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Abstract
Oja’s algorithm for Streaming Principal Component Analysis (PCA) for n data-
points in a d dimensional space achieves the same sin-squared error O(reff/n) as
the offline algorithm in O(d) space and O(nd) time and a single pass through
the datapoints. Here reff is the effective rank (ratio of the trace and the principal
eigenvalue of the population covariance matrix Σ). Under this computational
budget, we consider the problem of sparse PCA, where the principal eigenvector
of Σ is s-sparse, and reff can be large. In this setting, to our knowledge, there are
no known single-pass algorithms that achieve the minimax error bound in O(d)
space and O(nd) time without either requiring strong initialization conditions or
assuming further structure (e.g., spiked) of the covariance matrix. We show that
a simple single-pass procedure that thresholds the output of Oja’s algorithm (the
Oja vector) can achieve the minimax error bound under some regularity conditions
in O(d) space and O(nd) time. We present a nontrivial and novel analysis of the
entries of the unnormalized Oja vector, which involves the projection of a product
of independent random matrices on a random initial vector. This is completely
different from previous analyses of Oja’s algorithm and matrix products, which
have been done when the reff is bounded.

1 Introduction
Principal Component Analysis (PCA) [Pea01, Jol03] is a classical statistical method for data analysis
and visualization. Given a dataset {Xi}i=1,...,n where Xi ∈ Rd, sampled independently from a
distribution with mean zero and covariance matrix Σ, the goal in PCA is to find the directions that
explain most of the variance in the data. It is well known [Wed72, JJK+16, Ver10] that the leading
eigenvector, v̂, of the empirical covariance matrix, Σ̂, provides an optimal error rate under suitable
tail conditions on the datapoints.

Computing v̂ can be inefficient for large sample sizes, n, and dimensions d. Oja’s algorithm [Oja82a]
offers a comparable error rate in O(nd) time and O(d) space. Going back to the Canadian
psychologist Donald Hebb’s research [Heb49], it has attracted a lot of attention in theoretical Statistics
and Computer Science communities [JJK+16, AZL17, CYWZ18, YHW18, HW19a, HNW21, MP22,
LSW21, Mon22, HNWW21]. In these works, the error metric is the sin2 error between the estimated
vector and the principal eigenvector of Σ (true population eigenvector v1). Notably, [JJK+16],
[AZL17], and [HNW21] establish that Oja’s algorithm achieves the same O(reff/n) sin-squared error
as the offline algorithm that estimates the top eigenvector of the empirical covariance matrix.

However, when the effective rank, reff , of Σ (defined as Tr(Σ)/∥Σ∥) is large, PCA has been shown
to be inconsistent [Pau07, JM09, JL09]. This setting comes up in sparse PCA problems, when v1 is
s-sparse (i.e. has only s nonzero entries). Let ∥.∥0 denote the l0 norm, i.e, the count of non-zero
vector entries. Then, sparse PCA can be formally framed as the optimization problem:

v̂sparse := arg max
w∈Rd

∑
i

(
XT

i w
)2

, under constraints ∥w∥2 = 1, ∥w∥0 = s (1)
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(a) (b)
Figure 1: Comparison of Sparse PCA algorithms for identifying leading eigenvector, v1, operating in O (d)
space and O (nd) time with population covariance matrix specified in [QLR19], Section 5.1. Figure (a) plots
[JL09] (Purple), [YX15] (Black), [WL16] (Orange) and our proposed Algorithm 2 (Blue) for n = d = 1000,
with error bars over 100 random runs. Figure (b) shows an image of the covariance matrix with n = d = 100.

In general, without further assumptions, Problem (1) is non-convex and NP-hard [MWA06], as it
reduces to subset selection in ordinary least squares regression.

[VL12, CMW13] showed a O
(
σ2

∗s log (d) /n
)

minimax lower bound for the sin2 error 1− (vT
1 v̂)2,

where σ2
∗ := λ1λ2

(λ1−λ2)2 . Here λ1 > λ2 ≥ . . . λd are the eigenvalues of Σ. Extensive research has
been conducted on optimal offline algorithms for sparse PCA, some of which are convex relaxation-
based [BR13, dBEG08, VCLR13, STL07, ZX18, DMMW17, AW08, Ma13, CMW13]. Others
involve iterated thresholding [JNRS10, Ma13, YZ13], where a truncated power-method is analyzed
along to achieve sparsity. For brevity, we only describe algorithms that fit within the computation
budget in consideration, i.e., O (nd) time, O (d) space. For a detailed comparison, see Table 1 and
Appendix Section A.1.

Support recovery algorithms in O(nd) time, O(d) space: Consider the spiked covariance model

Σ =
∑
i∈[r]

νiviv
T
i + Id (2)

where Id is the identity matrix, νi > 0, and vi are sparse. For the general case, we only assume v1
is s-sparse. When r = 1, Σii are the largest for i ∈ S. Diagonal thresholding essentially estimates
Σii within our computational budget and uses thresholding to recover the support [JL09, AW08].
However, as we will show, without knowing the support sizes in each eigenvector and the number of
spikes, this algorithm can fail, even in a spiked setting with r > 1. Also, for r = 1, [BPP18] show
how to adapt a black-box algorithm for sparse linear regression for support recovery.

Sparse PCA algorithms in O (nd) time, O (d) space: The streaming sparse PCA algorithms
proposed by [YX15] and [WL16] require an initialization u0 with a sufficiently large |uT

0 v1|= Ω (1)
(local convergence), which can be hard to find for large d and a general Σ. See Table 1 for details.

In light of this lack of O(nd) time, O(d) space globally convergent algorithms for sparse PCA, we
ask the following question in this work:

Goal: Is there a single-pass algorithm that, under a general Σ with s-sparse v1, outputs v̂ achieving
the minimax sin2 error (1− ⟨v̂, v1⟩2) with O(d) space, O(nd) time, without a strong initialization?

We provide a surprisingly simple answer to the above question:
Theorem 1.1 (Informal). For a suitable range of the effective rank reff and the ratio λ1/λ2, there
exists a single pass algorithmA that recovers the support of v1 using Oja’s algorithm, operates under
O(d) space, O(nd) time and returns v̂ with the minimax optimal sin2 error, O

(
σ2

∗s log (d) /n
)

, for
a general covariance matrix.
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Our contributions:
1.Support recovery: We show, for a general Σ with the only constraint of a s-sparse v0 that the
top k entries of the Oja vector in magnitude include the true support with high probability. The Oja
vector is initialized by a random unit vector.
2.Sparse PCA: We use the recovered support to achieve a minimax optimal sparse PCA algorithm.
3.Entrywise analysis: Our analysis is nontrivial and novel because it deviates from all existing
analyses of matrix products and streaming PCA [HNWTW20, HW19b, LSW21, Lia23] which require
∥Xi∥2/λ1 or reff to be bounded to obtain the O(1/n) sin2 error rate.

Paper(s) λ1/λ2 Σ Global Space Time sin2 error
conv.?

Johnstone and Lu [JL09] 1 + o (1) Spiked Y O (d) O (nd) o (1)

SDP-based [VCLR13] 1 + o (1) General Y O
(
d2) O (nω + dω) O

(
s2 log (d)

n

)
[dBEG08]
Shen et al. [SSM13] Ω (dϵ) , ϵ > 0 General Y O(d2) O(nd2) o(1)

Ma, Cai et al. [Ma13] 1 + Ω (1) Spiked Y O
(
d2) O

(
nd2) O

(
s log (d)

n

)
[CMW13]

Yuan and Zhang [YZ13] 1 + Ω (1) General N O
(
d2) O

(
nd2) O

(
s log (d)

n

)
Yang and Xu [YX15] 1 + Ω (1) Spiked N O (d) O (nd) O

(
s log (d)

n

)
Wang and Lu [WL16] 1 + Ω (1) Spiked N O (d) O (nd) o (1)
Oja’s Algorithm [JJK+16] 1 + o (1) General Y O (d) O (nd) O

(reff
n

)
Deshp et al. [DM+16] 1 + o (1) Spiked Y O

(
d2) O

(
nd2) O

(
s2 log (d)

n

)
Qiu et al.(Cor. 2) [QLR19] 1 + o (1) General Y O

(
d2) Ω

(
nd2) 1 O

(
s2 log (d)

n

)
Qiu et al. (Th. 4) [QLR19] 1 + o (1) General Y O

(
d2) O

(
nd2) O

(
d2 log (d)√

n

)
Gataric et al. (Th. 2) 1 + o (1)2 Spiked Y O

(
d2) O

(
nd2)3 O

(
s log (d)

n

)
[GWS20]

Our work 1 + Ω (1) General Y O (d) O (nd) O

(
s log (d)

n

)
Table 1: Comparison of sparse PCA algorithms for estimating v1, based on various parameters. We
require Assumptions 1 and 2. The other algorithms may be valid under weaker assumptions. For ease
of comparison, we fix λ1

λ2
= 1 + Ω (1) and reff log(n)

n = O (1) for our results in this table.

In Figure 1b, for a simple spiked model with r = 2, we show the relative performances of all O(nd)
time and O(d) algorithms in Table 1. Our thresholded and renormalized Oja algorithm outperforms
all other algorithms operating under the same computational budget. The diagonal thresholding
algorithm ( [JL09]), which is successful for the special case of r = 1, has a large error in the general
case.

We now present an outline of our paper. We start by describing the problem setup and assumptions
in Section 2. Then we present our main results in Section 3, which includes our results for Support

1The authors do not state the runtime explicitly. The algorithm, as stated, requires at least Ω(nd2)
computation.

2The authors require λ1/λ2 ≥ 1 + O(
√

s3 log d/n)
3When there are m spikes, Thm 2 of [GWS20] requires A = Ω( ν2

m

ν2
1

d2 log(d)). When ν1 and νm are the
same order, storing the empirical covariance matrix is computationally more efficient.
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Recovery (Section 3.1), Sparse PCA (Section 3.3) and Entrywise Deviation bounds (Section 3.5) for
the Oja vector. Finally, we provide a sketch of the proof along with the techniques used in Section 4.

2 Problem setup and preliminaries

Notation. We use E [.] to denote expectation and [n] for {1, . . . , n}. The matrix multiplication
constant is denoted as ω ≈ 2.372. X ⊥⊥ Y represents statistical independence between random
variables X and Y . The ℓ2 norm for vectors and operator norm for matrices is ∥.∥2, the count
of nonzero vector elements (ℓ0 norm) is ∥.∥0, and the Frobenius norm for matrices is ∥.∥F . For
v ∈ Rd, R ⊆ [d], ⌊v⌋R ∈ Rd is the truncated vector with entries outside R set to 0. Id ∈ Rd×d

is the identity matrix, with ith column ei ∈ Rd×1. For any set T ⊆ [d], IT ∈ Rd×d is defined as
IT (i, j) = 1(i, j ∈ T )1(i = j), where 1(.) is the indicator random variable. ⟨A, B⟩ := Tr(AT B)
represents the matrix inner product. Õ and Ω̃ represent order notations with logarithmic factors. We
start by defining subgaussianity for multivariate distributions.

Definition 2.1. A random mean-zero vector X ∈ Rd with covariance matrix Σ is a σ−subgaussian
random vector (σ > 0) if for all vectors v ∈ Rd, we have E

[
exp

(
vT X

)]
≤ exp

(
σ2vT Σv/2

)
.

Equivalently, ∃ L > 0, such that ∀p ≥ 2,
(
E
[
|vT X|p

]) 1
p ≤ Lσ

√
p
√

vT Σv. 4

This definition of subgaussianity has been used in contemporary works on PCA and covariance
estimation (See for example [MZ20, JLT20, DKPP23] and Theorem 4.7.1 in [Ver18]). We operate
under the following two assumptions, unless otherwise specified,

Assumption 1 (Subgaussianity). {Xi}i∈[n] are of independent and identically distributed σ-
subgaussian vectors in Rd with covariance matrix Σ := E

[
XiX

T
i

]
.

We denote the eigenvectors of Σ as v1, v2, · · · vd and the corresponding eigenvalues as λ1 > λ2 ≥
· · ·λd. Define V⊥ := [v2, v3, · · · vd] ∈ Rd×(d−1) and Λ2 ∈ R(d−1)×(d−1) = diag (λ2, λ3, · · ·λd).

Assumption 2 (Sparsity and Spectral gap). We assume that max
{

1, λ2
λ1−λ2

}
Tr(Λ2)
λ1−λ2

≤ cn
log(n) and

λ1
λ1−λ2

≤ c
√

n
log2(n) for an absolute constant c > 0. The leading eigenvector, v1, satisfies ∥v∥0 ≤ s

with support set S := {i : v1 (i) ̸= 0}.
Remark 2.2. We note that Assumption 2 allows for reff to be as large as d, given a sufficient
eigengap. This can be observed by setting λ1 = λ2(1 + gn) for some gn > 0. Note that Tr(Λ2)

λ1−λ2
≤

min
(

1+gn

gn
reff , 1

gn
d
)

. If gn ≤ 1, then,

max
{

1,
1
gn

}
Tr(Λ2)
λ1 − λ2

≤ 1
gn

min
(

1 + gn

gn
reff ,

1
gn

d

)
= 2 1

gn
min

(
1 + gn

2gn
reff ,

1
2gn

d

)
≤ 2reff/g2

n

If gn ≫ 1, then,

max
{

1,
1
gn

}
Tr(Λ2)
λ1 − λ2

≤ Tr(Λ2)
λ1 − λ2

≤ d

gn

therefore, in both cases, as long as d ≤ ngn

log n , reff can be as large as d, while allowing for Assumption 2
to hold.

Oja’s algorithm with constant learning rate. With a constant learning rate, η, and initial vector,
u0, Oja’s algorithm [Oja82b], denoted as Oja

(
{Xt}t∈[n] , η, u0

)
, performs the updates, ut ←

(I + ηXtX
T
t )ut−1, ut ← ut

∥ut∥2
. For convenience of analysis, we also define ∀t ∈ [n],

Bt :=
(
I + ηXtX

T
t

) (
I + ηXt−1XT

t−1
)
· · ·
(
I + ηX1XT

1
)

, B0 = I (3)

4The results developed in this work follow if instead of subgaussianity, the moment bound holds ∀ p ≤ 8.
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3 Main results

We present our main contributions in two stages. Firstly, in Section 3.1, we demonstrate that with
an upper bound on the support size, the top elements of the Oja vector include the support with
constant probability, which can be enhanced using a boosting procedure (SuccessBoost) described
in Section 3.4. Secondly, in Section 3.3, we use the support to extract the eigenvector and provide
a high-probability sin2 error guarantee. Section 3.5 details our results on bounding the entrywise
deviation of the Oja vector, which are crucial to our proofs and of independent interest. Detailed
proofs are in the Appendix, Sections A.4 and A.5, with the learning rate, η, specified in Lemma A.2.4.

3.1 Support recovery

Algorithm 1 OjaSupportRecovery
(
{Xi}i∈[n] , k, η

)
1: Input : Dataset {Xi}i∈[n], Cardinality parameter k ≥ s, learning rate η > 0
2: u0 ∼ N (0, I)
3: v̂ ← Oja

(
{Xi}i∈[n] , η, y0

)
4: Ŝ ← Indices of k largest values of |v̂|
5: return Ŝ

Algorithm 1 provides an estimate, Ŝ, of the true support set, S. It computes the Oja vector and returns
the set of indices corresponding to its k largest entries in absolute value. Our key result in Lemma 3.1
discusses the recovery of the support set, S, for any k ≥ s, without requiring exact knowledge of the
sparsity parameter s. Using Algorithm 1, it provides a set Ŝ ⊇ S with probability at least 0.9.

Lemma 3.1 (s-Agnostic Recovery). Under Assumptions 1,2, for mini |v1 (i)| = Ω̃
(

λ1
λ1−λ2

(
d

n2

) 1
4
)

,

Ŝ ← OjaSupportRecovery
(
{Xi}i∈[n] , k, η := 3 log(n)

n(λ1−λ2)

)
with k ≥ s satisfies, P

(
S ⊆ Ŝ

)
≥ 0.9.

If k = s, i.e, the size of the support is exactly known, then we can improve the result of Lemma 3.1
to obtain an estimator, Ŝ, of the support set with high probability. Theorem 3.2 provides the
corresponding guarantees. The SuccessBoost algorithm uses geometric aggregation on subsets
returned from Algorithm 1 run on log(1/δ) disjoint subsets of the data and is described in Section 3.4.
Theorem 3.2 (High probability support recovery). Let Assumptions 1, 2 hold. For
dataset D := {Xi}i∈[n], let A be the randomized algorithm which computes Ŝ ←

OjaSupportRecovery
(
{Xi}i∈[n] , k, η

)
, where η := 3 log(n)

n(λ1−λ2) and k = s. Then, for δ ∈ (0, 1),

mini |v1 (i)| = Ω̃
(

λ1
λ1−λ2

(
d

n2

) 1
4
)

, S̃ ← SuccessBoost
(
{Xi}i∈[n] ,A, δ

)
satisfies,

P
(
S̃ = S

)
≥ 1− δ

For comparison, existing support recovery algorithms for general Σ are known for convex-relaxation-
based algorithms like the SDP-based algorithm of [LV15]. These require a much larger computational
budget than ours. In Section 3.3, we show how to use the s-agnostic support recovery in Lemma 3.1
to perform Sparse PCA and obtain a sin2 error guarantee, where the final high probability error
bound is obtained using a similar probability-boosting argument. For the learning rate, we follow
the convention in related work ([BDF13, XHS+18, JJK+16, AZL17, HNWW21]) and choose the
optimal value of the learning rate, which requires the knowledge of λ1 − λ2. We believe an educated
guess of η would lead to consistency at the cost of a suboptimal error bound.

3.2 Comparison with other support recovery algorithms

We note that (see Table 1), for the spiked model with r = 1 (Eq 2) [JL09] and [AW08] provide a
diagonal thresholding algorithm for support recovery using O (d) space and O (nd) time.5 To achieve
a high-probability guarantee for the estimated support set, Ŝ, of the form P

(
Ŝ = S

)
≥ 1− δ, they

5The algorithm proposed in [AW08] allows for a slight generalization of the spiked model in Eq 2.
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require (Proposition 1, [AW08]) n = Ω
(
s2 log (d) + log

( 1
δ

))
. In comparison, Theorem 3.2 requires

a larger sample size.
Remark 3.3. In practice, we will not know whether Σ is spiked or general. So, we can always
augment our support recovery algorithm by taking a union of the support from the Oja vector and
diagonal thresholding, still maintaining O(nd) time and O(d) space.

