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ABSTRACT

Otto’s Wasserstein gradient flow of the exclusive KL divergence functional pro-
vides a powerful and mathematically principled perspective for analyzing machine
learning and Bayesian inference algorithms. In contrast, algorithms for the in-
clusive KL inference, i.e., minimizing KL(π|µ) w.r.t. µ for some target π, are
rarely analyzed using tools from mathematical analysis. This paper shows that a
general-purpose approximate inclusive KL inference paradigm can be constructed
using the theory of gradient flows derived from PDE analysis. We uncover some
precise relationships between the inclusive KL inference and some widely used
learning algorithms, including the MMD-minimization and the Wasserstein flow
of kernel discrepancies, which are widely used in machine learning applications.
For example, a few existing sampling algorithms, such as those based on the
Wasserstein flow of kernel discrepancies, can be viewed in a unified manner as
inclusive-KL inference with approximate gradient estimators. Finally, we provide
the theoretical foundation for the Fisher-Rao type gradient flows for minimizing
the inclusive KL divergence.

1 INTRODUCTION

Many learning and inference problems can be cast into the framework of minimizing the KL diver-
gence

min
µ∈A⊂P

DKL(µ|π). (1)

The functional DKL(µ|π) is also known as the exclusive KL divergence between µ and π, due to
its well-known property commonly referred to as mode-seeking and zero-avoiding. This variational
problem forms the foundation of modern Bayesian inference (Zellner, 1988). For example, suppose
we have a model p(Data|θ) and a prior p(θ), our goal is to infer the posterior π(θ) := p(θ|Data).
If we further restrict the feasible set A in equation 1 to be the so-called variational family, e.g., the
set of all Gaussian distributions, we obtain variational inference (Jordan et al., 1999; Wainwright &
Jordan, 2008; Blei et al., 2017). Albeit much less popular, there also exists the inference paradigm
that minimizes the inclusive KL,

min
µ∈A⊂P

DKL(π|µ). (2)

For example, algorithms such as expectation propagation (Minka, 2013), (Bishop, 2006, Section 10.7)
can be viewed as solving equation 2. Many researchers such as Naesseth et al. (2020); Jerfel et al.
(2021); McNamara et al. (2024); Zhang et al. (2022) have argued that the solution of equation 2, if
available, offers statistical advantages over equation 1, e.g., mass-covering with respect to the true
posterior, desirable properties for applications requiring conservative uncertainty quantification, avoid
light tails that can cause instability. We also refer to the discussion in (Dhaka et al., 2021) about the
mode-covering behavior of inclusive KL in moderate-to-high dimensions for variational inference
algorithms.

However, many of existing algorithms require adhoc procedures to gain samples from target distri-
butions π or do not have sound mathematical analysis as backbone; see our discussion around the
Wasserstein flow equation equation iKL-WGF.
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In comparison, there has been significant technical developments for the exclusive KL minimiza-
tion equation 1 recently. This is mainly due to the injection of rigorous theoretical foundation from
analysis of (PDE) gradient flows (Otto, 1996; 2001; Ambrosio et al., 2005; Peletier, 2014; Mielke,
2023) and statistical optimal transport (Chewi et al., 2024; Peyré & Cuturi, 2019; Panaretos & Zemel,
2019). Inference and sampling algorithms based on equation 1 can now be studied under a unified
framework and on the rigor level of applied analysis. Can we use such principled theory to study
inclusive KL minimization? This paper answers this question affirmatively. Concretely, we list our
main technical contributions as follows:

1. A major contribution of this paper, is to reveal a fundamental connection between the inclu-
sive KL minimization equation 2 and some widely used paradigms in sampling, inference,
and generative models – the MMD minimization problems. While the known connections
between those problems are either elementary (e.g., moment-matching) or heuristic, we
show that the latter is an approximation (via convolution or mollification) of the former
when cast into the rigorous framework of PDE gradient-flow systems.

2. Going beyond Wasserstein geometry, we show several new results regarding the Fisher-
Rao (FR) gradient flows, especially the discovery of FR flow of the inclusive KL can be
implemented as the MMD-MMD flow. This finding gives both theoretical and practical
implications to the learning algorithms.

3. We identify the setting (and the flows) along which MMD globally decays without imposing
conditions such as log-Sobolev inequality with a positive constant, and characterized the
solution explicitly. We also give an interpretation of the MMD-barycenter problem in the
information geometry using the variational characterization.

4. Last but not least, this is the first paper that provides a gradient flow theory foundation for
inclusive KL inference. This adds a principled component and future lane of research to
the fundamental theory of Bayesian statistics and generative modeling via inclusive KL
inference, which has been missing so far.

We also emphasize that this paper does not propose a new algorithm, but rather a new perspective and
principled theoretical foundation to understand existing algorithms.

2 PRELIMINARIES

Kullback-Leibler (KL) divergence The φ-divergence, also known as the f-divergence (Csiszár,
1967), is a class of statistical divergences that measure the difference between a pair of measures,
defined as

Dφ(µ|π) =
∫

φ

(
dµ

dπ
(x)

)
dπ(x), if µ≪ π (3)

and +∞ otherwise; dµ/ dπ is the Radon-Nikodym derivative. The entropy generator function
φ is a convex function satisfying φ(1) = φ′(1) = 0, φ′′(1) = 1. Different choices of φ lead to
various well-known divergences, such as exclusive KL: φKL(s) := s log s − s + 1, inclusive KL:
φrevKL(s) = s− 1− log s, Hellinger: φH(s) = (

√
s− 1)2, χ2: φχ2(s) = 1

2 (s− 1)2. Note that our
definition for measures that are not necessarily probability measures. As a central topic of this paper,
we will focus on the KL divergence evaluated in both the direction of DKL(µ|π) and DKL(π|µ). By
elementary calculation, we observe that the forward and inclusive KL divergences have the same
first-order expansion near the equilibrium point when µ = π. Figure 1 shows the generator φ of the
exclusive and inclusive KL divergences. Note that entropy generator functions φ can be made more
general by the following power entropy,

φp(s) :=
1

p(p− 1)
(sp − ps+ p− 1) , p ∈ R \ {0, 1}, (4)

Many commonly used divergences can be recovered using different choices of p. The resulting
divergence functional Dφp

is also called the p−relative entropy; cf. (Ohta & Takatsu, 2011; Mielke &
Zhu, 2025). Note an alternative parameterization of the entropy function can also be made by using
the α-divergence (Amari & Nagaoka, 2000), defined by

φα(s) =

{
4

1− α2

(
1− s

1+α
2

)
, α ∈ R \ {±1}. (5)
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Figure 1: Illustration of the generator φ of the exclusive and inclusive KL divergences.

