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Abstract. This paper proposes a lightweight SAM-based medical image
segmentation model utilizing ViT-Tiny, designed to efficiently address
the challenges of medical image segmentation in clinical practice. By re-
placing SAM’s image encoder with ViT-Tiny and retaining its lightweight
prompt encoder and mask decoder architecture, we significantly reduce
computational complexity while maintaining high segmentation perfor-
mance. We employ a comprehensive data augmentation strategy, includ-
ing window width and level adjustments, random rotations, contrast
adjustments, and geometric transformations such as translation, scal-
ing, random cropping, and affine transformations. These techniques en-
hance the model’s robustness and generalization ability. To address the
class imbalance in the dataset, we implement random sampling, over-
sampling, and modality weighting strategies, ensuring the model learns
features from different modalities in a balanced manner. To improve in-
ference speed on CPUs, we apply post-training model quantization tech-
niques, making our model feasible for real-world deployment without
compromising performance. Our model demonstrates outstanding per-
formance across various evaluation metrics, and results on the validation
dataset prove its effectiveness and reliability in medical image segmen-
tation tasks. In summary, our approach achieves a well-balanced trade-
off between segmentation accuracy, generalization, and computational
efficiency, providing a robust and efficient solution for medical image
segmentation. This research not only helps improve clinical diagnostic
efficiency but also offers valuable insights for future developments.

Keywords: ViT-Tiny based SAM - Data Augmentation - Modality Im-
balance - Post-Training Model Quantization.

1 Introduction

Medical image segmentation plays a crucial role in clinical practice by accurately
quantifying anatomical structures and pathological regions, providing reliable di-
agnostic and therapeutic guidance to medical professionals. However, the field
of medical image segmentation faces several challenges that hinder its applica-
tion in clinical practice. Firstly, medical images often exhibit complex structures
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and low contrast, making it difficult for traditional segmentation methods to
accurately delineate target regions. Secondly, traditional segmentation models
typically require significant computational resources, posing performance and
efficiency issues when deployed on laptops or other edge devices. Therefore, the
development of a lightweight and efficient medical image segmentation model
capable of real-time operation on edge devices is of paramount importance for
improving clinical diagnostic efficiency and reducing healthcare costs.

In recent years, with the advancement of deep learning technologies, nu-
merous medical image segmentation methods have been proposed. For instance,
SAM [1], MedSAM [5], MobileSAM [8], and EfficientViT-SAM [9] have addressed
medical image segmentation challenges to varying extents. However, these meth-
ods often require substantial computational resources and are limited to specific
medical image modalities or cancer types, restricting their universality and reli-
ability in clinical practice.

Motivated by the aforementioned challenges, our aim is to develop a uni-
versal and lightweight medical image segmentation model capable of real-time
operation on laptops or other edge devices, while maintaining high performance
and applicability across diverse medical image modalities and cancer types. To
achieve this goal, we propose a bounding box-based segmentation model that
leverages large-scale training datasets and state-of-the-art deep learning tech-
niques to achieve accurate segmentation across various medical image modalities
and cancer types. Our contribution lies in the integration of cutting-edge deep
learning technologies with medical image segmentation, providing an efficient
and reliable segmentation tool for clinical practice.

2 Method

2.1 Preprocessing

When preprocessing the data, we first conducted a statistical analysis of the
dataset and found an issue of class imbalance, where some modalities had a large
amount of data while others had relatively fewer samples. This imbalance might
lead to poor generalization of the model when segmenting different modalities,
as the model may tend to favor processing modalities with larger data volumes.

To address this issue, we employed a strategy of data augmentation, specifi-
cally targeting modalities with fewer samples to enhance their segmentation per-
formance. Specifically, we utilized various data augmentation techniques such as
translation, rotation, scaling, random cropping, and affine transformation to in-
crease the diversity of data samples. The aim was to maintain class balance
while boosting the model’s generalization capabilities across modalities with
fewer samples.

