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Abstract

Current research on LoRA primarily focuses001
on minimizing the number of fine-tuned param-002
eters or optimizing its architecture. However,003
the necessity of all fine-tuned LoRA layers dur-004
ing inference remains underexplored. In this005
paper, we investigate the contribution of each006
LoRA layer to the model’s ability to predict007
the ground truth and hypothesize that lower-008
layer LoRA modules play a more critical role in009
model reasoning and understanding. To address010
this, we propose a simple yet effective method011
to enhance the performance of large language012
models (LLMs) fine-tuned with LoRA. Specifi-013
cally, we identify a “boundary layer” that dis-014
tinguishes essential LoRA layers by analyzing015
a small set of validation samples. During in-016
ference, we drop all LoRA layers beyond this017
boundary. We evaluate our approach on three018
strong baselines across four widely-used text019
generation datasets. Our results demonstrate020
consistent and significant improvements, under-021
scoring the effectiveness of selectively retain-022
ing critical LoRA layers during inference.023

1 Introduction024

Large language models (LLMs), such as ChatGPT,025

have demonstrated remarkable capabilities across026

diverse downstream tasks. However, their extensive027

parameterization presents substantial challenges028

for fine-tuning. In response, parameter-efficient029

fine-tuning (PEFT) methods (Houlsby et al., 2019;030

Li and Liang, 2021) have gained significant trac-031

tion. Notably, Low-Rank Adaptation (LoRA) has032

emerged as a pivotal technique, particularly in the033

context of LLMs. LoRA operates by introducing034

trainable adapters for each layer of the LLM while035

keeping the remaining parameters frozen. This036

approach not only substantially reduces the compu-037

tational resources required for fine-tuning but also038

achieves performance that is on par with or even039

superior to fully fine-tuned LLMs.040

To further leverage LoRA for improving training 041

efficiency and model performance, various studies 042

have focused on optimizing its architecture or prun- 043

ing important parameters for each layer. Zhang 044

et al. (2023a) introduced AdaLoRA, which utilizes 045

singular value decomposition (SVD) of △W to 046

dynamically adjust the rank of LoRA for differ- 047

ent layers. LoRA-Drop (Zhou et al., 2024) prunes 048

LoRA parameters based on output evaluation. Hy- 049

draLoRA (Tian et al., 2024) proposes an asym- 050

metric structure that employs a shared A matrix 051

and multiple B matrices to handle complex domain 052

datasets. MoELoRA (Luo et al., 2024) selects suit- 053

able A and B matrices in LoRA for each layer to 054

improve adaptation. However, these methods either 055

focus on more efficient parameter fine-tuning or ne- 056

cessitate the fine-tuning of more complex LoRA 057

structures. We argue that selectively using the fine- 058

tuned LoRA of part of the layers without additional 059

training will be more efficient, given the already 060

small size of LoRA parameters. 061

In this work, we conduct a systematic investi- 062

gation into the layer-wise impact of LoRA (Low- 063

Rank Adaptation) in LLMs. Our empirical analy- 064

sis reveals a distinct functional separation across 065

model layers: the lower layers predominantly en- 066

gage in content understanding and information ex- 067

traction, while the upper layers specialize in an- 068

swer summarization and refinement. Interestingly, 069

our findings demonstrate that the top layers can 070

effectively generate responses based on the rep- 071

resentations captured by the bottom layers even 072

without LoRA adaptation, leveraging the inher- 073

ent knowledge encoded in the pre-trained LLMs. 074

Building upon these observations, we propose a 075

novel and computationally efficient approach to op- 076

timize LoRA-based fine-tuning. Specifically, we 077

introduce two complementary strategies for iden- 078

tifying a critical “boundary layer” that separates 079

information extraction from answer refinement in 080

LoRA-enhanced models. The first strategy em- 081
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ploys a manual approach by computing the av-082