Bayesian inference as Wasserstein gradient flow of KL An elegant perspective of Bayesian
inference is offered by the Wasserstein gradient flow (WGF) framework of Otto (1996), which has
attracted much attention from researchers in Bayesian inference; see (Chewi et al., 2024; Trillos &
Sanz-Alonso, 2018) for recent surveys. In that framework, one can write a flow equation formally as

µ̇ = −∇WF (µ) = −KW (µ)
δF

δµ
[µ] = div(µ∇δF

δµ
[µ]). (6)

through the Wasserstein Onsager operator KW , which is defined as the inverse of the Riemannian
metric tensor GW of the Wasserstein space, i.e., KW (ρ) = GW (ρ)−1. Mathematically, for the
Wasserstein space, KW (ρ) : T ∗

ρM→ TρM, ξ 7→ −div(ρ∇ξ), where TρM is the tangent space of
M+ at ρ and T ∗

ρM the cotangent space. The terminology Onsager’s operator is due to the works of
Onsager & Machlup (1953); Onsager (1931). From the mechanics perspective, the dual functions ξ
can be interpreted as the generalized thermodynamic forces (Onsager & Machlup, 1953; Mielke et al.,
2017). With those ingredients, we can formally define the gradient systems that generate gradient
flow equations such as equation 6.

Definition 2.1 (Gradient system (Otto, 2001; Mielke, 2023)). We refer to a tuple (M, F,K) as a
gradient system. It has the gradient structure identified by:

1. a spaceM,
2. an energy functional F ,
3. a dissipation geometry given by either: a distance metric defined onM, a Riemannian

metric tensor G, or a symmetric positive-definite Onsager operator K = G−1.

Note that it is also possible to define dissipation geometry via nonlinear dissipation potential func-
tional; cf. (Mielke et al., 2017).

Regarding Bayesian inference, we choose the energy functional as the exclusive KL divergence as in
equation 1, i.e., F (µ) = DKL(µ|π). Through elementary calculation, we obtain from equation 6 the
Fokker-Planck equation (FPE)

∂tµ = div
(
µ∇ log

µ

π

)
= ∆µ− div (µ∇ log π) . (FPE)

When we express the target as π(x) = 1
Z exp(−V (x)) where Z is a normalization constant (partition

function), the equation FPE is then ∂tµ = ∆µ+ div (µ∇V ). The fact that the evolution equation
does not depend on the partition function Z is often argued to be one of the key advantages of
the KL divergence. Viewed as a dynamic system, the KL divergence energy functional dissipates
along equation FPE in the steepest descent manner. Based on the formal definition of gradient
system equation 2.1, we say that equation FPE has the gradient structure that entails the following
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key ingredients. 
Space : prob. space P
Energy functional : F (·) := DKL(·|π)
Dissipation Geometry : Wasserstein KW

(7)

Integral operator and maximum-mean discrepancy Given a positive measure ρ on Rd and a
positive-definite kernel k, the integral operator Tk,ρ : L2

ρ → H is defined by

Tk,ρg(x) :=
∫

k (x, x′) g (x′) dρ (x′) for g ∈ L2
ρ, (8)

whereH is the reproducing kernel Hilbert space associated with the kernel k. With a slight abuse of
terminology, the following compositional operator Kρ := Id ◦Tk,ρ is also referred to as the integral
operator, albeit defined for L2(ρ)→ L2(ρ). Kρ is compact, (semi-)positive, self-adjoint, and nuclear;
cf. (Steinwart & Christmann, 2008; Hein & Bousquet, 2004; Steinwart & Scovel, 2012). The
adjoint of Tk,ρ is the embedding operator Id : H → L2(ρ), i.e., ⟨Id f, g⟩L2(ρ) = ⟨f, Tk,ρg⟩H for
all f ∈ H and g ∈ L2(ρ). When using a kernel such as the Gaussian kernel, the image Tk,ρg can
be regarded as a smooth approximation of g, which is sometimes referred to as approximation by
convolution or mollification (Wendland, 2004). An assumption we will generally make throughout
the paper is that the kernel k is bounded, symmetric, and satisfies the integrally strict positive-
definite (ISPD) condition (Sriperumbudur et al., 2010; Steinwart & Christmann, 2008; Stewart, 1976):∫

k(x, x′) dρ(x) dρ(x′) > 0 for any non-zero signed measure ρ. The purpose of this condition is

to ensure that the integral operator Tk,ρ is strictly positive-definite and also for technical reasons in
terms of PDE analysis. In this paper, the kernel maximum mean discrepancy (MMD) between two
positive measures µ and ν is defined as

MMD2(µ, ν) :=

∫ ∫
k(x, x′) d(µ− ν)(x) d(µ− ν)(x′)

The MMD and integral operator of a kernel are the central tools for understanding the approximate
gradient flows of the inclusive KL for practical applications.

3 WASSERSTEIN GRADIENT FLOWS OF INCLUSIVE KL AND ITS
APPROXIMATION

Our starting point is the following Wasserstein gradient flow equation of the inclusive KL inference,
derived using Otto (2001)’s formal calculation analogous to the exclusive KL case equation 6.

µ̇ = div

(
µ∇

(
1− dπ

dµ

))
. (iKL-WGF)

The relation with the exclusive KL gradient flow can be observed by comparing this PDE with
equation FPE. The two generalized force functionals agree to the first order near the equilibrium, i.e.,
log dµ

dπ ≈ 1− dπ
dµ when dπ/ dµ ≈ 1. Furthermore, the generator function of the inclusive KL has

a larger slope than that of the exclusive KL. This subtle difference will lead to different behaviors
of their gradient flows. Rewriting the right-hand side of equation iKL-WGF, we obtain the PDE
µ̇ = −∆π + div(π∇ logµ), which bears similarity to equation FPE but with the position of π and µ
exchanged on the right-hand side. Intuitively, the gradient structure of equation iKL-WGF is given
by: 

Space : P
Energy functional : F (·) := DKL(π|·)
Dissipation Geometry : Wasserstein KW

(9)

While the gradient structure is clear, a main obstacle to implement the gradient flow is due to that the
function 1− dπ/ dµ, which may not be accessible or differentiable. To address this, we consider a
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flow equation with a smooth approximation via the integral operator Tk,µ defined in equation 8. The
resulting kernelized flow equation is given by

µ̇ = div

(
µ∇Tk,µ

(
1− dπ

dµ

))
. (iKL-WGF-k)

