
Bootstrapping Self-Improvement of Language Model Programs
for Zero-Shot Schema Matching

Nabeel Seedat 1 2 Mihaela van der Schaar 1

Abstract

Schema matching – the task of finding matches be-
tween attributes across disparate data sources with
different tables and hierarchies – is critical for cre-
ating interoperable machine learning (ML)-ready
data. Addressing this fundamental data-centric
problem has wide implications, especially in do-
mains like healthcare, finance and e-commerce —
but also has the potential to benefit ML models
more generally, by increasing the data available
for ML model training. However, schema match-
ing is a challenging ML task due to structural/hier-
archical and semantic heterogeneity between dif-
ferent schemas. Previous ML approaches to auto-
mate schema matching have either required sig-
nificant labeled data for model training, which is
often unrealistic or suffer from poor zero-shot per-
formance. To this end, we propose Matchmaker
- a compositional language model program for
schema matching, comprised of candidate genera-
tion, refinement and confidence scoring. Match-
maker also self-improves in a zero-shot manner
without the need for labeled demonstrations via
a novel optimization approach, which constructs
synthetic in-context demonstrations to guide the
language model’s reasoning process. Empirically,
we demonstrate on real-world medical schema
matching benchmarks that Matchmaker outper-
forms previous ML-based approaches, highlight-
ing its potential to accelerate data integration and
interoperability of ML-ready data.

1Department of Applied Mathematics and Theoretical Physics,
University of Cambridge 2Foundational Machine Learning Re-
search, Thomson Reuters. Correspondence to: Nabeel Seedat
<ns741@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
The success of machine learning (ML) models hinges on a
critical yet often overlooked challenge: access to large, inte-
grated and interoperable datasets (Jain et al., 2020; Gupta
et al., 2021; Renggli et al., 2021; Sambasivan et al., 2021).
Although well-structured and uniform datasets like those on
Kaggle are commonly assumed as the norm, such data is a
rare luxury in practice. In real-world scenarios, tabular data
often exists in heterogeneous and disparate databases with
diverse formats, schemas, and terminologies, requiring har-
monization to make the data "ML-ready" and interoperable.
The heterogeneity of databases presents three critical issues
for ML: (1) data harmonization and integration are arduous
tasks. Hence, researchers often limit the features/covariates
used for model training to a smaller, often common, set of
features (Avati et al., 2021; Si et al., 2021; Rajkomar et al.,
2018), thereby limiting the potential performance of their
ML models; (2) even if all the features are used, the lack
of data interoperability means limited external validation of
ML models (Balch et al., 2023; Lehne et al., 2019; Williams
et al., 2022; Tiwari et al., 2020; Colubri et al., 2019; Goetz
et al., 2024; Seedat et al., 2020), which can undermine the
credibility and utility of the ML models; and (3) missed op-
portunities for insights on larger harmonized datasets (e.g.,
larger patient populations), which may not be apparent when
analyzing data sources independently.

Schema matching is a critical first step in data harmoniza-
tion, aiming to establish correspondences between attributes
(i.e., features/covariates) measured across different data
sources. Once matched, these correspondences can help
harmonize data from disparate sources into a cohesive,
ML-ready format. To understand the concept of schema
matching, let us unpack the components of a schema. A
schema defines how data is organized in a database, com-
prising different tables (collections of related data entries)
and columns (also known as "attributes" or "features") that
represent specific data fields. Importantly, schemas go be-
yond simple tabular data commonly found in CSV files, as
they capture the hierarchical structure and relationships be-
tween different tables and their attributes. For example, in
healthcare, schemas from different hospitals may have vary-
ing tables and attributes representing patient information,

1

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Admissions-admittime

PERSON

OBSERVATION

VISIT_DETAIL

VISIT_OCCURENCE

PROVIDER

MEASUREMENT

…

patients-dod_hosp

visit_occurrence_id

person_id

visit_start_datetime

provider_id

visit_source_value

care_site_id

visit_start_date

Search challenge:
Information Mismatch
(No Match possible) Search challenge:

Table identification
(Database
heterogeneity)

Search challenge:
Attribute identification
(Structural & Semantic
heterogeneity)

?

…

Target SchemaSource Schema

25 Tables in Schema 37 Tables in Schema

Differences in schemas: Database & Structural heterogeneity

Figure 1: Example showing the complexity of schema matching due to the multi-faceted challenges: Database heterogeneity (green
arrows): Identifying the correct target table, as each schema has a different number of tables, the corresponding information may be
distributed differently across tables in each schema. Structural heterogeneity (green arrows): Once the appropriate table is found,
matching attributes is complicated by differences in schema architectures, hierarchies, granularity. Textual heterogeneity (green arrows):
Ambiguity in matching when attributes have the same names but different meanings, or vice versa. Information mismatch (red arrows):
Some attributes in one schema may lack a corresponding match in the other schema, adding to the complexity of the matching process.

lab measurements, diagnoses and treatments, with complex
relationships and hierarchies connecting the tables. Conse-
quently, schema matching involves analyzing the context
of attributes within the schema hierarchy to establish mean-
ingful mappings that preserve the intended semantics and
relationships. It goes beyond simple one-to-one column
matching, considering not only the attribute itself but also
the hierarchical structure and relationships between tables
defined by the schema. Notably, schema matching does not
assume access to raw data, relying on only attribute names,
descriptions and metadata (e.g., in healthcare, patient data
cannot be queried or accessed directly due to privacy con-
cerns or regulations (Zhang et al., 2021)).

The importance and value of schema matching cannot be
overstated, as integrating data from various data sources
such as different regions, organizations or applications is
vital in healthcare but also in finance and e-commerce
(Sheetrit et al., 2024; Zhang et al., 2021; El Haddadi et al.,
2024). Schema matching is also generally valuable to any-
one working on ML, as a step toward increasing the training
and validation data available to the ML community. e.g, in
healthcare, integrating data from multiple hospitals can lead
to more comprehensive datasets to train more performant
ML prognostic models. Similarly, in e-commerce, combin-
ing diverse customer data from various platforms can enable
more accurate ML models built on customer data.

Unfortunately, prior ML approaches for "automated"
schema matching often require extensive labeled data (Li
et al., 2020; Zhang et al., 2021), which is often costly and
time-consuming to acquire, making these methods imprac-
tical for real-world use. Although LLM-based methods
(Narayan et al., 2022; Mirchandani et al., 2023) have at-

tempted to address this, they have poor zero-shot perfor-
mance and poor scalability in terms of the number of LLM
calls. These limitations have hindered the adoption of ML
for schema matching, meaning schema matching is still a
largely manual and time-consuming task. To highlight the
need for automated and improved ML schema matching, in
the healthcare domain, it took 500 hours for two experts
to map the schemas between the MIMIC database and the
OMOP common data model (Paris et al., 2021), demonstrat-
ing the substantial and non-trivial effort required.

Despite the need, schema matching is a challenging ML task,
as shown in Fig. 1, as without access to the raw data, schema
matching methods must rely only on the attribute names and
other metadata to infer correspondences between attributes
across schemas. This requires reasoning about various chal-
lenges, namely: ▶ Semantic heterogeneity: ambiguous
potential mappings, where attributes across schemas might
have the same name but different meanings, or different
names but the same meaning. ▶ Structural heterogene-
ity: schemas that have varied architectures, hierarchies, and
representational granularity. ▶ Database heterogeneity:
differences in the number and organization of tables across
schemas. e.g. source schema table information may be rep-
resented across multiple target schema tables. Hence, it is
non-trivial to identify the appropriate table for an attribute.
▶ Information mismatch: Information may be contained
in one schema, but not in another schema. Hence, reason-
ing about "no possible match" is as important as reasoning
about a possible match.

These issues make schema matching a challeng-
ing task that cannot be solved by simple methods
such as semantic similarity alone (see Fig. 2).

2

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

1 2 3 4 5
Top-k predictions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy
@

k

Matchmaker (Ours)

Semantic matching

Figure 2: Result showing semantic
similarity alone cannot solve schema
matching, with low acc@k, compared
to Matchmaker.

To this end, we intro-
duce Matchmaker, a
self-improving com-
positional language
model program for
schema matching.
Matchmaker lever-
ages the reasoning
capabilities of LLMs
via a compositional
language model
program with multi-stage LLM calls that comprise
candidate generation, refinement, and confidence scoring
(see Appendix C for examples of this process). Matchmaker
also self-improves without labeled data (zero-shot), via
a novel optimization process using synthetic in-context
examples for the different stages of the language model
program. Matchmaker makes the following contributions:

Contributions: 1⃝ We address recent calls to develop
ML methods for data harmonization/interoperability (Bal-
agopalan et al., 2024; Gilbert et al., 2024). 2⃝ We introduce
a novel formulation of schema matching as information
retrieval rather than binary classification. 3⃝ We propose
Matchmaker, a novel compositional language model pro-
gram to address the complexities of schema matching. 4⃝
We introduce a scoring mechanism allowing for human-in-
the-loop deferral not possible with prior methods. 5⃝ We
introduce a novel optimization mechanism allowing Match-
maker to self-improve in a zero-shot manner via synthetic
in-context examples that guide Matchmaker’s reasoning
process. 6⃝ We empirically demonstrate that Matchmaker
outperforms different schema matching baselines on real-
world schema matching benchmarks, along with showing
the value of our self-improvement mechanism and how
Matchmaker can be used with a human-in-the-loop.

2. Related Work
This work engages with literature on schema matching (see
Fig. 3) and contributes to data-centric AI.

Schema matching. Previous ML-based schema matching
approaches have shown promise, but suffer from limita-
tions that hinder their practical applicability. Early works
(Mudgal et al., 2018; Shraga et al., 2020; Li et al., 2020)
computed similarity scores between schemas (Do & Rahm,
2002; Gal, 2011), but focused on the simpler entity match-
ing task (matching items within columns) rather than the
more complex schema matching problem. Recent methods
like SMAT (Zhang et al., 2021) use attention to tackle full
schema matching. However, they require extensive labeled
matches (over 50%), rendering them impractical for real-
world settings where labeled data is scarce or expensive to
obtain, often requiring domain experts to annotate.

To reduce the need for labels, LLMs have been applied to
schema matching (Zhang et al., 2023a; Narayan et al., 2022;
Zhang et al., 2023b). However, methods like LLM-DP us-
ing pre-trained LLMs (Zhang et al., 2023a; Narayan et al.,
2022) have demonstrated poor zero-shot performance (see
Sec. 5). Performance improvements were obtained with
human-labeled examples of ±500 examples, from which in-
context examples are selected. However, reliance on human
labeling is often unrealistic, limiting applicability. Interest-
ingly, even LLMs such as Jellyfish (Zhang et al., 2023b),
which are fine-tuned for schema matching on task datasets,
have shown poor matching performance. Beyond match-
ing performance, both LLM and supervised methods (e.g.
SMAT (Zhang et al., 2021)), formulate schema matching as
a binary classification task over the full Cartesian product
of source and target schema attributes. e.g. for each pair of
source-target attributes, the LLM is prompted to provide a
label of Yes/No for the match (i.e. Is attribute A related to
Attribute B? yes/no). The result is poor scalability, which
is computationally expensive for large schemas and costly
due to the large number of LLM calls, hindering real-world
applicability. We compare LLM calls in Appendix D.2.

The closest work to ours is ReMatch (Sheetrit et al., 2024),
which uses retrieval to find semantically similar candidate
matches, thus reducing the search space. It then prompts
an LLM to match a source schema attribute with retrieved
target schema candidates. However, ReMatch relies solely
on semantic matching, which we empirically demonstrate
in Sec. 5 does not suffice for real-world schemas. Our ap-
proach, Matchmaker, diverges from ReMatch along three
dimensions (see Table 4): (1) System: ReMatch uses a
single LLM call, while Matchmaker decomposes the task
into a multi-stage compositional LLM program with itera-
tive reasoning steps. (2) Candidate generation: ReMatch
relies solely on semantic retrieval, while Matchmaker in-
corporates diverse candidate generation sources, including
retrieval for semantic candidates and an LLM-driven contex-
tual reasoning candidates. (3) Optimization: ReMatch has a
fixed/static LLM prompt template, while Matchmaker is an
LLM program where we dynamically optimize the prompts
via synthetic in-context examples.

Data-Centric AI. Data-centric AI is an area of growing
importance in the ML community, aiming to systematically
improve data quality for ML (Zha et al., 2023; Whang et al.,
2023; Seedat et al., 2023c) via methods such as sample selec-
tion and valuation (Seedat et al., 2023b; 2022; 2023a; Jiang
et al., 2023) of pre-existing integrated datasets. This work
addresses a fundamental upstream problem: schema match-
ing, which enables the creation of harmonized datasets. Con-
sequently, schema matching is a contribution to data-centric
AI by tackling a critical issue that precedes and supports
existing approaches to enhance data quality for ML.

3

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

3. Schema Matching
3.1. Preliminaries.

Consider the schema matching task, where the goal is to
map attributes from a source schema (Ss) to a target schema
(St). Each schema S is defined as a collection of tables
T = {T1, T2, . . . , Tm}. Each table Ti contains a set of
attributes Ai = {Ai1, Ai2, . . . , Aik}. Additionally, each ta-
ble Ti is associated with metadata mi describing the purpose
and content of the table. Similarly, each attribute Aij is as-
sociated with a description dij , which includes information
describing the attribute, its data type and relational context
— offering key contextual information to aid in the matching
process. The schema matching task, defined below, aims to
find matches between attributes across different schemas,
accounting for structural hierarchies, interrelationships and
constraints. Recall that schema matching operates solely on
schema-level information (attributes and metadata), without
having access to the raw data. This adds to the complex-
ity, as matching must be performed without the benefit of
analyzing the actual data values.

Definition 1 (Schema Matching). The goal of schema
matching is to find a mapping function f : As → At ∪ {∅}
that correctly assigns each attribute of the source schema
Ss to a corresponding attribute in the target schema St or
to the empty set ∅, indicating no possible match.

3.2. Schema matching as information retrieval.

As outlined in Sec. 2, schema matching is often formulated
as a supervised binary classification problem (match/no
match) over the entire Cartesian product of source and tar-
get schema attributes. Beyond the computational side, this
formulation has several drawbacks: ▶ Labeling Cost: It
requires manual annotation of attribute pairs by domain
experts, which is time-consuming and costly. ▶ Class Im-
balance: The prevalence of non-matching attribute pairs
significantly outnumbers matching pairs, resulting in severe
class imbalance. ▶ Lack of Ranking: It does not yield a
ranked list of candidate matches, which is critical for human
review if multiple possible matches exist.

▶ 1. Candidate generation: For each source query at-
tribute Asi ∈ As from the source schema Ss, we generate
a set of potential matches from the target schema St. Let
Ci ⊆ At be the set of candidate target matches for query
attribute Asi. The candidate generation process is defined
as a function g : As ×At → P(At), where P(At) denotes
the power set of At, such that Ci = g(Asi,At).

▶ 2. Ranking: We rank the candidates based on their
relevance to the query attribute. We define a ranking func-
tion r : (As × Ds) × (At × Dt) → R, where Ds and
Dt represent the contextual information associated with at-
tributes inAs andAt, respectively. For each source attribute

Asi ∈ As and its contextual information dsi ∈ Ds, the rank-
ing function r assigns a score to each candidate attribute
Atj ∈ Ci ⊆ At and its contextual information dtj ∈ Dt:

r((Asi, dsi), (Atj , dtj)) > r((Asi, dsi), (Atk, dtk))

⇔ Atj is more relevant to Asi than Atk.

