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Abstract

Current research on LoRA primarily focuses
on minimizing the number of fine-tuned param-
eters or optimizing its architecture. However,
the necessity of all fine-tuned LoRA layers dur-
ing inference remains underexplored. In this
paper, we investigate the contribution of each
LoRA layer to the model’s ability to predict
the ground truth and hypothesize that lower-
layer LoRA modules play a more critical role in
model reasoning and understanding. To address
this, we propose a simple yet effective method
to enhance the performance of large language
models (LLMs) fine-tuned with LoRA. Specifi-
cally, we identify a “boundary layer” that dis-
tinguishes essential LoRA layers by analyzing
a small set of validation samples. During in-
ference, we drop all LoRA layers beyond this
boundary. We evaluate our approach on three
strong baselines across four widely-used text
generation datasets. Our results demonstrate
consistent and significant improvements, under-
scoring the effectiveness of selectively retain-
ing critical LoRA layers during inference.

1 Introduction

Large language models (LLMs), such as ChatGPT,
have demonstrated remarkable capabilities across
diverse downstream tasks. However, their extensive
parameterization presents substantial challenges
for fine-tuning. In response, parameter-efficient
fine-tuning (PEFT) methods (Houlsby et al., 2019;
Li and Liang, 2021) have gained significant trac-
tion. Notably, Low-Rank Adaptation (LoRA) has
emerged as a pivotal technique, particularly in the
context of LLMs. LoRA operates by introducing
trainable adapters for each layer of the LLM while
keeping the remaining parameters frozen. This
approach not only substantially reduces the compu-
tational resources required for fine-tuning but also
achieves performance that is on par with or even
superior to fully fine-tuned LLMs.

To further leverage LoRA for improving training
efficiency and model performance, various studies
have focused on optimizing its architecture or prun-
ing important parameters for each layer. Zhang
et al. (2023a) introduced AdalLoRA, which utilizes
singular value decomposition (SVD) of AW to
dynamically adjust the rank of LoRA for differ-
ent layers. LoRA-Drop (Zhou et al., 2024) prunes
LoRA parameters based on output evaluation. Hy-
dralLoRA (Tian et al., 2024) proposes an asym-
metric structure that employs a shared A matrix
and multiple B matrices to handle complex domain
datasets. MOELoRA (Luo et al., 2024) selects suit-
able A and B matrices in LoRA for each layer to
improve adaptation. However, these methods either
focus on more efficient parameter fine-tuning or ne-
cessitate the fine-tuning of more complex LoRA
structures. We argue that selectively using the fine-
tuned LoRA of part of the layers without additional
training will be more efficient, given the already
small size of LoORA parameters.

In this work, we conduct a systematic investi-
gation into the layer-wise impact of LoRA (Low-
Rank Adaptation) in LLMs. Our empirical analy-
sis reveals a distinct functional separation across
model layers: the lower layers predominantly en-
gage in content understanding and information ex-
traction, while the upper layers specialize in an-
swer summarization and refinement. Interestingly,
our findings demonstrate that the top layers can
effectively generate responses based on the rep-
resentations captured by the bottom layers even
without LoRA adaptation, leveraging the inher-
ent knowledge encoded in the pre-trained LLMs.
Building upon these observations, we propose a
novel and computationally efficient approach to op-
timize LoRA-based fine-tuning. Specifically, we
introduce two complementary strategies for iden-
tifying a critical “boundary layer” that separates
information extraction from answer refinement in
LoRA-enhanced models. The first strategy em-



ploys a manual approach by computing the av-
erage probability of ground truth outputs across
LoRA-tuned layers using validation samples, with
the boundary determined through probability curve
analysis. The second strategy adopts an automated
approach by evaluating model performance across
different boundary layer configurations and select-
ing the optimal one. During inference, we strate-
gically remove LoRA layers above the identified
boundary layer, achieving both efficiency gains and
performance maintenance.