erage probability of ground truth outputs across083

LoRA-tuned layers using validation samples, with084

the boundary determined through probability curve085

analysis. The second strategy adopts an automated086

approach by evaluating model performance across087

different boundary layer configurations and select-088

ing the optimal one. During inference, we strate-089

gically remove LoRA layers above the identified090

boundary layer, achieving both efficiency gains and091

performance maintenance.092

We evaluate our proposed method on four093

widely-used generation datasets spanning multiple094

tasks, employing three state-of-the-art baselines:095

Phi-2 (Li et al., 2023), Llama2-7B-Chat (Touvron096

et al., 2023), and Llama-3.1-8B-Instruct (Dubey097

et al., 2024). Our empirical results consistently098

demonstrate the effectiveness and generaliz ability099

of the proposed approach across different model100

architectures and task domains.101

2 Related Work102

2.1 Parameter-Efficient Fine-Tuning103

With the rapid scaling of large language mod-104

els (LLMs), traditional full-parameter fine-tuning105

becomes progressively impractical due to expo-106

nentially increasing computational costs. Con-107

sequently, parameter-efficient fine-tuning (PEFT)108

techniques have assumed greater significance109

(Houlsby et al., 2019). There are two main110

paradigms for PEFT based on their principles:111

prompt-based tuning and adapter-based methods.112

Prompt-based techniques optimize the model113

through input-space interventions rather than ar-114

chitectural changes. Early implementations like115

Prompt Tuning (Lester et al., 2021) learn continu-116

ous task-specific embeddings prepended to input117

sequences, significantly reducing the computation118

of the parameters. Prefix-tuning (Li and Liang,119

2021) optimizes virtual token embeddings across120

all transformer layers, demonstrating improved ca-121

pability on generation tasks. Kwon et al. (2024)122

introduces adaptive proximal policy optimization123

to revise the stability and environment dependence.124

Although the Prompt-based techniques exhibit ef-125

fective utilizations of few-shot and zero-shot data,126

they are still affected by their sensitivity to initial-127

ization and sequence length constraints.128

Adapter-based approaches introduce small train-129

able modules between transformer layers, achiev-130

ing parameter efficiency through freezing the base131

model. Preliminary methods (Houlsby et al., 2019; 132

Mahabadi et al., 2021; Bapna and Firat, 2019; 133

Wang et al., 2021) introduce notable inference la- 134

tency due to sequential computation bottlenecks. 135

Low-Rank Adaptation (LoRA) further reduces 136

the computational overhead through decomposing 137

weight updates into low-rank matrices, achieving 138

comparable performance to full fine-tuning with 139

few parameters. Subsequent studies have extended 140

this paradigm. AdaLoRA (Zhang et al., 2023b) 141

dynamically allocates rank budgets across layers. 142

LoRS (Hu et al., 2025) adopts weight recompute 143

and computational graph rearrangement to reduce 144

memory and computational consumption while im- 145

proving performance. Moreover, Gao et al. (2024) 146

observed that higher transformer layers require 147

more LoRA experts to capture task-specific pat- 148

terns, while lower layers exhibit significant redun- 149

dancy. Hu et al. (2024) enhance parameter effi- 150

ciency by sharing the LoRA A matrix across all 151

layers, further proof the significant parameter re- 152

dundancy of conventional LoRA architecture. 153

2.2 Knowledge Distillation 154

In contrast to the PEFT paradigm that focuses on 155

optimizing model adaptation efficiency, an alterna- 156

tive trajectory explores knowledge distillation tech- 157

niques for computational cost compression through 158

inter-model knowledge transfer, which effectively 159

reduces consumption, but generally faces the prob- 160

lem of a lack of task generalization abilities (Hahn 161

and Choi, 2019; Sun et al., 2019; Tang et al., 2019). 162

Tf -FD (Li, 2022) enhances generalization through 163

layer-wised self-distillation and student features 164

reusing. However, the limited ability of the student 165

model to represent complex tasks results in insuffi- 166

cient adaptability. Liu et al. (2023) improves classi- 167

fication accuracy by linear transformation from N 168

to one, but neglects cross-layer semantic discrep- 169

ancies and multilevel knowledge integration. How- 170

ever, our approach takes a fundamentally different 171

way to further unleash the vintrinsic knowledge 172

of LLMs, leveraging the information captured by 173

the LoRA of the bottom layers while allowing the 174

model to reason in its original, unmodified manner 175

at the top layers without LoRA. 176

3 Preliminary Analysis of LoRA 177

In these preliminary analysis experiments, we use 178

all three strong baselines fine-tuned with LoRA on 179

four generation datasets in different tasks to explore 180
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(a) HotpotQA (b) Samsum (c) GSM8K (d) WMT23 (EN->ZH)

Figure 1: The average maximum probability of the first four tokens for each layer of Llama3.1-8B-Instruct model
fine-tuned with LoRA on the four datasets.