The mapping function f can then be defined as follows:

f(Asi) =

argmaxAtj∈Ci r((Asidsi), (Atj , dtj)),

if maxAtj∈Ci r((Asi, dsi),

(Atj , dtj)) ≥ τ ;∅, otherwise

where τ is a relevance threshold and f assigns the query
attribute Asi to the candidate attribute Atj with the highest
relevance score. Conversely, we may assign ∅, indicating no
match — accounting for the fact that not all source attributes
may have a possible match in the target schema. Further
details can be found in Appendix A.4

4. Matchmaker
We propose Matchmaker, a self-improving compositional
language model (LM) program for schema matching (see
Fig. 3), defined as a three-step LM program. For further
details, see Appendix A.9.

1. Multi-vector documents (Sec. 4.1): Creation of multi-
vector documents from the target schema to facilitate re-
trieval of candidate target attribute matches.
2. Candidate generation (Sec. 4.2): Employing two types
of candidate generation: semantic retrieval and reasoning-
based — later refined into a smaller candidate set to evaluate.
3. Confidence scoring (Sec. 4.3): match confidence of a
candidate target attribute to a query attribute.

 Steps 1-3 define the unoptimized Matchmaker program.
Finally, a key aspect of Matchmaker is our zero-shot op-
timization via synthetic in-context examples to improve
performance (Sect. 4.4).

Why LLMs for schema matching? LLMs form the foun-
dation of Matchmaker, within a compositional program
comprised of multiple language model calls. Specifically,
LLMs exhibit several appealing properties and capabili-
ties for schema matching: ▶ Contextual understanding:
LLMs have been pretrained on vast corpora of information,
equipping them with extensive prior knowledge spanning
different contexts and settings (Chowdhery et al., 2022;
Singhal et al., 2023). This contextual understanding en-
ables LLMs to effectively reason about schema hierarchies
and identify potential matches. ▶ Hypothesis proposers:
LLMs have been shown to be “phenomenal hypothesis pro-
posers” (Qiu et al., 2023; Rauba et al., 2024), making them

4

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Target
Attribute

Target
Description

Source
Description

Source
Attribute

Related
(1/0)

LLM
(Frozen/

Finetuned)

Prompt
Att Src: {name}, {desc}
Att Tgt: {name}, {desc}
Is Att Src and Att Tgt

related? Yes/No

LLM
(Frozen)

Prompt
Match source
attribute with

candidate target
attributes

Dense Vector
DB (Target)

Source Attribute
(Query)

Retrieve
Target
candidates

Matches
* Match 1
* Match 2

...
* Match n

(A) (B) (C)

(D) Matchmaker (Ours)

Source Attribute
(Query)

LLM Candidate
Reasoner
(Frozen)

Multi-Vector
DB (Target)

Retrieval

LLM Candidate
Refiner
(Frozen)

MCQ

(A) person-id

(B) age-id
(C) None of the above

LLM Confidence
scorer

(Frozen)

Refined candidates
(Likelihood)

Matches +
Confidence

(A) 100
(B) 0

(C) 30

Targets (All)

Language Model Program optimization with synthetic in-context
examples. Selection of input-output traces using an LLM Evaluator

Step 1:
Multi-vector Documents

Step 2:
Candidate Generation

Step 3:
Confidence Scoring

Target
documents Compositional Language Model (LM) Program (Steps 1-3)

Semantic
candidates

Reasoning-based
candidates

LLM
Evaluator

Figure 3: Conceptual comparison of different schema matching approaches. (A) Supervised Matching (Zhang et al., 2021)
employs a trained neural network (e.g., a transformer) to predict binary match/no-match labels across all attribute pairs,
scaling asO(n)2 and requiring labeled data, thus unsuitable for zero-shot. (B) LLM-Prompting (Narayan et al., 2022; Zhang
et al., 2023a) uses a frozen language model (e.g., GPT-4) for the same task, with similar scalability. Alternatively, (Zhang
et al., 2023b) fine-tunes the LLM, which requires labeled data. (C) RAG-Based (Sheetrit et al., 2024) improves scalability
by retrieving candidates from a vector database and using a frozen LLM to select matches, but its effectiveness is limited
to semantically similar options. (D) Matchmaker (Ours) performs schema matching via a self-improving, compositional
language model program that enables enhanced reasoning. The program includes both retrieval and reasoning-based
candidate generation with refinement and confidence scoring, allowing for more accurate ranking. The program is optimized
using synthetic in-context examples in the LLM prompts.

particularly useful for candidate generation tasks. ▶ Capa-
ble rankers: LLMs have been shown to be highly capable
at relevance ranking; assessing the suitability of candidates
given a query and a set of options (Zhuang et al., 2023; Hou
et al., 2024), especially “when ranking candidates retrieved
by multiple candidate generators” (Hou et al., 2024).

Defining a compositional LM program. A composi-
tional language model program, denoted as L, is a multi-
stage pipeline consisting of multiple LLM calls, i.e., L =
{l1, l2, . . . , ln}, where li : (s, ks)→ Y represents a specific
LLM call taking as input a prompt string s and in-context
examples ks (which could be ∅). Secs. 4.1-4.3) defines the
different components of L specific to Matchmaker. Finally,
Sec. 4.4 describes our optimization process.

4.1. Multi-vector documents (Step 1)

To efficiently retrieve semantically similar candidates from
the target schema, we build a vector database that encodes
target schema attributes. We begin by representing the target
schema as a collection of structured documents. Specifically,
for each table T in the target schema St, we create a doc-

ument for each table consisting of the attribute names and
the attribute’s description and data type. The metadata of
each document includes the description of the table itself.

Unlike conventional approaches that encode each document
as a single high-dimensional vector, Matchmaker utilizes
multi-vector representations. Specifically, we use ColBERT-
v2 (Santhanam et al., 2022) to encode document chunks,
producing an embedding per token (i.e. token-level dense
vector), capturing token-level interactions — shown to im-
prove expressivity (Thakur et al., 2021; Lee et al., 2024)
and out-of-domain performance (Santhanam et al., 2022).
Next, we explain how semantically similar candidates are
retrieved using this multi-vector representation.

4.2. Diverse candidate generation (Step 2)

To narrow down the search space, Matchmaker identifies a
subset of candidate attributes from the target schema that
are likely matches for a query attribute qi ∈ As from the
source schema. We draw inspiration from (Hou et al., 2024),
which demonstrates that LLM ranking performance im-
proves “when ranking candidates are retrieved by multiple

5

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

candidate generators.” Hence, while semantic candidates
are commonly used, Matchmaker goes beyond and employs
two distinct types of candidate generation: (i) Semantic
retrieval candidates retrieved from the vector database, and
(ii) Reasoning-based candidates using a language model.
This is then followed by a candidate refinement step. We
outline each type of candidate generation applicable to a
given query attribute qi ∈ As.

(i) Semantic retrieval candidates. Given query qi, we en-
code it using ColBERT-V2, producing a multi-vector query
embedding. Matchmaker then uses this query embedding
to retrieve the top-k matching target schema attributes in
the vector database. The top-k semantically similar can-
didates are denoted as Cs. Similarity is computed using a
late-interaction approach (Khattab & Zaharia, 2020), though
a Maxsim operator which identifies the highest similarity
scores for the query tokens, and these scores are aggregated
to generate a relevance score for that document. The top-k
documents, which contain the most semantically similar
attributes to the query, are retrieved as matches.

(ii) Reasoning-based candidates. To complement se-
mantic matches, Matchmaker generates reasoning-based
candidates using a candidate reasoner LLM denoted as
lc : (qi,At)→ CR, where qi is the i-th query, At is the set
of all target attributes and CR is a reasoning-based candidate
set. Matchmaker employs Chain of Thought (CoT) prompt-
ing (Wei et al., 2022) to reason about the target attributesAt

given the context of the schema hierarchy, descriptions and
data types — generating the most likely and relevant target
schema candidate matches for each query qi. This metadata
allows the LLM to reason about the schema structure and
relationships beyond just attribute names.

Refinement. At this stage, the set of candidates is C =
CR ∪ Cs. Matchmaker then refines this set by selecting the
most relevant candidates for each query attribute, resulting
in a smaller, prioritized candidate set C∗ to score and rank.
Candidate refinement is achieved with a refiner LLM using
CoT, denoted as lr : s→ C∗, where s = (C, qi).

4.3. Confidence scoring (Step 3)

The refined set of candidates, C∗ remains unordered. Hence,
this step aims to obtain confidence scores to rank the candi-
dates but also gauge the certainty of each match, recognizing
that sometimes no suitable source-to-target attribute match
exists, which requires the system to abstain. While language
models may not be well-calibrated at the sequence level, re-
cent research has shown that they exhibit better calibration
at the token level (Ren et al., 2023), a feature notably bene-
ficial in multiple-choice question (MCQ) tasks (Kadavath
et al., 2022).

Leveraging this insight, Matchmaker structures the candi-

date scoring task as an MCQ format, labeling each candidate
in C∗ for query qi as options (A), (B), (C), etc. Additionally,
to account for none of the target candidates being a good
match or there might be no possible match in the target
schema, Matchmaker includes an abstain option by adding
"NONE of the above" as a choice. This ensures that the
LLM is not forced to select a candidate when there is no
suitable match (Ren et al., 2023; Ding et al., 2023).

Matchmaker finally performs candidate ranking, where it is
common to evaluate each candidate individually (Hu et al.,
2024; Wang et al., 2023a; Zheng et al., 2023). Confidence
scores are obtained by prompting the LLM to reason about
the relevance of each candidate ci ∈ C∗ to the given query qi.
Furthermore, prior work has shown that LLMs can provide
good uncertainty at token-level (Kadavath et al., 2022) like
in our MCQ, which is achievable via prompting (Tian et al.,
2023). Consequently, Matchmaker elicits a confidence score
by prompting the LLM to provide a value between 0 and
100, indicating the relevance of a match. The confidence
scores are used to rerank candidates or, if "None of the
above" receives the highest score, return an empty list (i.e.
no suitable matches for the query).

4.4. Self-improvement: Zero-shot optimization w/
synthetic in-context examples

Matchmaker optimizes the language model program L
by leveraging the few-shot learning capabilities of LLMs
(Brown et al., 2020; Agarwal et al., 2024; Dong et al., 2022).
This is achieved by selecting input-output demonstrations
(i.e. in-context examples). In Sec. 5, we contrast this with
an alternative self-improvement method via self-reflection.
However, selecting in-context examples is non-trivial for
schema matching for two reasons.

(i) Lack of labeled demonstrations: We do not have ac-
cess to labeled input-output demonstrations from which to
select in-context examples. To overcome this challenge,
we use the unlabeled schemas to create a “evaluation” set
Deval = {e1, e2, . . . , em}, made up of different types of
source queries. Specifically, we identify "easy queries"
where the top-n (n=5) target schema semantic matches have
a similarity score > 0.95, and "challenging queries" with
the lowest semantic matches.

(ii) Lack of an evaluator: To assess Matchmaker’s capa-
bilities on the evaluation set and guide the optimization
process, we need a validation metric. Since no validator
is readily available, we propose to use an evaluator LLM,
E : (ei,L(ei)) → R, that employs chain of thought (Wei
et al., 2022) to score the relevance (from 0-5) of matches
obtained from L when evaluated on examples from Deval.

6

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Algorithm 1 Optimize LM program L
0: Input: Set of evaluation queries Deval =

e1, e2, . . . , en
0: Output: Set of top n demonstrations Ddemo

0: for each input ei ∈ Deval do
0: ŷi, tracei ← L(ei) {Teacher L predicts, storing

outputs and intermediate traces}
0: si ← E(ei, ŷi) { Evaluation score }
0: Ddemo ← Ddemo ∪ (ei, tracei, ŷi, si)
0: end for
0: Sort Ddemo by score
0: return Ddemo[0 : n] {Select top n} =0

Zero-shot optimization w/ synthetic in-context examples.
To optimize our multi-stage language model program, we
aim to select in-context examples for each component in
L. However, in-context demonstrations for the intermediate
stages are typically unavailable.

To address this, we simulate traces by running L on the
evaluation examples ei ∈ Deval. A trace captures the inter-
mediate input-output pairs of each component in L during
the execution of L on a given example. The evaluator E then
scores the final output, assessing Matchmaker’s (L) overall
performance on each example. We then adopt a bootstrap-
ping process (Khattab et al., 2023) that selects the interme-
diate input-output pairs from the traces that produced the
highest evaluation scores as synthetic in-context examples
for each component of L. In other words, we use the input-
output pairs generated by Matchmaker itself (which resulted
in good evaluation performance) as synthetic in-context
examples to guide the LLM reasoning. This allows us to
improve the program in a zero-shot manner, without relying
on actual labeled data. Algorithm 2 provides an overview of
the process. We refer to L with the systematically selected
in-context examples as Matchmaker (Optimized).

Answering FAQs about self-improvement. Before diving
into experimental validation, we answer two FAQs about
our self-improvement mechanism.

Q1: How does Matchmaker’s initial round work? In the
initial round, Matchmaker operates without in-context ex-
amples. We first run the unoptimized Matchmaker (with-
out any in-context examples) on evaluation examples. We
then capture execution traces (intermediate inputs/outputs),
which are scored by the LLM evaluator. Finally, the highest-
scoring traces (and their input-outputs) are used to bootstrap
synthetic in-context examples. i.e. Matchmaker “starts cold”
with a zero-shot bootstrapping process (using its own suc-
cessful traces). This allows Matchmaker to self-improve
without requiring labeled data, addressing a key challenge
in schema matching.

Q2: Are the synthetic examples still “unlabeled” or “la-

beled” when they are optimized? The synthetic examples
generated remain "unlabeled" in a traditional supervised
sense, as we never explicitly verify or label them via hu-
man annotations. Instead, verification is implicitly done
via an LLM evaluator, which assesses the quality of the
matches through a scoring system (scale of 0-5). i.e., if the
synthetic examples are good, they would naturally lead to
good downstream performance, which will be rated highly.
Thus, synthetic examples are optimized based on evaluator
scoring rather than explicit human labeling. This approach
deliberately removes the requirement for manual annotation
and supports fully autonomous zero-shot self-improvement.

5. Experiments
We now empirically investigate multiple aspects of Match-
maker 2. For qualitative examples that illustrate Match-
maker’s application, refer to Appendix C.

Setup. We conduct experiments on the MIMIC-OMOP and
Synthea-OMOP datasets, which are the standard benchmark
datasets used in prior schema matching works (Sheetrit
et al., 2024; Zhang et al., 2023b; Narayan et al., 2022; Zhang
et al., 2023a; 2021). These datasets are real-world healthcare
schema matching datasets and have been widely adopted due
to their complexity and their reflection of real-world schema
matching challenges. Additionally, complex, real-world
schema matching datasets are rare and difficult to obtain, as
annotating them requires extensive domain expertise (e.g.,
500 hours for MIMIC-OMOP), making them invaluable test
beds for schema matching. Further experimental details and
an overview of the datasets is provided in Appendix B.