We evaluate our proposed method on four
widely-used generation datasets spanning multiple
tasks, employing three state-of-the-art baselines:
Phi-2 (Li et al., 2023), Llama2-7B-Chat (Touvron
et al., 2023), and Llama-3.1-8B-Instruct (Dubey
et al., 2024). Our empirical results consistently
demonstrate the effectiveness and generaliz ability
of the proposed approach across different model
architectures and task domains.

2 Related Work

2.1 Parameter-Efficient Fine-Tuning

With the rapid scaling of large language mod-
els (LLMs), traditional full-parameter fine-tuning
becomes progressively impractical due to expo-
nentially increasing computational costs. Con-
sequently, parameter-efficient fine-tuning (PEFT)
techniques have assumed greater significance
(Houlsby et al., 2019). There are two main
paradigms for PEFT based on their principles:
prompt-based tuning and adapter-based methods.
Prompt-based techniques optimize the model
through input-space interventions rather than ar-
chitectural changes. Early implementations like
Prompt Tuning (Lester et al., 2021) learn continu-
ous task-specific embeddings prepended to input
sequences, significantly reducing the computation
of the parameters. Prefix-tuning (Li and Liang,
2021) optimizes virtual token embeddings across
all transformer layers, demonstrating improved ca-
pability on generation tasks. Kwon et al. (2024)
introduces adaptive proximal policy optimization
to revise the stability and environment dependence.
Although the Prompt-based techniques exhibit ef-
fective utilizations of few-shot and zero-shot data,
they are still affected by their sensitivity to initial-
ization and sequence length constraints.
Adapter-based approaches introduce small train-
able modules between transformer layers, achiev-
ing parameter efficiency through freezing the base

model. Preliminary methods (Houlsby et al., 2019;
Mabhabadi et al., 2021; Bapna and Firat, 2019;
Wang et al., 2021) introduce notable inference la-
tency due to sequential computation bottlenecks.
Low-Rank Adaptation (LoRA) further reduces
the computational overhead through decomposing
weight updates into low-rank matrices, achieving
comparable performance to full fine-tuning with
few parameters. Subsequent studies have extended
this paradigm. AdalLoRA (Zhang et al., 2023b)
dynamically allocates rank budgets across layers.
LoRS (Hu et al., 2025) adopts weight recompute
and computational graph rearrangement to reduce
memory and computational consumption while im-
proving performance. Moreover, Gao et al. (2024)
observed that higher transformer layers require
more LoRA experts to capture task-specific pat-
terns, while lower layers exhibit significant redun-
dancy. Hu et al. (2024) enhance parameter effi-
ciency by sharing the LoORA A matrix across all
layers, further proof the significant parameter re-
dundancy of conventional LoRA architecture.

2.2 Knowledge Distillation

In contrast to the PEFT paradigm that focuses on
optimizing model adaptation efficiency, an alterna-
tive trajectory explores knowledge distillation tech-
niques for computational cost compression through
inter-model knowledge transfer, which effectively
reduces consumption, but generally faces the prob-
lem of a lack of task generalization abilities (Hahn
and Choi, 2019; Sun et al., 2019; Tang et al., 2019).
Tf-FD (Li, 2022) enhances generalization through
layer-wised self-distillation and student features
reusing. However, the limited ability of the student
model to represent complex tasks results in insuffi-
cient adaptability. Liu et al. (2023) improves classi-
fication accuracy by linear transformation from N
to one, but neglects cross-layer semantic discrep-
ancies and multilevel knowledge integration. How-
ever, our approach takes a fundamentally different
way to further unleash the vintrinsic knowledge
of LLMs, leveraging the information captured by
the LoRA of the bottom layers while allowing the
model to reason in its original, unmodified manner
at the top layers without LoRA.

3 Preliminary Analysis of LoORA

In these preliminary analysis experiments, we use
all three strong baselines fine-tuned with LoRA on
four generation datasets in different tasks to explore
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Figure 1: The average maximum probability of the first four tokens for each layer of Llama3.1-8B-Instruct model

fine-tuned with LoRA on the four datasets.
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Figure 2: The average maximum probability of the first four tokens for each layer of Llama3.1-8B-Instruct model
fine-tuned with LoRA on the HotpotQA dataset while dropping specific LoRA layers during inference.

the impact of LoRA for different layers.