Note that, the flow with a kernelized force is not necessarily a gradient flow. However, in this case,
equation iKL-WGF-k is indeed a gradient flow that has been applied to machine learning applications.
We observe the following.
Theorem 3.1 (Flow equation equation iKL-WGF-k has a Wasserstein gradient structure). Suppose
that initial condition satisfies π ≪ µ, i.e., π is absolutely continuous with respect to µ. Then,
equation iKL-WGF-k coincides with the Wasserstein gradient flow equation of the MMD equa-
tion MMD-WGF,

µ̇ = div

(
µ

∫
∇2k(x, ·) d (µ− π) (x)

)
(MMD-WGF)

where∇2 denotes the differentiation with respect to the second variable. Intuitively, equation MMD-
WGF and hence equation iKL-WGF-k have the same gradient structure:

Space : P
Energy functional : F (·) := 1

2 MMD2(·, π)
Dissipation Geometry : Wasserstein KW

(10)

As discussed above, the vanilla equation iKL-WGF cannot be directly used to derive algorithms
due to the non-smooth nature of the function 1 − dπ/ dµ. Now, since equation iKL-WGF-k’s
flow equation coincides with equation MMD-WGF, our theory suggests that minimizing MMD
through equation MMD-WGF is equivalent to simulating a kernelized Wasserstein gradient descent
to minimize the inclusive KL. Then, we can make use of numerous implementations that have already
been developed for MMD-minimization, see, e.g., (Arbel et al., 2019; Chizat, 2022; Futami et al.,
2019; Hagemann et al., 2023; Neumayer et al., 2024; Galashov et al., 2024; Gladin et al., 2024;
Chen et al., 2024). Thus, the dual-force-kernelized gradient flow equation iKL-WGF-k provides an
implementable approximation of equation iKL-WGF.

Summarizing the results so far, we offer insights into both score-based (e.g., requiring evaluation of
the score function ∇ log π) and sample-based (e.g., assuming access to samples from π) (Bayesian)
inference and sampling, providing a unifying Wasserstein gradient flow perspective on these methods
in Bayesian computation based on inclusive KL inference equation 2. Our insights provide a first-
principles interpretation of these methods via gradient flows. We also note that a wider class of
gradient flows can be characterized using the kernel Stein discrepancy; see the appendix.

4 FISHER-RAO GRADIENT FLOWS OF THE INCLUSIVE KL FUNCTIONAL

While recent machine learning applications primarily focus on the Wasserstein geometry, we em-
phasize that the gradient flow theory is more general. Prominent examples include the Fisher-Rao
and Hellinger geometries (Hellinger, 1909; Kakutani, 1948; Rao, 1945; Bhattacharyya, 1946), which
provide a different yet extremely impactful perspective on statistical inference and optimization. They
form an important building block for the Wasserstein-Fisher-Rao gradient flow in the next section.

4.1 FISHER-RAO A.K.A. SPHERICAL HELLINGER GRADIENT FLOWS OF INCLUSIVE KL
FUNCTIONAL

In this subsection, we first analyze and uncover a few remarkable properties of the Fisher-Rao gradient
flows of the inclusive KL divergence. Then, we establish a precise connection to the MMD gradient
flow of the MMD functional. This connection was not previously known, yet machine learning
algorithms have already provided empirical implications of such Fisher-Rao gradient flow.

Our starting point is to replace the Wasserstein dissipation geometry in the gradient structure equa-
tion 9 with the Fisher-Rao dissipation geometry, defined using the Fisher-Rao Onsager operator,
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KFR(ρ) : T
∗
ρM→ TρM, ξ 7→ −ρ

(
ξ −

∫
ξ dρ

)
. The resulting gradient structure is

Space : prob. measures P
Energy functional : DKL(π|·)
Dissipation Geometry : Fisher-Rao KFR

(11)

Note that the Fisher-Rao space is also referred to as the spherical Hellinger space by Laschos & Mielke
(2019) considering the historical development. Interestingly, under the inclusive KL divergence
functional, the Hellinger gradient flow overM+ stays within the probability space P if initialized
therein, i.e., the spherical projection of Laschos & Mielke (2019) is not needed in our case; see
the appendix for more details. Previously, flows in the Fisher-Rao space have been studied in ML
applications under the name of birth-death dynamics; see (Lu et al., 2019; Rotskoff et al., 2019; Kim
& Suzuki, 2024) for applications and further discussions.

We summarize some important properties of the Fisher-Rao gradient systems in the following
proposition.
Proposition 4.1 (FR gradient flow of inclusive KL). The gradient structure equation 11 generates
the flow equation

µ̇ = π − µ. (RevKL-FR-GF)

Its closed-form solution is given by

µt = e−tµ0 + (1− e−t)π. (12)

This result characterizes an interesting feature of the inclusive-KL-Fisher-Rao flow: it traverses along
a straight line despite the Riemannian structure of the Fisher-Rao geometry.

A distinctive feature of the inclusive-KL-FR gradient flow is the following.
Theorem 4.2 (Exponential Decay of inclusive-KL divergence). There exists a constant c > 0 such
that the following Polyak-Łojasiewicz functional inequality holds globally.∥∥∥∥1− dπ

dµ

∥∥∥∥2
L2

µ

≥ c ·DKL(π|µ), ∀µ ∈M+. (Ł-RKL)

Furthermore, the inclusive KL satisfies the exponential decay estimate along the gradient flow

DKL(π|µ(t)) ≤ e−tDKL(π|µ0) for all t > 0.

We emphasize that Theorem 4.2 is global and does not require the assumption of a uniform bound on
the density ratio dµ0/ dπ such as in (Lu et al., 2023). This result indicates a remarkable feature of
the inclusive KL divergence: its Fisher-Rao gradient flow is capable of creating mass from zero-mass
regions of π. In machine learning and statistics, this is a highly desired feature as we often need to
locate the support of the target measure π. An intuition of the distinction between the exclusive KL
and the inclusive KL (Theorem 4.2) is indeed given by difference of their entropy generator slopes
near the zero-mass region.

There is an interesting coincidence of the gradient systems equation 11 and existing machine learning
algorithms. Let us consider a seemingly unrelated gradient system where both the energy functional
F and the dissipation geometry to be MMD, i.e.,

Space : P
Energy functional : F (·) := MMD2(·, π)
Dissipation Geometry : MMD

(13)

Proposition 4.3. The MMD-MMD gradient flow equation, generated by the gradient system equa-
tion 13, coincides with the inclusive-KL-Fisher-Rao gradient flow equation equation RevKL-FR-GF.
Consequently, MMD decays exponentially along the solution µt of equation RevKL-FR-GF, i.e.,
MMD(µt, ν) ≤ e−t ·MMD(µ0, ν).