Metrics. We evaluate schema matching performance using
accuracy@k used in (Sheetrit et al., 2024) and is commonly
used in information retrieval. Besides, ReMatch, the other
baselines treat schema matching as a binary classification
using F1-score as the metric. In our setting of m:1 matching
(i.e. one match for each query), accuracy@1 is equivalent
to F1-score, precision and recall, if the label is assigned
via argmax. For details see Appendix A.8. Hence, we
report accuracy@1 for all other baselines for comparison to
retrieval-based approaches. Unless otherwise stated, metrics
are averaged over five seeds (with standard deviation).

5.1. Schema Matching performance: Does it work?

We compare Matchmaker’s performance to diverse schema-
matching baselines (refer to Sec. 2). These include (i) LLM-
based methods such as ReMatch and LLM-DP, (ii) the state-
of-the-art non-LLM supervised model, SMAT, and (iii) Jelly-
fish, an LLM specifically fine-tuned for data preprocessing,
including schema matching. While Jellyfish is fine-tuned

2https://github.com/seedatnabeel/Matchmaker or
https://github.com/vanderschaarlab/Matchmaker

7

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Table 1: Comparison of schema matching performance of different baselines.

Matchmaker ReMatch 1 JellyFish-13b Jellyfish-7b LLM-DP SMAT (20-80) SMAT (50-50)

M
IM

IC acc@1 62.20 ± 2.40 42.50 15.36 ± 5.00 14.25 ± 3.00 29.59 ± 2.00 6.05 ± 5.00 10.85 ± 6.00
acc@3 68.80 ± 2.00 63.80 N.A. N.A. N.A. N.A. N.A.
acc@5 71.10 ± 2.00 72.90 N.A. N.A. N.A. N.A. N.A.

Sy
nt

he
a acc@1 70.20 ± 1.70 50.50 35.17 ± 3.90 31.52 ± 1.70 41.44 ± 5.40 36.23 ± 3.30 44.88 ± 2.60

acc@3 78.60 ± 2.50 58.10 N.A. N.A. N.A. N.A. N.A.
acc@5 80.90 ± 1.10 74.30 N.A. N.A. N.A. N.A. N.A.

using the same MIMIC and Synthea datasets, giving it an
advantage, we include it as a baseline to highlight Match-
maker’s zero-shot performance using a general-purpose
LLM. This comparison spans general-purpose LLMs, tradi-
tional supervised approaches, and task-specific fine-tuned
models. All LLM baselines use GPT-4 (0613) (OpenAI,
2023) as the backbone for fair comparison to the original
works and to isolate the gains of the system not tied to the
LLM. Other LLM backbone results are found in Appendix
D, showing Matchmaker’s gain isn’t due to the LLM alone.

Matchmaker has the best overall performance. Match-
maker consistently outperforms baselines across all settings,
see Table 1. Importantly, we find the largest performance
gains (+-20%) for accuracy@1. This is a desirable property,
as it suggests a better ranking of matches. i.e. a higher accu-
racy at low k values enables the use of smaller prediction
sets, reducing the human effort required to select the final
best target attribute match for a given source attribute query.

Formulation as information retrieval outperforms bi-
nary classification. A key insight from our experiments
is that information retrieval-based approaches (Match-
maker and ReMatch) perform substantially better for ac-
curacy@1 compared to the other binary classification-based
approaches, which evaluate the full Cartesian product of
attributes. This performance gap can be attributed to the
smaller search space of the information retrieval formula-
tion. Notably, Matchmaker and ReMatch are evaluated on
all mappings, including matches and nulls ("No possible
match"), whereas binary classification methods consider a
simpler problem by only evaluating true matches.

Remark on source of gain. We ablate the different candidate
generation mechanisms in Appendix D.1. The results high-
light the value of diverse candidate generation mechanisms
to enhance Matchmaker’s overall performance.

5.2. Matchmaker self-improvement analysis

Matchmaker self-improves its language model program in
a zero-shot manner (no labeled examples) via an optimiza-
tion process using synthetic in-context examples (Sec. 4.4).
We evaluate the performance of Matchmaker (Optimized)
against three alternatives to disentangle the value of our
in-context example selection mechanism: (1) Matchmaker
(No-IC), which is the vanilla language model program with-
out in-context examples, (2) Matchmaker (Random): ran-

dom selection of in-context examples rather than our op-
timized/systematic selection of in-context examples and
(3) Matchmaker (Self-Reflection), which employs a self-
reflection or self-refinement mechanism (Pan et al., 2023;
Madaan et al., 2024) as an alternative self-improvement
approach. i.e., the LLM iteratively self-corrects through
feedback and has been used for various LLM tasks to im-
prove performance.

The results in Table 2 illustrate the following: ▶ Match-
maker (Optimized) achieves significant performance gains
compared to Matchmaker (No-IC), particularly at low k
values (+-5% improvement for acc@1). This highlights the
value of the synthetic in-context examples and the poten-
tial for zero-shot self-improvement, even in the absence of
labeled data or well-defined evaluation metrics. ▶ Match-
maker (Optimized) outperforms Matchmaker (Random),
confirming that our systematic selection of in-context sam-
ples is the key driver of performance gains, rather than
the mere inclusion of any in-context examples. ▶ Match-
maker (Optimized), which uses an LLM evaluator to score
demonstrations directly, provides better performance gains
compared to the LLM self-reflection approach. This under-
scores the importance of input-output demonstrations for
Matchmaker, especially considering the multi-stage nature
of the program, where the outputs of earlier components
affect later components.

Table 2: Comparison of different Matchmaker self-improvement
mechanisms. We see the value of our systematic selection of in-
context samples vs alternative mechanisms.

Matchmaker
(Optimized - Full)

Matchmaker
(Random)

Matchmaker
(No-IC)

Matchmaker
(Self-reflection)

M
IM

IC acc@1 62.20 ± 2.40 55.36 ± 2.15 57.90 ± 1.20 57.10 ± 0.60
acc@3 68.80 ± 2.00 62.74 ± 4.50 66.40 ± 0.60 66.60 ± 1.00
acc@5 71.10 ± 2.00 65.00 ± 6.42 70.20 ± 0.70 70.60 ± 0.50

Sy
nt

he
a acc@1 70.20 ± 1.70 67.76 ± 1.38 65.40 ± 0.90 67.80 ± 1.40

acc@3 78.60 ± 2.50 76.19 ± 5.28 78.20 ± 0.60 75.90 ± 0.70
acc@5 80.90 ± 1.10 77.66 ± 5.07 83.20 ± 1.10 81.10 ± 1.90

5.3. Matchmaker in practice: Human-in-the-loop
deferral and remedial action.

How might we use Matchmaker in practice for schema
matching? Let us examine two cases.

2ReMatch code is not available, hence we report the best accu-
racy@k values with the retrieval step as in (Sheetrit et al., 2024).
Appendix D shows results for a re-implementation of ReMatch.

8

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

(1) Matchmaker with human-in-the-loop deferral: We
evaluate the effectiveness of integrating Matchmaker with a
human-in-the-loop approach by deferring uncertain matches
to human experts (i.e., an oracle) for correction. High-
uncertainty cases are identified using the entropy of Match-
maker’s confidence scores, with the most challenging
matches (those with the highest entropy) deferred to the
oracle. We evaluate different deferral percentages p ∈
{0, 10, 20, 30, 40, 50} and observe that entropy-based defer-
ral consistently yields greater performance gains compared
to random deferral, as shown in Fig. 4(a). This finding
highlights the practical value of Matchmaker in real-world
settings, where based on entropy, one could strategically
seek human oversight for challenging matches and improve
overall schema matching performance. The appropriate
deferral percentage, however, depends on context-specific
factors such as human bandwidth and expert availability.

(2) Evaluating ease of remedial action based on the simi-
larity between incorrect predictions and true target at-
tributes: Not all errors in source-target matching are equal;
some might be easier to rectify than others. We hypothe-
size that errors involving semantically similar attributes are
easier to correct compared to those involving completely dis-
similar attributes. We analyze the cosine similarity between
incorrectly predicted attributes and their true target attributes
using Pubmed-Bert embeddings. To simulate post-hoc re-
medial action, we assess the performance gains achieved
by correcting erroneous predictions that exceed different
similarity thresholds. Figure 4(b) shows substantial im-
provements in accuracy@1 when "fixing" errors, with high
semantic similarity between the erroneous prediction and
true attribute (e.g., cosine similarity ≥ 0.8). These results
suggest that Matchmaker’s incorrect predictions are often
semantically close to the true attributes (i.e. our errors are
not far off), making them more amenable to post-hoc re-
medial actions. This demonstrates the viability of post-hoc
remedial actions to improve schema matching performance.
Further error analysis can be found in Appendix D.

Figure 4: Examples of Matchmaker in practice. (a) Deferring
uncertain samples to humans via entropy deferral improves schema
matching performance. (b) Performance gains are obtained when
correcting errors semantically similar to the true attribute.

5.4. Additional datasets beyond healthcare

While we primarily evaluate Matchmaker’s capabilities on
healthcare datasets due to the complexity of the schema

matching task, we also conduct further evaluation to assess
Matchmaker’s generalizability to other domains. Specifi-
cally, we evaluate Matchmaker on Magellan (e-commerce)
and WikiData (general knowledge base). The results in Ta-
ble 3 show that Matchmaker achieves superior performance,
confirming its generalizability across domains.

Table 3: Performance comparison between Matchmaker and
ReMatch across datasets.

Dataset Matchmaker ReMatch

Wikidata 0.95± 0.04 0.84± 0.03
Magallen 1.00± 0.00 1.00± 0.00

However, these datasets represent significantly less challeng-
ing matching scenarios compared to our healthcare schemas.
This is evidenced by the relatively high performance across
all methods. The reason is that these tasks typically involve
single-table schemas with fewer columns and focus on direct
feature-to-feature matching. In contrast, the healthcare tasks
require multi-step reasoning, first over dozens of source
tables and then hundreds of attributes. i.e. first identify-
ing the relevant target table, then performing column-level
matching. These findings reinforce our focus on health-
care schemas, which present more challenging real-world
matching scenarios that better differentiate the capabilities
of advanced matching techniques.

6. Discussion
Matchmaker introduces a novel approach to schema match-
ing, using a self-improving compositional LLM program.
Its superior performance compared to existing ML-based
approaches underlines its potential to accelerate data inte-
gration for ML-ready data. Matchmaker’s zero-shot self-
improvement mechanism, using synthetic in-context exam-
ples, showcases the potential of using LLMs to handle com-
plex reasoning tasks without relying on labeled data.

Limitations and opportunities. (1) Matchmaker, while
effective in schema matching, represents just one compo-
nent of the broader data harmonization process and needs
to be integrated with other tasks to generate ML-ready data.
(2) Despite its advantages over alternative ML-based ap-
proaches, Matchmaker is not a panacea and does not achieve
perfect automation. It is best used with a human-in-the-loop
(Sec. 5.3) to ensure reliability in real-world settings.

Acknowledgements
The authors are grateful to Fergus Imrie, Nicolás Astorga,
Julianna Piskorz, Andrew Rashbass, and the anonymous
ICML reviewers for their useful comments and feedback.
NS is supported by the Cystic Fibrosis Trust. This work was
supported by Microsoft’s Accelerate Foundation Models
Academic Research initiative.

9

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Impact Statement
Schema matching is essential for data integration. By au-
tomating and accelerating the harmonization of heteroge-
neous datasets, it enables the creation of larger, more com-
prehensive training datasets that can lead to more robust
and generalizable ML models. Matchmaker accelerates this
process through a self-improving compositional language
model, reducing manual effort and improving scalability. Its
adoption can enhance decision-making across domains such
as healthcare, finance, and e-commerce by providing more
representative datasets. However, reliance on automated
schema matching comes with risks, including potential er-
rors and data inconsistencies. To mitigate these, Match-
maker should be used in a human-in-the-loop framework
with rigorous validation and quality control. By striking
this balance, Matchmaker has the potential to drive more
reliable AI applications and accelerate data interoperability
and integration in different fields.

Beyond addressing the interoperability challenge, Match-
maker also introduces fundamental advancements that ar
broadly applicable to compositional LLM programs. In
particular, the self-improvement mechanism is broadly ap-
plicable beyond the schema matching setting and could be
used more generally to improve LLM system capabilities.

References
Agarwal, R., Singh, A., Zhang, L. M., Bohnet, B., Chan, S.,

Anand, A., Abbas, Z., Nova, A., Co-Reyes, J. D., Chu,
E., et al. Many-shot in-context learning. arXiv preprint
arXiv:2404.11018, 2024.

Avati, A., Seneviratne, M., Xue, Y., Xu, Z., Lakshmi-
narayanan, B., and Dai, A. M. Beds-bench: Behavior
of ehr-models under distributional shift-a benchmark. In
NeurIPS 2021 Workshop on Distribution Shifts: Connect-
ing Methods and Applications, 2021.

Balagopalan, A., Baldini, I., Celi, L. A., Gichoya, J., McCoy,
L. G., Naumann, T., Shalit, U., van der Schaar, M., and
Wagstaff, K. L. Machine learning for healthcare that
matters: Reorienting from technical novelty to equitable
impact. PLOS Digital Health, 3(4):e0000474, 2024.

Balch, J. A., Ruppert, M. M., Loftus, T. J., Guan, Z., Ren,
Y., Upchurch, G. R., Ozrazgat-Baslanti, T., Rashidi, P.,
and Bihorac, A. Machine learning–enabled clinical in-
formation systems using fast healthcare interoperability
resources data standards: scoping review. JMIR Medical
Informatics, 11:e48297, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, W. Large language models are few (1)-shot table rea-
soners. In Findings of the Association for Computational
Linguistics: EACL 2023, pp. 1120–1130, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Colubri, A., Hartley, M.-A., Siakor, M., Wolfman, V., Felix,
A., Sesay, T., Shaffer, J. G., Garry, R. F., Grant, D. S.,
Levine, A. C., et al. Machine-learning prognostic models
from the 2014–16 ebola outbreak: data-harmonization
challenges, validation strategies, and mhealth applica-
tions. EClinicalMedicine, 11:54–64, 2019.

Ding, W., Feng, S., Liu, Y., Tan, Z., Balachandran, V., He,
T., and Tsvetkov, Y. Knowledge crosswords: Geometric
reasoning over structured knowledge with large language
models. arXiv preprint arXiv:2310.01290, 2023.

Do, H. H. and Rahm, E. Coma - a system for flexible com-
bination of schema matching approaches. In Very Large
Data Bases Conference, 2002. URL https://api.
semanticscholar.org/CorpusID:9318211.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun,
X., Xu, J., and Sui, Z. A survey on in-context learning.
arXiv preprint arXiv:2301.00234, 2022.

El Haddadi, O., Chevalier, M., Dousset, B., El Allaoui, A.,
El Haddadi, A., and Teste, O. Overview on data ingestion
and schema matching. Data and Metadata, 3:219–219,
2024.

Gal, A. Uncertain schema matching: the power of not
knowing. In International Conference on Information and
Knowledge Management, 2011. URL https://api.
semanticscholar.org/CorpusID:43482147.

Giglou, H. B., D’Souza, J., and Auer, S. Llms4om: Match-
ing ontologies with large language models. arXiv preprint
arXiv:2404.10317, 2024.