3.1 The Probability of Each Layer

We randomly sampled 100 instances from the test
set of our four datasets. Then we utilize fine-tuned
LLMs to output the probability distribution across
different layers. By encoding the ground truth for
each sample and averaging the corresponding prob-
abilities, we assessed whether the models arrived
at the correct answers. For enhanced clarity in our
analysis, we visualized the probability distributions
of the first several tokens at each layer. Figure 1
and 6 illustrate these distributions for the Llama3.1-
8B-Instruct and Llama2-7B-Chat across the four
datasets.

Observation Our analysis reveals a distinct pat-
tern in the probability distribution across the layers
of LLMs. Specifically, the bottom layers exhibit
relatively low and stable probabilities for first four
tokens. However, at a certain “boundary layer,” we
observe a sharp and significant increase in these
probabilities. We posit that this transition reflects
the model’s progression from context comprehen-
sion and information extraction in the lower layers
to answer formulation and refinement in the upper
layers. This interpretation is supported by the vi-
sualization in Figure 6, which demonstrates that
the initial layers maintain consistently low prob-
abilities, followed by a marked upward trend in
the bottom layers. This abrupt shift suggests that

the model begins to synthesize the extracted in-
formation and generate task-appropriate responses
beyond this “boundary layer”.

3.2 Top LoRA Are Not Necessary

Building on the conclusions drawn in Section 3.1,
we posit that for downstream tasks, it is crucial
for LLMs to understand the context and effectively
capture information. Imposing rigid formatting
constraints may negatively impact model perfor-
mance, given that LLLMs are primarily pre-trained
for text completion on natural language corpora.
To investigate the layers of LoRA that are essential,
we conduct experiments by selectively dropping
specific LoRA of layers from an LLM. Specifically,
we randomly select 100 samples from the test set
and visualize the average maximum probability of
the first four tokens at each layer when keeping the
LoRA of the bottom 10, 20, and 25 layers. The re-
sulting curves are depicted in Figure 2. We plot the
average maximum probability of the same token
across various scenarios in each sub-figure.

Observation Dropping the LoRA of the specific
numbers of top layers does not significantly affect
the output probabilities. As illustrated in Figure
2, keeping the LoRA of bottom layers does not
significantly affect the model’s output probabilities
too much, particularly for the 2nd to 4th tokens
(Figure 2b, 2c, 2d). This observation is reason-
able, as the first token typically determines the
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Figure 3: The overview of our proposed method.

response pattern for downstream tasks, making it
more susceptible to fluctuations compared to sub-
sequent tokens. This aligns with the findings of
Zhan et al. (2024), which suggests that fine-tuning
primarily impacts the first token. Furthermore, we
observe that when keeping the LoRA of the bot-
tom 20 layers (depicted by the orange curve), the
model’s maximum output probabilities outperform
those in other configurations, including the base-
line. Notably, even for the first token’s probability,
this “boundary layer” also results in higher maxi-
mum output probabilities in the last several layers
compared to the baseline.

4 Method

Building upon our hypothesis and the empirical
observations detailed in Section 3, we propose a
simple yet effective strategy to improve model per-
formance without requiring additional fine-tuning.
Our approach centers on the removal of LoORA com-
ponents from layers situated above an identified
“boundary layer.” A comprehensive overview of
this methodology is illustrated in Figure 3.
Initially, we apply LoRA to all layers to conduct
supervised fine-tuning (SFT) of a large language
model (LLM) on a downstream task, adhering to
standard procedures. Subsequently, we identify the
“boundary layer” where LoRA should be removed.
As analyzed in Section 3, a computationally effi-
cient method to determine this layer involves cal-
culating the average probability of the ground truth
from the logits output of each layer and visualizing
these probabilities. The point where the curve be-
gins to rise is manually identified as the “boundary
layer.” After removing the LoRA from layers be-
yond this point, we can directly generate responses
for the test set without further training.
Additionally, we propose a more precise and au-

>

tomated method to identify the “boundary layer,
as illustrated in Figure 3. After fine-tuning the
LLMs with full LoRA, we randomly select a set
of M samples from the validation set to evaluate
model performance after dropping LoRA at differ-
ent “boundary layers.” For instance, in the case
of the Llama3.1-8B-Instruct model, which has
32 decoder layers, we obtain 32 evaluation results
corresponding to different “boundary layers.” We
then select the best-performing result as our final
“boundary layer” and evaluate the model perfor-
mance on the test set after removing LoRA be-
yond this point. By using validation set samples
to determine the boundary layer and subsequently
evaluating on the test set, we mitigate the risk of
overfitting the boundary layer to a specific dataset,
thereby enhancing the credibility of our results.