(a) 1st Token (b) 2nd Token (c) 3rd Token (d) 4th Token

Figure 2: The average maximum probability of the first four tokens for each layer of Llama3.1-8B-Instruct model
fine-tuned with LoRA on the HotpotQA dataset while dropping specific LoRA layers during inference.

the impact of LoRA for different layers.181

3.1 The Probability of Each Layer182

We randomly sampled 100 instances from the test183

set of our four datasets. Then we utilize fine-tuned184

LLMs to output the probability distribution across185

different layers. By encoding the ground truth for186

each sample and averaging the corresponding prob-187

abilities, we assessed whether the models arrived188

at the correct answers. For enhanced clarity in our189

analysis, we visualized the probability distributions190

of the first several tokens at each layer. Figure 1191

and 6 illustrate these distributions for the Llama3.1-192

8B-Instruct and Llama2-7B-Chat across the four193

datasets.194

Observation Our analysis reveals a distinct pat-195

tern in the probability distribution across the layers196

of LLMs. Specifically, the bottom layers exhibit197

relatively low and stable probabilities for first four198

tokens. However, at a certain “boundary layer,” we199

observe a sharp and significant increase in these200

probabilities. We posit that this transition reflects201

the model’s progression from context comprehen-202

sion and information extraction in the lower layers203

to answer formulation and refinement in the upper204

layers. This interpretation is supported by the vi-205

sualization in Figure 6, which demonstrates that206

the initial layers maintain consistently low prob-207

abilities, followed by a marked upward trend in208

the bottom layers. This abrupt shift suggests that209

the model begins to synthesize the extracted in- 210

formation and generate task-appropriate responses 211

beyond this “boundary layer”. 212

3.2 Top LoRA Are Not Necessary 213

Building on the conclusions drawn in Section 3.1, 214

we posit that for downstream tasks, it is crucial 215

for LLMs to understand the context and effectively 216

capture information. Imposing rigid formatting 217

constraints may negatively impact model perfor- 218

mance, given that LLMs are primarily pre-trained 219

for text completion on natural language corpora. 220

To investigate the layers of LoRA that are essential, 221

we conduct experiments by selectively dropping 222

specific LoRA of layers from an LLM. Specifically, 223

we randomly select 100 samples from the test set 224

and visualize the average maximum probability of 225

the first four tokens at each layer when keeping the 226

LoRA of the bottom 10, 20, and 25 layers. The re- 227

sulting curves are depicted in Figure 2. We plot the 228

average maximum probability of the same token 229

across various scenarios in each sub-figure. 230

Observation Dropping the LoRA of the specific 231

numbers of top layers does not significantly affect 232

the output probabilities. As illustrated in Figure 233

2, keeping the LoRA of bottom layers does not 234

significantly affect the model’s output probabilities 235

too much, particularly for the 2nd to 4th tokens 236

(Figure 2b, 2c, 2d). This observation is reason- 237

able, as the first token typically determines the 238
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Figure 3: The overview of our proposed method.