Gilbert, S., Kather, J. N., and Hogan, A. Augmented non-
hallucinating large language models as medical informa-
tion curators. NPJ Digital Medicine, 7(1):100, 2024.

Goetz, L., Seedat, N., Vandersluis, R., and van der Schaar,
M. Generalization—a key challenge for responsible ai in
patient-facing clinical applications. npj Digital Medicine,
7(1):126, 2024.

Gupta, N., Patel, H., Afzal, S., Panwar, N., Mittal, R. S.,
Guttula, S., Jain, A., Nagalapatti, L., Mehta, S., Hans, S.,

10

https://api.semanticscholar.org/CorpusID:9318211
https://api.semanticscholar.org/CorpusID:9318211
https://api.semanticscholar.org/CorpusID:43482147
https://api.semanticscholar.org/CorpusID:43482147

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

et al. Data quality toolkit: Automatic assessment of data
quality and remediation for machine learning datasets.
arXiv preprint arXiv:2108.05935, 2021.

Hertling, S. and Paulheim, H. Olala: Ontology match-
ing with large language models. In Proceedings of the
12th Knowledge Capture Conference 2023, pp. 131–139,
2023.

Hou, Y., Zhang, J., Lin, Z., Lu, H., Xie, R., McAuley, J., and
Zhao, W. X. Large language models are zero-shot rankers
for recommender systems. In European Conference on
Information Retrieval, pp. 364–381. Springer, 2024.

Hu, C., Ge, Y., Ma, X., Cao, H., Li, Q., Yang, Y., Xiao,
T., and Zhu, J. Rankprompt: Step-by-step comparisons
make language models better reasoners. arXiv preprint
arXiv:2403.12373, 2024.

Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S.,
Guttula, S., Mujumdar, S., Afzal, S., Sharma Mittal, R.,
and Munigala, V. Overview and importance of data qual-
ity for machine learning tasks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 3561–3562, 2020.

Jiang, K., Liang, W., Zou, J. Y., and Kwon, Y. Opendataval:
a unified benchmark for data valuation. Advances in
Neural Information Processing Systems, 36, 2023.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H.,
Feng, M., Ghassemi, M., Moody, B., Szolovits, P., An-
thony Celi, L., and Mark, R. G. Mimic-iii, a freely ac-
cessible critical care database. Scientific data, 3(1):1–9,
2016.

Kadavath, S., Conerly, T., Askell, A., Henighan, T., Drain,
D., Perez, E., Schiefer, N., Hatfield-Dodds, Z., DasSarma,
N., Tran-Johnson, E., et al. Language models (mostly)
know what they know. arXiv preprint arXiv:2207.05221,
2022.

Khattab, O. and Zaharia, M. Colbert: Efficient and effective
passage search via contextualized late interaction over
bert. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information
Retrieval, pp. 39–48, 2020.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., San-
thanam, K., Haq, S., Sharma, A., Joshi, T. T., Moazam,
H., Miller, H., et al. Dspy: Compiling declarative lan-
guage model calls into state-of-the-art pipelines. In The
Twelfth International Conference on Learning Represen-
tations, 2023.

Kong, K., Zhang, J., Shen, Z., Srinivasan, B., Lei, C., Falout-
sos, C., Rangwala, H., and Karypis, G. Opentab: Advanc-
ing large language models as open-domain table reason-
ers. In The Twelfth International Conference on Learning
Representations, 2023.

Lee, J., Dai, Z., Duddu, S. M. K., Lei, T., Naim, I., Chang,
M.-W., and Zhao, V. Rethinking the role of token retrieval
in multi-vector retrieval. Advances in Neural Information
Processing Systems, 36, 2024.

Lehne, M., Sass, J., Essenwanger, A., Schepers, J., and
Thun, S. Why digital medicine depends on interoperabil-
ity. NPJ Digital Medicine, 2:79–79, 2019.

Li, Y., Li, J., Suhara, Y., Doan, A., and Tan, W. C.
Deep entity matching with pre-trained language mod-
els. Proceedings of the VLDB Endowment, 14:50 –
60, 2020. URL https://api.semanticscholar.
org/CorpusID:214743579.

Liu, Y., Pena, E., Santos, A., Wu, E., and Freire, J. Magneto:
Combining small and large language models for schema
matching. arXiv preprint arXiv:2412.08194, 2024.

Lu, W., Zhang, J., Zhang, J., and Chen, Y. Large language
model for table processing: A survey. arXiv preprint
arXiv:2402.05121, 2024.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Mirchandani, S., Xia, F., Florence, P. R., Ichter,
B., Driess, D., Arenas, M. G., Rao, K., Sadigh,
D., and Zeng, A. Large language models as
general pattern machines. ArXiv, abs/2307.04721,
2023. URL https://api.semanticscholar.
org/CorpusID:259501163.

Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Kr-
ishnan, G., Deep, R., Arcaute, E., and Raghavendra, V.
Deep learning for entity matching: A design space explo-
ration. Proceedings of the 2018 International Conference
on Management of Data, 2018. URL https://api.
semanticscholar.org/CorpusID:44063437.

Nahid, M. M. H. and Rafiei, D. Tabsqlify: Enhancing rea-
soning capabilities of llms through table decomposition.
arXiv preprint arXiv:2404.10150, 2024.

Narayan, A., Chami, I., Orr, L. J., and R’e, C. Can
foundation models wrangle your data? Proc.
VLDB Endow., 16:738–746, 2022. URL https:
//api.semanticscholar.org/CorpusID:
248965029.

11

https://api.semanticscholar.org/CorpusID:214743579
https://api.semanticscholar.org/CorpusID:214743579
https://api.semanticscholar.org/CorpusID:259501163
https://api.semanticscholar.org/CorpusID:259501163
https://api.semanticscholar.org/CorpusID:44063437
https://api.semanticscholar.org/CorpusID:44063437
https://api.semanticscholar.org/CorpusID:248965029
https://api.semanticscholar.org/CorpusID:248965029
https://api.semanticscholar.org/CorpusID:248965029

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

OpenAI, R. Gpt-4 technical report. arxiv 2303.08774. View
in Article, 2(5), 2023.

Pan, L., Saxon, M., Xu, W., Nathani, D., Wang, X.,
and Wang, W. Y. Automatically correcting large lan-
guage models: Surveying the landscape of diverse self-
correction strategies. arXiv preprint arXiv:2308.03188,
2023.

Paris, N., Lamer, A., and Parrot, A. Transfor-
mation and evaluation of the mimic database in
the omop common data model: Development and
usability study. JMIR Medical Informatics, 9,
2021. URL https://api.semanticscholar.
org/CorpusID:244194789.

Qiu, L., Jiang, L., Lu, X., Sclar, M., Pyatkin, V., Bhaga-
vatula, C., Wang, B., Kim, Y., Choi, Y., Dziri, N., et al.
Phenomenal yet puzzling: Testing inductive reasoning ca-
pabilities of language models with hypothesis refinement.
arXiv preprint arXiv:2310.08559, 2023.

Rahm, E. and Bernstein, P. A. A survey of approaches
to automatic schema matching. the VLDB Journal, 10:
334–350, 2001.

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N.,
Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., et al.
Scalable and accurate deep learning with electronic health
records. NPJ digital medicine, 1(1):1–10, 2018.

Rauba, P., Seedat, N., Ruiz Luyten, M., and van der Schaar,
M. Context-aware testing: A new paradigm for model
testing with large language models. Advances in Neu-
ral Information Processing Systems, 37:112505–112553,
2024.

Ren, J., Zhao, Y., Vu, T., Liu, P. J., and Lakshminarayanan,
B. Self-evaluation improves selective generation in large
language models. arXiv preprint arXiv:2312.09300,
2023.

Renggli, C., Rimanic, L., Gürel, N. M., Karlas, B., Wu, W.,
and Zhang, C. A data quality-driven view of mlops. IEEE
Data Engineering Bulletin, 2021.

Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Par-
itosh, P., and Aroyo, L. M. “everyone wants to do the
model work, not the data work”: Data cascades in high-
stakes ai. In proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1–15, 2021.

Santhanam, K., Khattab, O., Saad-Falcon, J., Potts, C., and
Zaharia, M. Colbertv2: Effective and efficient retrieval
via lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 3715–3734, 2022.

Seedat, N., Aharonson, V., and Hamzany, Y. Automated
and interpretable m-health discrimination of vocal cord
pathology enabled by machine learning. In 2020 IEEE
Asia-Pacific Conference on Computer Science and Data
Engineering (CSDE), pp. 1–6. IEEE, 2020.

Seedat, N., Crabbé, J., Bica, I., and van der Schaar, M.
Data-iq: Characterizing subgroups with heterogeneous
outcomes in tabular data. Advances in Neural Information
Processing Systems, 35:23660–23674, 2022.

Seedat, N., Crabbé, J., Qian, Z., and van der Schaar, M.
Triage: Characterizing and auditing training data for im-
proved regression. Advances in Neural Information Pro-
cessing Systems, 36:74995–75008, 2023a.

Seedat, N., Imrie, F., and van der Schaar, M. Dissecting sam-
ple hardness: Fine-grained analysis of hardness character-
ization methods. In The Twelfth International Conference
on Learning Representations, 2023b.

Seedat, N., Imrie, F., and van der Schaar, M. Navigat-
ing data-centric artificial intelligence with dc-check: Ad-
vances, challenges, and opportunities. IEEE Transactions
on Artificial Intelligence, 2023c.

Sheetrit, E., Brief, M., Mishaeli, M., and Elisha, O. Re-
match: Retrieval enhanced schema matching with llms.
arXiv preprint arXiv:2403.01567, 2024.

Shraga, R., Gal, A., and Roitman, H. Adnev: Cross-domain
schema matching using deep similarity matrix adjustment
and evaluation. Proc. VLDB Endow., 13:1401–1415,
2020. URL https://api.semanticscholar.
org/CorpusID:214588544.

Si, Y., Du, J., Li, Z., Jiang, X., Miller, T., Wang, F., Zheng,
W. J., and Roberts, K. Deep representation learning of
patient data from electronic health records (ehr): A sys-
tematic review. Journal of biomedical informatics, 115:
103671, 2021.

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung,
H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S.,
et al. Large language models encode clinical knowledge.
Nature, pp. 1–9, 2023.

Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., and
Gurevych, I. Beir: A heterogeneous benchmark for zero-
shot evaluation of information retrieval models. In Thirty-
fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 2), 2021.

Tian, K., Mitchell, E., Zhou, A., Sharma, A., Rafailov,
R., Yao, H., Finn, C., and Manning, C. D. Just ask
for calibration: Strategies for eliciting calibrated confi-
dence scores from language models fine-tuned with hu-
man feedback. In Proceedings of the 2023 Conference

12

https://api.semanticscholar.org/CorpusID:244194789
https://api.semanticscholar.org/CorpusID:244194789
https://api.semanticscholar.org/CorpusID:214588544
https://api.semanticscholar.org/CorpusID:214588544

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

on Empirical Methods in Natural Language Processing,
pp. 5433–5442, 2023.

Tiwari, P., Colborn, K. L., Smith, D. E., Xing, F., Ghosh,
D., and Rosenberg, M. A. Assessment of a machine
learning model applied to harmonized electronic health
record data for the prediction of incident atrial fibrillation.
JAMA network open, 3(1):e1919396–e1919396, 2020.

Walonoski, J., Kramer, M., Nichols, J., Quina, A., Moesel,
C., Hall, D., Duffett, C., Dube, K., Gallagher, T., and
McLachlan, S. Synthea: An approach, method, and soft-
ware mechanism for generating synthetic patients and
the synthetic electronic health care record. Journal of
the American Medical Informatics Association, 25(3):
230–238, 2018.

Wang, P., Li, L., Chen, L., Zhu, D., Lin, B., Cao, Y., Liu, Q.,
Liu, T., and Sui, Z. Large language models are not fair
evaluators. arXiv preprint arXiv:2305.17926, 2023a.

Wang, Z., Zhang, H., Li, C.-L., Eisenschlos, J. M., Perot,
V., Wang, Z., Miculicich, L., Fujii, Y., Shang, J., Lee,
C.-Y., et al. Chain-of-table: Evolving tables in the rea-
soning chain for table understanding. In The Twelfth
International Conference on Learning Representations,
2023b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Whang, S. E., Roh, Y., Song, H., and Lee, J.-G. Data
collection and quality challenges in deep learning: A
data-centric ai perspective. The VLDB Journal, 32(4):
791–813, 2023.

Williams, R. D., Reps, J. M., Kors, J. A., Ryan, P. B., Steyer-
berg, E., Verhamme, K. M., and Rijnbeek, P. R. Using
iterative pairwise external validation to contextualize pre-
diction model performance: a use case predicting 1-year
heart failure risk in patients with diabetes across five data
sources. Drug Safety, 45(5):563–570, 2022.

Zha, D., Bhat, Z. P., Lai, K.-H., Yang, F., Jiang, Z., Zhong,
S., and Hu, X. Data-centric artificial intelligence: A
survey. arXiv preprint arXiv:2303.10158, 2023.

Zhang, H., Dong, Y., Xiao, C., and Oyamada, M.
Large language models as data preprocessors.
ArXiv, abs/2308.16361, 2023a. URL https:
//api.semanticscholar.org/CorpusID:
261397017.

Zhang, H., Dong, Y., Xiao, C., and Oyamada, M. Jellyfish:
A large language model for data preprocessing. arXiv
preprint arXiv:2312.01678, 2023b.

Zhang, J., Shin, B., Choi, J. D., and Ho, J. Smat:
An attention-based deep learning solution to the au-
tomation of schema matching. Advances in databases
and information systems. ADBIS, 12843:260–274,
2021. URL https://api.semanticscholar.
org/CorpusID:237207055.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36,
2023.

Zhuang, H., Qin, Z., Hui, K., Wu, J., Yan, L., Wang, X.,
and Berdersky, M. Beyond yes and no: Improving zero-
shot llm rankers via scoring fine-grained relevance labels.
arXiv preprint arXiv:2310.14122, 2023.

13

https://api.semanticscholar.org/CorpusID:261397017
https://api.semanticscholar.org/CorpusID:261397017
https://api.semanticscholar.org/CorpusID:261397017
https://api.semanticscholar.org/CorpusID:237207055
https://api.semanticscholar.org/CorpusID:237207055

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Appendix - Bootstrapping Self-Improvement of
Language Model Programs for Zero-Shot Schema
Matching

Table of Contents
A Matchmaker additional details 15

A.1 Matchmaker compared with ReMatch . 15

A.2 Schema matching challenges. 15

A.3 Complexity of the MIMIC-OMOP task . 15

A.4 Further details on schema matching formalism . 17

A.5 Detailed explanation of self-improvement . 18

A.6 Extended related work . 18

A.7 Matchmaker within the context of LLM table reasoning. 20

A.8 Metrics: accuracy, precision, recall, F1-Score . 20

A.9 Matchmaker algorithm . 22

B Experimental details: Benchmarks & datasets 23
B.1 Benchmarks . 23

B.1.1 Matchmaker . 23

B.1.2 ReMatch . 23

B.1.3 Jellyfish . 23

B.1.4 LLM-DP . 23

B.1.5 SMAT . 24

B.2 Datasets . 24

C Examples using Matchmaker (with prompts) 25
C.1 Matchmaker prompt examples . 25

C.1.1 Example 1. 25

C.1.2 Example 2 . 28

C.2 LLM Evaluator . 31

D Additional experiments 33
D.1 Source of gain ablation: Why does it work? . 33

D.2 Number of LLM calls . 33

D.3 Matchmaker with other LLMs . 34

D.4 Further performance results: ReMatch reimplementation . 34

D.5 Improving performance: Use of Existing Mappings to remedy errors . 35

D.6 Comparison of Matchmaker on ontology matching tasks . 36

D.7 Detailed error analysis . 36

D.8 Ranking ablation . 36

14

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

A. Matchmaker additional details
A.1. Matchmaker compared with ReMatch

Table 4: Difference between Matchmaker & the closest work ReMatch along multiple dimensions.