5 Experiments

5.1 Setup

Dataset We use four widely used datasets in dif-
ferent generation tasks in our experiments: Hot-
potQA (Yang et al., 2018) for multi-document
question answering, GSM8K (Cobbe et al., 2021)
for mathematical reasoning, Samsum (Gliwa
et al., 2019) for text summarization, and WMT23
(Kocmi et al., 2023) for machine translation. The
statistic about them is shown in Table 2.

Evaluation Metric We employ different evalu-
ation metrics for these four tasks seperately. We
employ Exact Match (EM) and F1 score to evaluate
the performance of the HotpotQA dataset, whose
purpose is to measure how completely the gener-
ated response contains the label. For GSM8K, we
only use the EM score to evaluate whether the fi-
nal calculated results is correct. For Samsum and
WMT23, we use the traditional ROUGE-L and



HotpotQA GSMSK

Samsum

WMT23(En->Zh)

Model EM Fl EM  ROUGE LLM-Score BLEU
Phi-2 (Fine-tuned) 62.8 70.0 57.1 33.7 71.2 6.4
Phi-2 (Ours) 65.6 684 57.8 325 72.5 54
Llama2-7B-Chat (Fine-tuned) 66.2 735 36.1 42.8 78.0 27.0
Llama2-7B-Chat (Ours) 69.1 71.6 38.6 43.5 80.3 274
Llama3.1-8B (Fine-tuned) 73.1 804  73.1 38.2 79.5 33.0
Llama3.1-8B (Partial Fine-tuned) 73.0 799  73.9 37.7 79.8 33.3
Llama3.1-8B (Ours) 74.1 803 743 38.1 80.6 35.8

Table 1: The results (%) on the test set of the five datasets in our experiments. Bold numbers indicate the better

result for each baseline.

Dataset Train  Validation  Test
HotpotQA 50,000 7,405 7,405
GSMS8K 7,473 1,319 1,319
Samsum 14,732 818 819
WMT23 50,000 500 2,074

Table 2: The statistics of the four datasets we used in
our experimental setting.

BLEU! (Post, 2018) seperately at first. However,
these two tasks can have similar meanings in differ-
ent expressions. Thus, we also design a LLM-Score
(Appendix A.2) to evaluate the generation output
from various perspectives, such as fluency, accu-
racy, or readability, by asking the LLMs to act as a
human.

Model We evaluate our method on three strong
baselines: Phi-2? (Li et al., 2023), Llama2-7B-
Chat? (Touvron et al., 2023), and Llama-3.1-8B-
Instruct* (Dubey et al., 2024). More details of
implementation will be shown in Appendix A.3.

5.2 Main Results

As shown in Table 1, our method of selectively
dropping LoRA after specific layers outperforms
the baseline in nearly all experiments. For the Hot-
potQA dataset, our method achieves a higher EM
score. However, it consistently underperforms all
three baselines in terms of F1 scores. This suggests
that our approach is more effective in generating re-
sponses that contain the correct answers compared

"https://github.com/mjpost/sacrebleu

Zhttps://huggingface.co/microsoft/phi-2

3https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

“https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

to the baselines. As discussed in our previous anal-
ysis, the LoORA components in the lower layers
primarily help the LLM learn to format answers ac-
cording to specific downstream tasks. When these
LoRA components are dropped, the model contin-
ues to reason like the original model, often gener-
ating answers in natural language. This behavior
leads to responses that include additional words
alongside the correct answer, thereby negatively
impacting the F1 scores.