6



Frontiers in Probabilistic Inference: Sampling meets Learning (FPI) workshop at ICLR 2025

From a dynamical system perspective, this result also shows that the MMD is a Lyapunov functional
for the inclusive-KL Fisher-Rao flow. This proposition also shows that the same flow equation equa-
tion RevKL-FR-GF has two different gradient structures: MMD and Fisher-Rao. Such instances
are well-known in PDE literature. To implement a practical algorithm via simulating the gradient
flow equation 13, Gladin et al. (2024) proposed to use the following JKO scheme (Jordan et al.,
1998),

µℓ+1 ← argmin
µ∈P

1

2
MMD2(µ, π) +

1

2η
MMD2(µ, µl). (MMD-MMD-JKO)

Using Proposition 4.3, we can obtain an interesting insight that connects kernel methods and informa-
tion geometry.
Proposition 4.4 (Variational principle for inclusive-KL). Suppose the kernel k is bounded and ISPD.
Then, µ∗ is a solution of the variational problem equation MMD-MMD-JKO if and only if it is a
solution of

argmin
µ∈P

DKL(π|µ) +
1

η
DKL(µ

l|µ). (14)

In addition to equation 14, we can generalize the variational problem to general φ-divergence:

argmin
µ∈P

DKL(π|µ) +
1

η
Dφ(µ

l|µ), which includes the special case when Dφ is the squared Hellinger

distance; see also Remark D.2.

equation MMD-MMD-JKO can also be viewed as a scaled instance of a MMD Barycenter problem,
whose solution can be approximated using existing algorithms proposed by Cohen et al. (2021);
Gladin et al. (2024). From this paper’s perspective, Proposition 4.4 shows that their numerical
algorithms actually also solves the variational problem equation 14. Therefore, they can also be used
to simulate a gradient flow that minimizes the inclusive-KL functional on the Fisher-Rao geometry.

5 DISCUSSION

Combining the insights from both the Wasserstein and Fisher-Rao geometries, we will straight-
forwardly obtain the Wasserstein-Fisher-Rao gradient flow of the inclusive KL divergence. This
is discussed in detail in Section A. While this paper primarily uses examples from inference and
sampling, there is a surge of interest in formulating generative modeling in the fashion of Wasserstein
gradient flows. Promising empirical results have been reported by Ansari et al. (2021); Yi et al.
(2023); Yi & Liu (2023); Franceschi et al. (2024); Heng et al. (2024). In addition, there have also been
a series of paper that present theoretical analysis of GAN training dynamics as interacting gradient
flows by, e.g., Hsieh et al. (2018); Domingo-Enrich et al. (2020); Wang & Chizat (2022; 2023);
Dvurechensky & Zhu (2024). Laying the theoretical foundation for generative models just as for
inference and sampling is an exciting future direction. We discuss this further in Section equation F.2.
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A UNBALANCED TRANSPORT: WASSERSTEIN-FISHER-RAO GRADIENT FLOWS

The Wasserstein geometry endows us with the mechanism to transport mass. On the other hand, the
Fisher-Rao geometry lets us create and destroy mass. One major development in optimal transport
theory is the combination of both via unbalanced transport, invented independently by Chizat et al.
(2018; 2019); Liero et al. (2018); Kondratyev et al. (2016). The resulting metric between two
non-negative measures is known as the Wasserstein-Fisher-Rao (WFR) distance, also known as the
Hellinger-Kantorovich distance, defined via the entropic transport problem (Liero et al., 2018)

WFR2(µ1, µ2) = min
Π∈Γ(µ1,µ2)

{
α

∫
c dΠ + βDKL(π1|µ1) + βDKL(π2|µ2)

}
where α and β are two scaling parameters. Γ(µ1, µ2) is the set of all positive measures with marginals
µ1 and µ2. c is the transport cost in the standard Wasserstein distance and Dφ is the φ-divergence
(defined in equation 17). In this paper, we define the WFR gradient structure via the Onsager
operator: the WFR Riemannian metric tensor is an inf-convolution of the Wasserstein tensor and the
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Fisher-Rao tensor GWFR(µ) = GW (µ)□GFR(µ) (Chizat et al., 2019; Liero et al., 2018; Gallouët &
Monsaingeon, 2017). By the Legendre transform, its inverse, the Onsager operator, is given by the
sum KWFR(µ) = KW (µ) + KFR(µ). For conciseness, we only focus on the case of WFR distance
restricted to the space of probability measures by default. Therefore, the WFR distance should
technically be referred to as the spherical Hellinger-Kantorovich distance. Let us now consider the
following gradient structure in the WFR space

Space : P
Energy functional : inclusive KL: DKL(π|·)
Dissipation Geometry : (spherical) WFR KWFR

(15)

Using equation iKL-WFR-GF and the results in the previous two sections, the WFR gradient flow
equation generated by equation 15 is given by the reaction-diffusion-type PDE

µ̇ = α div

(
µ∇

(
1− dπ

dµ

))
︸ ︷︷ ︸

Wasserstein: transport

−βµ ·
(
1− dπ

dµ

)
︸ ︷︷ ︸
Fisher-Rao: birth-death

. (iKL-WFR-GF)

The derivation is standard; cf. the aforementioned references. Exploiting the unique properties
established in Theorem 4.2, we can conclude the following.
Corollary A.1. The inclusive KL divergence functional decays exponentially towards zero along the
solution of the PDE equation iKL-WFR-GF.

While this result renders the WFR gradient flow equation an attractive candidate for algorithm design,
we again cannot simulate equation iKL-WFR-GF due to the function 1− dπ/ dµ. To address this,
we now follow equation iKL-WGF-k to kernelize the generalized force in the transport velocity

µ̇ = α · div
(
µ

∫
∇2k(x, ·) d (µ− π) (x)

)
− β · (µ− π) . (IFT-GF)

Due to Proposition 4.3, we immediately find that:
Corollary A.2. equation IFT-GF is the gradient flow equation of the squared MMD functional, i.e.,
with the gradient structure

Space : P
Energy functional : 1

2 MMD2(·, π)
Dissipation Geometry : Interaction-force transport (IFT) (Gladin et al., 2024)

(16)

This has recently been studied under the name of interaction-force transport (IFT) gradient flow by
Gladin et al. (2024). It has been shown to practically accelerate and improve the performance of
the MMD minimization task with proven guarantees. Here, we have shown that the IFT gradient
flow in Gladin et al. (2024) is an approximation to the Wasserstein-Fisher-Rao gradient flow of the
inclusive-KL functional. Gladin et al. (2024) have shown that MMD decays exponentially along the
solution µt to the PDE equation IFT-GF, i.e., MMD(µt, ν) ≤ e−βt ·MMD(µ0, ν) . An important
aspect is that this convergence does not rely on the so-called log-concavity of the target distribution
π; cf. (Chewi et al., 2024).

