereas the
proposed method has low response values in non-matched regions
and has a relatively prominent single peak.

The second-row sample depicts an urban area with dense ge-
ometrically similar buildings. The NMI and VSMatch are shifted
from the correct matching point, where the VSMatch shows an
undesired neighbouring bimodal characteristic. The peaks of the
proposed method and MARU-Net correspond to the matched re-
gions. But the response values of the similarity map achieved by
our method are smoother in the non-matched region, which is due
to the fact that generating the same modality features are more
distinguishable.
Qualitative comparison of matching features. Figure 7 visu-
alizes the two samples’ template feature maps (Template 𝑂 ′) and
search feature maps (Search 𝑆 ′) obtained by the most represen-
tative state-of-the-art method MARU-Net and our approach. The
first sample is a rural farmland area with less texture, and the sec-
ond sample is a complex urban road area. Compare the feature
maps and similarity maps produced by the two methods, it is ob-
served that both the template and search feature maps of MAR-
Net have very sparse texture features (especially for the first tex-
tureless regions) and inconsistent visualization, even though it at-
tempts to map them into a shared feature space. These unreliable
features lead to high correlation in non-matching regions. In con-
trast, the template and search featuremaps generated by ourmethod
maintains all the texture information of the original image. This is
due to the fact that our method focuses on generating feature maps
of the same modality in latent space, which is more interpretable,
and ensures that the similarity maps are single-peaked.
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Table 3: The ablation study on the SEN1-2 dataset.

Base CRB ACB AG CMR(T=5) RMSE(T=5) Time(s)
√

0.8457 2.1341 0.1021√
0.8672 1.8904 0.0542√ √
0.9123 1.5301 0.0567√ √
0.8931 1.6577 0.0605√ √ √
0.9302 1.3496 0.0621

Table 4:The effect of the sparsity parameter 𝛾 on the SEN1-2.
GDSCs is added to features with strides of {2, 4, 8}.

𝛾 CMR(T=5) RMSE(T=5) RMSE(All) Time(s)
𝛾=(1, 1, 1/2) 0.9175 1.4021 4.8412 0.0937
𝛾=(1, 3/4, 3/8) 0.9302 1.3496 4.5227 0.0621
𝛾=(1, 1/2, 1/4) 0.8843 1.6545 5.0463 0.0441
𝛾=(1, 1/4, 1/8) 0.8254 1.9874 6.7734 0.0312

4.4 Ablation Experiments
To verify the effect of each proposed components and the param-
eters on the matching performance, we conduct ablation experi-
ments on the SEN1-2 dataset.
The effect of key components. Based on the LDM, we proposed
three key components to improve the cross-modal remote sens-
ing image matching performances. To verify the effectiveness of
each proposed component, we conduct ablation experiments on
the coarse-grained routing block (CRB), the attention calibration
block (ACB), and the attention gate (AG). For the baseline and
our approach, the denoising sampling step 𝑡 is set to 5, and the
cross-attention module is added to feature layers with strides of
{2, 4, 8}. For our method, the sparsity parameter, 𝛾 , is set to (1,
3/4, 3/8). As shown in Table 3, the baseline only achieves 84.57%
on the CMR(T=5). Compared to the cross-attention in the baseline,
the proposed CRB outperforms the base attention by 2.15% on the
CMR(T=5), reaching 86.72%. The attention calibration module ob-
tains a remarkable gains of 4.51% on CMR(T=5), reaching 91.23%.
The attention gatemodule improves 2.59% onCMR(T=5), achieving
89.31%. The proposed three modules achieve remarkable improve-
ments on the CMR(T=5) and the RMSE(T=5). Although introduc-
ing three modules, the inference time is not significantly increased,
since the proposed modules are lightweight.
The effect of the number of GDSCs and sample steps. We inves-
tigate the effect of the number of GDSCs on the matching accuracy.
In the denoising U-Net, the gated dynamical sparse cross-attention
(GDSC) module are respectively introduced into the three feature
layers corresponding to feature strides of {2, 4, 8}. The sparsity pa-
rameters 𝛾 in the three feature layers are set as 1, 3/4, and 3/8,
respectively. Figure 8 illustrates the effect of the number of the
GDSC module. It is found that the CMR(T=5) improves with the
increase of the number of GDSCs, which is due to the fact that a
larger number of attention layers enable the network to capture
fine-grained information.

In addition, it is observed that the denoising sample steps influ-
ence the matching performance. The higher the number of sample
steps, the higher the value of CMR(T=5). Nevertheless, there are a
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Figure 8: The effect of the number of GDSCs and sample
steps on CMR(T=5) with the SEN1-2.

few increases when the sample steps greater than 5. For instance,
given the added feature layers of GDSC as feature strides of {2, 4,
8}, the CMR (T=5) only increases by 0.5% when the sampling steps
increase from 5 to 10 (the green line in Figure 8), when the GDSC is
introduced into features layers . To balance the trade-off between
the speed and the performance, the sample steps is set as 5 in ex-
periments.
The effect of the sparsity parameter𝛾 . We further analyze the ef-
fect of the sparsity parameter𝛾 on the matching accuracy and time.
As shown in Table 4, themodel performs best when the sparsity pa-
rameters 𝛾=(1, 3/4, 3/8), where the CMR reaches to 93.02% and the
RMSE is 1.3496. Compared to the best performance, the CMR(T=5)
slightly decreases by 1.27% and the RMSE(T=5) increases by 0.0525
when 𝛾=(1, 1, 1/2), since larger 𝛾 tends to introduce more error
messages and greater matching delays. The CMR(T=5) decreases
by 4.59% when the sparse parameters 𝛾=(1, 1/2, 1/4), and even de-
creased by 10.49% when 𝛾=(1, 1/4, 1/8). This is due to the fact that
too smaller 𝛾 causes insufficient cross-modal information interac-
tion, which make the model be difficult to converge and thus de-
grading the performance.

5 CONCLUSION
The paper proposes a dynamically conditioned diffusion model to
achieve the interpretable and robust optical-SAR cross-modal im-
agematching. Specifically, the gated dynamic sparse cross-attention
module is used to guide the diffusion model to capture information
from conditions through the efficient long-range cross-modal in-
teractions, and thus filtering out outlier matching regions. In addi-
tion, the spatial position consistency constraint promotes the cross-
attention features to perceive the spatial corresponding relation in
different modalities, and improves the matching accuracy. Experi-
mental results on two datasets show that the proposed method out-
performs state-of-the-art approaches in terms of the matching ac-
curacy and the interpretability. The study provides an exploration
for future researches on the cross-modal image matching or regis-
tration under the diffusion models.
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