response pattern for downstream tasks, making it239

more susceptible to fluctuations compared to sub-240

sequent tokens. This aligns with the findings of241

Zhan et al. (2024), which suggests that fine-tuning242

primarily impacts the first token. Furthermore, we243

observe that when keeping the LoRA of the bot-244

tom 20 layers (depicted by the orange curve), the245

model’s maximum output probabilities outperform246

those in other configurations, including the base-247

line. Notably, even for the first token’s probability,248

this “boundary layer” also results in higher maxi-249

mum output probabilities in the last several layers250

compared to the baseline.251

4 Method252

Building upon our hypothesis and the empirical253

observations detailed in Section 3, we propose a254

simple yet effective strategy to improve model per-255

formance without requiring additional fine-tuning.256

Our approach centers on the removal of LoRA com-257

ponents from layers situated above an identified258

“boundary layer.” A comprehensive overview of259

this methodology is illustrated in Figure 3.260

Initially, we apply LoRA to all layers to conduct261

supervised fine-tuning (SFT) of a large language262

model (LLM) on a downstream task, adhering to263

standard procedures. Subsequently, we identify the264

“boundary layer” where LoRA should be removed.265

As analyzed in Section 3, a computationally effi-266

cient method to determine this layer involves cal-267

culating the average probability of the ground truth268

from the logits output of each layer and visualizing269

these probabilities. The point where the curve be-270

gins to rise is manually identified as the “boundary271

layer.” After removing the LoRA from layers be-272

yond this point, we can directly generate responses273

for the test set without further training.274

Additionally, we propose a more precise and au-275

tomated method to identify the “boundary layer,” 276

as illustrated in Figure 3. After fine-tuning the 277

LLMs with full LoRA, we randomly select a set 278

of M samples from the validation set to evaluate 279

model performance after dropping LoRA at differ- 280

ent “boundary layers.” For instance, in the case 281

of the Llama3.1-8B-Instruct model, which has 282

32 decoder layers, we obtain 32 evaluation results 283

corresponding to different “boundary layers.” We 284

then select the best-performing result as our final 285

“boundary layer” and evaluate the model perfor- 286

mance on the test set after removing LoRA be- 287

yond this point. By using validation set samples 288

to determine the boundary layer and subsequently 289

evaluating on the test set, we mitigate the risk of 290

overfitting the boundary layer to a specific dataset, 291

thereby enhancing the credibility of our results. 292

5 Experiments 293

5.1 Setup 294

Dataset We use four widely used datasets in dif- 295

ferent generation tasks in our experiments: Hot- 296

potQA (Yang et al., 2018) for multi-document 297

question answering, GSM8K (Cobbe et al., 2021) 298

for mathematical reasoning, Samsum (Gliwa 299

et al., 2019) for text summarization, and WMT23 300

(Kocmi et al., 2023) for machine translation. The 301

statistic about them is shown in Table 2. 302

Evaluation Metric We employ different evalu- 303

ation metrics for these four tasks seperately. We 304

employ Exact Match (EM) and F1 score to evaluate 305

the performance of the HotpotQA dataset, whose 306

purpose is to measure how completely the gener- 307

ated response contains the label. For GSM8K, we 308

only use the EM score to evaluate whether the fi- 309

nal calculated results is correct. For Samsum and 310

WMT23, we use the traditional ROUGE-L and 311
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HotpotQA GSM8K Samsum WMT23(En->Zh)

Model EM F1 EM ROUGE LLM-Score BLEU

Phi-2 (Fine-tuned) 62.8 70.0 57.1 33.7 71.2 6.4
Phi-2 (Ours) 65.6 68.4 57.8 32.5 72.5 5.4

Llama2-7B-Chat (Fine-tuned) 66.2 73.5 36.1 42.8 78.0 27.0
Llama2-7B-Chat (Ours) 69.1 71.6 38.6 43.5 80.3 27.4

Llama3.1-8B (Fine-tuned) 73.1 80.4 73.1 38.2 79.5 33.0
Llama3.1-8B (Partial Fine-tuned) 73.0 79.9 73.9 37.7 79.8 33.3
Llama3.1-8B (Ours) 74.1 80.3 74.3 38.1 80.6 35.8

Table 1: The results (%) on the test set of the five datasets in our experiments. Bold numbers indicate the better
result for each baseline.

Dataset Train Validation Test

HotpotQA 50,000 7,405 7,405
GSM8K 7,473 1,319 1,319
Samsum 14,732 818 819
WMT23 50,000 500 2,074

Table 2: The statistics of the four datasets we used in
our experimental setting.

BLEU1 (Post, 2018) seperately at first. However,312

these two tasks can have similar meanings in differ-313

ent expressions. Thus, we also design a LLM-Score314

(Appendix A.2) to evaluate the generation output315

from various perspectives, such as fluency, accu-316

racy, or readability, by asking the LLMs to act as a317

human.318

Model We evaluate our method on three strong319

baselines: Phi-22 (Li et al., 2023), Llama2-7B-320

Chat3 (Touvron et al., 2023), and Llama-3.1-8B-321

Instruct4 (Dubey et al., 2024). More details of322

implementation will be shown in Appendix A.3.323

5.2 Main Results324

As shown in Table 1, our method of selectively325

dropping LoRA after specific layers outperforms326

the baseline in nearly all experiments. For the Hot-327

potQA dataset, our method achieves a higher EM328

score. However, it consistently underperforms all329

three baselines in terms of F1 scores. This suggests330

that our approach is more effective in generating re-331

sponses that contain the correct answers compared332

1https://github.com/mjpost/sacrebleu
2https://huggingface.co/microsoft/phi-2
3https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
4https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct

to the baselines. As discussed in our previous anal- 333

ysis, the LoRA components in the lower layers 334

primarily help the LLM learn to format answers ac- 335

cording to specific downstream tasks. When these 336

LoRA components are dropped, the model contin- 337

ues to reason like the original model, often gener- 338

ating answers in natural language. This behavior 339

leads to responses that include additional words 340

alongside the correct answer, thereby negatively 341

impacting the F1 scores. 342

For the GSM8K and WMT23 datasets, our 343

method mostly outperforms the baselines, further 344

verifying that removing LoRA from several top lay- 345

ers can enhance the reasoning capability of LLMs. 346

It should be noted that the performance of our 347

method on the Samsum dataset drops slightly on 348

two baselines while achieving a better LLM-Score. 349

This is because our approach deals with summa- 350

rization tasks that are highly open-ended, and our 351

method reduces the constraints imposed by the 352

LoRA of top layers on the LLMs’ inference ca- 353

pabilities, allowing the generated summary to be 354

more comprehensive. However, as a trade-off, it 355

also loses the ability of the top LoRA to mimic 356

training data for formatting the answers, leading 357

to a decrease in Rouge scores. Regarding the de- 358

cline in performance on the WMT23 test set with 359

Phi-2, our analysis revealed that the training data 360

remains too challenging for Phi-2. We believe this 361

is why removing LoRA in Phi-2 can not get the 362

same improvement as the other two models. 363

5.3 Ablation Study 364

In this work, we present a robust and unified ap- 365

proach that resists decomposition into discrete com- 366

ponents for analysis. However, our strategy of se- 367

lectively dropping LoRA beyond the “boundary 368
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Figure 4: The performance of different “boundary layer”
of Llama3.1-8B-Instruct model. The Score means
the corresponding automatic evaluation metric of four
datasets.

layer” during inference introduces a challenge: the369

need for a two-step process involving fine-tuning370

followed by LoRA removal. We conducted ex-371

periments across four datasets using Llama3.1-8B-372

Instruct, applying LoRA only to the bottom 20373

layers of the LLMs during the fine-tuning phase.374

The evaluation results are shown in Table 1, which375

is the row of "Partial Fine-tuned". Interestingly,376

the performance of LLMs fine-tuned with LoRA377

in the bottom 20 layers closely matches that of the378

baseline models. This suggests that, regardless of379

whether LoRA is applied to all layers during fine-380

tuning, some LoRA components are particularly381

effective at capturing and understanding context,382

while others excel at synthesizing and refining an-383

swers to suit downstream tasks. These findings384

highlight the necessity of our two-step process.385

6 Analysis386

6.1 Different Boundary Layer387

To provide a more intuitive rationale for our selec-388

tion of the “boundary layer”, we conduct additional389

experiments by removing the LoRA with differ-390

ent “boundary layers”. Specifically, we assessed391

model performance after dropping the LoRA after392

the K=[10, 25] layers, with the results illustrated393

in Figure 4. Consistently, removing the LoRA af-394

ter the 15-20 layer resulted in better performance395

across all four datasets. This finding highlights the396

robustness of our approach and suggests that the397

“boundary layer” for one model is likely to remain398

a range across different downstream tasks.399

6.2 Post-Hoc Analysis400

Furthermore, we conduct some experiments to in-401

vestigate how dropping LoRA affecting the LLMs402

performance and verify its effect. Specifically, we403

evaluated the probability distribution of the first404
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Figure 5: The probability difference of ground truth
between our method and baseline on three datasets.

token generated by our method and baseline mod- 405

els across three datasets: HotpotQA, Samsum, and 406

GSM8K. Specifically, we extracted and compared 407

the average probability of the ground truth token 408

for all decoding layers. Typically, the average prob- 409

ability of the ground truth token for the first token 410

is relatively low, making visualization challenging. 411

To address this, we calculated the difference in 412

average probabilities for each layer between our 413

method and the baseline, and visualized the results 414

in Figure 5. The visualization reveals that after 415

dropping certain LoRA components, our method 416

tends to assign higher probabilities to the ground 417

truth token, especially near the output layers. It is 418

important to note that the probability differences 419

for GSM8K remain stable. This stability arises 420

because, in GSM8K, the model must perform rea- 421

soning before arriving at the final answer, resulting 422

in low probabilities for the first token in both our 423

method and the baseline. This contrasts with Hot- 424

potQA, where the ground truth is relatively shorter, 425

leading to the largest probability differences. A 426

case study will be introduced in Appendix A.1 to 427

concretely show the effect of our method. 428

6.3 Comparison of Labeling and Generation 429

Besides evaluating the performance of generation 430

tasks, we also conduct analysis to verify whether 431

our method can improve the performance on la- 432

beling tasks, where LLMs also get significant per- 433

formance. The HotpotQA dataset can be partially 434

viewed as a labeling task, featuring two types of 435

questions: Bridge and Comparison. The answers 436

to comparison questions are typically “Yes”, “No”, 437

or an choice between “A” or “B”, which is similar 438

to the binary classification. We begin by assessing 439

the performance improvements on these tasks. As 440

depicted in Table 3, our approach yields EM scores 441

for both question types, albeit with a reduction in 442

F1 scores, mirroring trends observed in our main 443
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Question Type EM F1