For the GSM8K and WMT23 datasets, our
method mostly outperforms the baselines, further
verifying that removing LoRA from several top lay-
ers can enhance the reasoning capability of LLMs.
It should be noted that the performance of our
method on the Samsum dataset drops slightly on
two baselines while achieving a better LLM-Score.
This is because our approach deals with summa-
rization tasks that are highly open-ended, and our
method reduces the constraints imposed by the
LoRA of top layers on the LLMs’ inference ca-
pabilities, allowing the generated summary to be
more comprehensive. However, as a trade-off, it
also loses the ability of the top LoRA to mimic
training data for formatting the answers, leading
to a decrease in Rouge scores. Regarding the de-
cline in performance on the WMT23 test set with
Phi-2, our analysis revealed that the training data
remains too challenging for Phi-2. We believe this
is why removing LoRA in Phi-2 can not get the
same improvement as the other two models.

5.3 Ablation Study

In this work, we present a robust and unified ap-
proach that resists decomposition into discrete com-
ponents for analysis. However, our strategy of se-
lectively dropping LoRA beyond the “boundary
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Figure 4: The performance of different “boundary layer”
of Llama3.1-8B-Instruct model. The Score means
the corresponding automatic evaluation metric of four
datasets.

layer” during inference introduces a challenge: the
need for a two-step process involving fine-tuning
followed by LoRA removal. We conducted ex-
periments across four datasets using Llama3.1-8B-
Instruct, applying LoRA only to the bottom 20
layers of the LLMs during the fine-tuning phase.
The evaluation results are shown in Table 1, which
is the row of "Partial Fine-tuned". Interestingly,
the performance of LLMs fine-tuned with LoRA
in the bottom 20 layers closely matches that of the
baseline models. This suggests that, regardless of
whether LoRA is applied to all layers during fine-
tuning, some LoRA components are particularly
effective at capturing and understanding context,
while others excel at synthesizing and refining an-
swers to suit downstream tasks. These findings
highlight the necessity of our two-step process.

6 Analysis

6.1 Different Boundary Layer

To provide a more intuitive rationale for our selec-
tion of the “boundary layer”, we conduct additional
experiments by removing the LoRA with differ-
ent “boundary layers”. Specifically, we assessed
model performance after dropping the LoRA after
the K=[10, 25] layers, with the results illustrated
in Figure 4. Consistently, removing the LoRA af-
ter the 15-20 layer resulted in better performance
across all four datasets. This finding highlights the
robustness of our approach and suggests that the
“boundary layer” for one model is likely to remain
a range across different downstream tasks.

6.2 Post-Hoc Analysis

Furthermore, we conduct some experiments to in-
vestigate how dropping LoRA affecting the LLMs
performance and verify its effect. Specifically, we
evaluated the probability distribution of the first
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Figure 5: The probability difference of ground truth
between our method and baseline on three datasets.

token generated by our method and baseline mod-
els across three datasets: HotpotQA, Samsum, and
GSMSK. Specifically, we extracted and compared
the average probability of the ground truth token
for all decoding layers. Typically, the average prob-
ability of the ground truth token for the first token
is relatively low, making visualization challenging.
To address this, we calculated the difference in
average probabilities for each layer between our
method and the baseline, and visualized the results
in Figure 5. The visualization reveals that after
dropping certain LoRA components, our method
tends to assign higher probabilities to the ground
truth token, especially near the output layers. It is
important to note that the probability differences
for GSMS8K remain stable. This stability arises
because, in GSMS8K, the model must perform rea-
soning before arriving at the final answer, resulting
in low probabilities for the first token in both our
method and the baseline. This contrasts with Hot-
potQA, where the ground truth is relatively shorter,
leading to the largest probability differences. A
case study will be introduced in Appendix A.1 to
concretely show the effect of our method.