Feature ReMatch Matchmaker (Ours)

System/Approach Single-step process
R : As ×At → {0, 1}

Multi-step compositional
LM program L = {l1, l2, . . . , ln} (Sec 4)

Candidate Generation Semantic retrieval only
Cs = g(Asi, At)

Semantic + Reasoning-based
C = CR ∪ Cs (Sec 4.2)

Reasoning Mechanism Limited to ranking stage Chain-of-Thought
prompting throughout

Ranking Single LLM call for binary decision
R(Asi, Atj) ∈ {0, 1}

LLM-based confidence scoring
with MCQ format: r : (As ×Ds)× (At ×Dt)→ R

allowing for uncertainty deferral (Sec 4.3)

Self-improvement/Optimization None Zero-shot with synthetic
examples: E : (ei, L(ei))→ R (Sec 4.4)

LLM Prompts Static Dynamic

A.2. Schema matching challenges.

• Database Heterogeneity: The number of tables in each schema may differ, i.e., |Ts| ≠ |Tt|, making it challenging to
establish correspondences between attributes across schemas.

• Structural Heterogeneity: Schemas may have different architectures, hierarchies, and representational granularity. If
we define a hierarchy function h(Ti) that describes the level of nesting within tables, differences in h(Tsj) and h(Ttk)
for any j, k can lead to significant challenges in aligning attributes Asj and Atk.

• Semantic Heterogeneity: Attributes in different schemas may have the same name but different meanings, or different
names but the same meaning. Let Ni = {nij |Aij ∈ Ai} be the set of attribute names for schema Si. Semantic
heterogeneity occurs when ∃Asj ∈ As, Atk ∈ At : f(Asj) = Atk ∧ nsj ̸= ntk or when ∃Asj ∈ As, Atk ∈ At :
f(Asj) ̸= Atk ∧ nsj = ntk.

• Data Type Heterogeneity: Attributes in different schemas may have different data types, even if they refer to the
same concept. Let dij be the data type of attribute Aij . Data type heterogeneity occurs when ∃Asj ∈ As, Atk ∈ At :
f(Asj) = Atk ∧ dsj ̸= dtk.

• Information Mismatch: Some attributes in one schema may lack a corresponding match in the other schema. This
necessitates reasoning about "no possible match" cases, which is as important as reasoning about possible matches.

• Unsupervised Nature: Schema matching is unsupervised, where no labeled data pairs (Asj , Atk) are available to train
or validate the mappings. This necessitates reliance on the intrinsic structure and semantic information encoded in Ai,
making the development of an effective mapping function f challenging without external supervision.

A.3. Complexity of the MIMIC-OMOP task

MIMIC-OMOP is a real-world healthcare schema matching task, which is reflective of complex structures, interlinking
and hierarchies that can be expected in real-world schema matching tasks. Hence, Matchmakers ability to empirically
outperform baselines on these tasks highlights its ability to handle complex schemas.

To illustrate the complexity of the schemas that Matchmaker can handle, Figure 5 illustrates the complex schema structure
and multiple tables.

15

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

So
ur

ce
 S

ch
em

a
(M

IM
IC

)
Ta

rg
et

 S
ch

em
a

(O
M

O
P)

Figure 5: Illustration of the MIMIC-OMOP schema matching task showing the complexity and schema hierarchies.

16

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

A.4. Further details on schema matching formalism

In this appendix, we provide further details on the formulation of schema matching. We look at properties that a schema
matching algorithm or function should possess, as well as, detailing how Matchmaker satisfies these properties.

Properties necessary. In practice, correctness in schema matching is evaluated against expert-validated ground truth
mappings between the datasets (e.g. MIMIC to OMOP and Synthea to OMOP). However, this begs the question what
properties would be useful ti improve emprical performance.

These lie along the following dimensions:

• Semantic Equivalence/Consistency: f(AS) = At implies A and At represent the same real-world concept (i.e. the
mapped attributes serve equivalent purposes)

• Type Compatibility: Mapped attributes must have compatible data types

• Structural Consistency: Mappings must respect schema hierarchies

• Coverage: f identifies all valid matches while avoiding incorrect mappings through abstention. i.e. coverage is
maximized by improved accuracy@k

We can then practically assess if a function f (such as Matchmaker) satisfies these criteria based on its performance against
expert-validated ground truth mappings in real-world benchmark datasets as has been done in the paper.

How does Matchmaker satisfy these properties?

While we have empirically shown Matchmaker satisfies the properties needed of a schema matching function f , based on its
strong performance on real-world schema matching tasks where it significantly outperforms existing approaches on standard
benchmarks. In particular, the strong empirical performance outperforming the baselines implies that Matchmaker better
satisfies the properties compared to the baseline schema matching algorithms.

However, let us analyze how Matchmaker also has specific design aspects within its compositional LLM structure that
promotes addressing the properties.

• Semantic equivalence/consistency: Matchmaker employs multiple mechanisms: multi-vector document representation
captures semantic nuances beyond simple name matching, while dual candidate generation combines both semantic
retrieval and LLM reasoning to identify conceptually equivalent attributes.

• Type compatibility: enforced through inclusion of data type information in our multi-vector documents (Section 4.1)
and LLM reasoning during candidate generation and refinement (Section 4.2), with examples in Appendix C showing
explicit consideration of type compatibility (e.g., string->varchar, integer->bigint).

• Structural consistency is maintained by incorporating table metadata and hierarchical information in document creation
(Section 4.1), using reasoning-based candidate generation that considers schema structure (Section 4.2), and including
table context in confidence scoring.

• Coverage is optimized through our MCQ format with a "None of the above" option enabling abstention when no good
match exists, while confidence scoring helps identify and rank high-quality matches. Our empirical results validate that
these properties translate to superior performance in practice.

17

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

A.5. Detailed explanation of self-improvement

The self-improvement mechanism of Matchmaker is a pivotal component. We provide the Algorithm below.

Algorithm 2 Optimize LM program L
0: Input: Set of evaluation queries Deval = e1, e2, . . . , en
0: Output: Set of top n demonstrations Ddemo

0: for each input ei ∈ Deval do
0: ŷi, tracei ← L(ei) {Teacher L predicts, storing outputs and intermediate traces}
0: si ← E(ei, ŷi) { Evaluation score }
0: Ddemo ← Ddemo ∪ (ei, tracei, ŷi, si)
0: end for
0: Sort Ddemo by score
0: return Ddemo[0 : n] {Select top n} =0

In particular, we clarify that the self-improvement approach aims to address the issue of in-context learning for multi-stage
LLM programs like Matchmaker. However, in doing so we need to address two fundamental challenges in our setting (C1
and C2):

(C1) Lack of labeled demonstrations: We do not have access to labeled input-output demonstrations from which to select
in-context examples.

(C2) Lack of an evaluator for selection: To assess Matchmaker’s capabilities and guide selection of examples, we need an
evaluator.

We address each as follows:

• Addressing (C1): The process begins by creating an evaluation dataset Deval from unlabeled schemas with two
properties: "easy queries" where top-n semantic matches have similarity scores > 0.95, and "challenging queries"
with the lowest semantic match scores. This ensures diverse coverage of different matching scenarios. The complete
Matchmaker compositional program L is then run on each evaluation example ei ∈ Deval. We capture full execution
traces including intermediate reasoning steps, candidate generation and refinement decisions, and final confidence
scores and matches. The synthetic in-context examples refer to the intermediate input-output pairs generated by the
LLM for the intermediate steps of the compositional LLM program. This deals with the challenge of a lack of labeled
examples (i.e. zero-shot).

• Addressing (C2): To handle the lack of an evaluator (validation metric), we use an evaluator LLM E (i.e. an LLM-
as-a-judge) to assess match quality through chain-of-thought reasoning, producing scores from 0-5 based on match
relevance. Finally, the top-n traces are selected based on these evaluation scores. This systematic approach, detailed in
Algorithm 1, enables principled selection of in-context examples based on traces that lead to good performance. We
then use these as in-context examples for the different parts of the LLM program (as they led to good performance) —
in order to guide the reasoning. As shown in the main paper our novel approach to self-improve outperforms random
selection of in-context examples and self-reflection confirming that our systematic selection of in-context samples is
the key driver of performance gains, rather than the mere inclusion of any in-context examples.

A.6. Extended related work

Alternative retrieve-and-rank methods.

At a high level, there are other methods which share the retrieve-then-rerank architecture with the ReMatch baseline,
especially in its zero-shot configuration. Specifically, the paradigm where the method retrieves candidate matches using
embeddings and subsequently reranks candidates with an LLM. While our closest method, ReMatch, does this, other
methods like Magneto follow a comparable approach.

A primary difference is the benchmark datasets on which methods like Magneto are evaluated. For instance, in Magneto
(Liu et al., 2024), most of the benchmark tasks involve schema matching of a single source to a single target table. This

18

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

contrasts with our healthcare setups, where there are multiple source tables and multiple target tables. Hence, our healthcare
tasks are more complex, needing reasoning over the table match first and then the column match.

Additionally, besides datasets, we contrast our Matchmaker framework and highlight how it fundamentally differs from
Magneto (and ReMatch) in three important ways:

1. Compositional LLM Program: While Magneto uses a two-stage pipeline (retrieval and reranking), Matchmaker
introduces a multi-stage compositional LLM program with candidate generation, refinement and confidence scoring.
This structured approach allows more nuanced reasoning about schema relationships.

2. Diverse Candidate Generation: Matchmaker combines both semantic retrieval and reasoning-based candidate generation,
whereas Magneto relies on semantic retrieval only

3. Self-Improvement Mechanism: Matchmaker introduces a novel zero-shot self-improvement mechanism using synthetic
in-context examples, which doesn’t exist in other methods.

Classical Schema Matching approaches. Classical approaches to schema matching, as thoroughly reviewed by (Rahm &
Bernstein, 2001), use a range of strategies, including heuristic-driven linguistic matching, constraint-based methods, and
structural analysis. These methods have historically focused on simple relational schemas, matching elements between
individual tables or flat structures. In particular, the primary focus is matching between individual tables or simple schemas
(such as purchase orders).

Key Weaknesses of Classical Approaches and How Matchmaker Addresses Them:

• Single-Table and Flat Structure Focus: Classical methods typically perform schema matching at the element level,
treating tables as isolated entities and matching attributes based on direct comparisons of names, data types, or simple
structural cues. In particular, often a focus was simple relational schemas, where the goal was to map elements between
single tables. However, this approach fails to handle the complexity of modern data systems, where schemas are
often multi-table, hierarchical, or require cross-table reasoning. Contrast: Matchmaker, in contrast, uses LLM-based
reasoning to connect attributes across multi-table and hierarchical schemas, understanding how data relationships span
multiple tables. This makes our approach significantly more capable of handling complex and interrelated schema
structures.

• Dependency on Heuristics and Limited Semantic Understanding: Classical methods rely on heuristic-driven matching
based on linguistic similarities (e.g., name matching using synonyms, hypernyms, or edit distance) and structural
constraints like key relationships. While these heuristics work in well-defined contexts, they are insufficient for domains
where semantic meaning is implicit, such as in healthcare and as we show in Fig 1 — only semantic matching is in fact
insufficient. Contrast: Matchmaker employs chain-of-thought prompting and advanced LLMs to perform reasoning,
allowing it to capture relationships that are not explicitly defined in the schema structure or names. This enables
Matchmaker to handle complex mappings that classical methods cannot infer.

• Manual Effort and Lack of Adaptability: Classical techniques require significant manual effort for tuning and adaptation,
making them less suitable for rapidly evolving or heterogeneous environments. Constraint-based approaches, in
particular, are difficult to scale across different domains without manual intervention. Alternatively, they might also rely
on labeled data for effective matching. This makes these classical approaches impractical in real-world environments.
Contrast: Matchmaker’s zero-shot and self-optimization capabilities mean it can adapt autonomously to new schemas
using synthetic in-context examples, significantly reducing the need for manual tuning and making it more practical for
dynamic, real-world data integration tasks.

Key Weaknesses of SMAT and how Matchmaker improves: We also compared Matchmaker to state-of-the-art (SOTA)
methods like SMAT Zhang et al. (2021), which applies attention mechanisms for schema matching. While SMAT represents
an important advancement over classical methods, it has several limitations that Matchmaker overcomes:

• High Dependency on Labeled Data: SMAT requires extensive labeled data (over 50% labeled matches) for training,
which is often impractical in real-world schema matching. Contrast: Matchmaker’s zero-shot matching capability
allows it to perform well without any labeled training data, using LLMs to generate and refine matches autonomously.

19

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

• Binary formulation: SMAT formulates the problem as binary classification task over the full Cartesian product of
source and target schema attributes. e.g. for each pair of source-target attributes. This leads to a large amount of
comparisons. Contrast: Matchmakers formulation as information retrieval reduces the number of comparisons and
leads to greater efficiency — in addition to the better performance.

A.7. Matchmaker within the context of LLM table reasoning.

There has recently been works on LLMs for table reasoning. We contrast them to Matchmaker along a variety of dimensions
below.

Task/Goal: The table reasoning papers tackle a variety of tasks centered around understanding and interacting with tabular
data. Some examples include: TabSQLify (Nahid & Rafiei, 2024) and OPENTAB (Kong et al., 2023) focus on table question
answering and fact verification, aiming to extract relevant information from tables to answer questions or verify statements.
Chain-of-Table (Wang et al., 2023b) and "Large Language Models are Few-Shot Table Reasoners" (Chen, 2023) explore
LLMs’ capabilities in reasoning over tables for question answering and fact verification tasks. The survey paper "Large
Language Model for Table Processing" (Lu et al., 2024) covers a broader range of tasks, including table manipulation,
table augmentation, and text-to-SQL conversion, showcasing LLMs’ potential in interpreting and manipulating tabular data.
In contrast, Matchmaker addresses the task of schema matching, which aims to find correspondences between attributes
across different schemas or tables. The goal is to enable data integration by mapping attributes from a source schema to a
target schema, considering the structural and semantic differences between them. This task is crucial for creating ML-ready
datasets by harmonizing data from diverse sources.

Approach: Table reasoning approaches span prompting LLMs for direct answers (Chen, 2023), program synthesis to
generate SQL/code (Nahid & Rafiei, 2024; Kong et al., 2023), iterative table transformation (Wang et al., 2023b), instruction
tuning (Lu et al., 2024), and agent-based methods (Lu et al., 2024). Matchmaker proposes a novel self-improving
compositional language model program. It leverages LLM reasoning via a pipeline with multiple LLM calls for candidate
generation, refinement and confidence scoring. It also self-improves without labeled data via synthetic in-context examples.