However, diagonal thresholding only works for the spiked model with a single spike, which our
results do not require. It is easy to construct a Σ where the elements in the support of an eigenvector
with a small eigenvalue have a larger magnitude than those of v1 (Eq A.13). Here the diagonal
thresholding method fails (see Figure 1a and Proposition 3.4). The explicit construction and the proof
of Proposition 3.4 are available in the Appendix Section A.2. Figure 1 a) plots the sin2 error due
to different Sparse PCA algorithms operating in O (d) space and O (nd) time on such a covariance
matrix, Σ, which is visualized in Figure 1 a).
Proposition 3.4 (Lower bound for diagonal thresholding). Let Assumption 1 hold. For any diagonal-
thresholding algorithm, A, performing support recovery with sparsity parameter s such that n =
Ω
(
σ4s2 log (d)

)
, there exists a covariance matrix Σ with principal eigenvector, v1, ∥v1∥0 = s, such

that, P
(∣∣∣Ŝ⋂S

∣∣∣ = 0
)
≥ 1− d−10.

It may seem that if r in Eq 2 is small, and the sparsity parameters of each vi, i ≤ r are known, then
diagonal thresholding would work. However, in general, r can be as large as d and the union of
supports of vi can be [d].

3.3 Sparse PCA

In this section, we describe our results for Sparse PCA, which use the support recovery
guarantees developed in Section 3.1. For the results in this section, we split the dataset
D := {Xi}i∈[n] into two halves and estimate the support using the first half as Ŝ ←

OjaSupportRecovery
(
{Xi}i∈[ n

2 ] , k, η := 3 log(n)
n(λ1−λ2)

)
and input, k ≥ s. The second half of the

samples are then used to compute the estimated sparse eigenvector. Algorithm 2 describes a general
procedure for Sparse PCA given access to an estimated support set, Ŝ. We start with an intuitive
procedure in Theorem 3.5, which runs Oja’s algorithm on the data and then uses the support to
truncate the estimated eigenvector.

Algorithm 2 TruncateOja
(
{Xi}i∈[n] , Ŝ,A, Θ

)
1: Input : Dataset {Xi}i∈[n], , estimated support set Ŝ ⊆ [d], Algorithm A, Parameters Θ

2: v̂ ← A
(
{Xi}i∈[n] , Θ

)
3: v̂truncvec ←

⌊v̂⌋Ŝ∥∥⌊v̂⌋Ŝ∥∥2
4: return v̂truncvec

Theorem 3.5 (Vector Truncation). Let Assumptions 1 and 2 hold and k ≥ s. For dataset D :=
{Xi}i∈[n] and w0 ∼ N (0, I), let A be the randomized algorithm which computes v̂truncvec ←

TruncateOja
(
{Xi}i∈( n

2 ,n] , Ŝ, Oja, {η, w0}
)

, where η := 3 log(n)
n(λ1−λ2) . Then, for mini |v1 (i)| =

Ω̃
((

d
n2

) 1
8
)

, ṽ ← SuccessBoost
(
{Xi}i∈[n] ,A, d−10

)
satisfies,

sin2 (ṽ, v1) ≤ C ′′
(

λ1

λ1 − λ2

)2
k log2 (d)

n

with probability at least 1− d−10, where C ′′ ≥ 0 is an absolute constant.
Remark 3.6 (Limitation). Existing inconsistency results on PCA [JL09] provide a threshold for signal
strength (λ1 − λ2)/λ1, below which, the principal eigenvector of Σ̂ is asymptotically orthogonal
to v1. We believe a similar result may hold for the Oja vector, which leads to the signal strength
condition in Assumption 2.
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Note that the rate obtained in Theorem 3.5 nearly matches the minimax lower bound proved in
[VL12, CMW13], up to a factor of λ2

λ1
and log (d) and has optimal dependence on s, and n. A

limitation of Algorithm 2 is that it uses the estimated support, Ŝ, at the very end after computing the
estimated eigenvector to enhance the signal by truncation. Instead, one may run Oja’s algorithm on
datapoints restricted to the recovered support in the beginning.

To this end, we use the algorithm in [Lia23] (denoted by OptimalOja, see Proposition A.5.3) for
subgaussian data, which uses an iteration-dependent sequence of step-sizes {ηi}i∈[n]. We run
Algorithm 2 with OptimalOja as the procedure to do sparse PCA. This leads to the minimax error
rate, shown in Theorem 3.7. The high probability bounds in Theorem 3.5 and 3.7 both use the support
recovery guarantees derived in Section 3.1 and the boosting procedure described in Section 3.4.
Detailed proofs for both results can be found in Appendix Section A.5.

Theorem 3.7 (Data Truncation). Let Assumptions 1 and 2 hold and k ≥ s. For dataset
D := {Xi}i∈[n] and w0 ∼ N (0, I), let A be the randomized algorithm which computes v̂truncvec ←

TruncateOja
({
⌊Xi⌋Ŝ

}
i∈( n

2 ,n]
, Ŝ, OptimalOja, {{ηt}t∈[ n

2 ] , w0}
)

. Then for mini |v1 (i)| =

Ω̃
(

λ1
λ1−λ2

(
d

n2

) 1
4
)

, ṽ ← SuccessBoost
(
{Xi}i∈[n] ,A, d−10

)
satisfies,

sin2 (ṽ, v1) ≤ C ′′ λ1λ2

(λ1 − λ2)2
k log (d)

n

with probability at least 1− d−10, where C ′′ ≥ 0 is an absolute constant.

Remark 3.8. Algorithm 2, with both Oja and OptimalOja as input procedures require a simple
initialization vector w0 ∼ N (0, I). In contrast, the block stochastic power method-based algorithm
presented in [YX15] provides local convergence guarantees (see Theorem 1) requiring a block size of
O (s log (d)). They provide an initialization procedure, but the theoretical guarantees to achieve such
an initialization require block size Ω (d). [YZ13] also require a close enough initialization. In the
particular setting of a single-spiked covariance model, they require |wT

0 v1|= Ω (1). In comparison
for Algorithm 2, 3.7, it suffices to have |wT

0 v1|≥ δ√
e

with probability at least 1− δ (see Lemma A.2.1).

3.4 Probabilistic boosting
In this section, we describe a generic procedure for boosting the success probability of a given
randomized algorithm, A (also see [KLL+23]). If A satisfies Definition 3.9, then its probability can
be boosted using this procedure. The formal guarantees of the boosting procedure are provided in
Lemma 3.10 (proof in Appendix Section A.2). It divides the data evenly into log

( 1
δ

)
buckets6, runs

A on each bucket and aggregates the results via pairwise comparisons.

Definition 3.9. Let T be a set with metric ρ and A be a randomized algorithm which takes as
input n i.i.d datapoints D := {Xi}i∈[d] and possibly additional statistically independent parameters
θ, and returns an estimate q ∈ T , which satisfies P (ρ (q, q∗) ≥ ϵ) ≤ 1

3 for a fixed q∗ ∈ T .
Then, A is said to be a constant success oracle with parameters (D, θ, T , ρ, q∗, ϵ), denoted as
A := ConstantSuccessOracle (D, θ, T , ρ, q∗, ϵ).

Algorithm 3 SuccessBoost
(
{Xi}i∈[n] ,A, δ

)
1: Input : Dataset D := {Xi}i∈[n], A := ConstantSuccessOracle (D, θ, T , ρ, q∗, ϵ), Required

failure probability δ
2: Return : An estimate q̃ ∈ T such that P (ρ (q̃, q∗) ≤ 3ϵ) ≥ 1− δ
3: S ← 30 log

( 1
δ

)
, B ← n/S

4: ∀t ∈ [S], qt ← A
({

XB(t−1)+i

}
i∈[B] , θ, T , ρ, q∗, ϵ

)
, Ct ← {t′ ∈ [S] : ρ (qt, qt′) ≤ 2ϵ}

5: If ∃qt such that |Ct| /S ≥ 0.4 Return qt Else Return ⊥

6For simplicity, we assume S, B in Algorithm 3 are integers.
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(a) (b)
Figure 2: We use Σ used in [QLR19], Section 5.1. (a) Variation of log

(
|e⊤

i Bnu0|
)

for i ∈ S and i /∈ S
(y-axis) with n (x-axis) for a fixed unit vector u0. η is set as Theorem 3.5 and n grows from 1 to 1000. The
lines labelled “sample” plot log(|e⊤

i Bnu0|), whereas the “population” curves plot log(|E
[
e⊤

i Bnu0
]

|). (b)
Variation of log

(∥∥BnBT
n

∥∥) and log
(
vT

1 BnBT
n v1
)

(y-axis) with n ∈ [300] (x-axis). We also plot log of the
bound of

∥∥BnBT
n

∥∥ as in [JJK+16] and 2n log (1 + ηλ1) for comparison.

Lemma 3.10 (Geometric Aggregation for Boosting). Let A :=
ConstantSuccessOracle (D, θ, T , ρ, q∗, ϵ) (Definition 3.9) for dataset D := {Xi}i∈[n]. Then

for δ ∈ (0, 1), q̃ ← SuccessBoost
(
{Xi}i∈[n] ,A, δ

)
satisfies P (ρ (q̃, q∗) ≤ 3ϵ) ≥ 1− δ.

3.5 Entrywise deviation of the Oja vector

To analyze the success probability of recovering the indices in S, we will define the following event,
E := {S ⊆ Ŝ}. We now upper bound P (Ec). Define an element of the unnormalized Oja vector as
ri := eT

i Bnu0, i ∈ [d]. Here u0 ∼ N (0, I) is the initialization used in Algorithm 1. Observe that

E ⇐⇒ ∃τn > 0 such that {∀i ∈ S, |ri|≥ τn}
⋂
{|{i : i /∈ S, |ri|≥ τn}| ≤ k − s}

or equivalently,

Ec ⇐⇒ ∀τn > 0, {∃i ∈ S, |ri|≤ τn}
⋃
{|{i : i /∈ S, |ri|≥ τn}| > k − s}

Therefore, for any fixed τn > 0, Ec =⇒ {∃i ∈ S, |ri|≤ τn}
⋃
{|{i : i /∈ S, |ri|≥ τn}| > k − s}

We will, therefore, be interested in the tail behavior of ri for i ∈ S and i ̸∈ S. Before presenting our
theorems, we will use Figure 2 to emphasize the daunting nature of what we aim to prove. Consider
the quantity E [ri|u0] = E

[
eT

i Bnu0|u0
]
. We use X = C ±∆ to denote |X − C|≤ ∆.

E [ri|u0] = eT
i E [Bn] v1vT

1 u0 + eT
i E [Bn] V⊥V T

⊥ u0 (4)

=
{

eT
i v1vT

1 u0(1 + ηλ1)n ±
∣∣eT

i V⊥V T
⊥ u0

∣∣ (1 + ηλ2)n For i ∈ S

±
∣∣eT

i V⊥V T
⊥ u0

∣∣ (1 + ηλ2)n For i ̸∈ S

Thus, traditional wisdom would make us hope that the elements, ri, will concentrate around their
respective expectations, whose absolute values are off by a ratio |v1(i)||uT

0 v1|exp(nη(λ1 − λ2)).

However, Figure 2(a) shows that while the elements in the support seem close to their expectation,
those not in support are, on average, much larger than their expectation. First, note that elementwise
analysis of the Oja vector has not been done even in the low dimensional regime where reff/n→ 0.
In this regime, there is very recent related work for eigenvectors of the empirical covariance matrix
Σ̂ [AFW22] which are not applicable here. In the high-dimensional case, an analog can be drawn
with elements Σ̂, which concentrate around their mean individually. Yet, ∥Σ̂−Σ∥ is not small. Thus,
thresholding Σ̂ obtains consistent estimates of Σ under sparsity assumptions [BL09, DM+16, Nov23].

A similar principle is applied by [SSM11] where the eigenvector of Σ̂ is truncated. They assume
that n is fixed, and λ1/λ2 = dα →∞ as d→∞. In comparison, our analysis is about products of
random matrices, not sums, and hence, completely different. We will show that v̂1(i), even when
i ∈ S, do not concentrate. But for a suitably chosen threshold, They are large with high probability,
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whereas those outside S are much lower with high probability. Proving this is also difficult because
the analysis involves the concentration of the projection of a product of independent high dimensional
matrices on some initial random vector. Lemma 3.11 establishes exactly that for elements in the
support.

Lemma 3.11 (Tail bound in support). Fix a δ ∈ (0.1, 1). Define the event G :=
{
|vT

1 u0|≥ δ√
e

}
and

threshold τn := δ√
2e

mini∈S |v1 (i) |(1 + ηλ1)n. Let the learning rate be set as in Lemma 3.1. Then,
for an absolute constant CH > 0,

∀i ∈ S, P
(
|ri|≤ τn

∣∣∣∣G) ≤ CH

[
ηλ1 log (n) + ηλ1

(
λ1

λ1 − λ2

)
1

v1 (i)2

]

Our next result provides a bound for i /∈ S.
Lemma 3.12 (Tail bound outside support). Fix a δ ∈ (0.1, 1). Let the learning rate be set as in
Lemma 3.1 and define the threshold τn := δ√

2e
mini∈S |v1 (i) |(1 + ηλ1)n. Then, for mini |v1 (i)| =

Ω̃
(

λ1
λ1−λ2

(
d

n2

) 1
4
)

and an absolute constant CT > 0 we have,

∀i /∈ S, P (|ri|> τn) ≤ CT

η2λ2
1

(
λ1

λ1 − λ2

)2
(

1
δ2 mini∈Shi v1 (i)2

)2


The proofs of Lemmas 3.11 and 3.12 are based on tail-bounds involving the second and fourth
moments of ri := eT

i Bnu0. The details of obtaining the tail bounds are deferred to the Appendix
Section A.3. The results developed in this section are used to analyze the support recovery and sin2

error guarantees provided in Section 3.1 and 3.3. We provide a brief proof sketch in Section 4.

4 Proof technique
In this section, we outline the proof techniques for the entrywise deviation bounds in Lemmas 3.11
and 3.12. These bounds are crucial for analyzing both the support recovery results (Lemma 3.1 and
Theorem 3.2) and the sparse PCA results (Theorems 3.5 and 3.7). The proof involves deriving bounds
on the expectation and second moment of uT

0 BnUUT Bnu0, where U ∈ Rd×k is a fixed matrix and
u0 ∼ N (0, I). It then applies Chebyshev’s inequality to obtain the tail bound. For the proof sketch,
we use U = ei, but we maintain general notation for broader applicability in Theorem 3.5. For
our results, we also need to bound this quantity with U = IS (see Lemma A.5.1 for details). Our
techniques to bound E[uT

0 BnUUT Bnu0] are detailed in Section 4.1.

4.1 Solving a linear system of recursions

One can show that (see Lemma A.2.11 in Appendix),

E
[
uT

0 BT
n UUT Bnu0

]
= E

[
vT

1 BT
n UUT Bnv1

]︸ ︷︷ ︸
=:αn

+E
[
Tr
(
V T

⊥ BT
n UUT BnV⊥

)]︸ ︷︷ ︸
=:βn

(5)

We start by showing how to bound αn and βn. Before we dive into our techniques, we note that the
analysis of Oja’s algorithm [JJK+16] in the non-sparse setting provides some tools that we could
potentially use here. Using the recursion from Lemma 9 in [JJK+16], we get∥∥E [BnUUT BT

n

]∥∥ ≤ exp(2nηλ1 + nη2V)
∥∥UUT

∥∥ , (6)

where V is a variance parameter defined as
∥∥E [(A1 − Σ)(A1 − Σ)T

]∥∥. Lemma A.2.3 shows that
for σ-subgaussian X (definition 2.1),

V :=
∥∥E [(A1 − Σ)(A1 − Σ)T

]∥∥ =
∥∥E [A1AT

1
]
− Σ2∥∥ ≤ 2L4σ4λ1 Tr(Σ) + λ2

1

This provides an upper bound on αn ≤
∥∥E [BnUUT BT

n

]∥∥. While this bound is tight when reff is
bounded by a constant, in the high dimensional setting (Assumption 2) considered in this work, this
bound is too loose. This is evident from Figure 2(B), which plots

∥∥E [BnUUT BT
n

]∥∥ for U = I ,
along with the bound achieved using Eq 6, labeled as Jain et al. (2016). Note that the plots are in
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the log-scale so a difference in the slopes translates to a significant multiplicative difference. This
warrants a more fine-grained analysis of αn.

Let us examine αn more closely to obtain a finer bound. Using the structure of the matrix product,
Bn, from Eq 3, we have:

αn = αn−1 (1 + 2ηλ1) + η2E
[(

vT
1 XnXT

n v1
) (

XT
n Bn−1UUT BT

n−1Xn

)]
Now, as a consequence of subgaussianity (see Lemma A.2.2), for K := (2L2σ2)2, with the Cauchy-
Schwartz inequality, the second term in the RHS can be bounded further using:

E
[
(vT

1 XnXT
n v1)2] ≤ Kλ2

1, E
[(

XT
n Bn−1UUT BT

n−1Xn

)2
∣∣∣∣Fn−1

]
≤ K Tr(UT BT

n−1ΣBn−1U)2

Therefore, using the above bound along with the eigen-decomposition Σ := λ1v1vT
1 + V⊥Λ2V T

⊥ ,

αn ≤
(
1 + 2ηλ1 + 4L2η2σ4λ2

1
)

αn−1 + 4L2η2σ4λ1λ2βn−1 (7)
Similarly, βn can also be upper bounded as follows:

βn ≤
(
1 + 2ηλ2 + 4η2L4σ4λ2 Tr (Σ)

)
βn−1 + 4η2L4σ4λ1 Tr (Σ) αn−1 (8)

Note that upper bounding and eliminating αn−1 or βn−1 from Eq 8, 7 respectively, would simplify
the recursion but lead to a weaker bound as in Eq 6. Therefore, we solve Eq 7 and 8 as a system of
linear recursions in αn and βn.(

αn

βn

)
=
(

1 + 2ηλ1 + O
(
η2λ2

1
)

O (λ1λ2)
O (Tr(Σ)) 1 + 2ηλ2 + O

(
η2 Tr(Σ)

))︸ ︷︷ ︸
:=P

(
αn−1
βn−1

)
(9)

Estimating elements of P n, where P is the defined 2× 2 matrix, is crucial. [Wil92] gives a compact
expression for these elements using λ1(P ) and λ2(P ). Under our assumptions, we have P11 > P22.
A naive upper bound on λ1(P ) using Weyl’s inequality [Die15] is 1 + 2ηλ1 + c3 Tr(Σ), similar
to Eq 6. Since recursions like Eq 9 are common in our analysis, we provide a general solution in
Lemma A.2.5 (detailed in the Appendix Section A.2).

An important consequence of this is that we now have the following bounds on αn for U = I:
αn ≤ (1 + 2ηλ1 + c1η2λ2

1)n (1 + O(ηλ1)) (10)
which is much tighter than Eq 6 in our high-dimensional regime. Furthermore, observing Figure 2(b),
we see that Eq 10 presents a much tighter upper bound, matching (1 + ηλ1)2n up to constant factors.

Recall that the bounds obtained in this section deal with αn, βn defined in Eq 5. A similar
system of recursions can be obtained to get tight bounds on E

[(
vT

1 BT
n UUT Bnv1

)2
]

and

E
[
Tr
(
V T

⊥ BT
n UUT BnV⊥

)2
]
, details of which we defer to the Appendix in Lemmas A.2.9, A.2.10.