B ADDITIONAL DERIVATIONS AND PROOFS

By default, we work on the base space Rd. The measures that appear in this paper are by default
assumed to be absolutely continuous with respect to the Lebesgue measure. In formal derivation, we
use measures and their density interchangeably, i.e.,

∫
f · µ means the integral w.r.t. the measure

µ. We use the notation P,M+ to denote the space of probability and non-negative measures on
the closed, bounded, convex subset of Rd. For many of our results, this domain can be generalized
to Rd and the measures can be generalized to atomic measures; see (Ambrosio et al., 2005) for
more details. The first variation of a functional F at µ ∈ M+ is defined as a function δF

δµ [µ]

such that d
dϵF (µ + ϵ · v)|ϵ=0 =

∫
δF
δµ [µ](x) dv(x) for any valid perturbation in measure v such
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that µ+ ϵ · v ∈ M+ when working with gradient flows overM+ and µ+ ϵ · v ∈ P over P . The
mathematical proofs are formal. To avoid confusion, we refer to the forward KL divergence DKL(π|µ)
as the inclusive KL; the reverse KL divergence DKL(µ|π) as the exclusive KL. The technicalities
of PDEs such as solution uniqueness, existence, and regularity are beyond the scope of this paper.

Without further specification, the duality pairing ⟨f, g⟩ is the L2 inner product
∫

f(x)g(x) dx.

The φ-divergence, also known as the f-divergence (Csiszár, 1967), is a class of statistical divergences
that measure the difference between a pair of measures, defined as

Dφ(µ|π) =
∫

φ

(
dµ

dπ
(x)

)
dπ(x), if µ≪ π (17)

and +∞ otherwise; dµ/ dπ is the Radon-Nikodym derivative. The entropy generator function
φ is a convex function satisfying φ(1) = φ′(1) = 0, φ′′(1) = 1. Different choices of φ lead to
various well-known divergences, such as exclusive KL: φKL(s) := s log s − s + 1, inclusive KL:
φrevKL(s) = s− 1− log s, Hellinger: φH(s) = (

√
s− 1)2, χ2: φχ2(s) = 1

2 (s− 1)2. Note that our
definition for measures that are not necessarily probability measures. As a central topic of this paper,
we will focus on the KL divergence evaluated in both the direction of DKL(µ|π) and DKL(π|µ).

Proof of Theorem 3.1. The verification is a straightforward calculation. From the right-hand side of
equation iKL-WGF-k, we have

div

(
µ∇Tk,µ

(
1− dπ

dµ

))
= div

(
µ∇

(∫
k(x, x′)µ(x′)

(
1− dπ

dµ
(x′)

)
dx′

))
= div

(
µ∇

(∫
k(x, x′) (µ(x′)− π(x′)) dx′

))
,

which coincides with the right-hand side of equation MMD-WGF.

Proof of Proposition 4.1. The calculation of the flow equation is straightforward via Otto’s formal-
ism.

µ̇ = −KFR(µ)

(
1− dπ

dµ
− Z

)
(18)

where Z is the normalization constant. Then,

µ̇ = −µ
(
1− dπ

dµ
− Z

)
= −(µ− π) (19)

where Z disappears due to that the gradient flow is already mass-preserving. Therefore, the flow
equation is indeed equation RevKL-FR-GF. The ODE solution is obvious.

Proof of Theorem 4.2. This is a corollary of the more general result by Mielke & Zhu (2025). There,
they proved that the PL inequality holds for a large class of relative entropy functionals including the
squared Hellinger distance, the inclusive KL divergence, and the reverse χ2 divergence. Therefore,
equation Ł-RKL holds globally.

Consequently, calculating the time-derivative of the inclusive KL divergence, we obtain

d

dt
DKL(π|µ) = ⟨1−

dπ

dµ
, µ̇⟩ = −⟨1− dπ

dµ
, µ · (1− dπ

dµ
)⟩

equation −RKL

≤ −c ·DKL(π|µ). (20)

By Grönwall’s Lemma, we obtain the desired estimate.

Proof of Proposition 4.3. First, the equivalence between the flow equations is by direct identification
– the flow equations coincide. This is a consequence of Theorem 3.4 of (Gladin et al., 2024). Then,
using this equivalence, the MMD-decay statement follows from Theorem 3.5 of (Gladin et al., 2024)
and their equation (12).
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Proof of Proposition 4.4. We calculate the optimality condition of the following optimization prob-
lem equation 14.

1− dπ

dµ
+

1

η

(
1− dµl

dµ

)
= 0. (21)

By the ISPD condition of the kernel k, the integral operator Tk,µ is strictly positive-definite. Therefore,
let Tk,µ act on the both sides of the equation above, we have

Tk,µ
(
1− dπ

dµ

)
+

1

η
Tk,µ

(
1− dµl

dµ

)
= 0, (22)

which coincides with the optimality condition of the variational problem equation MMD-MMD-JKO
given Radon-Nikodym derivatives exist.

Corollary B.1. 1 The inclusive KL divergence functional decays exponentially towards zero along
the solution of the PDE equation iKL-WFR-GF.

Proof of Corollary A.1. The proof is by exploiting the inf-convolution structure of the WFR flow. By
taking the time-derivative of the inclusive KL divergence, we have

d

dt
DKL(π|µ) = ⟨1− dπ/ dµ, µ̇⟩ = −α∥∇ (1− dπ/ dµ) ∥2L2(µ) − β∥1− dπ/ dµ∥2L2(µ)

≤ −β∥1− dπ/ dµ∥2L2(µ).

By the functional inequality equation Ł-RKL in Theorem 4.2, we obtain the decay result for the
inclusive KL functional.

Chewi et al. (2020)’s kernelized WGF of χ2-divergence Previously, Chewi et al. (2020) proposed
a kernelized Wasserstein gradient flow of the χ2-divergence. They considered the following kernelized
gradient flow equation:

µ̇ = div

(
µKµ∇

dµ

dπ

)
, (23)

where Kµ should be taken as the integral operator defined by Kµf = Id ◦Tk,µ. However, in their
implemented algorithm, they switched the order of the operators ∇ and Kµ, either as a heuristic or
practical means. That is, what they actually implemented (in (Chewi et al., 2020, Section 4)) is

µ̇ = div

(
µ∇Kπ

dµ

dπ

)
. (24)

From this paper’s perspective, this is kernelizing the genralized thermodynamic force, rather than the
velocity function∇

(
dµ
dπ − 1

)
.