6.3 Comparison of Labeling and Generation

Besides evaluating the performance of generation
tasks, we also conduct analysis to verify whether
our method can improve the performance on la-
beling tasks, where LLMs also get significant per-
formance. The HotpotQA dataset can be partially
viewed as a labeling task, featuring two types of
questions: Bridge and Comparison. The answers
to comparison questions are typically “Yes”, “No”,
or an choice between “A” or “B”’, which is similar
to the binary classification. We begin by assessing
the performance improvements on these tasks. As
depicted in Table 3, our approach yields EM scores
for both question types, albeit with a reduction in
F1 scores, mirroring trends observed in our main



Question Type EM F1 Samsum  WMT23(EN->ZH)
Bridge 78.1 81.7 LLMs-based Evaluation
Bridge (Ours) 79.7 80.4 Baseline 376 442
Comparison 71.9 79.8 Ours 62.4 55.8
Comparison (Ours) 72.7 78.7 Real Human Evaluation
Table 3: The results of different types of question (%) Baseline 10.0 433
HotpotQA dataset with Llama3.1-8B-Instruct fine-tuned Ours 90.0 56.7

with LoRA. Bold numbers indicate the best results.

Method Accuracy (%)
E-Commerce (Fine-tuned) 68.6
E-Commerce (Ours) 69.8

Table 4: The accuracy (%) of our method and baseline
on Llama3.1-8B-Instruct fine-tuned with E-Commerce
dataset. Bold numbers indicate the best results.

results (Section 5.2). In particular, our method
shows approximately double the improvement in
EM scores for bridge compared to comparison.

Besides HotpotQA, we further evaluate our
method using a purely labeling dataset. We fine-
tune the LLaMA3.1-8B-Instruct with LoRA on a
subset of the E-Commerce dataset (Zhang et al.,
2018), selecting 50,000/500/2,000 data for the
train/validation/test set, equally divided between
positive and negative samples. This dataset fo-
cuses on dialogue response selection (Chen et al.,
2024), requiring models to ascertain the suitabil-
ity of a given response within a dialogue context.
We utilize accuracy as the performance metric, pre-
processing the data to align with LLM natural lan-
guage formats with "Yes" or "No" labels for fine-
tuning and evaluation. The results, presented in
Table 4, indicate that our method surpasses the
baseline by 1.2%, suggesting its efficacy for classi-
fication tasks. In addition, the output for this data
should always be a single word. However, we ob-
served that 13% of samples exceeded one word
after dropping LoRA, with the additional content
providing explanatory reasoning for the label. This
observation supports our hypothesis that certain
top LoRA are primarily involved in refining and
formatting responses.

6.4 Generation Quality

Generally speaking, directly modifying some pa-
rameters of a fine-tuned LLM without continuing
training may result in the generated content being

Table 5: The LLMs-based and real human evaluation
on Llama3.1-8B-Instruct. This percentage(%) refers
to the proportion of all test data where the output of
this method is better than that of another method. Bold
numbers indicate the best results.

incoherent or garbled. Thus, we further design two
strategies to evaluate the generation quality of our
method on Samsum and WMT23, since these two
tasks are open-ended generation tasks and place
greater emphasis on the quality of the generated re-
sults. The first one is similar to LLM-Score, which
we ask LLMs to act as humans to choose the bet-
ter one between our method and baselines. The
other is real human evaluation. We randomly sam-
ple 30 examples seperately in test set of Samsum
and WMT23 datasets, and recruited three com-
puter science students proficient in both English
and Chinese to choose the better approach between
our method and the baseline method based on four
aspects: fluency, accuracy, readability, and com-
pleteness. Then, we calculated the average results
from these three students. As shown in Table 5, the
percentage(%) represents the proportion of all test
data where the evaluators considered the results of
this method to be better.

The output from our method gets a higher pro-
portion consistently, whether evaluated by LLMs
or real humans. It indicates that our method can
improve the model performance without affecting
the generation quality through only dropping some
LoRA during inference. The evaluation instruction
for LLMs will be shown in Table 9. In comparison
to text summarization, our method did not achieve
as significant results in translation tasks. We think
it is because the prediction results in translation
tasks are more strongly constrained by the source
sentence, which means that the gains from drop-
ping LoRA of specific layers are relatively smaller.
This also indicates that our method performs better
in tasks with fewer constraints on the ground truth
format, such as open-ended generation tasks.