5 Conclusion
Oja’s algorithm for streaming PCA has been extensively studied in the recent theoretical literature,
typically assuming that ∥Xi∥2/λ1 is bounded or a slowly growing covariance matrix effective rank
reff . This paper addresses the high-dimensional sparse PCA setting where the effective rank reff
can be as large as n/log n while v1 is s-sparse. In this context, while there has been a vast body
of work that achieves minimax error bounds, we are unaware of any single-pass algorithm that
works in O(nd) time, O(d) space, on a general Σ, without any strong initialization. Surprisingly,
our thresholded estimator achieves the minimax error bound of O(s log d/n), whereas the error
rate of Oja’s algorithm is O(reff/n). Empirically, the elements of the unnormalized Oja vector do
not concentrate in this regime. Through an analysis that uncouples the projection of a product of
independent random matrices on v1 and its orthogonal subspace, we show that the entries of the Oja
vector within the support of v1 are large, while those outside are much smaller.
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A Appendix

The Appendix is organized as follows:

1. Section A.1 provides further details about related work
2. Section A.2 provides some useful results used in subsequent analyses
3. Section A.3 provides Entrywise deviation bounds for the Oja vector (Lemmas 3.11, 3.12)
4. Section A.4 proves convergence of Support Recovery results (Lemma 3.1, Theorem 3.2)
5. Section A.5 proves convergence of Sparse PCA results (Theorems 3.5,3.7)
6. Section A.6 provides another alternative way of truncation using a value-based thresholding

(Theorem A.6.1)

A.1 Further details on related work

There has been a lot of work on computational computational hardness of sparse PCA [GMZ17,
BB19, DKWB23, BKW20].

Minimax optimal Sparse PCA algorithms with global convergence: These consist of SDP-based
algorithms such as [AW08, VCLR13, dBEG08], which do not scale well in high-dimensions (see
[BR13, Wai19]). The state-of-the-art SDP solvers [JKL+20, HJS+22] currently have a runtime
Ω (nω + dω), where ω ≈ 2.732 is the matrix multiplication exponent. Algorithms proposed in
[Ma13, CMW13, JNRS10, DM+16] involve forming the entire (d× d) sample covariance matrix,
which can itself be challenging from the perspective of space and time complexity. Furthermore,
[Ma13, CMW13, DM+16] have been analyzed under the spiked covariance model in Eq 2. [QLR19]
propose a computationally efficient modification of the Fantope projection-based algorithm of
[VCLR13], which requires O(d2) space, and Ω(nd2) time.

Single-pass online sparse PCA algorithms with O(d2) storage and O(nd2) time [QLR19] also
provide a single-pass online algorithm and state that this algorithm (Theorem 4) is the first to provably
obtain the global optima in a streaming setting without any initialization, under a general Σ. However,
this method requires O(d2) storage, O(nd2) time, and the estimation error is O

(
d2
√

n

)
(Theorem 4,

[QLR19]). The algorithm does d sparse linear regression problems to achieve this.

Support recovery algorithms with O(d2) storage and O(nd2) time : [LV15, LSH22] use an
SDP-based approach and [BPP18] use sparse linear regression for support recovery.

More details on streaming PCA algorithms [YX15] provides an online block version of the
truncated power method in [YZ13] under the spiked model (Eq 2). They require an initialization
u0 with a sufficiently large |uT

0 v1|= Ω (1) (local convergence). Their proposed initialization with
streaming PCA algorithm until reaching a specific accuracy threshold, for which there is no known
theoretical guarantee under the spiked high-dimensional setting. [WL16] provides an analysis
of streaming sparse PCA under Eq 2 via partial differential equations (PDE), but they only prove
asymptotic convergence. Similar to [YZ13], they also require |uT

0 v1|= Ω (1) which can be hard to
find in high dimensions for a general Σ. Recent results provide a black-box way to obtain the top-k
principal components (k-PCA) given an algorithm to extract the top eigenvector (see [a]) which could
be employed treating our algorithm as a 1-PCA oracle (see [JKL+24, Mac08]). We believe that our
analysis can be extended to obtain top-k principal components simultaneously via QR decomposition
and thresholding.

A.2 Useful results

Lemma A.2.1. (Fact 2.9 [DKPP23]) For any symmetric d × d matrix A, we have
Varz∼N (0,I)

[
zT Az

]
= 2∥A∥2

F . If A is a PSD matrix, then for any β > 0, it holds that

Pz∼N (0,I)
[
zT Az ≥ β Tr (A)

]
≥ 1−

√
eβ

Proof. We give a short proof here. Since A is a symmetric matrix, let A = PΛP T where P is an
orthonormal matrix and Λ is a diagonal matrix. Then, denoting y := P T z we note that y ∼ N (0, I).
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Therefore,

zT Az = zT PΛP T z = yT Λy =
d∑

i=1
λiy

2
i

Therefore,

Ez∼N (0,I)
[
zT Az

]
= Ey∼N (0,I)

[
d∑

i=1
λiy

2
i

]
=

d∑
i=1

λi = Tr (A)

and

Ez∼N (0,I)

[(
zT Az

)2] = Ey∼N (0,I)

( d∑
i=1

λiy
2
i

)2 = Ey∼N (0,I)

 d∑
i=1

λ2
i y4

i +
d∑

i,j,i ̸=j

λiλjy2
i y2

j


= 3

d∑
i=1

λ2
i +

d∑
i,j,i ̸=j

λiλj = 2 Tr
(
A2)+ Tr (A)2

To get the tail lower bound, note that it trivially follows if β > 1. Therefore we proceed with
β ∈ (0, 1). We have

Pz∼N (0,I)
[
zT Az ≤ β Tr (A)

]
= Py∼N (0,I)

[
d∑

i=1
λiy

2
i ≤ β

d∑
i=1

λi

]

≤ E

[
exp

(
t

(
β

d∑
i=1

λi −
d∑

i=1
λiy

2
i

))]
, t > 0

= exp
(

tβ

d∑
i=1

λi

)
E

[
exp

(
−t

d∑
i=1

λiy
2
i

)]

= exp
(

tβ

d∑
i=1

λi

)
d∏

i=1
(1 + 2λit)− 1

2

Let t = 1
2
∑d

i=1
λi

(
1
β − 1

)
. Then,

Pz∼N (0,I)
[
zT Az ≤ β Tr (A)

]
≤ exp

(
1− β

2

) d∏
i=1

(
1 + λi∑d

i=1 λi

(
1
β
− 1
))− 1

2

≤ exp
(

1− β

2

)(
1 +

(
1
β
− 1
))− 1

2

= exp
(

1− β

2

)√
β

≤
√

eβ

Hence proved.

Lemma A.2.2. Let X ∈ Rd be a σ-subgaussian random vector with covariance matrix Σ. Then, for
any matrix M ∈ Rd×m and any positive integer p ≥ 2,

E
[(

XT MMT X
)p
]
≤
(
L2σ2p

)p Tr
(
MT ΣM

)p

Proof. Let the eigendecomposition of MMT be PΛP T . Define Y := P T X . Then,

E
[(

XT MMT X
)p
]

= E

[(
d∑

i=1
λiy

2
i

)p]

=
∑

k1+k2+···kd=p; k1,k2,···kd≥0

(
n

k1, k2, · · · kd

)
E

[
d∏

i=1
λki

i y2ki
i

]
(A.11)
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Therefore,

E

[
d∏

i=1
λki

i y2ki
i

]
=
(

d∏
i=1

λki
i

)
E

[
d∏

i=1
y2ki

i

]

≤

(
d∏

i=1
λki

i

)
d∏

i=1

(
E
[(

y2ki
i

) p
ki

]) ki
p

, using Holder’s inequality since
d∑

i=1
ki = p,

=
(

d∏
i=1

λki
i

)
d∏

i=1

(
E
[
y2p

i

]) ki
p

(A.12)

Using the definition of sub-gaussianity (Definition 2.1) we have,

E
[
y2p

i

]
= E

[(
eT

i P T X
)2p
]

= E
[(

(Pei)T
X
)2p
]

≤ L2pσ2p (√p)2p (∥Pei∥Σ)2p

= L2pσ2ppp
(
eT

i P T ΣPei

)p

Susbstituting in Eq A.12 we have,

E

[
d∏

i=1
λki

i y2ki
i

]
≤

(
d∏

i=1
λki

i

)(
d∏

i=1
L2kiσ2kipki

(
eT

i P T ΣPei

)ki

)

=
(
L2σ2p

)p
d∏

i=1

(
λie

T
i P T ΣPei

)ki

Substituting in Eq A.11 we have,

E
[(

XT MMT X
)p
]
≤
(
L2σ2p

)p ∑
k1+k2+···kd=p; k1,k2,···kd≥0

(
n

k1, k2, · · · kd

) d∏
i=1

(
λie

T
i P T ΣPei

)ki

=
(
L2σ2p

)p

(
d∑

i=1
λie

T
i P T ΣPei

)p

=
(
L2σ2p

)p

(
Tr
((

d∑
i=1

λiPeie
T
i P T

)
Σ
))p

=
(
L2σ2p

)p Tr
(
MT ΣM

)p

Hence proved.

Lemma A.2.3. Let X ∈ Rd be a σ-subgaussian random vector with covariance matrix Σ. Then,∥∥∥E [(XXT
)2]∥∥∥ ≤ 4L4σ4λ1 Tr (Σ)

Proof. For any fixed unit vector u ∈ Rd, we have

uTE
[(

XXT
)2]

u = E
[(

XT X
) (

XT u
)2]

≤
√
E
[
(XT X)2

]
E
[
(XT u)4

]
=
√
E
[
(XT X)2

]
E
[
(XT uuT X)2

]
≤
(
2L2σ2)2 Tr (Σ) Tr

(
uT Σu

)
≤
(
2L2σ2)2

λ1 Tr (Σ)
where we used Lemma A.2.2 with p = 2 and M = I .
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Proposition 3.4 (Lower bound for diagonal thresholding). Let Assumption 1 hold. For any diagonal-
thresholding algorithm, A, performing support recovery with sparsity parameter s such that n =
Ω
(
σ4s2 log (d)

)
, there exists a covariance matrix Σ with principal eigenvector, v1, ∥v1∥0 = s, such

that, P
(∣∣∣Ŝ⋂S

∣∣∣ = 0
)
≥ 1− d−10.

Proof. Let s be a multiple of 3 for ease of analysis. Consider a dataset with a covariance matrix,

Σ := β1v1v⊤
1 + β2v2v⊤

2 + β3v2v⊤
2 + β4v2v⊤

2 + 1
2I, β1 = 2β2 = 2.1β3 = 2.2β4

∀i ∈ [s] , |v1 (i)| = 1√
s

, ∀i ∈
(

s,
4s

3

]
, |v2 (i)| =

√
3
s

∀i ∈
(

4s

3 ,
5s

3

]
, |v3 (i)| =

√
3
s
∀i ∈

(
5s

3 , 2s

]
, |v4 (i)| =

√
3
s

(A.13)

where β1 = 1
2 . Based on Eq A.13, we have for,

i ∈ (1, s] , Σi,i = 1
2 + β1

s

i ∈
(

s,
4s

3

]
, Σi,i = 1

2 + 3β2

s
= 1

2 + 3β1

2s

i ∈
(

4s

3 ,
5s

3

]
, Σi,i = 1

2 + 3β3

s
= 1

2 + 3β1

2.1s

i ∈
(

5s

3 , 2s

]
, Σi,i = 1

2 + 3β4

s
= 1

2 + 3β1

2.2s

i ∈ (2s, d] , Σi,i = 1
2

Note that the largest eigenvalue of Σ, λ1 = β1 + 1
2 . Let tn := 10σ2λ1

√
log(d)

n . Using Lemma 6.26

from [Wai19], we have, for the empirical covariance matrix, Σ̂,

P
(

max
i,j∈[d]

∣∣∣Σ̂i,j − Σ (i, j)
∣∣∣ ≥ tn

)
≤ 1

d10

Define the event, E := maxi,j∈[d]

∣∣∣Σ̂ (i, j)− Σ (i, j)
∣∣∣ ≤ tn and note that due to the sample

complexity bound on n, under event E ,

min
i∈(s,2s]

Σ̂i,i > max
i∈[1,s]

Σ̂i,i ≥ min
i∈[1,s]

Σ̂i,i ≥ max
i>2s

Σ̂i,i

Therefore, under event E , the s largest diagonal entries of Σ̂ are i ∈ (s, 2s], and therefore, |Ŝ
⋂

S|= 0,
which completes our proof.

Lemma 3.10 (Geometric Aggregation for Boosting). Let A :=
ConstantSuccessOracle (D, θ, T , ρ, q∗, ϵ) (Definition 3.9) for dataset D := {Xi}i∈[n]. Then

for δ ∈ (0, 1), q̃ ← SuccessBoost
(
{Xi}i∈[n] ,A, δ

)
satisfies P (ρ (q̃, q∗) ≤ 3ϵ) ≥ 1− δ.

Proof. Consider the indicator random variables χi := 1 (ρ (qi, q∗) ≤ ϵ). Let p := 1
3 and r =

300 log
( 1

δ

)
for convenience of notation. Then, ∀i ∈ [r], P (χi = 1) ≥ 1 − p. Define the set

S := {i : i ∈ [r], χi = 1}. We note that using standard Chernoff bounds for sums of independent
Bernoulli random variables, for θ ∈ (0, 1),

P (|S|≤ (1− θ)E [|S|]) ≤ exp
(
−θ2E [|S|]

2

)

18



We have, E [|S|] ≥ r (1− p) using linearity of expectation. Therefore,

P (|S|≤ (1− θ) (1− p) r) ≤ exp
(
−θ2 (1− p) r

2

)
=⇒ P (|S|≤ 0.9 (1− p) r) ≤ exp

(
− (1− p) r

200

)
, for θ := 1

10 (A.14)

Recall that Algorithm 3 defines q̃ as:

q̃ := qi, such that
|{j ∈ [r] : ρ (qi, qj) ≤ 2ϵ}|

r
≥ 0.9 (1− p) (A.15)

Note that the definition of q̃ does not require knowledge of q∗ and it can be computed by calculating
ρ(.) error between all distinct

(
r
2
)

pairs (qi, qj)i,j∈[r],i̸=j .

Let E be the event {|S|> 0.9 (1− p) r} and denote f := 0.9 (1− p) for convenience of
notation. Let us now operate conditioned on E . Note that conditioned on E , such a q̃ always exists
since any point in S is a valid selection of q̃. This is true since

ρ (qi, qj) ≤ ρ (qi, q∗) + ρ (qj , q∗) ≤ 2ϵ

Here we used the property of the event E and the triangle inequality for ρ. We further have, conditioned
on E using triangle inequality for some i ∈ S,

ρ (q̃, q∗) ≤ ρ (q̃, qi) + ρ (qi, q∗) ≤ 3ϵ (A.16)

Therefore, we have

P (ρ (q̃, q∗) ≥ 3ϵ) = P (E)P (ρ (q̃, q∗) ≥ 3ϵ|E) + P (Ec)P (ρ (q̃, q∗) ≥ 3ϵ|Ec)
= 0 + P (Ec)P (ρ (q̃, q∗) ≥ 3ϵ|Ec) using Eq A.16
≤ P (Ec)

≤ exp
(
− (1− p) r

200

)
using Eq A.14

which completes our proof.

Lemma A.2.4 (Learning rate schedule). Let the learning rate be set as η := κ log (n)
n (λ1 − λ2) for a

positive constant κ > 0. For constant c ≤ 1
8κ min

{
1√
C

1
C

}
, let

max
{

1,
λ2

λ1 − λ2

}
Tr (Λ2)
λ1 − λ2

≤ cn

log (n) ,
λ1

λ1 − λ2
≤ c

√
n

log2 (n)

If κ ≥ 2 + o (1) , n = Ω
(
s2 log (d)

)
, the following hold:

1. η ≤ 1
C

(λ1−λ2)
λ2 Tr(Λ2)

2. Cη ≤ 1
4 min

{
1

λ1
, 1

Tr(Λ2) , 1√
λ1 Tr(Λ2)

}
3. Cη2nλ2

1 ≤ 1
4

4. exp (−rnη (λ1 − λ2)) ≤ ηλ1 for r ≥ 1
2

where C := 100
(
L4σ4 + L2σ2) + 16. We state another useful restatement of Claim (1) used in

subsequent analysis,

∃θ ∈ (0.5, 1) , (1− θ) (λ1 − λ2) + 50L4σ4ηλ2
1 = 50L4σ4 log (n) ηλ2 Tr (Σ)

Proof.

η
λ2 Tr (Λ2)
λ1 − λ2

= κ
log (n)

n

Tr (Λ2)
λ1 − λ2

λ2

λ1 − λ2
≤ κc
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Therefore, the first claim follows for c ≤ 1
κC . For the second claim,

Cηλ1 = κC log (n) λ1

n (λ1 − λ2) ≤ κCc
1√
n
≤ 1

4

where the last inequality holds for c ≤ 1
4κC and n ≥ 1. Furthermore we have

Cη Tr (Λ2) = C
κ log(n)

n (λ1 − λ2) Tr (Λ2) ≤ κCc ≤ 1
4

where the last inequality holds for κCc ≤ 1
4 . Note that ηC ≤ min

{
1

4λ1
, 1

4
1

Tr(Λ2)

}
imply 4ηC ≤

1√
λ1 Tr(Λ2)

.

For the third claim, we have

Cη2nλ2
1 = ηλ1

κC log (n) λ1

(λ1 − λ2) = κ2C log2 (n)
n

(
λ1

λ1 − λ2

)2
≤ κ2Cc2 ≤ 1

4

where the last inequality holds when c ≤ 1√
4κ2C

.

Next, we have the last claim,

exp (−rnη (λ1 − λ2)) = exp (−rκ log (n)) = 1
nrκ

Therefore, it suffices to ensure

1
nrκ
≤ 1

n
κ
2
≤ κ log (n)

n

(iv)
≤ κλ1 log (n)

n (λ1 − λ2)

where (iv) follows since λ1
(λ1−λ2) ≥ 1 as λ1 > λ2. Therefore, we require

1
n

κ
2
≤ κ log (n)

n

which holds for κ = 2 + o (1) and sufficiently large n.