Bridge 78.1 81.7
Bridge (Ours) 79.7 80.4

Comparison 71.9 79.8
Comparison (Ours) 72.7 78.7

Table 3: The results of different types of question (%)
HotpotQA dataset with Llama3.1-8B-Instruct fine-tuned
with LoRA. Bold numbers indicate the best results.

Method Accuracy (%)

E-Commerce (Fine-tuned) 68.6
E-Commerce (Ours) 69.8

Table 4: The accuracy (%) of our method and baseline
on Llama3.1-8B-Instruct fine-tuned with E-Commerce
dataset. Bold numbers indicate the best results.

results (Section 5.2). In particular, our method444

shows approximately double the improvement in445

EM scores for bridge compared to comparison.446

Besides HotpotQA, we further evaluate our447

method using a purely labeling dataset. We fine-448

tune the LLaMA3.1-8B-Instruct with LoRA on a449

subset of the E-Commerce dataset (Zhang et al.,450

2018), selecting 50,000/500/2,000 data for the451

train/validation/test set, equally divided between452

positive and negative samples. This dataset fo-453

cuses on dialogue response selection (Chen et al.,454

2024), requiring models to ascertain the suitabil-455

ity of a given response within a dialogue context.456

We utilize accuracy as the performance metric, pre-457

processing the data to align with LLM natural lan-458

guage formats with "Yes" or "No" labels for fine-459

tuning and evaluation. The results, presented in460

Table 4, indicate that our method surpasses the461

baseline by 1.2%, suggesting its efficacy for classi-462

fication tasks. In addition, the output for this data463

should always be a single word. However, we ob-464

served that 13% of samples exceeded one word465

after dropping LoRA, with the additional content466

providing explanatory reasoning for the label. This467

observation supports our hypothesis that certain468

top LoRA are primarily involved in refining and469

formatting responses.470

6.4 Generation Quality471

Generally speaking, directly modifying some pa-472

rameters of a fine-tuned LLM without continuing473

training may result in the generated content being474

Samsum WMT23(EN->ZH)

LLMs-based Evaluation

Baseline 37.6 44.2
Ours 62.4 55.8

Real Human Evaluation

Baseline 10.0 43.3
Ours 90.0 56.7

Table 5: The LLMs-based and real human evaluation
on Llama3.1-8B-Instruct. This percentage(%) refers
to the proportion of all test data where the output of
this method is better than that of another method. Bold
numbers indicate the best results.

incoherent or garbled. Thus, we further design two 475

strategies to evaluate the generation quality of our 476

method on Samsum and WMT23, since these two 477

tasks are open-ended generation tasks and place 478

greater emphasis on the quality of the generated re- 479

sults. The first one is similar to LLM-Score, which 480

we ask LLMs to act as humans to choose the bet- 481

ter one between our method and baselines. The 482

other is real human evaluation. We randomly sam- 483

ple 30 examples seperately in test set of Samsum 484

and WMT23 datasets, and recruited three com- 485

puter science students proficient in both English 486

and Chinese to choose the better approach between 487

our method and the baseline method based on four 488

aspects: fluency, accuracy, readability, and com- 489

pleteness. Then, we calculated the average results 490

from these three students. As shown in Table 5, the 491

percentage(%) represents the proportion of all test 492

data where the evaluators considered the results of 493

this method to be better. 494

The output from our method gets a higher pro- 495

portion consistently, whether evaluated by LLMs 496

or real humans. It indicates that our method can 497

improve the model performance without affecting 498

the generation quality through only dropping some 499

LoRA during inference. The evaluation instruction 500

for LLMs will be shown in Table 9. In comparison 501

to text summarization, our method did not achieve 502

as significant results in translation tasks. We think 503

it is because the prediction results in translation 504

tasks are more strongly constrained by the source 505

sentence, which means that the gains from drop- 506

ping LoRA of specific layers are relatively smaller. 507

This also indicates that our method performs better 508

in tasks with fewer constraints on the ground truth 509

format, such as open-ended generation tasks. 510
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HotpotQA GSM8K Samsum WMT23(En->Zh)