HotpotQA GSMSK Samsum WMT23(En->Zh)
Method EM F1 EM ROUGE LLM-Score BLEU
Baseline (r =16) 739  80.1 74.4 38.6 80.4 329
Ours (r = 16) 74.6  80.1 76.4 38.0 80.7 36.8
Baseline (r =32) 729 799 75.8 38.5 80.8 32.6
Ours (r = 32) 73.6  80.0 76.0 38.6 81.2 36.0

Table 6: The results of different LoORA rank on Llama3.1-8B-Instruct. Bold numbers indicate the best results.

6.5 Impact of LORA Rank

One of the pivotal factors influencing the perfor-
mance of LoRA tuning is the choice of LoRA rank.
As different rank values can lead to varying per-
formances even with identical models and datasets,
we conducted a comprehensive experimental evalu-
ation on the Llama3.1-8B-Instruct model. Specifi-
cally, we examined rank values of {16, 32}, with
the detailed results presented in Table 6. Our empir-
ical findings demonstrate that our method consis-
tently outperforms nearly all baseline approaches,
thereby providing strong evidence for its gener-
alization capabilities. Furthermore, our analysis
revealed that while overfitting phenomena were ob-
served on the GSM8K and WMT?23 datasets, as
indicated by performance degradation, dropping
top LoRA can effectively mitigate this issue and
enhance model performance. It means that our
method possesses inherent mechanisms that can
alleviate overfitting to a significant extent, making
it more robust across diverse datasets and tasks.

6.6 Robustness of OOD Data

Building on the insights from Section 6.5, we fur-
ther investigate our method’s robustness through
out-of-domain (OOD) evaluation. To this end,
we construct two test sets by randomly sampling
2,000 en—zh parallel sentences from WikiMa-
trix (Schwenk et al., 2021) (general domain)
and ParaMed (Liu and Huang, 2021) (biomed-
ical domain). These datasets are evaluated on
Llama3.1-8B-Instruct models fine-tuned exclu-
sively on WMT?23 (news domain), using the same
boundary layer configuration. As shown in Table
7, our method demonstrates consistent superior-
ity over baselines despite potential domain mis-
match, suggesting its strong generalization capa-
bilities even when the optimal boundary layer may
vary across domains.

WIKI PARAM
Baseline 19.9 22.6
Ours 21.0 24.9

Table 7: The BLEU score of different domain translation
data on Llama3.1-8B-Instruct fine-tuned with News data.
Bold numbers indicate the best results.

6.7 Error Analysis

In this section, we examine cases where our pro-
posed method underperforms across all experimen-
tal setups. Our results in Table 1 indicate a consis-
tent decline in F1 scores compared to the baseline.
Thus, we conducted a detailed error analysis on
the HotpotQA dataset, focusing on samples where
our method yielded lower F1 scores. Our analysis
reveals two key observations: (1) In 56% of these
cases, the output generated by our method fully
contains the baseline’s output, and (2) when both
methods produce correct answers, this overlap in-
creases to 96%. This suggests that our approach
tends to generate longer and more comprehensive
responses compared to the baseline. We hypothe-
size that this behavior stems from the influence of
top LoRA in LLMs. These LoRA appear to bias
the model toward producing more structured or for-
matted outputs. When these layers are removed
during inference, the output probability distribu-
tion becomes smoother, potentially leading to more
verbose and inclusive responses.

7 Conclusion

In this work, we investigate the impact of fine-
tuning LoRA across various layers in LLMs, re-
vealing that LoRA beyond a specific "boundary
layer" becomes redundant during inference. We
propose a simple yet effective method to enhance
LoRA-fine-tuned LLM performance. Future direc-
tions include leveraging these findings to develop
advanced techniques for optimizing LoRA efficacy.