Lemma A.2.5. For constants c1, c2, c3, c4, c5 > 0, consider the following system of recursions -

αn ≤
(
1 + c1ηλ1 + c2η2λ2

1
)

αn−1 + c3η2λ1λ2βn−1,

βn ≤
(
1 + c1ηλ2 + c4η2λ2 Tr (Σ)

)
βn−1 + c5η2λ1 Tr (Σ) αn−1

Let ∃θ ∈ (0.5, 1), which satisfies c1 (1− θ) (λ1 − λ2) + c2ηλ2
1 = c4ηλ2 Tr (Σ) and

4c3c5

c2
1

η2λ2 Tr (Σ)
(

λ1

θ (λ1 − λ2)

)2
≤ 1, 4ηλ1

(
c2λ1

c1 (λ1 − λ2)

)
≤ 1− θ

Then we have,

αn ≤ λ1 (P )n

[
α0 + ηλ1

(
2c3λ1

c1θ (λ1 − λ2)

)(
β0 + α0

c5

c4

(
1− θ

θ

))]
,

βn ≤ β0λ2 (P )n +
[
ηλ1

(
2c5λ1

c1θ (λ1 − λ2)

)(
α0

Tr (Σ)
λ1

+ β0
c3

c4

(
1− θ

θ

))]
λ1 (P )n

where ∣∣λ1 (P )− 1− c1ηλ1 − c2η2λ2
1
∣∣ ≤ c3c5

c4
η2λ2

1

(
1− θ

θ

)
∣∣λ2 (P )− 1− c1ηλ2 − c4η2λ2 Tr (Σ)

∣∣ ≤ c3c5

c4
η2λ2

1

(
1− θ

θ

)
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Proof. Writing the recursions in a matrix form, we have(
αn

βn

)
=
(

1 + c1ηλ1 + c2η2λ2
1 c3η2λ1λ2

c5η2λ1 Tr (Σ) 1 + c1ηλ2 + c4η2λ2 Tr (Σ)

)(
αn−1
βn−1

)
(A.17)

Define

P :=
(

1 + c1ηλ1 + c2η2λ2
1 c3η2λ1λ2

c5η2λ1 Tr (Σ) 1 + c1ηλ2 + c4η2λ2 Tr (Σ)

)
Then P := I + c1ηM , where

M :=
(

λ1 + uηλ2
1 vηλ1λ2

wηλ1 Tr (Σ) λ2 + xηλ2 Tr (Σ)

)
and u := c2

c1
, v = c3

c1
, x = c4

c1
, w = c5

c1
. We now compute eigenvalues of M . The trace and

determinants are given as -

T := λ1 + λ2 + uηλ2
1 + xηλ2 Tr (Σ)

D := λ1λ2 + ηλ1λ2 (x Tr (Σ) + uλ1) + uxη2λ2
1λ2 Tr (Σ)− vwη2λ2

1λ2 Tr (Σ)

Next we compute T 2

4 −D,

T 2

4 −D = (λ1 − λ2)2

4 + η

(
(λ1 + λ2)

(
uλ2

1 + xλ2 Tr (Σ)
)
− 2λ1λ2 (x Tr (Σ) + uλ1)

2

)

+
η2 (uλ2

1 + xλ2 Tr (Σ)
)2

4 − (ux− vw) η2λ2
1λ2 Tr (Σ)

=
[

(λ1 − λ2)2

4 − 2
(

xηλ2 Tr (Σ)
2

)(
λ1 − λ2

2

)
+
(

xηλ2 Tr (Σ)
2

)2
]

+ ηuλ2
1

(
λ1 − λ2

2 + ηuλ2
1

4

)
+
(

vw − ux

2

)
η2λ2

1λ2 Tr (Σ)

= 1
4 ((λ1 − λ2)− xηλ2 Tr (Σ))2 + ηuλ2

1
2 ((λ1 − λ2)− xηλ2 Tr (Σ)) + η2λ2

1
4
(
u2λ2

1 + 4vwλ2 Tr (Σ)
)

,

= 1
4
[
(λ1 − λ2)− xηλ2 Tr (Σ) + ηuλ2

1
]2 + vwη2λ2

1λ2 Tr (Σ)

Let (λ1 − λ2)− xηλ2 Tr (Σ) + ηuλ2
1 = θ (λ1 − λ2) for θ ∈ (0, 1),

T 2

4 −D = θ2 (λ1 − λ2)2

4 + vwη2λ2
1λ2 Tr (Σ)

= θ2 (λ1 − λ2)2

4

(
1 + 4η2λ2 Tr (Σ) vwλ2

1

θ2 (λ1 − λ2)2

)

Let η2vwλ2
1λ2 Tr(Σ)

θ2(λ1−λ2)2 ≤ 1
4 . Then, using the identity 1− x

2 ≤
√

1 + x ≤ 1 + x
2 for x ∈ (0, 1) we have,

θ

2 (λ1 − λ2)
(

1− 2η2vwλ2
1λ2 Tr (Σ)

θ2 (λ1 − λ2)2

)
≤
√

T 2

4 −D ≤ θ

2 (λ1 − λ2)
(

1 + 2η2vwλ2
1λ2 Tr (Σ)

θ2 (λ1 − λ2)2

)
(A.18)

Let us simplify η2vwλ2
1λ2 Tr(Σ)

θ2(λ1−λ2)2 using the definition of θ. We have

η2vwλ2
1λ2 Tr (Σ)

θ2 (λ1 − λ2)2 = ηvwλ2
1

x

(
(1− θ)

θ2 (λ1 − λ2) + ηuλ2
1

θ2 (λ1 − λ2)2

)
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Let (1− θ) ≥ 4ηuλ2
1

(λ1−λ2) . Then,

θ

2 (λ1 − λ2)× η2vwλ2
1λ2 Tr (Σ)

θ2 (λ1 − λ2)2 = ηvwλ2
1

2x

(
1− θ

θ
+ 4ηuλ2

1
θ (λ1 − λ2)

)
= ηvwλ2

1
2θx

(
1− θ + 4ηuλ2

1
(λ1 − λ2)

)
≤ ηλ2

1
vw

x

(
1− θ

θ

)
(A.19)

Then, using Eq A.18 and A.19, the eigenvalues of M are given as λ1 (M) := T
2 +

√
T 2

4 −D and

λ2 (M) := T
2 −

√
T 2

4 −D such that

∣∣λ1 (M)− λ1 − uηλ2
1
∣∣ , |λ2 (M)− λ2 − xηλ2 Tr (Σ)| ≤ ηλ2

1
vw

x

(
1− θ

θ

)
The eigenvalues of P are given as λ1 (P ) := 1 + c1ηλ1 (M) and λ2 (P ) := 1 + c1ηλ2 (M). Then
we have,

∣∣λ1 (P )− 1− c1ηλ1 − c2η2λ2
1
∣∣ = |λ1 (P )− P1,1| ≤

c3c5

c4
η2λ2

1

(
1− θ

θ

)
(A.20)

∣∣λ2 (P )− 1− c1ηλ2 − c4η2λ2 Tr (Σ)
∣∣ = |λ2 (P )− P2,2| ≤

c3c5

c4
η2λ2

1

(
1− θ

θ

)
(A.21)

We then use the result from [Wil92] to compute P n and αn, βn. To compute P n, we first compute
the matrices X and Y -

X = P − λ2 (P ) I

λ1 (P )− λ2 (P ) = 1
λ1 (P )− λ2 (P )

(
P1,1 − λ2 (P ) P1,2

P2,1 P2,2 − λ2 (P )

)
,

Y = P − λ1 (P ) I

λ2 (P )− λ1 (P ) = 1
λ1 (P )− λ2 (P )

(
λ1 (P )− P1,1 −P1,2
−P2,1 λ1 (P )− P2,2

)
Then, P n = λ1 (P )n

X + λ2 (P )n
Y , which gives

P n =
(

P1,1an − bn P1,2an

P2,1an P2,2an − bn

)
where

an :=
(

λ1 (P )n − λ2 (P )n

λ1 (P )− λ2 (P )

)
, bn :=

(
λ1 (P )n

λ2 (P )− λ1 (P ) λ2 (P )n

λ1 (P )− λ2 (P )

)

Therefore, for y0 =
[

α0
β0

]
, we have

αn = eT
1 P ny0 = (α0P1,1 + β0P1,2)

(
λ1 (P )n − λ2 (P )n

λ1 (P )− λ2 (P )

)
− α0λ1 (P ) λ2 (P )

(
λ1 (P )n−1 − λ2 (P )n−1

λ1 (P )− λ2 (P )

)
,

(A.22)

βn = eT
2 P ny0 = (α0P2,1 + β0P2,2)

(
λ1 (P )n − λ2 (P )n

λ1 (P )− λ2 (P )

)
− β0λ1 (P ) λ2 (P )

(
λ1 (P )n−1 − λ2 (P )n−1

λ1 (P )− λ2 (P )

)
(A.23)
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Therefore, using Eq A.20 and Eq A.21,

αn ≤ α0λ1 (P )n +
(

β0P1,2 + α0
c3c5

c4
η2λ2

1

(
1− θ

θ

))(
λ1 (P )n − λ2 (P )n

λ1 (P )− λ2 (P )

)
= α0λ1 (P )n +

(
β0c3η2λ1λ2 + α0

c3c5

c4
η2λ2

1

(
1− θ

θ

))(
λ1 (P )n − λ2 (P )n

λ1 (P )− λ2 (P )

)
, (A.24)

βn ≤ β0λ2 (P )n +
(

α0P2,1 + β0
c3c5

c4
η2λ2

1

(
1− θ

θ

))(
λ1 (P )n − λ2 (P )n

λ1 (P )− λ2 (P )

)
= β0λ2 (P )n +

(
α0c5η2λ1 Tr (Σ) + β0

c3c5

c4
η2λ2

1

(
1− θ

θ

))(
λ1 (P )n − λ2 (P )n

λ1 (P )− λ2 (P )

)
(A.25)

Recall that using Eq A.20 and Eq A.21

|λ1 (P )− λ2 (P ) | ≥ |P1,1 − P2,2|−
2c3c5

c4
η2λ2

1

(
1− θ

θ

)
= c1η

(
(λ1 − λ2)− xηλ2 Tr (Σ) + ηuλ2

1
)
− 2c3c5

c4
η2λ2

1

(
1− θ

θ

)
= c1θη (λ1 − λ2)− 2c3c5

c4
η2λ2

1

(
1− θ

θ

)
≥ 1

2c1θη (λ1 − λ2)

Substituting in Eq A.24 and Eq A.25 we have,

αn ≤ λ1 (P )n

[
α0 + ηλ1

(
2c3λ1

c1θ (λ1 − λ2)

)(
β0 + α0

c5

c4

(
1− θ

θ

))]
,

βn ≤ β0λ2 (P )n +
[
ηλ1

(
2c5λ1

c1θ (λ1 − λ2)

)(
α0

Tr (Σ)
λ1

+ β0
c3

c4

(
1− θ

θ

))]
λ1 (P )n

Hence proved.

Lemma A.2.6. Let U ∈ Rd×m then, for all t > 0, under subgaussianity (Definition 2.1) and the
step-size η satisfying (1− θ) (λ1 − λ2) + 2L4σ4ηλ2

1 = 2L4σ4ηλ2 Tr (Σ) for θ ∈
( 1

2 , 1
)

then we
have

λ1E
[
UT BT

n v1vT
1 BnU

]
≤ γn

1

[
α0 + ηλ1

(
2λ1

θ (λ1 − λ2)

)(
β0 + α0

(
1− θ

θ

))]
,

E
[
Tr
(
UT BT

n V⊥Λ2V T
⊥ BnU

)]
≤ β0γn

2 +
[
ηλ1

(
2λ1

θ (λ1 − λ2)

)(
α0

Tr (Σ)
λ1

+ β0

(
1− θ

θ

))]
γn

1

where Bn is defined in Eq 3, α0 = λ1vT
1 UUT v1, β0 = Tr

(
UT V⊥Λ2V T

⊥ U
)

and

∣∣γ1 − 1− 2ηλ1 − 4L4σ4η2λ2
1
∣∣ ≤ 4L4σ4η2λ2

1

(
1− θ

θ

)
∣∣γ2 − 1− 2ηλ2 − 4L4σ4η2λ2 Tr (Σ)

∣∣ ≤ 4L4σ4η2λ2
1

(
1− θ

θ

)

Proof. Let αn := λ1E
[
Tr
(
vT

1 BnUUT BT
n v1

)]
, βn := E

[
Tr
(
UT BT

n V⊥Λ2V T
⊥ BnU

)]
such that

αn + βn = E
[
Tr
(
UT BT

n ΣBnU
)]
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Define An := XnXT
n and let Fn denote the filtration for observations i ∈ [n]. Then,

αn = λ1E
[
vT

1 BnUUT BT
n v1

]
= λ1E

[
vT

1 (I + ηAn) Bn−1UUT BT
n−1 (I + ηAn) v1

]
= αn−1 + 2ηλ1E

[
vT

1 AnBn−1UUT BT
n−1v1

]
+ η2λ1E

[
vT

1 AnBn−1UUT BT
n−1Anv1

]
= αn−1 + 2ηλ1E

[
vT

1 ΣBn−1UUT BT
n−1v1

]
+ η2λ1E

[(
vT

1 XnXT
n v1

) (
XT

n Bn−1UUT BT
n−1Xn

)]
= αn−1 (1 + 2ηλ1) + η2λ1E

[(
vT

1 XnXT
n v1

) (
XT

n Bn−1UUT BT
n−1Xn

)]
= αn−1 (1 + 2ηλ1) + η2E

[
E
[(

vT
1 XnXT

n v1
) (

XT
n Bn−1UUT BT

n−1Xn

) ∣∣∣∣Fn−1

]]
≤ αn−1 (1 + 2ηλ1) + η2λ1E

[√
E
[(

vT
1 XnXT

n v1
)2
∣∣∣∣Fn−1

]
E
[(

XT
n Bn−1UUT BT

n−1Xn

)2
∣∣∣∣Fn−1

]]

= αn−1 (1 + 2ηλ1) + η2λ1E

[√
E
[(

XT
n v1vT

1 Xn

)2
∣∣∣∣Fn−1

]
E
[
(XT

n Bn−1UUT Bn−1Xn)2
∣∣∣∣Fn−1

]]
≤ αn−1 (1 + 2ηλ1) + 4η2L4σ4λ1 Tr

(
Σ, v1vT

1
)
E
[
Tr
(
Σ, Bn−1UUT BT

n−1
)]

, using Lemma A.2.2 with p = 2
= αn−1 (1 + 2ηλ1) + 4η2L4σ4λ2

1
(
E
[
Tr
(
λ1v1vT

1 + V⊥Λ2V T
⊥ , Bn−1UUT BT

n−1
)])

=
(
1 + 2ηλ1 + 4η2L4σ4λ2

1
)

αn−1 + 4η2L4σ4λ2
1βn−1 (A.26)

and similarly,

βn = E
[
Tr
(
UT BT

n V⊥Λ2V T
⊥ BnU

)]
= E

[
Tr
(

Λ
1
2
2 V T

⊥ BnUUT BT
n V⊥Λ

1
2
2

)]
= E

[
Tr
(

Λ
1
2
2 V T

⊥ Bn−1UUT BT
n−1V⊥Λ

1
2
2

)]
+ 2ηE

[
Tr
(

Λ
1
2
2 V T

⊥ AnBn−1UUT BT
n−1V⊥Λ

1
2
2

)]
+

+ η2E
[
Tr
(

Λ
1
2
2 V T

⊥ AnBn−1UUT BT
n−1AnV⊥Λ

1
2
2

)]
= βn−1 + 2ηE

[
Tr
(

Λ
1
2
2 V T

⊥ ΣBn−1UUT BT
n−1V⊥Λ

1
2
2

)]
+ η2E

[(
XT

n V⊥Λ2V T
⊥ Xn

) (
XT

n Bn−1UUT BT
n−1Xn

)]
= βn−1 + 2ηE

[
Tr
(
Λ2

2V T
⊥ ΣBn−1UUT BT

n−1V⊥
)]

+ η2E
[
E
[(

XT
n V⊥Λ2V T

⊥ Xn

) (
XT

n Bn−1UUT BT
n−1Xn

) ∣∣∣∣Fn−1

]]
≤ (1 + 2ηλ2) βn−1 + η2E

[√
E
[(

XT
n V⊥Λ2V T

⊥ Xn

)2
∣∣∣∣Fn−1

]
E
[(

XT
n Bn−1UUT BT

n−1Xn

)2
∣∣∣∣Fn−1

]]
≤ (1 + 2ηλ2) βn−1 + 4η2L4σ4 Tr

(
ΣV⊥Λ2V T

⊥
)
E
[
Tr
(
ΣBn−1UUT BT

n−1
)]

, using Lemma A.2.2 with p = 2
=
(
1 + 2ηλ2 + 4η2L4σ4 Tr

(
Λ2

2
))

βn−1 + 4η2L4σ4 Tr
(
Λ2

2
)

αn−1

≤
(
1 + 2ηλ2 + 4η2L4σ4λ2 Tr (Λ2)

)
βn−1 + 4η2L4σ4 Tr

(
Λ2

2
)

αn−1 (A.27)

Writing the recursions in a matrix form, we have(
αn

βn

)
=
(

1 + 2ηλ1 + 4η2L4σ4λ2
1 4η2L4σ4λ2

1
4η2L4σ4 Tr

(
Λ2

2
)

1 + 2ηλ2 + 4η2L4σ4λ2 Tr (Λ2)

)(
αn−1
βn−1

)
(A.28)

The result then follows by using Lemma A.2.5.