Inputs: The table reasoning papers mostly focus on single tables as input along with a question/query. Matchmaker takes
as input two tables/schemas (source and target) that need to be matched. It operates solely on schema-level information
(attribute names, metadata) without access to raw data in the tables. This is also a key difference compared to the table
reasoning papers, which often rely on the actual data values for answering questions or verifying facts.

Outputs: Table reasoning papers aim to output answers to questions, binary fact verification labels, updated tables after
manipulation, generated SQL/code, etc. In contrast, Matchmaker outputs a mapping between the source and target schema
attributes, or indicates no match is possible for certain attributes. The set of attribute pairs representing the schema matching
results, can be used to guide data integration processes.

Use of the LLM: Table reasoning employs LLMs for direct answer generation (Chen, 2023), program synthesis (Nahid &
Rafiei, 2024; Kong et al., 2023), iterative prompting (Wang et al., 2023b), or as part of an agent system (Lu et al., 2024).
Matchmaker uses LLMs for reasoning within a compositional program, generating candidates, refining them, and scoring
confidence.

Optimization/Training: Table reasoning works explore fine-tuning (Nahid & Rafiei, 2024), instruction tuning (Lu et al.,
2024), and in-context few-shot learning (Chen, 2023). Matchmaker introduces a novel optimization process to select
synthetic in-context examples for self-improvement without labeled data or fine-tuning.

Key differences: In summary, while the table reasoning papers focus on tasks like question answering, fact verification, and
table manipulation on single tables, Matchmaker addresses the distinct task of schema matching across table pairs. Its novel
approach of a self-improving compositional language model program operating on schema-level information contrasts with
general table reasoning which mostly use LLMs for direct table QA or program synthesis.

A.8. Metrics: accuracy, precision, recall, F1-Score

In our m:1 schema matching setup, accuracy@1, precision, recall, and F1-score are equivalent due to the specific constraints
of the task and the prediction mechanism employed. Below, we provide a detailed explanation of this equivalence:

2. Task Constraints: The schema matching task is constrained such that each source attribute can match to at most one
target attribute (m:1 constraint). This ensures that the number of predictions equals the number of source attributes.

20

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Equivalence of Metrics Given the above setup, the following equivalences hold:

Precision:
Precision =

True Positives (TP)
True Positives (TP) + False Positives (FP)

In our setup, every prediction corresponds to exactly one target attribute, and there are no extraneous or unassigned
predictions. Therefore:

Precision =
Correct Matches
Total Predictions

= Accuracy@1.

Recall:
Recall =

True Positives (TP)
True Positives (TP) + False Negatives (FN)

Since every source attribute must be matched to a target attribute, there are no unassigned predictions in our setup. However,
incorrect matches can occur, leading to both false positives (FP) and false negatives (FN). In our m:1 schema matching
setup, a prediction is either correct (a true positive, TP) or incorrect. An incorrect match to the wrong target attribute results
in a false positive (FP) for the predicted target and a corresponding false negative (FN) for the true target. Consequently,
the number of FP and FN are always equal, as they reflect the same prediction errors. In this setup, precision, recall, and
accuracy@1 are equivalent because they all measure the proportion of correct matches (TPs) relative to the total predictions,
with incorrect matches impacting all metrics identically. This equivalence holds when correctness is measured against the
ground truth annotations from the benchmark datasets. Thus:

Recall =
Correct Matches
Total Predictions

= Accuracy@1.

F1-Score:
F1-Score = 2 · Precision · Recall

Precision + Recall
As both precision and recall are equal to accuracy@1 in this setup, the F1-score simplifies to:

F1-Score = Accuracy@1.

In summary, due to the constraints of our m:1 schema matching task and the argmax prediction mechanism, accuracy@1,
precision, recall, and F1-score are mathematically equivalent. We report accuracy@1 in the main results, but the correspond-
ing precision, recall, and F1-scores are identical and can be directly interpreted from the accuracy@1 values. We note this
equivalence does not hold for one-to-many mappings

21

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

A.9. Matchmaker algorithm

Below we provide a high-level overview algorithm of Matchmakers compositional language model program for schema
matching.

Algorithm 3 Matchmaker: Schema Matching with Self-Improving Compositional Language Model Programs

Require: Source schema Ss, Target schema St

Ensure: Schema matches M
0: Stage 1: Multi-Vector Document Creation
0: for each table T ∈ St do
0: Create document DT with attribute names and descriptions
0: Append table metadata to DT

0: Encode DT using ColBERT-v2 to obtain multi-vector representation VT

0: Add VT to vector database V
0: end for
0: Stage 2: Candidate Generation
0: for each source attribute qi ∈ Ss do
0: Encode qi using ColBERT-v2 to obtain query embedding Eqi

0: Retrieve top-k semantic candidates Cs from V using Eqi

0: Generate reasoning-based candidates CR using LLM lc(qi, St)
0: Refine candidate set C∗ ← lr(Cs ∪ CR, qi)
0: end for
0: Stage 3: Confidence Scoring
0: for each source attribute qi ∈ Ss do
0: Format candidate set C as multiple-choice question Qi

0: for each candidate cj ∈ C do
0: Compute confidence score sj ← ls(Qi, cj)
0: end for
0: mi ←cj∈Csj {Select match with highest confidence}
0: Add (qi,mi) to schema matches M
0: end for
0: Self-Improvement Optimization (Over all steps)
0: Generate evaluation set Deval from unlabeled schemas
0: for each example ei ∈ Deval do
0: (ŷi, tracei)←Matchmaker(ei) {Run Matchmaker to get output and traces}
0: si ← El(ei, ŷi) {Compute evaluation score using LLM El}
0: Add (ei, tracei, ŷi, si) to Ddemo

0: end for
0: Sort Ddemo by score si
0: Select top-n examples from Ddemo as synthetic in-context examples
0: Update Matchmaker components with selected in-context examples
0: return Final output: Schema matches M =0

22

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

B. Experimental details: Benchmarks & datasets
All experiments are run on a single Nvidia A4000 GPU with 20 GB of vram. We invoke GPT-4 via the Azure OpenAI API.

B.1. Benchmarks

B.1.1. MATCHMAKER

Matchmaker is a compositional language model program for schema matching made up of multiple component modules —
formulated in the context of information retrieval.

GPT-4 Hyper-parameters. The model version used as the LLM was GPT-4-1106, with the following settings: {’tempera-
ture’: 0.5, ’max_tokens’: 1024, ’top_p’: 1, ’frequency_penalty’: 0, ’presence_penalty’: 0, ’n’: 1, }

Embedding model and documents. We use Colbert-V2 (Santhanam et al., 2022) as the embedding model and follow
the document creation process as outlined in Sec. 4.1. We use the implementation of Colbert-v2 from RAGatouille
(https://github.com/bclavie/RAGatouille/).

Candidates. For both semantic and reasoning-based candidates, we set k=5.

Optimization. As described in the main paper, we generate synthetic in-context samples to address the unique challenges of
a lack of labeled data and no demonstrations. As described, to achieve this we follow a boostrapping process like in DSPy
(Khattab et al., 2023). For our experiments we select at maximum 4 synthetic in-context examples

Prompts: We show examples with the prompts for each component of Matchmaker in Appendix C.

B.1.2. REMATCH

In the main text we report the numbers directly from the ReMatch paper, as there is no open-source implementation.

How we selected the numbers to report: The ReMatch paper does an exploration of the number of documents retrieved.
Hence, we use the following two criteria.
(i) At least 1 document must be retrieved. i.e. the retrieval step cannot be skipped.

(ii) We then select the result that satisfies (i), with the highest accuracy@5.

Our implementation of ReMatch follows the original paper (Sheetrit et al., 2024). We use OpenAI Ada embeddings for the
embedding model and GPT-4 as the LLM.

We following the document creation procedure and use the prompt template as provided.

GPT-4 Hyper-parameters. The model version used for generation was GPT-4-1106, with the following settings from the
ReMatch paper: {seed=42, temperature=0.5, max_tokens=4096, top_p=0.9, frequency_penalty=0, presence_penalty=0}

B.1.3. JELLYFISH

Jellyfish (Zhang et al., 2023b) is a fine-tuned language model tailored for data preprocessing tasks including schema
matching. The 7B and 13B models are fine tuned upon the OpenOrca-Platypus2 model.

Implementation (7b): https://huggingface.co/NECOUDBFM/Jellyfish-7B

Implementation (13b): https://huggingface.co/NECOUDBFM/Jellyfish-13B

B.1.4. LLM-DP

LLM-DP (Narayan et al., 2022; Zhang et al., 2023a) refer to works which have used pre-trained LLMs like GPT-3.5 or
GPT-4 for data processing tasks like schema matching via prompting. Since the papers in the few-shot case use labeled
examples we do not use those — given its unrealistic in practice. Hence, for these baselines they operate in a zero shot
manner.

Implementation: https://github.com/HazyResearch/fm_data_tasks

23

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

B.1.5. SMAT

SMAT is a supervised learning approach which performs schema matching via an attention mechanism. Of course, the
model needs labeled data to train on. In our experiments, we assess two variants given that labeled training data for schema
matching is hard to access: (i) 20-80: 20% train and 80% test and (ii) 50-50: 50% train and 50% test.

We use the default hyper-parameters: {Learning Rate: 0.8, Batch Size: 64, Epochs: 30}

Implementation: https://github.com/JZCS2018/SMAT

B.2. Datasets

We outline the two real-world schema matching benchmarks used in this paper — MIMIC and Synthea. These datasets
mapping different clinical/healthcare schemas were chosen as they are the standard datasets used in schema matching
literature and consequently, used by prior works providing fair assessment. They are also considered the most reflective of
real-world schema matching complexity and challenges. We note that the scarcity of complex and challenging real-world
datasets, underscores the challenges in collecting and annotating real-world schema matching data. For instance, as noted in
Sec 1, annotating MIMIC-OMOP alone required 500 hours from two medical experts.

Table 5 provides a summary of the table properties.

Note there is no specific train-test sets used as in supervised learning. As we perform the schema matching task in a zero-shot
manner.

Table 5: Summary of the table properties of our two schema matching datasets.

Dataset Source Tables Target Tables
MIMIC-OMOP 26 14

SYNTHEA-OMOP 12 21

MIMIC Dataset: The dataset contains a schema mapping between the MIMIC-III electronic health record (Source schema)
(Johnson et al., 2016) and The Observational Medical Outcomes Partnership Common Data Model (OMOP schema) (Target
schema).

This dataset is currently the largest publicly available schema matching dataset (Sheetrit et al., 2024) and is the cloest to
a real-world schema matching use case, wherein a proprietary database created for a specific purpose (a source schema)
is mapped to a given industry standard (a target schema) for further uses. In this case the proprietary database schema is
MIMIC and the industry standard is the OMOP common data model.

Open-source data: https://github.com/meniData1/MIMIC_2_OMOP

Synthea Dataset: The Synthea dataset is part of the OMAP benchmark (Zhang et al., 2021) and is a partial mapping of the
Synthea (Walonoski et al., 2018) (Source Schema) which is a synthetic healthcare dataset of a Massachusetts health records
and attempts to map it to a subset of the OMOP CDM (Target Schema). The dataset has widely been used in previous
schema matching papers (Sheetrit et al., 2024; Narayan et al., 2022; Zhang et al., 2021) as a realistic and challenging
real-world schema matching benchmark.

Open-source data: https://github.com/JZCS2018/SMAT/tree/main/datasets/omap/

24

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

C. Examples using Matchmaker (with prompts)
C.1. Matchmaker prompt examples
We show two end-to-end schema matching examples with Matchmaker, where other methods fail. (1) Example 1: case with
No possible target schema match for the source schema query, (2) Example 2: challenging reasoning case, where there is a
match possible between source and target schema.
▶ In each component, we can show the "Optimized" In-context examples.

C.1.1. EXAMPLE 1.

Source schema query: admissions-marital_status(string): Table admissions details-the admissions table gives information
regarding a patient’s admission to the hospital., Attribute marital_status details -describe patient demographics.

Target scheme match: None possible.

Matchmaker: None of the above.
Figure 6: EXAMPLE 1: Candidate generation.

Candidate generation

You are an OMOP Schema expert. Your goal is to take the OMOP schema and based on the input, refine the schema to
include only 5 most likely matches to the input query.
—
Follow the following format.
Input Schema: Input OMOP schema values Input Query: input query Refined Schema: Five most likely matches to input
query. Include most likely matches to the input query. Respond with a single JSON object. JSON Schema: {"defs": {"Ex-
tractor": {"properties": {"related": {"description": "related matches", "title": "Related", "type": "string"}}, "required":
["related"], "title": "Extractor", "type": "object"}}, "properties": {"value": {"items": {"ref": "/defs/Extractor"}, "title":
"Value", "type": "array"}}, "required": ["value"], "title": "Output", "type": "object"}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ...
’procedure_occurrence-provider_id(bigint)’, ’visit_detail-visit_detail_source_value(varchar(50))’]
Input Query: procedureevents_mv-itemid
Refined Schema: "value": ["related": "procedure_occurrence-person_id(bigint)", "related": "procedure_occurrence-
visit_occurrence_id(bigint)", "related": "procedure_occurrence-procedure_date(date)", "related": "procedure_occurrence-
procedure_source_value(varchar(50))", "related": "procedure_occurrence-procedure_concept_id(integer)"]
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ...
’procedure_occurrence-provider_id(bigint)’, ’visit_detail-visit_detail_source_value(varchar(50))’]
Input Query: noteevents-text
Refined Schema: "value": ["related": "note-note_text(varchar(max))", "related": "note-note_title(varchar(250))",
"related": "note-note_source_value(varchar(50))", "related": "note-note_date(date)", "related": "note-
note_datetime(datetime)"]
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ...
’procedure_occurrence-provider_id(bigint)’, ’visit_detail-visit_detail_source_value(varchar(50))’]
Input Query: admissions-marital_status(string): Table admissions details-the admissions table gives information regarding
a patient’s admission to the hospital., Attribute marital_status details -describe patient demographics.
Refined Schema:
—————————————————————–
LLM Response
—————————————————————-
{"value": [{"related": "person-person_id(bigint)"}, {"related": "person-gender_source_value(varchar(50))"}, {"related":
"person-birth_datetime(datetime)"}, {"related": "person-death_datetime(datetime)"}, {"related": "visit_occurrence-
admitted_from_source_value(varchar(50))"}]}

25

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Figure 7: EXAMPLE 1: Candidate refinement.