Method EM F1 EM ROUGE LLM-Score BLEU

Baseline (r = 16) 73.9 80.1 74.4 38.6 80.4 32.9
Ours (r = 16) 74.6 80.1 76.4 38.0 80.7 36.8

Baseline (r = 32) 72.9 79.9 75.8 38.5 80.8 32.6
Ours (r = 32) 73.6 80.0 76.0 38.6 81.2 36.0

Table 6: The results of different LoRA rank on Llama3.1-8B-Instruct. Bold numbers indicate the best results.

6.5 Impact of LoRA Rank511

One of the pivotal factors influencing the perfor-512

mance of LoRA tuning is the choice of LoRA rank.513

As different rank values can lead to varying per-514

formances even with identical models and datasets,515

we conducted a comprehensive experimental evalu-516

ation on the Llama3.1-8B-Instruct model. Specifi-517

cally, we examined rank values of {16, 32}, with518

the detailed results presented in Table 6. Our empir-519

ical findings demonstrate that our method consis-520

tently outperforms nearly all baseline approaches,521

thereby providing strong evidence for its gener-522

alization capabilities. Furthermore, our analysis523

revealed that while overfitting phenomena were ob-524

served on the GSM8K and WMT23 datasets, as525

indicated by performance degradation, dropping526

top LoRA can effectively mitigate this issue and527

enhance model performance. It means that our528

method possesses inherent mechanisms that can529

alleviate overfitting to a significant extent, making530

it more robust across diverse datasets and tasks.531

6.6 Robustness of OOD Data532

Building on the insights from Section 6.5, we fur-533

ther investigate our method’s robustness through534

out-of-domain (OOD) evaluation. To this end,535

we construct two test sets by randomly sampling536

2,000 en→zh parallel sentences from WikiMa-537

trix (Schwenk et al., 2021) (general domain)538

and ParaMed (Liu and Huang, 2021) (biomed-539

ical domain). These datasets are evaluated on540

Llama3.1-8B-Instruct models fine-tuned exclu-541

sively on WMT23 (news domain), using the same542

boundary layer configuration. As shown in Table543

7, our method demonstrates consistent superior-544

ity over baselines despite potential domain mis-545

match, suggesting its strong generalization capa-546

bilities even when the optimal boundary layer may547

vary across domains.548

WIKI PARAM

Baseline 19.9 22.6
Ours 21.0 24.9

Table 7: The BLEU score of different domain translation
data on Llama3.1-8B-Instruct fine-tuned with News data.
Bold numbers indicate the best results.

6.7 Error Analysis 549

In this section, we examine cases where our pro- 550

posed method underperforms across all experimen- 551

tal setups. Our results in Table 1 indicate a consis- 552

tent decline in F1 scores compared to the baseline. 553

Thus, we conducted a detailed error analysis on 554

the HotpotQA dataset, focusing on samples where 555

our method yielded lower F1 scores. Our analysis 556

reveals two key observations: (1) In 56% of these 557

cases, the output generated by our method fully 558

contains the baseline’s output, and (2) when both 559

methods produce correct answers, this overlap in- 560

creases to 96%. This suggests that our approach 561

tends to generate longer and more comprehensive 562

responses compared to the baseline. We hypothe- 563

size that this behavior stems from the influence of 564

top LoRA in LLMs. These LoRA appear to bias 565

the model toward producing more structured or for- 566

matted outputs. When these layers are removed 567

during inference, the output probability distribu- 568

tion becomes smoother, potentially leading to more 569

verbose and inclusive responses. 570

7 Conclusion 571

In this work, we investigate the impact of fine- 572

tuning LoRA across various layers in LLMs, re- 573

vealing that LoRA beyond a specific "boundary 574

layer" becomes redundant during inference. We 575

propose a simple yet effective method to enhance 576

LoRA-fine-tuned LLM performance. Future direc- 577

tions include leveraging these findings to develop 578

advanced techniques for optimizing LoRA efficacy. 579
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8 Limitation580