Lemma A.2.7. Let U ∈ Rd×m then, for all t > 0, under subgaussianity (Definition 2.1) and the
step-size η satisfying (1− θ) (λ1 − λ2) + 2L4σ4ηλ2

1 = 2L4σ4ηλ2 Tr (Σ) for θ ∈
( 1

2 , 1
)

then we
have

E
[
vT

1 BnUUT BT
n v1

]
≤ γn

1

[
α0 + ηλ1

(
2λ1

θ (λ1 − λ2)

)(
β0 + α0

(
1− θ

θ

))]
,

E
[
Tr
(
V T

⊥ BnUUT BT
n V⊥

)]
≤ β0γn

2 +
[
ηλ1

(
2λ1

θ (λ1 − λ2)

)(
α0

Tr (Σ)
λ1

+ β0

(
1− θ

θ

))]
γn

1
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where Bn is defined in Eq 3, α0 = vT
1 UUT v1, β0 = Tr

(
V T

⊥ UUT V⊥
)

and∣∣γ1 − 1− 2ηλ1 − 4L4σ4η2λ2
1
∣∣ ≤ 4L4σ4η2λ2

1

(
1− θ

θ

)
∣∣γ2 − 1− 2ηλ2 − 4L4σ4η2λ2 Tr (Σ)

∣∣ ≤ 4L4σ4η2λ2
1

(
1− θ

θ

)
Proof. Let αn := E

[
Tr
(
vT

1 BnUUT BT
n v1

)]
, βn := E

[
Tr
(
V T

⊥ BnUUT BT
n V⊥

)]
. Define An :=

XnXT
n and let Fn denote the filtration for observations i ∈ [n]. Then,

αn = E
[
vT

1 BnUUT BT
n v1

]
= E

[
vT

1 (I + ηAn) Bn−1UUT BT
n−1 (I + ηAn) v1

]
= αn−1 + 2ηE

[
vT

1 AnBn−1UUT BT
n−1v1

]
+ η2E

[
vT

1 AnBn−1UUT BT
n−1Anv1

]
= αn−1 + 2ηE

[
vT

1 ΣBn−1UUT BT
n−1v1

]
+ η2E

[(
vT

1 XnXT
n v1

) (
XT

n Bn−1UUT BT
n−1Xn

)]
= αn−1 (1 + 2ηλ1) + η2E

[(
vT

1 XnXT
n v1

) (
XT

n Bn−1UUT BT
n−1Xn

)]
= αn−1 (1 + 2ηλ1) + η2E

[
E
[(

vT
1 XnXT

n v1
) (

XT
n Bn−1UUT BT

n−1Xn

) ∣∣∣∣Fn−1

]]
≤ αn−1 (1 + 2ηλ1) + η2E

[√
E
[(

vT
1 XnXT

n v1
)2
∣∣∣∣Fn−1

]
E
[(

XT
n Bn−1UUT BT

n−1Xn

)2
∣∣∣∣Fn−1

]]

= αn−1 (1 + 2ηλ1) + η2E

[√
E
[(

XT
n v1vT

1 Xn

)2
∣∣∣∣Fn−1

]
E
[
(XT

n Bn−1UUT Bn−1Xn)2
∣∣∣∣Fn−1

]]
≤ αn−1 (1 + 2ηλ1) + 4η2L4σ4 Tr

(
Σ, v1vT

1
)
E
[
Tr
(
Σ, Bn−1UUT BT

n−1
)]

, using Lemma A.2.2 with p = 2
= αn−1 (1 + 2ηλ1) + 4η2L4σ4λ1

(
E
[
Tr
(
λ1v1vT

1 + V⊥Λ2V T
⊥ , Bn−1UUT BT

n−1
)])

≤
(
1 + 2ηλ1 + 4η2L4σ4λ2

1
)

αn−1 + 4η2L4σ4λ1λ2βn−1 (A.29)

and similarly,

βn = E
[
Tr
(
V T

⊥ BnUUT BT
n V⊥

)]
= E

[
Tr
(
V T

⊥ (I + ηAn) Bn−1UUT BT
n−1 (I + ηAn) V⊥

)]
= E

[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)]
+ 2ηE

[
Tr
(
V T

⊥ AnBn−1UUT BT
n−1V⊥

)]
+

+ η2E
[
Tr
(
V T

⊥ AnBn−1UUT BT
n−1AnV⊥

)]
= βn−1 + 2ηE

[
Tr
(
V T

⊥ ΣBn−1UUT BT
n−1V⊥

)]
+ η2E

[(
XT

n V⊥V T
⊥ Xn

) (
XT

n Bn−1UUT BT
n−1Xn

)]
= βn−1 + 2ηE

[
Tr
(
V T

⊥ ΣBn−1UUT BT
n−1V⊥

)]
+ η2E

[
E
[(

XT
n V⊥V T

⊥ Xn

) (
XT

n Bn−1UUT BT
n−1Xn

) ∣∣∣∣Fn−1

]]
≤ (1 + 2ηλ2) βn−1 + η2E

[√
E
[(

XT
n V⊥V T

⊥ Xn

)2
∣∣∣∣Fn−1

]
E
[(

XT
n Bn−1UUT BT

n−1Xn

)2
∣∣∣∣Fn−1

]]
≤ (1 + 2ηλ2) βn−1 + 4η2L4σ4 Tr

(
ΣV⊥V T

⊥
)
E
[
Tr
(
ΣBn−1UUT BT

n−1
)]

, using Lemma A.2.2 with p = 2
=
(
1 + 2ηλ2 + 4η2L4σ4λ2 Tr (Λ2)

)
βn−1 + 4η2L4σ4λ1 Tr (Λ2) αn−1 (A.30)

The result then follows by using Lemma A.2.5.

Lemma A.2.8. For all t > 0, under subgaussianity (Definition 2.1), let U ∈ Rd×m. Let the step-size
η be set according to Lemma A.2.4 then we have,

E
[(

vT
1 BnUUT BT

n v1
)2] ≤ µ2n

1

[
α0 + ηλ1

(
2λ1

θ (λ1 − λ2)

)(
β0 + α0

(
1− θ

θ

))]2
,

E
[
Tr
(
V T

⊥ BnUUT BT
n V⊥

)2] ≤ (β0µn
2 +

[
ηλ1

(
2λ1

θ (λ1 − λ2)

)(
α0

Tr (Σ)
λ1

+ β0

(
1− θ

θ

))]
µn

1

)2
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where Bn is defined in Eq 3, α0 = vT
1 UUT v1, β0 = Tr

(
V T

⊥ UUT V⊥
)

and

∣∣µ1 − 1− 2ηλ1 − 50η2L4σ4λ2
1
∣∣ ≤ 50L4σ4η2λ2

1

(
1− θ

θ

)
∣∣µ2 − 1− 2ηλ2 − 50η2L4σ4λ2 Tr (Σ)

∣∣ ≤ 50L4σ4η2λ2
1

(
1− θ

θ

)

Proof. Let αn := E
[(

vT
1 BnUUT BT

n v1
)2
]
, βn := E

[
Tr
(
V T

⊥ BnUUT BT
n V⊥

)2
]
. Then, using

Lemma A.2.9 we have,

αn ≤
(
1 + 4ηλ1 + 100η2L4σ4λ2

1
)

αn−1 + 100η2L4σ4λ2
1
√

αn−1βn−1 + 600η4L8σ8λ4
1βn−1

and using Lemma A.2.10 we have,

βn ≤
(
1 + 4ηλ2 + 100η2L4σ4λ2 Tr (Σ)

)
βn−1 + 100η2L2σ2λ1 Tr (Σ)

√
αn−1βn−1

+ 600η2L4σ4λ2
1αn−1

Define an := √αn and bn :=
√

βn. Then using
√

1 + x ≤ 1 + x
2 , we have

an ≤
√

1 + 4ηλ1 + 100η2L4σ4λ2
1an−1 + 25η2L2σ2λ2

1bn−1,

≤
(
1 + 2ηλ1 + 50η2L4σ4λ2

1
)

an−1 + 25η2L2σ2λ2
1bn−1

bn ≤
√

1 + 4ηλ2 + 100η2L4σ4λ2 Tr (Σ)bn−1 + 25η2L2σ2λ2
1an−1,

≤
(
1 + 2ηλ2 + 50η2L4σ4λ2 Tr (Σ)

)
bn−1 + 25η2L2σ2λ2

1an−1

The result then follows from Lemma A.2.5.

Lemma A.2.9. For all t > 0, under subgaussianity (Definition 2.1), let U ∈ Rd×m, αn :=
E
[(

vT
1 BnUUT BT

n v1
)2
]
, βn := E

[
Tr
(
V T

⊥ BnUUT BT
n V⊥

)2
]

and ηL2σ2λ1 ≤ 1
4 then

αn ≤
(
1 + 4ηλ1 + 100η2L4σ4λ2

1
)

αn−1 + 100η2L4σ4λ2
1
√

αn−1βn−1 + 600η4L8σ8λ4
1βn−1

where Bn is defined in Eq 3.

Proof. Let An := XnXT
n and Fn denote the filtration for observations i ∈ [n]. Then,

αn = E
[(

vT
1 BnUUT BT

n v1
)2]

= E
[(

vT
1 Bn−1UUT BT

n−1v1 + 2ηvT
1 AnBn−1UUT BT

n−1v1 + η2vT
1 AnBn−1UUT BT

n−1Anv1
)2]

= αn−1 (1 + 4ηλ1) + 4η2 E
[(

vT
1 AnBn−1UUT BT

n−1v1
)2]︸ ︷︷ ︸

T1

+ 2η2 E
[(

vT
1 Bn−1UUT BT

n−1v1
) (

vT
1 AnBn−1UUT BT

n−1Anv1
)]︸ ︷︷ ︸

T2

+ 4η3 E
[(

vT
1 AnBn−1UUT BT

n−1v1
) (

vT
1 AnBn−1UUT BT

n−1Anv1
)]︸ ︷︷ ︸

T3

+ η4 E
[(

vT
1 AnBn−1UUT BT

n−1Anv1
)2]︸ ︷︷ ︸

T4

(A.31)
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For T1,

T1 = E
[(

vT
1 AnBn−1UUT BT

n−1v1
)2]

= E
[(

XT
n v1vT

1 Xn

) (
XT

n Bn−1UUT BT
n−1v1vT

1 Bn−1UUT BT
n−1Xn

)]
= E

[
E
[(

XT
n v1vT

1 Xn

) (
XT

n Bn−1UUT BT
n−1v1vT

1 Bn−1UUT BT
n−1Xn

) ∣∣∣∣Fn−1

]]
≤ E

[√
E
[(

XT
n v1vT

1 Xn

)2
∣∣∣∣Fn−1

]
E
[(

XT
n Bn−1UUT BT

n−1v1vT
1 Bn−1UUT BT

n−1Xn

)2
∣∣∣∣Fn−1

]]
≤ 4L4σ4 Tr

(
Σv1vT

1
)
E
[
Tr
(
ΣBn−1UUT BT

n−1v1vT
1 Bn−1UUT BT

n−1
)]

, using Lemma A.2.2 with p = 2
= 4L4σ4λ2

1αn−1 + 4L4σ4λ1E
[
Tr
(
V⊥Λ2V T

⊥ Bn−1UUT BT
n−1v1vT

1 Bn−1UUT BT
n−1
)]

≤ 4L4σ4λ2
1αn−1 + 4L4σ4λ1λ2E

[
Tr
(
V⊥V T

⊥ Bn−1UUT BT
n−1v1vT

1 Bn−1UUT BT
n−1
)]

= 4L4σ4λ2
1αn−1 + 4L4σ4λ1λ2E

[
vT

1 Bn−1UUT BT
n−1V⊥V T

⊥ Bn−1UUT BT
n−1v1

]
≤ 4L4σ4λ2

1αn−1 + 4L4σ4λ1λ2E
[(

vT
1 Bn−1UUT BT

n−1v1
)

Tr
(
UT BT

n−1V⊥V T
⊥ Bn−1U

)]
≤ 4L4σ4λ2

1αn−1 + 4L4σ4λ1λ2
√

αn−1βn−1

For T2,

T2 = E
[(

vT
1 Bn−1UUT BT

n−1v1
) (

vT
1 AnBn−1UUT BT

n−1Anv1
)]

= E
[(

vT
1 Bn−1UUT BT

n−1v1
)
E
[(

vT
1 AnBn−1UUT BT

n−1Anv1
)
|Fn−1

]]
= E

[(
vT

1 Bn−1UUT BT
n−1v1

)
E
[(

XT
n v1vT

1 Xn

) (
XT

n Bn−1UUT BT
n−1Xn

)
|Fn−1

]]
≤ E

[(
vT

1 Bn−1UUT BT
n−1v1

)√
E
[(

XT
n v1vT

1 Xn

)2
∣∣∣∣Fn−1

]
E
[(

XT
n Bn−1UUT BT

n−1Xn

)2 |Fn−1

]]
≤ 4L4σ4E

[(
vT

1 Bn−1UUT BT
n−1v1

)
Tr
(
Σv1vT

1
)

Tr
(
ΣBn−1UUT BT

n−1
)]

, using Lemma A.2.2 with p = 2
= 4L4σ4λ2

1αn−1 + 4L4σ4λ1E
[(

vT
1 Bn−1UUT BT

n−1v1
)

Tr
(
V⊥Λ2V T

⊥ Bn−1UUT BT
n−1
)]

≤ 4L4σ4λ2
1αn−1 + 4L4σ4λ1λ2E

[(
vT

1 Bn−1UUT BT
n−1v1

)
Tr
(
V⊥V T

⊥ Bn−1UUT BT
n−1
)]

≤ 4L4σ4λ2
1αn−1 + 4L4σ4λ1λ2

√
αn−1βn−1

For T3,

T3 = E
[(

vT
1 AnBn−1UUT BT

n−1v1
) (

vT
1 AnBn−1UUT BT

n−1Anv1
)]

= E
[(

XT
n v1

)3 (
XT

n Bn−1UUT BT
n−1v1

) (
XT

n Bn−1UUT BT
n−1Xn

)]
≤ E

[(
XT

n v1vT
1 Xn

) 3
2
(
XT

n Bn−1UUT BT
n−1Xn

) 3
2
∥∥UT BT

n−1v1
∥∥

2

]
= E

[
E
[(

XT
n v1vT

1 Xn

) 3
2
(
XT

n Bn−1UUT BT
n−1Xn

) 3
2

∣∣∣∣Fn−1

] ∥∥UT BT
n−1v1

∥∥
2

]
≤ E

[√
E
[(

XT
n v1vT

1 Xn

)3
∣∣∣∣Fn−1

]√
E
[(

XT
n Bn−1UUT BT

n−1Xn

)3
∣∣∣∣Fn−1

] ∥∥UT BT
n−1v1

∥∥
2

]
≤
(
3L2σ2)3

λ
3
2
1 E
[
Tr
(
Bn−1UUT BT

n−1Σ
) 3

2
(
vT

1 Bn−1UUT BT
n−1v1

) 1
2
]

, using Lemma A.2.2 with p = 3

≤ 2
(
3L2σ2)3

λ
3
2
1

(
λ

3
2
1 αn−1 + λ

3
2
2 E
[(

vT
1 Bn−1UUT BT

n−1v1
) 1

2 Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

) 3
2
])
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= 2
(
3L2σ2)3

λ3
1αn−1 + 2

(
3L2σ2)3×

E


√

λ1λ2
∥∥UT BT

n−1v1
∥∥2

2 Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)√
3ηL2σ2

√
3ηL2σ2λ1λ2 Tr

(
V T

⊥ Bn−1UUT BT
n−1V⊥

)
≤ 2

(
3L2σ2)3

λ3
1αn−1 +

(
3L2σ2)3 E

[
λ1λ2vT

1 Bn−1UUT BT
n−1v1 Tr

(
V T

⊥ Bn−1UUT BT
n−1V⊥

)
3ηL2σ2

]
+ η

(
3L2σ2)4 E

[
λ2

1λ2
2 Tr

(
V T

⊥ Bn−1UUT BT
n−1V⊥

)2]
= 2

(
3L2σ2)3

λ3
1αn−1 +

(
3L2σ2)2

λ1λ2

η
E
[
vT

1 Bn−1UUT BT
n−1v1 Tr

(
V T

⊥ Bn−1UUT BT
n−1V⊥

)]
+ η

(
3L2σ2)4

λ2
1λ2

2E
[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)2]
≤ 2

(
3L2σ2)3

λ3
1αn−1 +

(
3L2σ2)2

λ1λ2

η

√
αn−1βn−1 + η

(
3L2σ2)4

λ2
1λ2

2βn−1

For T4,

T4 = E
[(

vT
1 AnBn−1UUT BT

n−1Anv1
)2]

= E
[(

XT
n v1vT

1 Xn

)2 (
XT

n Bn−1UUT BT
n−1Xn

)2]
= E

[
E
[(

XT
n v1vT

1 Xn

)2 (
XT

n Bn−1UUT BT
n−1Xn

)2
∣∣∣∣Fn−1

]]
≤
(
4L2σ2)4 E

[√
E
[(

vT
1 XnXT

n v1
)4
∣∣∣∣Fn−1

]
E
[
Tr
(
Bn−1UUT BT

n−1Σ
)4
∣∣∣∣Fn−1

]]

≤
(
4L2σ2)4 E

[√(
vT

1 Σv1
)4 E

[
Tr
(
Bn−1UUT BT

n−1Σ
)4
∣∣∣∣Fn−1

]]
, using Lemma A.2.2 with p = 4

=
(
4L2σ2)4

λ2
1E
[√(

Tr
(
Bn−1UUT BT

n−1Σ
))4
]

=
(
4L2σ2)4

λ2
1E
[(

Tr
(
Bn−1UUT BT

n−1V⊥Λ2V T
⊥
)

+ λ1 Tr
(
Bn−1UUT BT

n−1v1vT
1
))2]

≤ 2
(
4L2σ2)4

λ2
1
(
λ2

2βn−1 + λ2
1αn−1

)
Substituting in Eq A.31 along with using ηL2σ2λ1 ≤ 1

4 we have,

αn ≤
(
1 + 4ηλ1 + 100η2L4σ4λ2

1
)

αn−1 + 100η2L4σ4λ2
1
√

αn−1βn−1 + 600η4L8σ8λ4
1βn−1

Hence proved.

Lemma A.2.10. For all t > 0, under subgaussianity (Definition 2.1), let U ∈ Rd×m,
αn := E

[(
vT

1 BnUUT BT
n v1

)2
]
, βn := E

[
Tr
(
V T

⊥ BnUUT BT
n V⊥

)2
]

and ηL2σ2 ≤

1
4 min

{
1

λ1
, 1

Tr(Σ) , 1√
λ1 Tr(Σ)

}
then

βn ≤
(
1 + 4ηλ2 + 100η2 log (n) L4σ4λ2 Tr (Σ)

)
βn−1 + 100η2 log (n) L2σ2λ1 Tr (Σ)

√
αn−1βn−1

+ 600η2 log2 (n) L4σ4λ2
1αn−1

where Bn is defined in Eq 3.

Proof. Let An := XnXT
n and Fn denote the filtration for observations i ∈ [n].