Candidate refiner

You are an expert OMOP matching ranker. Your task is to take the OMOP candidates and based on the input, refine the
candidates to select the 5 most likely matches to the input query. Return ONLY the keys.
—
Follow the following format.
Input Schema: List of key: value pairs
Input Query: input query
Reasoning: Let’s think step by step in order to {produce the refined_string_list}. We ...
Refined String List: Five most likely matches to input query. Include maximum of the 5 most likely matches to the input
query. Return ONLY the keys
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central identity management for
all persons in the database. it contains records that uniquely identify each person or patient, and some demographic
information., Attribute person_id details -it is assumed that every person with a different unique identifier is in fact
a different person and should be treated independently.’, ... ’measurement-measurement_concept_id(integer): the
measurement_concept_id field is recommended for primary use in analyses, and must be used for network studies’]
Input Query: procedureevents_mv-itemid
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for a match to
’procedureevents_mv-itemid’, which seems to relate to a procedure event and its item identifier. The ’procedureevents_mv’
part suggests we’re looking at a procedure occurrence, and the ’itemid’ part suggests we’re looking for an identifier or id
field. Given that, we should look for keys in the ’procedure_occurrence’ table that represent identifiers.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-visit_occurrence_id(bigint)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-visit_detail_id(bigint)’,
’procedure_occurrence-provider_id (bigint)’
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central identity management for
all persons in the database. it contains records that uniquely identify each person or patient, and some demographic
information., Attribute person_id details -it is assumed that every person with a different unique identifier is in fact
a different person and should be treated independently.’, ... ’measurement-measurement_concept_id(integer): the
measurement_concept_id field is recommended for primary use in analyses, and must be used for network studies’]
Input Query: noteevents-text
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for matches to "noteevents-
text" in the input schema. The term "noteevents" matches with "note" in the input schema, and "text" matches with
"note_text". So, we should consider those keys that contain both "note" and "text".
Refined String List: [’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-
note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central identity management for
all persons in the database. it contains records that uniquely identify each person or patient, and some demographic
information., Attribute person_id details -it is assumed that every person with a different unique identifier is in fact
a different person and should be treated independently.’, ... ’measurement-measurement_concept_id(integer): the
measurement_concept_id field is recommended for primary use in analyses, and must be used for network studies’]
Input Query: admissions-marital_status(string): Table admissions details-the admissions table gives information regarding
a patient’s admission to the hospital., Attribute marital_status details -describe patient demographics.
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
"produce the refined string list. We are looking for a match to ’admissions-marital_status’, which seems to relate to a
hospital admission and the marital status of the patient. The ’admissions’ part suggests we’re looking at a visit occurrence
or visit detail, and the ’marital_status’ part suggests we’re looking for demographic information, which is usually found in
the ’person’ table. Given that, we should look for keys in the ’visit_occurrence’, ’visit_detail’, and ’person’ tables.String
List: ’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ’visit_detail-person_id(bigint)’,
’visit_detail-visit_occurrence_id(bigint",

26

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Figure 8: EXAMPLE 1: MCQ Formatter.

MCQ Formatter

You are an expert MCQ formatter. Your task is to take a list of schema values and convert them into a multiple choice
question format with (letter)Schema value, where the schema values should be key(description).
—
Follow the following format.
Input: input list of schema values Mcq: MCQ format of schema values e.g (A)Schema value, (B)Schema value. Do not
include additional options, only the schema values as options. where the schema values should be key(description). Add
a No Match option.
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-visit_occurrence_id(bigint)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-visit_detail_id(bigint)’,
’procedure_occurrence-provider_id (bigint)’"] Mcq: (A)’procedure_occurrence-person_id(bigint)’,
(B)’procedure_occurrence-visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id (bigint)’, (F)No Match
—
Input: ["[’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-note_source_value(varchar(50))’,
’note-note_text(varchar(max))’]"] Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
—
Input: ["’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ’visit_detail-
person_id(bigint)’, ’visit_detail-visit_occurrence_id(bigint"] Mcq:
—————————————————————–
LLM Response
—————————————————————-
"(A)’visit_occurrence-person_id(bigint)’, (B)’visit_occurrence-visit_occurrence_id(bigint)’, (C)’visit_detail-
person_id(bigint)’, (D)’visit_detail-visit_occurrence_id(bigint)’, (E)No Match",

Figure 9: EXAMPLE 1: Confidence scoring.

Confidence scoring

You are a schema matching expert. Your task is given the input and the MCQ format of the schema, predict the likelihood
or relation score from 0-100 of the input query being related to each option. Your scores will be calibrated. If there is no
good match score No Match as 100
—
Follow the following format.
Input Mcq: Input MCQ format of schema values
Input Query: input query
Relation: Relation score of input query being related to the option as value. Assess each independently including No
Match, returning a score from 0-100 for each. Return with key as MCQ letter e.g (A) and score=value as JSON
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-visit_occurrence_id(bigint)’,
(C)’procedure_occurrence-procedure_concept_id(integer)’, (D)’procedure_occurrence-visit_detail_id(bigint)’,
(E)’procedure_occurrence-provider_id (bigint)’, (F)No Match
Input Query: procedureevents_mv-itemid
Relation: {"(A)": 0, "(B)": 0, "(C)": 0, "(D)": 0, "(E)": 0, "(F)": 100}
—
Input Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-note_source_value(varchar(50)),
(D)note-note_text(varchar(max)), (E)No Match
Input Query: noteevents-text
Relation: {"A": 90, "B": 0, "C": 0, "D": 90, "E": 10}
—
Input Mcq: (A)’visit_occurrence-person_id(bigint)’, (B)’visit_occurrence-visit_occurrence_id(bigint)’, (C)’visit_detail-
person_id(bigint)’, (D)’visit_detail-visit_occurrence_id(bigint’, (E)No Match Input Query: admissions-
marital_status(string): Table admissions details-the admissions table gives information regarding a patient’s
admission to the hospital., Attribute marital_status details -describe patient demographics.
Relation:
—————————————————————–
LLM Response
—————————————————————-
"{(̈A):̈ 0, (̈B):̈ 0, (̈C):̈ 0, (̈D):̈ 0, (̈E):̈ 100}"

27

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

C.1.2. EXAMPLE 2

Source schema query: admissions-marital_status(string): Table admissions details-the admissions table gives information
regarding a patient’s admission to the hospital., Attribute marital_status details -describe patient demographics.

Target scheme match: ’procedure_occurrence- quantity

Matchmaker: ’procedure_occurrence- quantity

Figure 10: Candidate generation.

EXAMPLE 2: Candidate generation.

You are an OMOP Schema expert. Your goal is to take the OMOP schema and based on the input, refine the schema to
include only 5 most likely matches to the input query.
—
Follow the following format.
Input Schema: Input OMOP schema values Input Query: input query Refined Schema: Five most likely matches to
input query. Include maximum of the 10 most likely matches to the input query. Respond with a single JSON object.
JSON Schema: {"defs": {"Extractor": {"properties": {"related": {"description": "related matches", "title": "Related",
"type": "string"}}, "required": ["related"], "title": "Extractor", "type": "object"}}, "properties": {"value": {"items":
{"ref": "/defs/Extractor"}, "title": "Value", "type": "array"}}, "required": ["value"], "title": "Output", "type": "object"}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’,
’visit_detail-visit_detail_source_value(varchar(50))’] Input Query: procedureevents_mv-itemid Refined
Schema: {"value": [{"related": "procedure_occurrence-person_id(bigint)"}, {"related": "procedure_occurrence-
visit_occurrence_id(bigint)"}, {"related": "procedure_occurrence-procedure_date(date)"}, {"related":
"procedure_occurrence-procedure_source_value(varchar(50))"}, {"related": "procedure_occurrence-
procedure_concept_id(integer)"}]}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’] Input Query: noteevents-text Refined Schema: {"value": [{"re-
lated": "note-note_text(varchar(max))"}, {"related": "note-note_title(varchar(250))"}, {"related": "note-
note_source_value(varchar(50))"}, {"related": "note-note_date(date)"}, {"related": "note-note_datetime(datetime)"}]}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’] Input Query: procedures_icd-seq_num(integer): Table procedures_icd details-
contains icd procedures for patients, most notably icd-9 procedures, Attribute seq_num details -provides the order in
which the procedures were performed Refined Schema:
"{v̈alue:̈ [{r̈elated:̈ p̈rocedure_occurrence-person_id(bigint)}̈, {r̈elated:̈ p̈rocedure_occurrence-
visit_occurrence_id(bigint)}̈, {r̈elated:̈ p̈rocedure_occurrence-procedure_date(date)}̈, {r̈elated:̈ p̈rocedure_occurrence-
procedure_concept_id(integer)}̈, {r̈elated:̈ p̈rocedure_occurrence-quantity(integer)}̈]}"

28

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Figure 11: EXAMPLE 2: Candidate Refinement.

Candidate refinement

You are an expert OMOP matching ranker. Your task is to take the OMOP candidates and based on the input, refine the
candidates to select the 5 most likely matches to the input query. Return ONLY the keys.
—
Follow the following format.
Input Schema: List of key: value pairs
Input Query: input query
Reasoning: Let’s think step by step in order to {produce the refined_string_list}. We ...
Refined String List: Five most likely matches to input query. Include maximum of the 5 most likely matches to the input
query. Return ONLY the keys
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this table contains records
of activities or processes ordered by, or carried out by, a healthcare provider on the patient with a diagnostic or therapeutic
purpose., Attribute person_id details -the person_id of the person for whom the procedure is recorded. this may be a
system generated code.’ ’visit_detail-care_site_id(bigint): this field provides information about the care site where the
visit detail took place’]
Input Query: procedureevents_mv-itemid
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for a match to
’procedureevents_mv-itemid’, which seems to relate to a procedure event and its item identifier. The ’procedureevents_mv’
part suggests we’re looking at a procedure occurrence, and the ’itemid’ part suggests we’re looking for an identifier or id
field. Given that, we should look for keys in the ’procedure_occurrence’ table that represent identifiers.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-visit_occurrence_id(bigint)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-visit_detail_id(bigint)’,
’procedure_occurrence-provider_id (bigint)’
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this table contains records
of activities or processes ordered by, or carried out by, a healthcare provider on the patient with a diagnostic or therapeutic
purpose., Attribute person_id details -the person_id of the person for whom the procedure is recorded. this may be a
system generated code.’ ’visit_detail-care_site_id(bigint): this field provides information about the care site where the
visit detail took place’]
Input Query: noteevents-text
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for matches to "noteevents-
text" in the input schema. The term "noteevents" matches with "note" in the input schema, and "text" matches with
"note_text". So, we should consider those keys that contain both "note" and "text".
Refined String List: [’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-
note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this table contains records
of activities or processes ordered by, or carried out by, a healthcare provider on the patient with a diagnostic or therapeutic
purpose., Attribute person_id details -the person_id of the person for whom the procedure is recorded. this may be a
system generated code.’ ’visit_detail-care_site_id(bigint): this field provides information about the care site where the
visit detail took place’]
Input Query: procedures_icd-seq_num(integer): Table procedures_icd details-contains icd procedures for patients, most
notably icd-9 procedures, Attribute seq_num details -provides the order in which the procedures were performed
Reasoning: Let’s think step by step in order to
"produce the refined string list. We are looking for a match to ’procedures_icd-seq_num’, which seems to relate to
a procedure occurrence and its sequence number. The ’procedures_icd’ part suggests we’re looking at a procedure
occurrence, and the ’seq_num’ part suggests we’re looking for a sequential number or order field. Given that, we should
look for keys in the ’procedure_occurrence’ table that represent order or sequence.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-visit_occurrence_id(bigint)’,
’procedure_occurrence-procedure_date(date)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-quantity(integer)’"

29

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Figure 12: EXAMPLE 2: MCQ Formatter.

MCQ Formatter

You are an expert MCQ formatter. Your task is to take a list of schema values and convert them into a multiple choice
question format with (letter)Schema value, where the schema values should be key(description).
—
Follow the following format.
Input: input list of schema values Mcq: MCQ format of schema values e.g (A)Schema value, (B)Schema value. Do not
include additional options, only the schema values as options. where the schema values should be key(description). Add
a No Match option.
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-visit_occurrence_id(bigint)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-visit_detail_id(bigint)’,
’procedure_occurrence-provider_id (bigint)’"] Mcq: (A)’procedure_occurrence-person_id(bigint)’,
(B)’procedure_occurrence-visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id (bigint)’, (F)No Match
—
Input: ["[’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-note_source_value(varchar(50))’,
’note-note_text(varchar(max))’]"] Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-visit_occurrence_id(bigint)’,
’procedure_occurrence-procedure_date(date)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-quantity(integer)’"] Mcq:
"(A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-visit_occurrence_id(bigint)’,
(C)’procedure_occurrence-procedure_date(date)’, (D)’procedure_occurrence-procedure_concept_id(integer)’,
(E)’procedure_occurrence-quantity(integer)’, (F)No Match",

Figure 13: EXAMPLE 2: Confidence scoring.

Confidence scoring

You are a schema matching expert. Your task is given the input and the MCQ format of the schema, predict the likelihood
or relation score from 0-100 of the input query being related to each option. Your scores will be calibrated. If there is no
good match score No Match as 100
—
Follow the following format.
Input Mcq: Input MCQ format of schema values Input Query: input query Relation: Relation score of input query being
related to the option as value. Assess each independently including No Match, returning a score from 0-100 for each.
Return with key as MCQ letter e.g (A) and score=value as JSON
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-visit_occurrence_id(bigint)’,
(C)’procedure_occurrence-procedure_concept_id(integer)’, (D)’procedure_occurrence-visit_detail_id(bigint)’,
(E)’procedure_occurrence-provider_id (bigint)’, (F)No Match Input Query: procedureevents_mv-itemid Relation: {"(A)":
0, "(B)": 0, "(C)": 0, "(D)": 0, "(E)": 0, "(F)": 100}
—
Input Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-note_source_value(varchar(50)),
(D)note-note_text(varchar(max)), (E)No Match Input Query: noteevents-text Relation: {"A": 90, "B": 0, "C": 0, "D": 90,
"E": 10}
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-visit_occurrence_id(bigint)’,
(C)’procedure_occurrence-procedure_date(date)’, (D)’procedure_occurrence-procedure_concept_id(integer)’,
(E)’procedure_occurrence-quantity(integer)’, (F)No Match Input Query: procedures_icd-seq_num(integer): Table
procedures_icd details-contains icd procedures for patients, most notably icd-9 procedures, Attribute seq_num details
-provides the order in which the procedures were performed Relation:
"{(̈A):̈ 0, (̈B):̈ 0, (̈C):̈ 0, (̈D):̈ 0, (̈E):̈ 90, (̈F):̈ 10}",

30

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

C.2. LLM Evaluator

We provide examples of the LLM evaluator, showing demonstrations achieving high and low scores.

LLM Evaluator Example: High Score

You are a schema matching expert, your task is to rate if any of the suggested matches are potential good matches for the
query. Be lenient and rate a match as good (4 or 5) if it is relevant to the query. Rate the matches from 1-5. If none of the
matches are good, rate 0.
—
Follow the following format.
Query: The query.
Answers: possible matches
Reasoning: Let’s think step by step in order to {produce the rating}. We ...
Rating: Rate if any of the suggested matches are good for the query from 1-5. Only output the rating and nothing else.
—
Query: noteevents-chartdate
Answers: ["’note-note_date(date)’, ’note-note_datetime(datetime)’,
’note-visit_occurrence_id(bigint)’, ’note-provider_id(bigint)’, ’note-person_id(bigint)’"]
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
produce the rating. We can see that the query is looking for a match related to the date of a note event in a chart. The first
two suggested matches, ’note-note_date(date)’ and ’note-note_datetime(datetime)’, are both related to dates and notes,
making them potentially good matches for the query. The other three suggestions are not directly related to dates or note
events, so they are not as good matches.
Rating: 4

Figure 14: LLM evaluator example, rated with a high score.