Our approach requires sampling a subset from the581

validation set to identify the boundary layer, intro-582

ducing additional computational cost, although the583

boundary layer can be directly set to k = {15, 20}584

as a practical alternative based on our analysis. Our585

experimental results highlight that the method im-586

poses specific requirements on the capability of587

LLMs: the model must possess sufficient capacity588

to effectively learn the downstream task. Other-589

wise, the LoRA of all layers may be utilized dur-590

ing inference to compensate for insufficient task-591

specific knowledge. For example, a model like Phi-592

2, which achieves only a 6.4 BLEU score on trans-593

lation tasks due to inadequate learning, would sig-594

nificantly undermine the efficacy of our approach.595
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A Appendix 784

A.1 Case Study 785

We analyze several random samples concretely to 786

explore the effect of our proposed method. The 787

most notable results are observed with the Sam- 788

sum dataset, because the summarization task is 789

very flexible, where multiple valid expressions can 790

effectively capture the essence of a paragraph. The 791

examples provided in Table 10, after applying our 792

method to drop specific LoRA, the LLM gener- 793

ates responses that are more comprehensive and 794
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accurate. This observation aligns with our initial795

hypothesis: the LoRA of the top several layers796

primarily functions to format responses according797

to downstream task, which may, to some extent,798

constrain the model’s reasoning capabilities. By799

removing these specific LoRA, the LLM is able to800

leverage the knowledge captured with the bottom801

LoRA to engage in more divergent reasoning.802

A.2 LLM-Score803

For this metric, three powerful LLMs are employed804

as the evaluators following Chia et al. (2024). We805

use the API of GPT-4o (Hurst et al., 2024), claude-806

3-5-sonnet (Anthropic, 2024), and Gemini-1.5-pro807

(Team et al., 2024) to generate the responses. The808

instruction to ask the LLMs to output the scores for809

the predicted results is shown in Table 8. We use810

the percentage(%) format of the average scores of811

these three LLMs as the final scores in our experi-812

ments.813

A.3 Implementation814

We fine-tuned all the models in our experiments815

with LLaMA-Factory5. We fine-tuned these three816

models 3 epochs for all datasets. And we set the817

learning rate to 1e − 4 and LoRA rank to 8. The818

maximum length of each sample and the batch size819

are set to 2048 and 16. We sample M = 500820

instances from the validation set to determine the821

“boundary layer”, and we set “boundary layer” to822

15 directly if a dataset does not have a validation823

set. All the experiments have been completed on824

one 80G H800 GPU or vGPU-32GB.825

5https://github.com/hiyouga/LLaMA-Factory
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(a) HotpotQA (b) Natural Question (c) GSM8K (d) WMT23 (EN->ZH)

Figure 6: The average maximum probability of each layer of Llama2-7B-Chat model fine-tuned with LoRA on the
four datasets.

Instruction of LLM-Score

Here is the given dialogue history: {Dialog History}
Here is the ground truth: {Label Response}
Here is the predicted output: {The Response Generated by LLMs}

- The aim of this prediction is to generate a summary of the provided historical dialogue.
- Please rate the summary based on its level of abstraction and fluency in summarizing the historical
dialogue. The scores should be integers ranging from 0 to 10.
- Please give the score number directly without any explanation or introduction.

Table 8: The instruction of calculating the LLM-Score in our experiments for Samsum dataset. For translation
tasks, we only need to adjust the task description.

Instruction of Evaluating the Generation Quality

Here is the given dialogue history: {Dialog History}
Here are two generated responses:
A. {Baseline}
B. {Our Method}

- The aim of these responses is to generate a summary of the provided historical dialogue.
- Please choose the better response like a human based on four aspects: fluency, accuracy, readability,
and completeness.
- Please output only “A” or “B” directly without any explanation or introduction.

Table 9: The instruction of evaluating the generation quality for Samsum dataset. “A” is the output from baselines
and “B” is the output from our method. For translation tasks, we also need to adjust the task description.

An Example in Samsum
Eric: MACHINE! Rob: That’s so gr8!
Eric: I know! And shows how Americans see Russian Rob: And it’s really funny!
Eric: I know! I especially like the train part! Rob: Hahaha! No one talks to the machine

like that!
Eric: Is this his only stand-up? Rob: Idk. I’ll check.
Eric: Sure. Rob: Turns out no! There are some of his

stand-ups on youtube.
Eric: Gr8! I’ll watch them now! Rob: Me too!
Baseline: Eric and Rob enjoy watching MACHINE stand-up.
Ours: Eric and Rob are watching a Russian comedian’s stand-up. They will watch more of his videos
on YouTube.

Table 10: An example of the test set of Samsum dataset.
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