Let
an−1 := Tr

(
V T

⊥ Bn−1UUT BT
n−1V⊥

)
, bn−1 := Tr

(
V T

⊥ AnBn−1UUT BT
n−1V⊥

)
,

cn−1 := Tr
(
V T

⊥ AnBn−1UUT BT
n−1AnV⊥

)
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Then,

βn

= E
[
Tr
(
V T

⊥ BnUUT BT
n V⊥

)2]
= E

[(
an−1 + 2ηbn−1 + η2cn−1

)2
]

≤ βn−1 (1 + 4ηλ2) + 4η2 E
[
Tr
(
V T

⊥ AnBn−1UUT BT
n−1V⊥

)2]︸ ︷︷ ︸
T1

+ 2η2 E
[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)
Tr
(
V T

⊥ AnBn−1UUT BT
n−1AnV⊥

)]︸ ︷︷ ︸
T2

+ 4η3 E
[
Tr
(
V T

⊥ AnBn−1UUT BT
n−1V⊥

)
Tr
(
V T

⊥ AnBn−1UUT BT
n−1AnV⊥

)]︸ ︷︷ ︸
T3

+ η4 E
[
Tr
(
V T

⊥ AnBn−1UUT BT
n−1AnV⊥

)2]︸ ︷︷ ︸
T4

(A.32)

For T1,

T1 = E
[
Tr
(
V T

⊥ AnBn−1UUT BT
n−1V⊥

)2]
= E

[(
XT

n Bn−1UUT BT
n−1V⊥V T

⊥ Xn

)2]
≤ E

[∥∥V T
⊥ Bn−1UUT BT

n−1Xn

∥∥2
2

∥∥V T
⊥ Xn

∥∥2
2

]
= E

[
E
[∥∥V T

⊥ Bn−1UUT BT
n−1Xn

∥∥2
2

∥∥V T
⊥ Xn

∥∥2
2

∣∣∣∣Fn−1

]]
≤ E

[√
E
[∥∥V T

⊥ Bn−1UUT BT
n−1Xn

∥∥2
2

∣∣∣∣Fn−1

]
E
[∥∥V T

⊥ Xn

∥∥2
2

∣∣∣∣Fn−1

]]
≤
(
2L2σ2)2 E

[
Tr
(
V T

⊥ Bn−1UUT BT
n−1ΣBn−1UUT BT

n−1V⊥
)

Tr
(
V T

⊥ ΣV⊥
)]

, using Lemma A.2.2 with p = 2

≤
(
2L2σ2)2 E

[
Tr
(
V T

⊥ Bn−1UUT BT
n−1

(
λ1v1vT

1 + V⊥Λ2V T
⊥
)

Bn−1UUT BT
n−1V⊥

)
Tr
(
V T

⊥ ΣV⊥
)]

≤
(
2L2σ2)2 Tr (Λ2)

(
λ2βn−1 + λ1

√
αn−1βn−1

)
For T2,

T2 = E
[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)
Tr
(
V T

⊥ AnBn−1UUT BT
n−1AnV⊥

)]
= E

[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

) (
XT

n Bn−1UUT BT
n−1Xn

) (
XT

n V⊥V T
⊥ Xn

)]
= E

[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)
E
[(

XT
n Bn−1UUT BT

n−1Xn

) (
XT

n V⊥V T
⊥ Xn

) ∣∣∣∣Fn−1

]]
≤ E

[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)√
E
[(

XT
n Bn−1UUT BT

n−1Xn

)2
∣∣∣∣Fn−1

]
E
[(

XT
n V⊥V T

⊥ Xn

)2
∣∣∣∣Fn−1

]]
(i)
≤
(
2L2σ2)2 E

[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)
Tr
(
UT BT

n−1ΣBn−1U
)

Tr
(
V T

⊥ ΣV⊥
)]

,

=
(
2L2σ2)2 Tr (Λ2)E

[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)
Tr
(
UT BT

n−1
(
λ1v1vT

1 + V⊥Λ2V T
⊥
)

Bn−1U
)]

≤
(
2L2σ2)2 Tr (Λ2)

(
λ2βn−1 + λ1

√
αn−1βn−1

)
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where in (i) we used Lemma A.2.2 with p = 2. For T3,

T3 = E
[
Tr
(
V T

⊥ AnBn−1UUT BT
n−1V⊥

)
Tr
(
V T

⊥ AnBn−1UUT BT
n−1AnV⊥

)]
= E

[(
XT

n Bn−1UUT BT
n−1V⊥V T

⊥ Xn

) (
XT

n Bn−1UUT BT
n−1Xn

) (
XT

n V⊥V T
⊥ Xn

)]
≤ E

[∥∥UT BT
n−1Xn

∥∥3
2

∥∥V T
⊥ Xn

∥∥3
2

∥∥UT BT
n−1V⊥

∥∥
2

]
= E

[
E
[∥∥UT BT

n−1Xn

∥∥3
2

∥∥V T
⊥ Xn

∥∥3
2

∣∣∣∣Fn−1

] ∥∥UT BT
n−1V⊥

∥∥
2

]
≤ E

[√
E
[∥∥UT BT

n−1Xn

∥∥6
2

∣∣∣∣Fn−1

]
E
[∥∥V T

⊥ Xn

∥∥6
2

∣∣∣∣Fn−1

] ∥∥UT BT
n−1V⊥

∥∥
2

]

= E

[√
E
[(

XT
n Bn−1UUT BT

n−1Xn

)3
∣∣∣∣Fn−1

]
E
[(

XT
n V⊥V T

⊥ Xn

)3
∣∣∣∣Fn−1

] ∥∥UT BT
n−1V⊥

∥∥
2

]
≤
(
3L2σ2)3 E

[
Tr
(
UT BT

n−1ΣBn−1U
) 3

2 Tr
(
V T

⊥ ΣV⊥
) 3

2
∥∥UT BT

n−1V⊥
∥∥

2

]
, using Lemma A.2.2 with p = 3

=
(
3L2σ2)3 Tr (Λ2)

3
2 E
[
Tr
(
UT BT

n−1ΣBn−1U
) 3

2
∥∥UT BT

n−1V⊥
∥∥

2

]
≤ 2

(
3L2σ2)3 Tr (Λ2)

3
2 E
[(

λ
3
2
1
(
vT

1 Bn−1UUT BT
n−1v1

) 3
2 + λ

3
2
2 Tr

(
V T

⊥ Bn−1UUT BT
n−1V⊥

) 3
2
)∥∥UT BT

n−1V⊥
∥∥

2

]
≤ 2

(
3L2σ2)3

λ
3
2
1 Tr (Λ2)

3
2 E
[(

vT
1 Bn−1UUT BT

n−1v1
) 3

2 Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

) 1
2
]

+ 2
(
3L2σ2)3

λ
3
2
2 Tr (Λ2)

3
2 E
[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)2]
= 2

(
3L2σ2)3

λ
3
2
1 Tr (Λ2)

3
2 E
[(

vT
1 Bn−1UUT BT

n−1v1
) 3

2 Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

) 1
2
]

+ 2
(
3L2σ2)3

λ
3
2
2 Tr (Λ2)

3
2 E
[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)2]
= 2

(
3L2σ2)3

λ
3
2
1 Tr (Λ2)

3
2 E
[√(

vT
1 Bn−1UUT BT

n−1v1
)

Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

) (
vT

1 Bn−1UUT BT
n−1v1

)]
+ 2

(
3L2σ2)3

λ
3
2
2 Tr (Λ2)

3
2 E
[
Tr
(
V T

⊥ Bn−1UUT BT
n−1V⊥

)2]
≤ 2

(
3L2σ2)2

λ1 Tr (Λ2)2√
αn−1βn−1 + 2

(
3L2σ2)λ2

1 Tr (Λ2) αn−1 + 2
(
3L2σ2)3

λ
3
2
2 Tr (Λ2)

3
2 βn−1

For T4,

T4 = E
[
Tr
(
V T

⊥ AnBn−1UUT BT
n−1AnV⊥

)2]
= E

[(
XT

n Bn−1UUT BT
n−1Xn

)2 (
XT

n V⊥V T
⊥ Xn

)2]
= E

[
E
[(

XT
n Bn−1UUT BT

n−1Xn

)2 (
XT

n V⊥V T
⊥ Xn

)2
∣∣∣∣Fn−1

]]
≤ E

[√
E
[(

XT
n Bn−1UUT BT

n−1Xn

)4
∣∣∣∣Fn−1

]
E
[(

XT
n V⊥V T

⊥ Xn

)4
∣∣∣∣Fn−1

]]
≤
(
4L2σ2)4 E

[
Tr
(
UT BT

n−1ΣBn−1U
)2 Tr

(
V T

⊥ ΣV⊥
)2]

≤
(
4L2σ2)4 Tr (Λ2)2 E

[
Tr
(
UT BT

n−1
(
λ1v1vT

1 + V⊥Λ2V T
⊥
))

Bn−1U
]2

≤ 2
(
4L2σ2)4 Tr (Λ2)2 (

λ2
1αn−1 + λ2

2βn−1
)

Substituting in Eq A.32 along with using ηL2σ2 ≤ 1
4 min

{
1

λ1
, 1

Tr(Σ) , 1√
λ1 Tr(Σ)

}
we have,

βn ≤
(
1 + 4ηλ2 + 100η2L4σ4λ2 Tr (Σ)

)
βn−1 + 100η2L2σ2λ1 Tr (Σ)

√
αn−1βn−1

+ 600η2L4σ4λ2
1αn−1

Hence proved.
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Lemma A.2.11. Let U ∈ Rd×m and u0 ∼ N (0, Id), then for all n ≥ 0 we have

E
[
uT

0 BT
n UUT Bnu0

]
= E

[
vT

1 BT
n UUT Bnv1

]
+ E

[
Tr
(
V T

⊥ BT
n UUT BnV⊥

)]
Proof.

E
[
uT

0 BT
n UUT Bnu0

]
= E

[
Tr
(
uT

0 BT
n UUT Bnu0

)]
= E

[
E
[
Tr
(
UT Bnu0uT

0 BT
n U
)
|Bn

]]
= E

[
Tr
(
UT BnE

[
u0uT

0 |Bn

]
BT

n U
)]

= E
[
Tr
(
UT BnE

[
u0uT

0
]

BT
n U
)]

= E
[
Tr
(
UT BnBT

n U
)]

= E
[
Tr
(
UT Bnv1vT

1 BT
n U
)]

+ E
[
Tr
(
UT BnV⊥V T

⊥ BT
n U
)]

= E
[
vT

1 BT
n UUT Bnv1

]
+ E

[
Tr
(
V T

⊥ BT
n UUT BnV⊥

)]

Lemma A.2.12. Let U ∈ Rd×m and u0 ∼ N (0, Id), then for all n ≥ 0 we have

E
[(

uT
0 BT

n UUT Bnu0
)2] ≤ 6E

[(
vT

1 BT
n UUT Bnv1

)2]+ 6E
[
Tr
(
V T

⊥ BT
n UUT BnV⊥

)2]
Proof. Let the eigendecomposition of BT

n UUT Bn for a fixed Bn be given as PΛP T such that
PP T = P T P = I and Λ ⪰ 0. Denote u0 ≡ u and y := P T u. Therefore,

E
[(

uT
0 BT

n UUT Bnu0
)2] = E

[(
uT PΛP T u

)2]
= E

( d∑
i=1

λiy
2
i

)2
=

d∑
i=1

λ2
iE
[
y4

i

]
+
∑
i ̸=j

λiλjE
[
y2

i y2
j

]
(A.33)

Note that E [y] = P TE [u] = 0, E
[
yyT

]
= P TE

[
uuT

]
P = P T P = I . Therefore, y ∼ N (0, Id).

Therefore, E
[
y4

i

]
= 3 and E

[
y2

i y2
j

]
= E

[
y2

i

]
E
[
y2

j

]
= 1. Therefore,

E
[(

uT
0 BT

n UUT Bnu0
)2] = 3

d∑
i=1

λ2
i +

∑
i̸=j

λiλj (A.34)

Substituting in Eq A.33, we have

E
[(

uT
0 BT

n UUT Bnu0
)2] = 3

d∑
i=1

λ2
i +

∑
i ̸=j

λiλj

≤ 3E

( d∑
i=1

λi

)2
= 3E

[
Tr
(
BT

n UUT Bn

)2]
= 3E

[(
Tr
(
vT

1 BT
n UUT Bnv1

)
+ Tr

(
V T

⊥ BT
n UUT BnV⊥

))2]
≤ 6

(
E
[(

vT
1 BT

n UUT Bnv1
)2]+ E

[
Tr
(
V T

⊥ BT
n UUT BnV⊥

)2])
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A.3 Proofs of entrywise deviation of Oja’s vector

We first state some useful results here. Let a0 = v1 (i)2
, b0 = Tr

(
V T

⊥ eie
T
i V⊥

)
= 1− v1 (i)2. Let

the learning rate, η, be set according to Lemma A.2.4. Note that (1 + x) ≤ exp (x) , ∀x ∈ R. From
Lemma A.2.7, we have

E
[(

vT
1 Bnei

)2] ≤ (1 + 2ηλ1 + 8L4σ4η2λ2
1
)n
[
a0 + ηλ1

(
4λ1

(λ1 − λ2)

)
(b0 + a0)

]
≤ exp

(
2ηnλ1 + 8L4σ4η2nλ2

1
)(

a0 + ηλ1

(
4λ1

(λ1 − λ2)

)
(b0 + a0)

)
,

(A.35)

E
[
Tr
(
V T

⊥ Bneie
T
i BT

n V⊥
)]
≤ b0

(
1 + 2ηλ2 + 4L4σ4η2λ2 Tr (Σ) + 4L4σ4η2λ2

1
)n

+
[
ηλ1

(
4λ1

(λ1 − λ2)

)(
a0

Tr (Σ)
λ1

+ b0

)] (
1 + 2ηλ1 + 8L4σ4η2λ2

1
)n

≤ b0 exp
(
2ηnλ2 + 4L4σ4η2nλ2 Tr (Σ) + 4L4σ4η2nλ2

1
)

+
[
ηλ1

(
4λ1

(λ1 − λ2)

)(
a0

Tr (Σ)
λ1

+ b0

)]
exp

(
2ηnλ1 + 8L4σ4η2nλ2

1
)

(A.36)

Similarly, from Lemma A.2.8 and using (a + b)2 ≤ 2a2 + 2b2, we have

E
[(

vT
1 Bnei

)4] ≤ (1 + 2ηλ1 + 100L4σ4η2λ2
1
)2n
[
a0 + ηλ1

(
4λ1

(λ1 − λ2)

)
(b0 + a0)

]2

≤ exp
(
4ηnλ1 + 200L4σ4η2nλ2

1
) [

a0 + ηλ1

(
4λ1

(λ1 − λ2)

)
(b0 + a0)

]2
,

(A.37)

E
[
Tr
(
V T

⊥ Bneie
T
i BT

n V⊥
)2]

≤ 2b2
0
(
1 + 2ηλ2 + 50η2L4σ4λ2 Tr (Σ) + 50L4σ4η2λ2

1
)2n

+ 2
[
ηλ1

(
2λ1

θ (λ1 − λ2)

)(
a0

Tr (Σ)
λ1

+ b0

(
1− θ

θ

))]2 (
1 + 2ηλ1 + 100L4σ4η2λ2

1
)2n

≤ 2b2
0 exp

(
4ηnλ2 + 100η2nL4σ4λ2 Tr (Σ) + 100L4σ4η2nλ2

1
)

+ 2
[
ηλ1

(
4λ1

(λ1 − λ2)

)(
a0

Tr (Σ)
λ1

+ b0

)]2
exp

(
4ηnλ1 + 200L4σ4η2nλ2

1
)

(A.38)

Finally, noting that (1 + x) ≥ exp
(
x− x2) ∀x ≥ 0, we have

E
[(

vT
1 Bnei

)2] ≥ (E [vT
1 Bnei

])2 = v1 (i)2 (1 + ηλ1)2n ≥ v1 (i)2 exp
(
2ηnλ1 − 2η2nλ2

1
)

(A.39)

Now we are ready to provide proofs of Lemmas 3.11 and 3.12.

Lemma 3.11 (Tail bound in support). Fix a δ ∈ (0.1, 1). Define the event G :=
{
|vT

1 u0|≥ δ√
e

}
and

threshold τn := δ√
2e

mini∈S |v1 (i) |(1 + ηλ1)n. Let the learning rate be set as in Lemma 3.1. Then,
for an absolute constant CH > 0,

∀i ∈ S, P
(
|ri|≤ τn

∣∣∣∣G) ≤ CH

[
ηλ1 log (n) + ηλ1

(
λ1

λ1 − λ2

)
1

v1 (i)2

]
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Proof of Lemma 3.11. Let u0 = av1 + bv⊥ for vT
⊥v1 = 0 and a = uT

0 v1, and b = uT
0 v⊥ ∈ R for

some vector v⊥ orthogonal to v1. Then ∀i ∈ S,

|ri|≤ τn ⇐⇒ r2
i ≤ τ2

n ⇐⇒
(
eT

i Bny0
)2 ≤ τ2

n

⇐⇒ a2 (eT
i Bnv1

)2 + b2 (eT
i Bnv⊥

)2 ≤ τ2
n

=⇒ a2 (eT
i Bnv1

)2 ≤ τ2
n (A.40)

Then,

P
(
|ri|≤ τn

∣∣∣∣G) ≤ P
(

a2 (eT
i Bnv1

)2 ≤ τ2
n

∣∣∣∣G) , using Eq A.40

≤ P
((

eT
i Bnv1

)2 ≤ eτ2
n

δ2

∣∣∣∣G)
= P

((
eT

i Bnv1
)2 ≤ eτ2

n

δ2

)
(A.41)

For convenience of notation, define γn :=
√

e
δ τn and qi := |eT

i Bnv1|. Then,

P
((

eT
i Bnv1

)2 ≤ eτ2
n

δ2

)
= P (qi ≤ γn)

≤ P (|qi − E [qi] |≥ |E [qi] |−γn) ,

= P (|qi − E [qi] |≥ |E [qi] |−γn) ,

≤
E
[
q2

i

]
− E [qi]2

(|E [qi] |−γn)2 , using Chebyshev’s inequality (A.42)

=
E
[(

vT
1 BT

n eie
T
i Bnv1

)]
− E

[
vT

1 BT
n ei

]2(
|E
[
vT

1 BT
n ei

]
|− 1√

2 (mini∈S |v1 (i) |) (1 + ηλ1)n
)2

︸ ︷︷ ︸
Ti

(A.43)

We now bound Ti using Eq A.35 and Eq A.39 as -

Ti ≤
exp

(
2ηnλ1 + 8L4σ4η2nλ2

1
) [

v1 (i)2 + ηλ1

(
4λ1

(λ1−λ2)

)]
− v1 (i)2 (1 + ηλ1)2n(

|v1 (i) |− 1
2 mini∈S |v1 (i) |

)2 (1 + ηλ1)2n

≤
exp

(
2ηnλ1 + 8L4σ4η2nλ2

1
) [

v1 (i)2 + ηλ1

(
4λ1

(λ1−λ2)

)]
− v1 (i)2 exp

(
2ηnλ1 − 2η2nλ2

1
)

(
|v1 (i) |− 1

2 mini∈S |v1 (i) |
)2 exp (2ηnλ1 − 2η2nλ2

1)

=
exp

(
2
(
4L4σ4 + 1

)
η2nλ2

1
) [

v1 (i)2 + ηλ1

(
4λ1

(λ1−λ2)

)]
− v1 (i)2(

|v1 (i) |− 1
2 mini∈S |v1 (i) |

)2

The second inequality follows from the fact that 1 + x ≥ exp(x − x2), for x ≥ 0. Note that for
x ∈ (0, 1), exp x ≤ 1 + 2x. Therefore, for

(
8L4σ4 + 2

)
η2nλ2

1 ≤ 1
4 , we have

Ti ≤

(
exp

(
2
(
4L4σ4 + 1

)
η2nλ2

1
)
− 1
)

v1 (i)2 + 3ηλ1

(
4λ1

(λ1−λ2)

)
(
|v1 (i) |− 1

2 mini∈S |v1 (i) |
)2

≤ 4

4
(
4L4σ4 + 1

)
η2nλ2

1v1 (i)2 + 3ηλ1

(
4λ1

(λ1−λ2)

)
v1 (i)2


= 4

4
(
4L4σ4 + 1

)
η2nλ2

1 +
3ηλ1

(
4λ1

(λ1−λ2)

)
v1 (i)2


The result then follows by using Claim(2) in Lemma A.2.4.
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We next provide the proof of Lemma 3.12.