Using this paper’s technique, we can now derive a force-kernelized WGF of the χ2-divergence from
the first principle. Consider the gradient flow equation

µ̇ = div

(
µ∇Tk,π

(
dµ

dπ
− 1

))
. (25)

Note that the integral operator Tk,π is associated with the target measure π, rather than the measure µ
as in equation iKL-WGF-k. Nonetheless, a simple observation is that equation 25 formally coincides
with equation iKL-WGF-k. Therefore, we conclude that a principled force-kernelized flow of the
χ2-divergence WGF equation 25 is equivalent to the WGF of the MMD studied by (Arbel et al., 2019;
Korba et al., 2021), which is straightforward to implement and in contrast to using the ad-hoc scheme
of (Chewi et al., 2020).

1We note that there was an error in the original statement of Corollary A.1. We now correct the statement
and provide a proof.
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Local nonparametric regression formulation equation iKL-WGF-k can be viewed as the follow-
ing local regression estimator of the WGF of inclusive KL equation iKL-WGF.

f = argmin
θ∈Rd

{∫
µ(x′)k(x′ − x)

∣∣∣∣θ − δF

δµ
[µt] (x

′)

∣∣∣∣2 dx′
}

where the energy functional the inclusive KL divergence F = DKL(π|·). Using standard local
regression results (Tsybakov, 2009; Spokoiny, 2016; Zhu & Mielke, 2024), we obtain the closed-form
estimator

f(x) =

∫
µ(x′)

k(x′ − x)∫
µ(x′)k(x′ − x) dx′

δF

δµ
[µt] (x

′) dx′, (26)

and a fintie-sample Nadaraya-Watson estimator f̂(x) =
N∑
i=1

k(xi − x)∑N
i=1 k(xi − x)

· δF
δµ

[µt] (xi).

In particular, in the inclusive KL setting, we obtain

f(x′) =

∫
k(x′ − x)∫

µ(x′)k(x′ − x) dx′

(
µ(x′)− π(x′)

)
dx′.

Given two samples {yi}Ni=1 ∼ µ and {zi}Mi=1 ∼ π, a finite-sample estimator is the difference between
two kernel density estimators

f̂(x) =

N∑
i=1

k(yi − x)∑N
i=1 k(yi − x)

−
M∑
i=1

k(zi − x)∑M
i=1 k(zi − x)

.

The resulting gradient flow equation is given by

µ̇ = div

(
µ · ∇

∫
1

Z
k(x′ − x) d

(
µ(x′)− π(x′)

))
for Z =

∫
µ(x′)k(x′ − x) dx′. (27)

Comparing with equation MMD-WGF and equation iKL-WGF-k, we can see that the local regression
estimator only differs by a constant scaling factor Z. Therefore, the force-kernelized gradient
flow equation equation iKL-WGF-k, and hence equation MMD-WGF, can be interpreted as a
flow matching implementation of the Wasserstein gradient flow of the inclusive KL divergence
equation iKL-WGF.
Remark B.2 (Approximation limit). Suppose the kernel k in equation iKL-WGF-k is a Gaussian
kernel with bandwidth σ. One might conjecture that, as the bandwidth σ approaches zero and the
integral operator tends to an identity map, equation MMD-WGF recovers equation iKL-WGF. This
potential connection could provide a new link between the two gradient flows. However, proving
rigorous Γ-convergence in this setting is mathematically non-trivial and left for future research. We
refer interested readers to relevant works on Γ-convergence, e.g., (Craig et al., 2023; Carrillo et al.,
2019; Lu et al., 2023; Zhu & Mielke, 2024).

C FURTHER BACKGROUND ON WASSERSTEIN GRADIENT FLOWS

We provide further background on Wasserstein gradient flows, especially on the pseudo-Riemannian
structure of the Wasserstein space.

The Onsager operator, as well as the Riemannian metric tensor GW = K−1
W , induces a duality pairing

between the tangent and cotangent spaces. We use the unweighted space for simplicity. Note that the
calculation can also be made in the weighted space L2(ρ).

duality pairing: dual⟨ξ,KW (ρ) ζ⟩primal = ⟨ξ,KW (ρ) ζ⟩L2 =

∫
ξ ·KW (ρ) ζ. (28)

The Stein geometry can also be characterized in this way. Duncan et al. (2019) proposed the following
Onsager operator that is a modification of the Otto’s Wasserstein formalism,

KStein(ρ) : T
∗
ρM→ TρM, ξ 7→ −div(ρ · Id ◦Tk,ρ∇ξ). (29)
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The resulting Stein gradient flow equation is given by

∂tµ = −KStein(µ) log
dµ

dπ
= div (µKµ∇ (V + logµ)) .

We now look at the Wasserstein gradient flow of the inclusive KL divergence. The gradient flow
equation can be given by the Otto’s formal calculation,

∇WDKL(π∥µ) = KW∂DKL(π∥µ) = − div

(
µ∇

(
1− dπ

dµ

))
where KW is the Wasserstein Onsager operator, i.e., the inverse of the Riemannian metric tensor GW

of the Wasserstein manifold.

A standard characterization of the Wasserstein gradient flow is the following energy dissipation
equality in the inclusive KL setting

DKL(π|µt)−DKL(π|µs) = −
∫ t

s

∥∥∥∥∇(
1− dπ

dµr

)∥∥∥∥2
L2(µr)

dr. (30)

The dissipation of the inclusive KL divergence energy, a.k.a. the production of the relative entropy,
equals the integral of the Sobolev norm of the differential of the inclusive KL along the curve µr. For
completeness, we provide a standard characterization via the following differential energy dissipation
equality

d

dt
DKL(π|µt) = ⟨1−

dπ

dµ
, µ̇t⟩ = ⟨1−

dπ

dµ
,KW∂DKL(π|µ)⟩

= ⟨1− dπ

dµ
,div(µ∇

(
1− dπ

dµ

)
)⟩ = −

∥∥∥∥∇(
1− dπ

dµ

)∥∥∥∥2
L2(µ)

. (31)

Integrating both sides, the integral form of EDE is then given by equation 30.

D FURTHER BACKGROUND ON FISHER-RAO AND HELLINGER GRADIENT
FLOWS

We provide further background on Fisher-Rao and Hellinger gradient flows, especially on the
technicalities of the Hellinger flows over positive measuresM+.