8 Limitation

Our approach requires sampling a subset from the
validation set to identify the boundary layer, intro-
ducing additional computational cost, although the
boundary layer can be directly set to &k = {15, 20}
as a practical alternative based on our analysis. Our
experimental results highlight that the method im-
poses specific requirements on the capability of
LLMs: the model must possess sufficient capacity
to effectively learn the downstream task. Other-
wise, the LoRA of all layers may be utilized dur-
ing inference to compensate for insufficient task-
specific knowledge. For example, a model like Phi-
2, which achieves only a 6.4 BLEU score on trans-
lation tasks due to inadequate learning, would sig-
nificantly undermine the efficacy of our approach.
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A Appendix
A.1 Case Study

We analyze several random samples concretely to
explore the effect of our proposed method. The
most notable results are observed with the Sam-
sum dataset, because the summarization task is
very flexible, where multiple valid expressions can
effectively capture the essence of a paragraph. The
examples provided in Table 10, after applying our
method to drop specific LoRA, the LLM gener-
ates responses that are more comprehensive and
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accurate. This observation aligns with our initial
hypothesis: the LoRA of the top several layers
primarily functions to format responses according
to downstream task, which may, to some extent,
constrain the model’s reasoning capabilities. By
removing these specific LoRA, the LLM is able to
leverage the knowledge captured with the bottom
LoRA to engage in more divergent reasoning.

A.2 LLM-Score

For this metric, three powerful LLMs are employed
as the evaluators following Chia et al. (2024). We
use the API of GPT-40 (Hurst et al., 2024), claude-
3-5-sonnet (Anthropic, 2024), and Gemini-1.5-pro
(Team et al., 2024) to generate the responses. The
instruction to ask the LLMs to output the scores for
the predicted results is shown in Table 8. We use
the percentage(%) format of the average scores of
these three LLLMs as the final scores in our experi-
ments.

A.3 Implementation

We fine-tuned all the models in our experiments
with LLaMA-Factory>. We fine-tuned these three
models 3 epochs for all datasets. And we set the
learning rate to 1le — 4 and LoRA rank to 8. The
maximum length of each sample and the batch size
are set to 2048 and 16. We sample M = 500
instances from the validation set to determine the
“boundary layer”, and we set “boundary layer” to
15 directly if a dataset does not have a validation
set. All the experiments have been completed on
one 80G H800 GPU or vGPU-32GB.

Shttps://github.com/hiyouga/LLaMA-Factory
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Figure 6: The average maximum probability of each layer of Llama2-7B-Chat model fine-tuned with LoRA on the
four datasets.

Instruction of LLM-Score

Here is the given dialogue history: {Dialog History}
Here is the ground truth: {L.abel Response}
Here is the predicted output: {The Response Generated by LLMs}

- The aim of this prediction is to generate a summary of the provided historical dialogue.

- Please rate the summary based on its level of abstraction and fluency in summarizing the historical
dialogue. The scores should be integers ranging from O to 10.

- Please give the score number directly without any explanation or introduction.

Table 8: The instruction of calculating the LLM-Score in our experiments for Samsum dataset. For translation
tasks, we only need to adjust the task description.

Instruction of Evaluating the Generation Quality

Here is the given dialogue history: {Dialog History}
Here are two generated responses:

A. {Baseline}

B. {Our Method}

- The aim of these responses is to generate a summary of the provided historical dialogue.

- Please choose the better response like a human based on four aspects: fluency, accuracy, readability,
and completeness.

- Please output only “A” or “B” directly without any explanation or introduction.

Table 9: The instruction of evaluating the generation quality for Samsum dataset. “A” is the output from baselines
and “B” is the output from our method. For translation tasks, we also need to adjust the task description.

An Example in Samsum

Eric: MACHINE! Rob: That’s so gr8!

Eric: I know! And shows how Americans see Russian Rob: And it’s really funny!

Eric: I know! I especially like the train part! Rob: Hahaha! No one talks to the machine
like that!

Eric: Is this his only stand-up? Rob: Idk. I’ll check.

Eric: Sure. Rob: Turns out no! There are some of his
stand-ups on youtube.

Eric: Gr8! I'll watch them now! Rob: Me too!

Baseline: Eric and Rob enjoy watching MACHINE stand-up.
Ours: Eric and Rob are watching a Russian comedian’s stand-up. They will watch more of his videos
on YouTube.

Table 10: An example of the test set of Samsum dataset.
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