Lemma 3.12 (Tail bound outside support). Fix a δ ∈ (0.1, 1). Let the learning rate be set as in
Lemma 3.1 and define the threshold τn := δ√

2e
mini∈S |v1 (i) |(1 + ηλ1)n. Then, for mini |v1 (i)| =

Ω̃
(

λ1
λ1−λ2

(
d

n2

) 1
4
)

and an absolute constant CT > 0 we have,

∀i /∈ S, P (|ri|> τn) ≤ CT

η2λ2
1

(
λ1

λ1 − λ2

)2
(

1
δ2 mini∈Shi v1 (i)2

)2


Proof of Lemma 3.12. Note that for i /∈ S, a0 = 0, b0 = 1. Therefore, we have,

E
[(

vT
1 BT

n eie
T
i Bnv1

)2] ≤ exp
(
4ηnλ1 + 200L4σ4η2nλ2

1
) [

ηλ1

(
4λ1

(λ1 − λ2)

)]2
, using Eq A.37,

(A.44)

E
[
Tr
(
V T

⊥ BT
n eie

T
i BnV⊥

)2] ≤ 2 exp
(
4ηnλ2 + 100η2n log (n) L4σ4λ2 Tr (Σ) + 100L4σ4η2nλ2

1
)

+ 2
[
ηλ1

(
4λ1

(λ1 − λ2)

)]2
exp

(
4ηnλ1 + 200L4σ4η2nλ2

1
)

, using Eq A.38

(A.45)

E
[
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n eie

T
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]
≤ exp

(
2ηnλ1 + 8L4σ4η2nλ2

1
)(

ηλ1

(
4λ1

(λ1 − λ2)

))
, using Eq A.35

(A.46)

E
[
Tr
(
V T

⊥ BT
n eie

T
i BnV⊥

)]
≤ exp

(
2ηnλ2 + 4L4σ4η2nλ2 Tr (Σ) + 4L4σ4η2nλ2

1
)

+
[
ηλ1

(
4λ1

(λ1 − λ2)

)]
exp

(
2ηnλ1 + 8L4σ4η2nλ2

1
)

, using Eq A.36

(A.47)

δ2

2e

(
min
i∈S

v1 (i)2
)

(1 + ηλ1)n ≥ δ2

2e

(
min
i∈S

v1 (i)2
)

exp
(
2ηnλ1 − 2η2nλ2

1
)

using Eq A.39

(A.48)

Define

gi := τ2
n − E

[
r2

i

]
(A.49)

Note that using Assumptions 2,

16eηλ1

(
4λ1

(λ1−λ2)

)
mini∈S v1 (i)2 ≤ 3 log (n)

n (λ1 − λ2) ×
128eλ1

mini∈S v1 (i)2 ≤
768e

mini∈S v1 (i)2 ×
log (n)

n
≤ δ2

where the last inequality follows for sufficiently large n mentioned in the theorem statement.
Therefore, using Eq A.46 and A.47 along with Claim (3) from Lemma A.2.4, gi is bounded
as

gi ≥
(

δ2

4e

(
min
i∈S

v1 (i)2
)

exp
(
2ηnλ1 − 2η2nλ2

1
)
− exp

(
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)( δ2

4e
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min
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v1 (i)2
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9e2

(
min
i∈S

v1 (i)2
)

exp
(
2ηnλ1 − 2η2nλ2

1
)

(A.50)
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where the last inequality used Claim (4) from Lemma A.2.4. Therefore, we have,
P (|ri|> τn) = P

(
r2

i > τ2
n

)
= P

(
r2

i − E
[
r2

i

]
> τ2

n − E
[
r2

i

])
,

≤ P
(
|r2

i − E
[
r2

i

]
|> τ2

n − E
[
r2

i

])
, since from Eq A.50 gi ≥ 0

≤
E
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[
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i

])2
]

(τ2
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i ])2

=
E
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i

]
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[
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i

]2
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n − E [r2
i ])2

=
E
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n eie
T
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]
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[
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T
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]2(
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(
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)
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(
E
[
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n eieT

i Bny0
]))2 =: Ri (A.51)

We now bound Ri. Therefore,

Ri ≤
E
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n eie
T
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]
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2e

(
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(
E
[
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(i)
≤

6
(
E
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(
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T
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i Bnv1
]
− E

[
Tr
(
V T

⊥ BT
n eieT
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)])2

where (i) uses Lemmas A.2.11 and A.2.12. Denote the numerator and denominator of Ri as N (Ri)
and D (Ri). For the numerator N (Ri) using Eq A.44 and A.45, we have

N (Ri) ≤ 18
[
ηλ1

(
4λ1

(λ1 − λ2)

)]2
exp

(
4ηnλ1 + 200L4σ4η2nλ2

1
)(

1 + 2
3 exp (−θηn (λ1 − λ2))

)
≤ 20

[
ηλ1

(
4λ1

(λ1 − λ2)

)]2
exp

(
4ηnλ1 + 200L4σ4η2nλ2

1
)

where the last inequality follows from Claim (4) in Lemma A.2.4. For the denominator D (Ri), using
Eq A.50

D (Ri) = g2
i ≥

δ4

20e2

(
min
i∈S

v1 (i)2
)2

exp
(
4ηnλ1 − 4η2nλ2

1
)

Recall that for x ∈ (0, 1), exp (x) ≤ 1 + 2x. Therefore, for
(
100L4σ4 + 2

)
η2nλ2

1 ≤ 1
4 which holds

due to Claim (2) from Lemma A.2.4, substituting in Eq A.51, we have

P (|ri|> τn) ≤
(

400e2 (4λ1)2

δ4 (mini∈S v4
i ) (λ1 − λ2)2

)
η2λ2

1 (A.52)

A.4 Proof of convergence for support recovery (Lemma 3.1,Theorem 3.2)

We start with the proof of Lemma 3.1.

Lemma 3.1 (s-Agnostic Recovery). Under Assumptions 1,2, for mini |v1 (i)| = Ω̃
(

λ1
λ1−λ2

(
d

n2

) 1
4
)

,

Ŝ ← OjaSupportRecovery
(
{Xi}i∈[n] , k, η := 3 log(n)

n(λ1−λ2)

)
with k ≥ s satisfies, P

(
S ⊆ Ŝ

)
≥ 0.9.

Proof. Let E :=
{

S ⊆ Ŝ
}

and set δ := 1
50 for this proof. We upper bound P (Ec). Define

ri := eT
i Bnu0, i ∈ [d]. Observe that

E ⇐⇒ ∃τn > 0 such that {∀i ∈ S, |ri|≥ τn}
⋂
{|{i : i /∈ S, |ri|≥ τn}| ≤ k − s}
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or equivalently,

Ec ⇐⇒ ∀τn > 0, {∃i ∈ S, |ri|≤ τn}
⋃
{|{i : i /∈ S, |ri|≥ τn}| > k − s}

Therefore, for any fixed τn > 0

Ec =⇒ {∃i ∈ S, |ri|≤ τn}
⋃
{|{i : i /∈ S, |ri|≥ τn}| > k − s}

Let G :=
{
|vT

1 u0|≥ δ√
e

}
and threshold τn := δ√

2e
mini∈S |v1 (i) |(1 + ηλ1)n. Using a union-

bound,
P (Ec) ≤ P ({∃i ∈ S, |ri|≤ τn}) + P (|{i : i /∈ S, |ri|≥ τn}| > k − s)

≤ P ({∃i ∈ S, |ri|≤ τn}) +
∑

i/∈S P (|ri|≥ τn)
k − s + 1 , using Markov’s inequality

= P (G)P
(
∃i ∈ S, |ri|≤ τn

∣∣∣∣G)+ P (Gc)P
(
∃i ∈ S, |ri|≤ τn

∣∣∣∣Gc

)
+

+
∑

i/∈S P (|ri|≥ τn)
k − s + 1

≤ P (Gc) + P
(
∃i ∈ S, |ri|≤ τn

∣∣∣∣G)+
∑

i/∈S P (|ri|≥ τn)
k − s + 1

≤ P (Gc) +
∑
i∈S

P
(
|ri|≤ τn

∣∣∣∣G)+
∑

i/∈S P (|ri|≥ τn)
k − s + 1

≤ P (Gc) +
∑
i∈S

P
(
|ri|≤ τn

∣∣∣∣G)︸ ︷︷ ︸
T1

+
∑

i/∈S P (|ri|≥ τn)
k − s + 1︸ ︷︷ ︸

T2

Using Lemma A.2.1, we have P (Gc) ≤ δ. We bound T1 and T2 using Lemmas 3.11 and 3.12
respectively. Therefore,

P (Ec) ≤ δ + CH

[
ηλ1s log (n) + ηλ1

(
λ1

(λ1 − λ2)

)∑
i∈S

1
v1 (i)2

]

+ CT

η2λ2
1

(
λ1

λ1 − λ2

)2
(

1
δ2 mini∈Shi v1 (i)2

)2
 (d− s)

≤ 5δ

where the last inequality follows by using the bound on n.

Next, using Lemma 3.1, we prove Theorem 3.2.
Theorem 3.2 (High probability support recovery). Let Assumptions 1, 2 hold. For
dataset D := {Xi}i∈[n], let A be the randomized algorithm which computes Ŝ ←

OjaSupportRecovery
(
{Xi}i∈[n] , k, η

)
, where η := 3 log(n)

n(λ1−λ2) and k = s. Then, for δ ∈ (0, 1),

mini |v1 (i)| = Ω̃
(

λ1
λ1−λ2

(
d

n2

) 1
4
)

, S̃ ← SuccessBoost
(
{Xi}i∈[n] ,A, δ

)
satisfies,

P
(
S̃ = S

)
≥ 1− δ

Proof. Consider the set T := {S : S ⊆ [d], |S|= s} with the associated metric ρ (S,S ′) :=
1 (S ≠ S ′).

Then, Lemma 3.1 shows that the randomized algorithm, A, is a
ConstantSuccessOracle (D, θ, T , ρ, S, 0) (Definition 3.9).

Therefore, the result follows from Lemma 3.10.
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A.5 Proof of convergence for sparse PCA (Theorems 3.5,3.7)

We start by providing the proof of Theorem 3.5 in Section A.5.1, and then provide the proof of
Theorem 3.7 in Section A.5.2.

A.5.1 Proof of theorem 3.5

Let v̂ := Bnw0
∥Bnw0∥2

. Then, for any subset Ŝ ⊆ S (obtained from a support recovery procedure such as

Algorithm 1), the corresponding output of a truncation procedure with respect to Ŝ is given as:

vtrunc :=
⌊v̂⌋

Ŝ∥∥∥⌊v̂⌋
Ŝ

∥∥∥
2

=
I

Ŝ
v̂∥∥∥I

Ŝ
v̂
∥∥∥

2

=
I

Ŝ
Bnw0∥∥∥I

Ŝ
Bnw0

∥∥∥
2

(A.53)

We first prove a general and flexible result that bounds the sin2 error as a function of Bn (see
Eq 3) and analyze the performance of vtrunc by viewing it as a power method on w0 followed by a
truncation using the set Ŝ in the following result.

Lemma A.5.1. Let Bn and vtrunc be defined as in Eq 3 and Eq A.53 respectively. For Ŝ ⊆ [d] such
that Ŝ ⊥⊥ Bn, w0, then with probability at least 1− δ

sin2 (vtrunc, v1) ≤
C log

( 1
δ

)
δ2

Tr
(

BT
n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bn

)
vT

1 BT
n I

S
⋂

Ŝ
Bnv1

where C is an absolute constant and δ ∈ (0, 1).

Proof. Using the definition of sin2 error,

sin2 (vtrunc, v1) = 1−

 vT
1 I

Ŝ
Bnw0∥∥∥I

Ŝ
Bnw0

∥∥∥
2

2

=
wT

0 BT
n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bnw0

wT
0 BT

n I
Ŝ

Bnw0
(A.54)

For the denominator, with probability at least (1− δ), we have

wT
0 BT

n I
Ŝ

Bnw0 ≥ wT
0 BT

n I
S∩Ŝ

Bnw0
(i)
≥ δ2

e
Tr
(

BT
n I

S∩Ŝ
Bn

)
≥ δ2

e
vT

1 BT
n I

S∩Ŝ
Bnv1 (A.55)

where (i) follows from Lemma A.2.1. For the numerator, using ζ2 from Lemma 3.1 of [JJK+16],
with probability at least (1− δ), we have

wT
0 BT

n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bnw0 ≤ C ′ log

(
1
δ

)
Tr
(

BT
n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bn

)
(A.56)

Combining Eq A.55 and Eq A.56 with Eq A.54 completes our proof.

Lemma A.5.1 provides an intuitive sketch of our proof strategy. Following the recipe proposed

in [JJK+16], we show how to upper-bound ϵn := C log( 1
δ )

δ2

Tr
(

BT
n

(
I

Ŝ
−I

Ŝ
v1vT

1 I
Ŝ

)
Bn

)
vT

1 BT
n I

S∩Ŝ
Bnv1

. For upper-

bounding the numerator, we bound E
[
Tr
(

BT
n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bn

)]
and use Markov’s inequality.

To lower-bound the denominator, we lower-bound E
[
vT

1 BT
n I

S∩Ŝ
Bnv1

]
, upper-bound the variance

E
[(

vT
1 BT

n I
S∩Ŝ

Bnv1

)2
]

and finally use Chebyshev’s inequality. A formal analysis is provided in

the following theorem -

Theorem A.5.2 (Convergence of Truncated Oja’s Algorithm). Let Ŝ ⊆ [d] be the estimated support
set, such that Ŝ ⊥⊥ Bn, w0 (see Algorithm 2). Consider any event E solely dependent on the
randomness of Ŝ. Define:

W
Ŝ

:= E
[
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ
| E
]

, G
Ŝ

:= E
[
I

S∩Ŝ
| E
]

α0 := vT
1 W

Ŝ
v1, β0 := Tr

(
V T

⊥ W
Ŝ

V⊥

)
, p0 := vT

1 G
Ŝ

v1, q0 := Tr
(

V T
⊥ G

Ŝ
V⊥

)
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Fix δ ∈ (0.1, 1). Set the learning rate as η := 3 log(n)
n(λ1−λ2) . Then, under Assumption 2, for n =

Ω
(

s
(

λ1 log(n)
λ1−λ2

)2
)

and p0
(
1 + δ

16
)
≤ 1 + 2ηλ1s

(
4λ1

(λ1−λ2)

)
, we have with probability at least

1− δ − P (Ec),

sin2 (vtrunc, v1) ≤
C ′ log

( 1
δ

)
δ3

λ1

λ1 − λ2

α0 (1 + 2η Tr (Σ)) + 2ηλ1β0

p0

where vtrunc is defined in Eq A.53 and C ′ > 0 is an absolute constant.

Proof of Theorem A.5.2. We first note that from Lemma A.5.1, with probability at least 1− δ,

sin2 (vtrunc, v1) ≤
C log

( 1
δ

)
δ2

Tr
(

BT
n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bn

)
vT

1 BT
n I

S
⋂

Ŝ
Bnv1

=: χ (A.57)

Next, we bound χ, conditioned on the event E . Using Markov’s inequality, we have with probability
at least 1− δ,

Tr
(

BT
n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bn

)

≤
E
[
Tr
(

BT
n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bn

) ∣∣∣∣E]
δ

=
E
[
vT

1 BT
n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bnv1

∣∣∣∣E]+ E
[
Tr
(

V T
⊥ BT

n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
BnV⊥

) ∣∣∣∣E]
δ

=
E
[
vT

1 BT
n W

Ŝ
Bnv1

]
+ E

[
Tr
(

V T
⊥ BT

n W
Ŝ

BnV⊥

)]
δ

, using Ŝ ⊥⊥ Bn (A.58)

Note that (1 + x) ≤ exp (x)∀x ∈ R. From Lemma A.2.7, we have

E
[
Tr
(

vT
1 BT

n W
Ŝ

Bnv1

)]
≤
(
1 + 2ηλ1 + 8L4σ4η2λ2

1
)n
[
α0 + ηλ1

(
4λ1

(λ1 − λ2)

)
(β0 + α0)

]
(A.59)

E
[
Tr
(

V T
⊥ BT

n W
Ŝ

BnV⊥

)]
≤ β0

(
1 + 2ηλ2 + 4L4σ4η2λ2 Tr (Σ) + 4L4σ4η2λ2

1
)n

+
[
ηλ1

(
4λ1

(λ1 − λ2)

)(
α0

Tr (Σ)
λ1

+ β0

)] (
1 + 2ηλ1 + 8L4σ4η2λ2

1
)n

≤ exp
(
2ηnλ1 + 8L4σ4η2nλ2

1
) [

ηλ1

(
α0

Tr (Σ)
λ1

+ β0

)(
4λ1

(λ1 − λ2)

)
+ β0 exp (−2θηn (λ1 − λ2))

]
≤ 2 exp

(
2ηnλ1 + 8L4σ4η2nλ2

1
) [

ηλ1

(
α0

Tr (Σ)
λ1

+ β0

)(
4λ1

(λ1 − λ2)

)]
(A.60)

where the last inequality follows due to Lemma A.2.4.

Substituting Eq A.59 and Eq A.60 in Eq A.58, we have with probability at least (1− δ), conditioned
on the event E ,

Tr
(

BT
n

(
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

)
Bn

)
≤

(α0 (1 + 2η Tr (Σ)) + 2ηλ1β0)
(

12λ1
(λ1−λ2)

)
exp

(
2ηnλ1 + 8L4σ4η2nλ2

1
)

δ
(A.61)
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Similarly, for the denominator we have with probability at least 1− δ using Chebyshev’s inequality,
conditioned on the event E ,

vT
1 BnI

S
⋂

Ŝ
BT

n v1 ≥ E
[
vT

1 BnI
S
⋂

Ŝ
BT

n v1

∣∣∣∣E]
1− 1√

δ

√√√√√√√√√
E

[(
vT

1 BnI
S
⋂

Ŝ
BT

n v1

)2 ∣∣∣∣E
]

E
[
vT

1 BnI
S
⋂

Ŝ
BT

n v1

∣∣∣∣E]2 − 1


(A.62)

Recall that p0 := vT
1 E
[
I

S
⋂

Ŝ

∣∣∣∣E] v1. Using the argument from Lemma 11 from [JJK+16] and

Ŝ ⊥⊥ Bn,

E
[
vT

1 BnI
S
⋂

Ŝ
BT

n v1

∣∣∣∣E] = E
[
vT

1 BnE
[
I

S
⋂

Ŝ

∣∣∣∣E]BT
n v1

]
≥ p0 exp

(
2ηnλ1 − 4η2nλ2

1
)

(A.63)

This is since the base case of their recursion, [JJK+16] has vT
1 Iv1 which is 1, but we have

vT
1 E
[
I

S
⋂

Ŝ

∣∣∣∣E] v1 which is defined as p0.