We first consider the Hellinger flow of the exclusive (reverse) KL divergence over the positive
measuresM+. Its gradient flow equation, the reaction equation, is given by

µ̇ = −µ · log dµ

dπ
. (32)

The gradient structure is given by
Space : positive measuresM+

Energy functional : exclusive KL: DKL(·|π)
Dissipation Geometry : Hellinger

(33)

One can further restrict the gradient flow to the probability measures by modifying the dynamics in
equation 32 with a projection onto the probability measures, i.e.,

µ̇ = −µ ·
(
log

dµ

dπ
−
∫

log
dµ

dπ
dµ

)
. (34)

The resulting ODE is the gradient flow equation over the Fisher-Rao manifold of the probability
measures, also known as the spherical Hellinger manifold (Laschos & Mielke, 2019). That is, it has
the following gradient structure:

Space : probability measures P
Energy functional : exclusive KL: DKL(·|π)
Dissipation Geometry : spherical Hellinger a.k.a. Fisher-Rao

(35)
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For the inclusive (forward) KL divergence, as discussed in the main text, the Hellinger flow over the
positive measuresM+ coincides with the Fisher-Rao flow over the probability measures P , given
the same initial condition. Specifically, the Hellinger gradient structure over the positive measures
M+ is given by 

Space : positive measuresM+

Energy functional : F (·) := DKL(π|·)
Dissipation Geometry : Hellinger

(36)

This flow actually contains the flow equation 11 if initialized as probability measures.

For the Hellinger flows, an interesting and known analysis result is that the following Polyak-
Łojasiewicz functional inequality cannot hold globally for exclusive KL divergence functional. in the
Hellinger geometry, ∥∥∥∥log dµ

dπ

∥∥∥∥2
L2

µ

≥ c ·DKL(µ(t)∥π). (Ł-KL)

Inequality equation Ł-KL differs from the typical log-Sobolev inequality in that no Sobolev norm is
involved. An elementary proof was provided by Mielke & Zhu (2025). Consequently, we obtain the
following lemma regarding the property of the Hellinger flows of the exclusive KL by Grönwall’s
Lemma. This is in sharp contrast to the case of the inclusive KL as discussed in the main text.
Lemma D.1 (No global Łojasiewicz condition in Fisher-Rao flows of KL). There exists no c > 0
such that equation Ł-KL holds along the Hellinger gradient flow of the exclusive KL divergence
functional.
Remark D.2. Strictly speaking, we make the following distinction:

• Fisher-Rao (FR): a Bregman divergence between parameters of the (exponential-family)
distributions generated by the suitable generator functions.

• Hellinger (He): a special φ-divergence/distance defined in our paper.

• spherical Hellinger (SHe): a distance induced by restricting the Hellinger geodesics to
the probability measures; also called Bhattacharya distance by Rao (1945) after its first
introduction by Bhattacharyya (1946). We can recover the equivalence between SHe and
FR if we consider the trivial parameterization of the probability measure by itself (infinite-
dimensional).

For more details, see the discussion in (Mielke & Zhu, 2025).

E KERNEL STEIN DISCREPANCY DESCENT AS INCLUSIVE KL INFERENCE

The original implementation of equation MMD-WGF by Arbel et al. (2019) suffers from a few
drawbacks such as mode collapse or slow convergence. Furthermore, their algorithm requires samples
from the target distribution π, which may be impractical in some applications. For example, in
Bayesian inference, one typically only has access to the posterior via the score function ∇ log π.
Instead of the MMD, authors such as Korba et al. (2021); Chen et al. (2018); Barp et al. (2019)
advocated for minimizing the kernel Stein discrepancy (KSD) (Gorham & Mackey, 2017; Liu et al.,
2016; Chwialkowski et al., 2016) for inference. From the optimization perspective, we replace the
MMD objective with the KSD objective 1

2 KSD2(µ|π) The KSD can be viewed as a special case of
the MMD associated with the Stein kernel (Gorham & Mackey, 2017; Liu et al., 2016; Chwialkowski
et al., 2016). The Wasserstein gradient flow equation of the KSD can be straightforwardly calculated
as noted by Korba et al. (2021).

µ̇ = div(µ ·
∫
∇2sπ(x, ·) dµ(x)), (KSD-WGF)

where sπ is the Stein kernel; see the appendix. Unlike equation MMD-WGF, to implement a discrete-
time algorithm that simulates equation KSD-WGF, we only need to evaluate the score function
∇ log π without needing the samples from π. As KSD can be viewed as a special case of MMD
with the Stein kernel, using our characterization of the MMD-WGF in Theorem 3.1, we obtain the
following insight.
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Corollary E.1 (Formal equivalence between KSD-WGF and inclusive KL inference). The WGF
equation of KSD equation KSD-WGF is equivalent to equation iKL-WGF-k, which is the kernelized
WGF of the inclusive KL divergence energy functional when the kernel is the Stein kernel sπ .

Notably, Korba et al. (2021) empirically demonstrated that the KSD-based flow significantly outper-
forms the MMD-based flow in practice. The finding in this paper unifies the KSD-based flows and
the MMD-based flows. This forms a unified framework for inclusive KL minimization via kernelized
Wasserstein gradient flows.

F EXAMPLES AND ALGORITHMIC IMPLICATIONS

In this section, we demonstrate our gradient flow theory in stylized examples from machine learning
and statistical inference.

F.1 INFERENCE AND SAMPLING ALGORITHMS VIA FORCE-KERNELIZED WASSERSTEIN FLOWS

The goal of this section is to show a general-purpose inference algorithm for the inclusive KL infer-
ence, analog to the SVGD for the forward KL inference, can be constructed using our gradient flow
theory. Suppose our goal is to approximate a target distribution π via the inclusive KL minimiza-
tion equation 2. We consider two settings: (1) we have access to samples from the target yi ∼ π,
e.g., in generative modeling; (2) we have access to the score function ∇ log π, e.g., in inference
and sampling. Our scheme is based on discretizing the force-kernelized Wasserstein gradient flow
equation equation iKL-WGF-k, obtaining the discret-time update scheme

Xt+1 = Xt − τ∇
∫
∇2k(x

′, x)
δF

δµ
[µt](x

′) dµt(x
′). (37)

An interacting particle system can be simulated by considering particle approximation to the measure,
µ = 1

n

∑n
i=1 δxi , xi ∈ Rd.

Setting (1): sample-based setting with flows of MMD In general, for Wasserstein gradient flow of
the energy functional F , one may implement a practical algorithm that discretizes the PDE equation 6.
As discussed in the beginning of Section 3, in the vanilla Wasserstein gradient flow of the inclusive
KL divergence equation iKL-WGF, the velocity field ∇

(
1− dπ

dµt
(Xt)

)
cannot be implemented out

of the box. Based on Theorem 3.1, we now resort to equation 37 which is algorithmicly equivalent
to Arbel et al. (2019)’s algorithm which they termed MMD-flow. This amounts to simulating (in
discrete time) an interacting particle system:

Xi
t+1 = Xi

t − τ

 1

N

N∑
j=1

∇2k(X
j
t , X

i
t)−

1

M

M∑
j=1

∇2k(Y
j
t , X

i
t)

 , (38)

where Xi
t are samples from the distribution µt; cf. (Arbel et al., 2019) for the experimental results.