31

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

LLM Evaluator Example: Low Score

You are a schema matching expert, your task is to rate if any of the suggested matches are potential good matches for the
query. Be lenient and rate a match as good (4 or 5) if it is relevant to the query. Rate the matches from 1-5. If none of the
matches are good, rate 0.
—
Follow the following format.
Query: The query.
Answers: possible matches
Reasoning: Let’s think step by step in order to {produce the rating}. We ...
Rating: Rate if any of the suggested matches are good for the query from 1-5. Only output the rating and nothing else.
—
Query: cptevents-subsectionheader
Answers: [’visit_occurrence-visit_type_concept_id(int)’,
’visit_detail-visit_detail_concept_id(int)’, ’procedure_occurrence-procedure_concept_id(int)’, ’procedure_occurrence-
visit_detail_id(int)’, ’condition_occurrence-visit_occurrence_id(int)’]
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
"produce the rating. We can see that the query is looking for a match related to ’cptevents-subsectionheader’. However,
none of the suggested matches seem to directly relate to this query. They all refer to different concepts such as
’visit_occurrence’, ’visit_detail’, ’procedure_occurrence’, and ’condition_occurrence’. Therefore, none of the matches
seem to be a good fit for the query.
Rating: 0

Figure 15: LLM evaluator example, rated with a low score.

32

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

D. Additional experiments
D.1. Source of gain ablation: Why does it work?

Matchmaker’s performance relies on the generated candidate matches. Given its strong performance compared to baselines,
we investigate which candidate generation approach contributes most to Matchmaker’s success. To disentangle the role
of each candidate generation method, we assess Matchmaker with (1) reasoning-based candidates from the LLM only
(reasoning_only) and (2) semantic candidates via retrieval only (semantic_only).

The results in Table 6 show that reasoning-based candidates outperform semantic retrieval-based candidates. This finding
suggests that LLM reasoning over the database hierarchy and data types produces better candidates than semantic matches
that do not consider hierarchical relationships. In some cases (e.g., Synthea acc@1), the inclusion of retrieval-based
candidates harms performance. However, the overall results indicate that Matchmaker benefits from both candidate
generation approaches, with reasoning-based candidates providing greater value. These results highlights the value of
diverse candidate generation mechanisms to enhance Matchmaker’s overall performance.

Table 6: Understanding the impact of different candidate generation approaches on Matchmaker.

Matchmaker reasoning_only semantic_only

M
IM

IC acc@1 62.20 ± 2.50 61.60 ± 1.50 60.20 ± 2.20
acc@3 68.80 ± 2.00 68.70 ± 1.60 64.50 ± 2.80
acc@5 71.10 ± 2.00 70.40 ± 1.00 67.10 ± 3.10

Sy
nt

he
a acc@1 70.20 ± 1.70 73.00 ± 1.90 63.10 ± 0.70

acc@3 78.60 ± 2.50 78.50 ± 1.50 77.40 ± 0.90
acc@5 80.90 ± 1.10 79.40 ± 0.30 80.20 ± 0.40

D.2. Number of LLM calls

Goal. To compare the number of LLM calls required by Matchmaker and other baseline methods for schema matching on
the MIMIC-OMOP and SYNTHEA-OMOP datasets.

Experiment. We count the number of LLM calls made by each method during the schema matching process on both the
MIMIC-OMOP and SYNTHEA-OMOP datasets. For methods that do not rely on LLMs (e.g., SMAT), we consider the
number of forward passes through the neural network as equivalent to an LLM call for comparison purposes.

Results. Table 7 presents the number of LLM calls required by each method on the two datasets.

Table 7: Number of LLM calls

Method MIMIC-OMOP SYNTHEA-OMOP
Matchmaker 1340 890
ReMatch 268 178
Jellyfish-13b 24771 29637
Jellyfish-7b 24771 29637
LLM-DP 24771 29637
SMAT 24771 29637

Discussion. The results in Table 7 highlight the efficiency of Matchmaker and ReMatch in terms of the number of LLM
calls required for schema matching.

Both Matchmaker and ReMatch formulate schema matching as an information retrieval problem, which significantly reduces
the search space compared to the binary classification formulation used by Jellyfish-13b, Jellyfish-7b, LLM-DP, and SMAT.

The high number of LLM calls required by Jellyfish-13b, Jellyfish-7b, LLM-DP, and SMAT can be attributed to their
formulation of schema matching as a binary classification problem over the Cartesian product of source and target attributes.
In this formulation, the LLM is prompted to provide a label of Yes/No for each pair of source-target attributes, resulting
in a large number of LLM calls that scales (O(n2)). Consequently, these methods are computationally expensive and less
scalable compared to Matchmaker and ReMatch, which employ a more efficient approach.

The fewer number of LLM calls used by Matchmaker and ReMatch has practical implications in terms of computational cost
and runtime efficiency. By reducing the number of LLM calls, these methods can perform schema matching more quickly
and with lower computational overhead compared to methods that rely on a large number of calls. This is particularly

33

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

important when dealing with large-scale schemas or when schema matching needs to be performed frequently in real-world
applications.

D.3. Matchmaker with other LLMs

Goal. To understand the performance of Matchmaker when using a less powerful LLM backbone compared to GPT-4, and
contrast it with the ReMatch baseline using GPT-4.

Experiment. We evaluate the performance of Matchmaker using GPT-3.5 as the backbone LLM for all components, instead
of GPT-4 which was used in the main experiments. We compare this to the performance of Matchmaker with GPT-4 and
ReMatch with GPT-4. All other aspects of the setup remain the same as in the main text.

Results. Table 8 shows the schema matching accuracy@k for the different methods. We observe that Matchmaker with GPT-
3.5 performs worse than Matchmaker with GPT-4, which is expected given GPT-3.5 is a less powerful LLM. Interestingly,
Matchmaker with GPT-3.5 achieves comparable performance to ReMatch with GPT-4, despite GPT-3.5 being a much weaker
LLM than GPT-4. On MIMIC, Matchmaker with GPT-3.5 slightly outperforms ReMatch with GPT-4 for accuracy@1 and is
competitive at higher k. On Synthea, performance is similar for accuracy@1 but Matchmaker with GPT-3.5 outperforms
ReMatch with GPT-4 for accuracy@3 and accuracy@5.

Table 8: Comparison of schema matching performance of different baselines.

Matchmaker (GPT-4) Matchmaker (GPT-3.5) ReMatch (GPT-4)

M
IM

IC acc@1 62.20 ± 2.40 ↑ 48.30± 2.80 ↑ 42.50
acc@3 68.80 ± 2.00 62.00 ± 4.20 63.80
acc@5 71.10 ± 2.00 70.00 ± 4.20 72.90

Sy
nt

he
a acc@1 70.20 ± 1.70 47.80 ± 3.20 50.50

acc@3 78.60 ± 2.50 63.30 ± 4.30 ↑ 58.10
acc@5 80.90 ± 1.10 77.10 ± 0.70 ↑ 74.30

Discussion. These results demonstrate that the Matchmaker approach of using a compositional LLM program is quite robust
and can provide good schema matching performance even with weaker LLM backbones. The fact that Matchmaker with
GPT-3.5 is competitive with ReMatch using GPT-4 highlights the strength of the multi-stage Matchmaker approach over
ReMatch’s single-stage LLM usage. However, using a more powerful LLM like GPT-4 still provides significant gains,
underlining the importance of using an LLM with powerful reasoning capabilities for this complex task.

D.4. Further performance results: ReMatch reimplementation

Goal. To compare the performance of Matchmaker against the ReMatch baseline, using both the original reported results
from the ReMatch paper and the re-implementation of ReMatch.

Experiment. In the main paper, we report the performance of the ReMatch baseline using the results directly from the paper,
as code is not available for ReMatch. However, for completeness, we also re-implement the ReMatch approach based on the
details provided in the ReMatch paper.

Our re-implementation uses the OpenAI Ada-002 text embeddings for the retrieval step, following the same procedure as
ReMatch for chunking and creating documents. We then use the same prompts as described in the ReMatch paper for the
schema matching task. We compare the performance of our re-implemented ReMatch with the original reported results and
Matchmaker.

Results. Table 9 presents the schema matching accuracy@k for Matchmaker, the original ReMatch results, and our
re-implemented ReMatch. We observe that Matchmaker consistently outperforms both the original ReMatch results and our
re-implementation across all metrics and datasets. We also find the re-implemented ReMatch achieves lower performance
compared to the original reported results.

Table 9: Comparison of schema matching performance of different baselines.

Matchmaker ReMatch (Original) ReMatch (Reimplemented)

M
IM

IC acc@1 62.20 ± 2.40 42.50 41.99 ± 0.61
acc@3 68.80 ± 2.00 63.80 46.63 ± 1.99
acc@5 71.10 ± 2.00 72.90 46.63 ± 1.99

Sy
nt

he
a acc@1 70.20 ± 1.70 50.50 29.10 ± 0.80

acc@3 78.60 ± 2.50 58.10 32.71 ± 0.35
acc@5 80.90 ± 1.10 74.30 33.46 ± 0.63

34

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

Discussion. These results further confirm the superiority of Matchmaker over the ReMatch baseline, even when considering
our re-implementation of the method. The lower performance of the re-implemented ReMatch compared to the original
reported results could be due to differences in implementation details, such as the choice of text embeddings or variations
not accounted for. However, it is important to note that even with these differences, Matchmaker consistently outperforms
ReMatch (original) by a significant margin. The fact that Matchmaker achieves strong performance gains over both the
original ReMatch and our re-implementation underscores the value of the novel techniques introduced in Matchmaker, such
as the multi-stage language model program, the use of diverse candidate generators and the self-improvement mechanism
through synthetic in-context examples.

D.5. Improving performance: Use of Existing Mappings to remedy errors

Goal. To investigate the potential performance improvement in Matchmaker when leveraging readily available mappings to
rectify errors between directly mapped attributes.

Experiment. In schema matching, certain attributes like source_value and concept_id have a direct mapping (e.g. in
OMOP). If Matchmaker incorrectly maps the source attribute to the wrong target attribute (e.g., mapping to source_value
instead of concept_id or vice versa), these errors can be easily rectified by leveraging the existing relationship.

To simulate this error correction, we implement a post-processing step where we adjust Matchmaker’s predictions if the
predicted target attribute has a direct mapping to the true target attribute. We apply this correction for all values of k and
measure the resulting performance improvement.

Results. Figure 16 shows the accuracy gains across different values of k when applying the mapping correction. We observe
consistent performance improvements across all k values. These results indicate that leveraging knowledge can indeed help
rectify some of the errors made by Matchmaker.

1 2 3 4 5

K

0.60

0.62

0.64

0.66

0.68

0.70

0.72

A
cc

u
ra

cy

Matchmaker

w/ Schema domain knowledge

Figure 16: Performance improvement in Matchmaker when leveraging readily available mappings to correct errors between
directly mapped attributes like source_value and concept_id.

Discussion. While the results demonstrate the potential benefit of using existing mappings for error correction, it is important
to note that the performance gains are relatively modest compared to other strategies like human-in-the-loop deferral based
on Matchmaker’s confidence scores (as shown in the main text).

Moreover, the mapping correction relies on the availability of direct mappings between attributes, which may not always exist
in practice. Therefore, while this approach can serve as a useful post-processing step, it should be seen as a complementary
technique to be used alongside other strategies like human-in-the-loop for improving schema matching performance.

35

Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching

D.6. Comparison of Matchmaker on ontology matching tasks

While Schema matching and ontology matching are seemingly related, in reality, they are completely different tasks.
Specifically, schema and ontology matching fundamentally differ in their task and available information. Ontology matching
leverages richer contextual info, including properties, axioms, rules, concept hierarchies and additional annotations. In
contrast, schemas are sparser, with only attribute names, data types, descriptions and links.

Despite the difference for completeness, we evaluate recent LLM ontology match methods using GPT-4 backbones to mirror
Matchmaker namely: OLaLa (Hertling & Paulheim, 2023) and LLMs4OM (Giglou et al., 2024).

As shown in Table 10, Matchmaker outperforms these methods on both datasets.

Table 10: Accuracy@1: Matchmaker vs two LLM-based Ontology matching methods.

Method MIMIC Synthea
Olala 33.58± 0.47 31.53± 3.37
LLMs4OM 44.78± 0.41 64.50± 2.02
Matchmaker (Ours) 62.20± 2.40 70.20 ±1.70

D.7. Detailed error analysis

Goal. We wish to understand different dimensions of Matchmaker’s errors.

Discussion. We analyze the errors made by Matchmaker and find two categories of errors.

• 17% of Matchmaker’s errors occur when attempting to find matches for source attributes that have no corresponding
target attribute.

• The remaining 83% involve selecting incorrect but semantically related attributes. For these incorrect matches, we
find a mean semantic similarity of 0.862 between the erroneously predicted attribute and the true target attribute. This
confirms that Matchmaker typically selects attributes semantically close to the correct match rather than completely
unrelated attributes.

These results further provide an understanding of Matchmaker’s errors, as well as showing how they can be addressed both
via uncertainty deferral and remediation, being easy to identify and correct.

D.8. Ranking ablation

Goal. Assess the importance of ranking to Matchmakers performance.

Results. Below we ablate the ranking step. The results shown highlight the importance of the re-ranking step towards
achieving better accuracy@1.

Table 11: Comparison of Matchmaker models with and without ranking on MIMIC and Synthea datasets.

Matchmaker (with ranking) Matchmaker (No ranking)
MIMIC Acc@1 62.20 57.00

Acc@3 68.80 66.90
Acc@5 71.10 71.10

Synthea Acc@1 70.20 62.40
Acc@3 78.60 77.20
Acc@5 80.90 80.90

36

	Introduction
	Related Work
	Schema Matching
	Preliminaries.
	Schema matching as information retrieval.

	Matchmaker
	Multi-vector documents (Step 1)
	Diverse candidate generation (Step 2)
	Confidence scoring (Step 3)
	Self-improvement: Zero-shot optimization w/ synthetic in-context examples

	Experiments
	Schema Matching performance: Does it work?
	Matchmaker self-improvement analysis
	Matchmaker in practice: Human-in-the-loop deferral and remedial action.
	Additional datasets beyond healthcare

	Discussion
	 Appendix - Bootstrapping Self-Improvement of Language Model Programs for Zero-Shot Schema Matching
	Matchmaker additional details
	Matchmaker compared with ReMatch
	Schema matching challenges.
	Complexity of the MIMIC-OMOP task
	Further details on schema matching formalism
	Detailed explanation of self-improvement
	Extended related work
	Matchmaker within the context of LLM table reasoning.
	Metrics: accuracy, precision, recall, F1-Score
	Matchmaker algorithm

	Experimental details: Benchmarks & datasets
	Benchmarks
	Matchmaker
	ReMatch
	Jellyfish
	LLM-DP
	SMAT

	Datasets

	Examples using Matchmaker (with prompts)
	Matchmaker prompt examples
	Example 1.
	Example 2

	LLM Evaluator

	Additional experiments
	Source of gain ablation: Why does it work?
	Number of LLM calls
	Matchmaker with other LLMs
	Further performance results: ReMatch reimplementation
	Improving performance: Use of Existing Mappings to remedy errors
	Comparison of Matchmaker on ontology matching tasks
	Detailed error analysis
	Ranking ablation