Next, using Lemma A.2.8 and noting that vT
1 I

S
⋂

Ŝ
v1 + Tr

(
V T

⊥ I
S
⋂

Ŝ
V⊥

)
= Tr

(
I

S
⋂

Ŝ

)
we

have,

E

[(
vT

1 BnI
S
⋂

Ŝ
BT

n v1

)2 ∣∣∣∣E
]

≤
(
1 + 2ηλ1 + 100L4σ4η2λ2

1
)2n E

[(
vT

1 I
S
⋂

Ŝ
v1 + ηλ1

(
4λ1

(λ1 − λ2)

)
Tr
(

I
S
⋂

Ŝ

))2 ∣∣∣∣E
]

≤
(
1 + 2ηλ1 + 100L4σ4η2λ2

1
)2n E

[(
vT

1 I
S
⋂

Ŝ
v1 + ηλ1s

(
4λ1

(λ1 − λ2)

))2 ∣∣∣∣E
]

≤ exp
(
4ηnλ1 + 200L4σ4η2nλ2

1
) [

p0 + 2ηλ1sp0

(
4λ1

(λ1 − λ2)

)
+
(

ηλ1s

(
4λ1

(λ1 − λ2)

))2
]

,

(A.64)

where in the last inequality, we used
(

vT
1 I

S
⋂

Ŝ
v1

)2
≤ vT

1 I
S
⋂

Ŝ
v1 ≤ 1. For convenience of

notation, we define

ϕ := p0 + 2ηλ1sp0

(
4λ1

(λ1 − λ2)

)
+
(

ηλ1s

(
4λ1

(λ1 − λ2)

))2
≤ 4

where we used ηλ1s
(

4λ1
(λ1−λ2)

)
≤ 1

2 (due to Lemma A.2.4) and p0 ≤ 1.

Substituting Eq A.63 and Eq A.64 in Eq A.62, and we have with probability at least (1− δ),
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conditioned on E ,

vT
1 BnG

Ŝ
BT

n v1

≥ p0 exp
(
2ηnλ1 − 4η2nλ2

1
)(

1− 1√
δ

√
exp ((100L4σ4 + 4) η2nλ2

1) ϕ

p2
0
− 1
)

,

(i)
≥ p0 exp

(
2ηnλ1 − 4η2nλ2

1
)(

1− 1√
δ

√
(1 + 2 (100L4σ4 + 4) η2nλ2

1) ϕ

p2
0
− 1
)

≥ p0 exp
(
2ηnλ1 − 4η2nλ2

1
)(

1− 1√
δ

√
ϕ− p2

0
p2

0
+ 2 ϕ

p2
0

(100L4σ4 + 4) η2nλ2
1

)
(ii)
≥ p0

2 exp
(
2ηnλ1 − 4η2nλ2

1
)

(A.65)

where in (i) we used
(
100L4σ4 + 4

)
η2nλ2

1 ≤ 1 and x ∈ (0, 1), exp (x) ≤ 1 + 2x. For (ii), it
suffices to have

ϕ− p2
0

p2
0
≤ δ

8 ,
ϕ

p2
0

(
100L4σ4 + 4

)
η2nλ2

1 ≤
δ

16
which is further ensured by,

p0 ≥ max

1 + 2ηλ1s
(

4λ1
(λ1−λ2)

)
1 + δ

16
,

4ηλ1s
(

4λ1
(λ1−λ2)

)
√

δ
, 8
√

(100L4σ4 + 4) η2nλ2
1

δ


Note that for the choice of η, and δ ≥ 1

10 , we have using Lemma A.2.4,

1 + 2ηλ1s
(

4λ1
(λ1−λ2)

)
1 + δ

16
≥ max

4ηλ1s
(

4λ1
(λ1−λ2)

)
√

δ
, 8
√

(100L4σ4 + 4) η2nλ2
1

δ


for sufficiently large n. Therefore, we only ensure that p0 is greater than the first term in the theorem
statement. Finally, let

ξ :=
C ′ log

( 1
δ

)
δ3

λ1

λ1 − λ2

α0 (1 + 2η Tr (Σ)) + 2ηλ1β0

p0

Using Eq A.61 and Eq A.65 and substituting in Eq A.57, we have with probability at least 1− 2δ,

conditioned on E , χ ≤ ξ, or equivalently P
(

χ ≥ ξ

∣∣∣∣E) ≤ 2δ. Therefore,

P (χ ≥ ξ) = P (E)P
(

χ ≥ ξ

∣∣∣∣E)+ P (Ec)P
(

χ ≥ ξ

∣∣∣∣Ec

)
≤ P

(
χ ≥ ξ

∣∣∣∣E)+ P (Ec) ≤ 2δ + P (Ec)

The proof follows by making δ smaller by a constant factor.

With Theorem A.5.2 in place, we are ready to finally provide the proof of one of our main results,
Theorem 3.5.
Theorem 3.5 (Vector Truncation). Let Assumptions 1 and 2 hold and k ≥ s. For dataset D :=
{Xi}i∈[n] and w0 ∼ N (0, I), let A be the randomized algorithm which computes v̂truncvec ←

TruncateOja
(
{Xi}i∈( n

2 ,n] , Ŝ, Oja, {η, w0}
)

, where η := 3 log(n)
n(λ1−λ2) . Then, for mini |v1 (i)| =

Ω̃
((

d
n2

) 1
8
)

, ṽ ← SuccessBoost
(
{Xi}i∈[n] ,A, d−10

)
satisfies,

sin2 (ṽ, v1) ≤ C ′′
(

λ1

λ1 − λ2

)2
k log2 (d)

n

with probability at least 1− d−10, where C ′′ ≥ 0 is an absolute constant.
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Proof. Let E :=
{

Shi ⊆ Ŝ
}

and set δ := 1
4 for this proof. Consider the following variables from

Theorem A.5.2:

W
Ŝ

:= E
[
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ
| E
]

, G
Ŝ

:= E
[
I

S
⋂

Ŝ
| E
]

α0 := vT
1 W

Ŝ
v1, β0 := Tr

(
V T

⊥ W
Ŝ

V⊥

)
, p0 := vT

1 G
Ŝ

v1, q0 := Tr
(

V T
⊥ G

Ŝ
V⊥

)
Since |Ŝ|= k, therefore,

β0 = Tr
(

V T
⊥ W

Ŝ
V⊥

)
≤ Tr

(
W

Ŝ

)
≤ Tr

(
Ŝ
)

= k (A.66)

Furthermore, under event E , Shi ⊆
{

S
⋂

Ŝ
}

. Therefore,

p0 = vT
1 G

Ŝ
v1 ≥

∑
i∈Shi

v1 (i)2 = 1−
∑
i/∈Shi

v1 (i)2 ≥ 1− s log (n)
n

, using definition of Shi (A.67)

To verify the assumption on p0 mentioned in Theorem A.5.2, it is sufficient to ensure

ηλ1s

(
20λ1

λ1 − λ2

)
≤
(

1− s log (n)
n

)(
1 + δ

4

)
− 1

which is true by the definition of η and n (see Lemma A.2.4). Lastly,

α0 = vT
1 W

Ŝ
v1 = E

[
vT

1 I
Ŝ

v1 −
(

vT
1 I

Ŝ
v1

)2
| E
]

≤ 1− E
[
vT

1 I
Ŝ

v1 | E
]

, using vT
1 I

Ŝ
v1 ≤ 1

≤ 1−
∑
i∈Shi

v1 (i)2
, since Shi ⊆ Ŝ

=
∑
i/∈Shi

v1 (i)2 ≤ s log (n)
n

(A.68)

Therefore, using bounds on β0, p0 and α0 from Eqs A.66, A.67 and A.68 respectively, in conjunction
with Theorem A.5.2, with probability at least 1− δ − P (Ec),

sin2 (voja, v1) ≤
C ′ log

( 1
δ

)
δ3

5λ1

λ1 − λ2
ηλ1k (A.69)

Using Lemma 3.1, P (Ec) ≤ 5δ. The result then follows using Eq A.69 and setting δ smaller by a
constant.

A.5.2 Proof of theorem 3.7

We first state the result from [Lia23] achieving the optimal sin2 error rate for Oja’s Algorithm.

Proposition A.5.3 (Optimal Rate for Oja’s Algorithm with Subgaussian Data (Theorem 3.1, [Lia23])).
Let {Xi}i∈[n] be i.i.d samples from a subgaussian distribution (Definition 2.1) with covariance matrix,
Σ, leading eigenvector v1 and eigengap, λ1 − λ2 > 0. Then, there exists an algorithm OptimalOja
which operates in O (d) space, O (nd) time, processes one datapoint at a time, and returns an
estimate v̂ which satisfies, with probability at least 1− δ, δ ∈ (0, 1)

sin2 (v̂, v1) ≤ C
λ1λ2

(λ1 − λ2)2
d log

( 1
δ

)
n

where C > 0 is an absolute constant.

Theorem 3.7 (Data Truncation). Let Assumptions 1 and 2 hold and k ≥ s. For dataset
D := {Xi}i∈[n] and w0 ∼ N (0, I), let A be the randomized algorithm which computes v̂truncvec ←
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TruncateOja
({
⌊Xi⌋Ŝ

}
i∈( n

2 ,n]
, Ŝ, OptimalOja, {{ηt}t∈[ n

2 ] , w0}
)

. Then for mini |v1 (i)| =

Ω̃
(

λ1
λ1−λ2

(
d

n2

) 1
4
)

, ṽ ← SuccessBoost
(
{Xi}i∈[n] ,A, d−10

)
satisfies,

sin2 (ṽ, v1) ≤ C ′′ λ1λ2

(λ1 − λ2)2
k log (d)

n

with probability at least 1− d−10, where C ′′ ≥ 0 is an absolute constant.

Proof. Let δ := 1
3 . Define the event E =

{
S ⊆ Ŝ

}
. Using Lemma 3.1, we have that

P (E) ≥ 1− δ

Let χ := sin2 (v̂truncvec, v1) and ξ := C λ1λ2
(λ1−λ2)2

k log( 1
δ )

n for an absolute constant C > 0. Therefore,

P (χ ≥ ξ) = P (E)P
(

χ ≥ ξ

∣∣∣∣E)+ P (Ec)P
(

χ ≥ ξ

∣∣∣∣Ec

)
≤ P

(
χ ≥ ξ

∣∣∣∣E)+ P (Ec)

≤ P
(

χ ≥ ξ

∣∣∣∣E)+ δ (A.70)

Therefore, next we bound P
(

sin2 (v̂truncvec, v1)
∣∣∣∣E). Therefore, we seek to bound the sin2 error

after truncating the data using the true support, S. Note that
E
[
ISXX⊤IS

]
= λ1v1v⊤

1 + ISV⊥Λ2V ⊤
⊥ IS

Therefore, after truncation, the leading eigenvector and eigenvalue are preserved, and the second
largest eigenvalue is at most λ2. Furthermore, the truncated distribution is still subgaussian, and
therefore Proposition A.5.3 is applicable here and we have with probability at least 1− δ,

sin2 (v̂truncvec, v1) ≤ ξ (A.71)
Eq (A.70) and (A.71) show thatA is a ConstantSuccessOracle (D, (η, k), T , ρ, v1, O (k log (d) /n))
(Definition 3.9) for the set T =

{
u : u ∈ Rd, ∥u∥2 = 1

}
with the metric ρ (u, v) :=∥∥uu⊤ − vv⊤

∥∥
F

= 1
2 |sin (u, v)|. The result then follows from Lemma 3.10.

A.6 Alternate method for truncation

In this section, we present another algorithm for truncation, based on a value-based thresholding,
complementary to the technique described in Section 3. The proof technique uses the same tools as
the ones described in Section 3. Both Algorithm 2 and 4 may be of independent interest depending
on the particular use-case and constraints of the particular problem. Theorem A.6.1 provides the
convergence guarantees for Algorithm 4. Note that compared to Theorem 3.5, Theorem A.6.1
provides a better guarantee for the sample size. However, this comes at the cost of the sparsity
of the returned vector, v̂oja-thresh, not being a controllable parameter. We can however show
that the support size of v̂oja-thresh is O (s) in expectation. For the purpose of this proof, let

Shi :=
{

i : i ∈ S, |v1 (i) |≥
√

log(d)
n

}
.

Theorem A.6.1 (Convergence of Oja-Thresholded). Let v̂oja-thresh, Ŝ be obtained from

Algorithm 4. Set the learning rate as η := 3 log(n)
n(λ1−λ2) . Define threshold γn :=

3
4

√
2e

mini∈Shi |v1 (i) |(1 + ηλ1)n. Then for n = Ω̃
(

1
s mini∈Shi v1(i)4

(
λ1

λ1−λ2

)2
)

, we have

E
[
|Ŝ|
]
≤ C ′s and with probability at least 3

4 ,

sin2
(

v̂oja-thresh, v1

)
≤ C ′′

(
λ1

λ1 − λ2

)2 max {s, log (d)} log (d)
n

, Shi ⊆ Ŝ

where C ′, C ′′ > 0 are absolute constants.
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Algorithm 4 Oja-Thresholded
(
{Xi}i∈[n] , γn, η

)
1: Input : Dataset {Xi}i∈[n], learning rate η > 0, truncation threshold γn

2: Set bn ← 0 and choose y0, w0 ∼ N (0, I) independently
3: for t in range[1, n

2 ] do
4: yt ← (I + ηXtX

T
t )yt−1

5: bn ← bn + log (∥yt∥2)
6: yt ← yt

∥yt∥2
7: end for
8: Ŝ ← Set of indices, i ∈ [d], such that log

(
|eT

i yn|
)

+ bn − log (γn) ≥ 0.

9: v̂ ← Oja
(
{Xi}i∈{n/2+1,...,n} , η, w0

)
10: v̂oja-thresh ←

⌊v̂⌋
Ŝ∥∥⌊v̂⌋

Ŝ

∥∥
2

11: return
[
v̂oja-thresh, Ŝ

]

Proof. Consider the setting of Theorem A.5.2. Set δ := 1
4 for this proof and let E be the event{

|vT
1 y0|≥ δ√

e

}
. By Lemma A.2.1, P (E) ≥ 1− δ. Recall the definitions,

W
Ŝ

:= E
[
I

Ŝ
− I

Ŝ
v1vT

1 I
Ŝ

∣∣∣∣E] , G
Ŝ

:= E
[
I

S
⋂

Ŝ

∣∣∣∣E]
α0 := vT

1 W
Ŝ

v1, β0 := Tr
(

V T
⊥ W

Ŝ
V⊥

)
, p0 := vT

1 G
Ŝ

v1

We upper bound α0, β0 and lower bound p0 under the setting of Algorithm 4. Define ri :=
eT

i Bny0, i ∈ [d]. For α0, p0, we have

α0 = vT
1 W

Ŝ
v1 = E

[
vT

1 I
Ŝ

v1 −
(

vT
1 I

Ŝ
v1

)2
∣∣∣∣E]

= E
[
vT

1 I
Ŝ

v1

(
1− vT

1 I
Ŝ

v1

) ∣∣∣∣E]
≤ 1− E

[
vT

1 I
Ŝ

v1

∣∣∣∣E] , using vT
1 I

Ŝ
v1 ≤ 1

= 1−
∑
i∈S

v1 (i)2 P
(

i ∈ Ŝ; i ∈ S

∣∣∣∣E) ,

=
∑
i∈S

v1 (i)2 P
(

i /∈ Ŝ; i ∈ S

∣∣∣∣E) (A.72)

p0 = vT
1 G

Ŝ
v1

= vT
1 E
[
I

S
⋂

Ŝ

]
v1

=
∑
i∈S

v1 (i)2 P
(

i ∈ Ŝ; i ∈ S

∣∣∣∣E)
= 1−

∑
i∈S

v1 (i)2 P
(

i /∈ Ŝ; i ∈ S

∣∣∣∣E) (A.73)
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Therefore, for both α0, p0, we seek to upper bound
∑

i∈S v1 (i)2 P
(

i /∈ Ŝ; i ∈ S

∣∣∣∣E). We have

∑
i∈S

v1 (i)2 P
(

i /∈ Ŝ; i ∈ S

∣∣∣∣E) =
∑
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v1 (i)2 P
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∣∣∣∣E)+
∑

i∈S\Shi

v1 (i)2 P
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∣∣∣∣E)

≤ s log (n)
n

+
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v1 (i)2 P
(

i /∈ Ŝ; i ∈ S

∣∣∣∣E)

= s log (n)
n

+
∑

i∈S\Shi

v1 (i)2 P
(
|ri|< γn; i ∈ S

∣∣∣∣E)
(i)
≤ s log (n)

n
+ CH

∑
i∈S\Shi

v1 (i)2

[
ηλ1 log (n) + ηλ1

(
λ1

λ1 − λ2

)
1

v1 (i)2

]

= s log (n)
n

+ CHηλ1 log (n) + CHηλ1s′
(

λ1

(λ1 − λ2)

)
≤ CHηλ1 {s, log (n)} ≤ 1

2 , using |v1 (i) |≥
√

log (n)
n

, i ∈ Shi

For β0 we have

β0 ≤ E
[
Tr
(

W
Ŝ

) ∣∣∣∣E] =
∑
i∈[d]

P
(

i ∈ Ŝ

∣∣∣∣E)−∑
i∈S

v1 (i)2 P
(

i ∈ Ŝ

∣∣∣∣E)

≤
∑
i/∈S

P
(

i ∈ Ŝ

∣∣∣∣E)+
∑
i∈S

(
1− v1 (i)2

)
P
(

i ∈ Ŝ

∣∣∣∣E) =
∑
i/∈S

P
(

i ∈ Ŝ

∣∣∣∣E)+ s− 1

≤
∑
i/∈S

P
(
|ri|≥ γn

∣∣∣∣E)+ s− 1 =
∑
i/∈S

P (|ri|≥ γn)
P (E) + s− 1

≤ 2
∑
i/∈S

P (|ri|≥ γn) + s− 1, since P (G) ≥ 1− δ

≤ 2CT

( λ1

λ1 − λ2

)2
(

1
δ2 mini∈Shi v1 (i)2

)2
 η2λ2

1 (d− s) + s− 1, using Lemma 3.12

≤ 2s, using bound on n

The result then follows using Theorem A.5.2 and substituting the bounds on α0, β0 and p0. Finally,
note that using a similar argument as Theorem 3.5, we have

P
(

Shi ̸⊆ Ŝ|E
)
≤
∑
i∈Shi

P
(

i /∈ Ŝ; i ∈ Shi

∣∣∣∣E)
=
∑
i∈Shi

P
(
|ri|< γn; i ∈ S

∣∣∣∣E) ≤ CH

∑
i∈Shi

ηλ1 log (n) + ηλ1

(
λ1

λ1 − λ2

)
1

v1 (i)2

≤ CHηλ1s log (n) + CHηλ1

(
λ1

λ1 − λ2

)∑
i∈Shi

1
v1 (i)2 ≤ δ

using the sample size bound on n.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We present a O (d) space and O (nd) time algorithm for Sparse PCA for
general covariance matrices.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 3.2 shows that we handle general covariance matrices in nearly linear
time, albeit at a worse sample size.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All Proofs are in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Figure 1a and Figure 2 contains the experimental setup in the caption.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: We make the code for our experiments available in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: Figure 1a and Figure 2 contains the experimental setup in the caption.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments were performed on a single Macbook Pro M2 2022 CPU
with 8 GB RAM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: Figure 1a provides error bars over 100 random runs. Figure 2 plots average
over 10 runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We abide by the NeurIPS Code of Ethics in our work.

Guidelines:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: There are no datasets or existing codebases used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets to require documentation or licensing.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We only use simulated data for our experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not have experiments with crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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