Setting (2): score-based setting with flows of KSD In variational inference, we typically have
access to the target π in the form of the score function ∇ log π without samples. Discretizing the
PDE equation KSD-WGF, we have

Xt+1 = Xt − τ

∫
∇2sπ(x, ·) dµ(Xt). (39)

A sample-based implementation of the above algorithm is then given by

Xi
t+1 = Xi

t − τ

 1

N

N∑
j=1

∇2sπ(X
j
t , X

i
t)

 . (40)

In summary, to solve the inclusive KL minimization equation 2, one can apply the general-purpose
algorithm via the discrete time scheme equation 37. This is implementable in practice in both
sample-based and score-based settings; cf. empirical results in (Korba et al., 2021; Arbel et al., 2019).
Hence, we have established a previously missed link between inclusive KL inference and the gradient
flows of MMD-type functionals.
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F.2 GENERATIVE MODELING

Recently, there is a surge of interest in formulating GANs in the fashion of Wasserstein gradient
flows Promising empirical results have been reported by Ansari et al. (2021); Yi et al. (2023); Yi
& Liu (2023); Franceschi et al. (2024); Heng et al. (2024). In addition, there have also been a
series of paper that present theoretical analysis of GAN training dynamics as interacting gradient
flows by, e.g., Hsieh et al. (2018); Domingo-Enrich et al. (2020); Wang & Chizat (2022; 2023);
Dvurechensky & Zhu (2024-05-02/2024-05-04). Using this paper’s insight, we now uncover some
previously unknown connections between generative models and the Wasserstein gradient flow of the
inclusive KL functional.

Our starting point is the standard divergence-based generative modeling training, which solves the
optimization problem

min
θ

DKL(πdata|gθ#PZ), (41)

where PZ is the latent variable distribution, e.g., standard Gaussian, and gθ is the generator network.
Note that it is also possible to work with numerous other geneartive formulations such as models
without explicit generator parameterization such as discriminator flows as discussed in Franceschi
et al. (2024). Following our force-kernelized WGF framework as in equation iKL-WGF-k, consider a
force-kernelized projected gradient flow for the inclusive KL minimization equation 41.

θ̇ = −ΠΘ

(
−div

(
µθ∇Tk,µθ

(
1− dπ

dµθ

)))
, µθ = gθ#PZ (42)

where KW again denotes the Wasserstein Onsager operator. ΠΘ is the projection (of the Riemannian
gradient) onto the parameter space Θ. Form equation 42, we immediately observe that the flow can
be written in the form of a flow-matching model

θ̇ = −ΠΘ (− div (µθ∇f∗(x))) , f∗(x) =

∫
k(x′, x) (µθ(x

′)− dπ(x′)) dx′. (43)

Discretizing the above PDE, we have

θl+1 ← θl − ηlΠΘ (− div (µθ∇f∗(x))) (44)
which corresponds to the training dynamics of MMD-GANs (Li et al., 2015; Dziugaite et al., 2015;
Li et al., 2017; Bińkowski et al., 2018) using the optimal test function f∗. The insight of our paper is
that, through the lens of equation 42, we can view the MMD-GAN training dynamics as performing
inclusive KL inference using an approixmate Wasserstein gradient flow.

F.3 DISCRETE-TIME MIRROR DESCENT

Recently, there have a few studies using mirror descent of the exclusive KL divergence such as
(Chopin et al., 2024; Aubin-Frankowski et al., 2022). We now provide the details of inclusive KL
minimization via mirror descent. Consider an explicit Euler scheme for the gradient flow

min
ρ∈P
⟨∂DKL(π|ρ), ρ⟩+

1

τ
DKL(ρ|ρl). (45)

where ⟨, ⟩ is the L2 inner product. Using the optimality condition of this optimization problem, we
can derive the following mirror descent update:

ρl+1(x)← 1

Zl
ρl(x) · exp

(
−τ

(
1− dπ

dρl

))
for all x ∈ Rd, (46)

where Zl is the normalization constant. We now again apply the kernel approximation of this paper,
obtaining the update rule

ρl+1(x)← 1

Zl
ρl(x) · exp

(
−τ · Tk,ρl

(
1− dπ

dρl

))
=

1

Zl
ρl(x) · exp

(
−τ ·

∫
k(x, y)

(
ρl(y)− π(y)

)
dy

)
.

Similarly, using Stein’s method, we can also perform update only via the score function of the target
∇ log π.

ρl+1 ← 1

Zl
ρl · exp

(
−τ ·

∫
sπ(x, y)ρ

l(y) dy

)
. (47)

20



Frontiers in Probabilistic Inference: Sampling meets Learning (FPI) workshop at ICLR 2025

G OTHER RELATED WORKS

Outside machine learning, there exists many works in interacting particle systems that uses similar
approximation methods as kernelization, such as the blob method (Carrillo et al., 2019; Craig et al.,
2023). In the optimization literature, there are a few related works using particle-based gradient
descent methods, such as (Dai et al., 2016) and (Chizat, 2022), albeit they are not concerned with the
inclusive KL divergence. For Bayesian inference, Trillos & Sanz-Alonso (2018) provide a variational
perspective for Bayesian update, framing it in terms of gradient flows. Therein, they primarily
consider the KL, χ2, and Dirichlet energy functional. Maurais & Marzouk (2024)’s algorithm seeks a
velocity field for the ODE to match the behavior of the Fisher-Rao flow. It is also worth noting that
they assume the setting of importance sampling where one has access to the density ratio. Vargas et al.
(2024) proposed a framework that governs many existing variational Bayesian methods. While not
directly related to our work, one part of their reversal framework is indeed a inclusive KL inference
problem. Chewi et al. (2020) propose a perspective that views SVGD as a kernelized Wasserstein
gradient flow. In the appendix, we expand on the precise relation between this paper and the algorithm
they actually implemented, which switched the order or gradient and kernelization operation. Then,
we show that the χ2 flow can be cast into our framework without that heuristic implementation. In
addition to the Wasserstein gradient flow, there exist several works that are based on unbalanced
transport and its variants, such as (Lu et al., 2019; Mroueh & Rigotti, 2020; Lu et al., 2023; Yan et al.,
2023; Gladin et al., 2024). Instead of approximation via integral operator, a ridge-regression type
of gradient flow approximation can also be considered; cf. (He et al., 2022; Zhu & Mielke, 2024;
Nüsken, 2024).
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