Additionally, we conducted a statistical analysis of the dataset, including
the distribution of sample numbers, pixel values, and class distributions across
different modalities. Through these analyses, we gained a better understanding
of the dataset characteristics and devised targeted preprocessing strategies to
enhance the model’s performance and stability.
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In summary, our preprocessing strategy includes both data augmentation
and dataset statistical analysis, aimed at addressing the class imbalance issue
in the dataset and improving the segmentation performance and generalization
capabilities across different modalities for the model.

When dealing with large-scale datasets, fast preprocessing and data loading
strategies are crucial. We have implemented the following strategies to address
this challenge: Firstly, we utilize parallel processing techniques, leveraging multi-
core CPUs to accelerate the data preprocessing process, thereby enhancing pro-
cessing efficiency. Secondly, we adopt the lazy loading approach, where data is
loaded only when needed, instead of loading the entire dataset at once. This
reduces memory usage and speeds up data loading. Our preprocessing strategy
aims to improve processing efficiency and reduce resource consumption, enabling
more effective handling of large-scale medical image datasets.

In the field of medical imaging, data augmentation is more crucial than im-
age formatting. By properly setting the window width and window level, we
can highlight the features of interest to the greatest extent. Random rotation
enhances the model’s adaptability to irregular scan data, while random contrast
adjustment helps generalize the image performance under different voltages, cur-
rents, and radiation doses.

For medical image data, resampling and data augmentation are indispens-
able. Resampling ensures that different scan data have the same pixel spacing
and image size, facilitating the model’s training and inference process. We employ
various data augmentation techniques, including translation, rotation, scaling,
random cropping, and affine transformation, to increase the diversity of data
samples, thereby enhancing the model’s robustness and generalization capabil-
ity.

2.2 Proposed Method
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Fig. 1. Overview of the segmentation pipeline
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In this section, we provide a detailed description of the method used for medi-
cal image segmentation, incorporating the replacement of the image encoder with
ViT-Tiny [6] while retaining the lightweight prompt encoder and mask decoder
architecture from SAM [2]. Additionally, Figure 1 illustrating the pipeline of our
approach is presented.

Pipeline Overview: Our segmentation pipeline consists of three main com-
ponents: the ViT-Tiny image encoder, the lightweight prompt encoder, and the
mask decoder. First, the input medical image is processed by the ViT-Tiny
model to extract high-level features. These features are then fed into the prompt
encoder, which captures contextual information relevant to segmentation tasks.
Finally, the mask decoder generates segmentation masks based on the encoded
features, providing pixel-level predictions for the input image. To enhance the
efficiency of our model, we applied post-training quantization. This process con-
verts the floating-point parameters of the trained model into 8-bit integer fixed-
point representations. Quantization significantly reduces the model’s memory
footprint and computational complexity, facilitating faster inference on CPUs
without a substantial loss in accuracy. This step involves fine-tuning the quan-
tized model with a calibration dataset to mitigate potential accuracy drops due
to the lower precision representation. The combination of these components en-
sures an efficient and robust medical image segmentation pipeline.

ViT-Tiny Replacement for Image Encoder To enhance the efficiency
of our segmentation model, we replaced the image encoder component with
ViT-Tiny (Vision Transformer). ViT-Tiny is a lightweight version of the Vi-
sion Transformer model, which has shown promising results in various computer
vision tasks, including image classification and object detection. By leveraging
ViT-Tiny, we aim to reduce computational complexity while maintaining com-
petitive performance in medical image segmentation.

Lightweight Prompt Encoder and Mask Decoder: While incorporating
ViT-Tiny as the image encoder, we retained the lightweight prompt encoder and
mask decoder architecture from SAM. The prompt encoder efficiently encodes
contextual information from input images, while the mask decoder generates seg-
mentation masks based on the encoded features. This architecture has demon-
strated effectiveness in capturing fine-grained details and spatial dependencies
in medical images.

Strategies for Improving Inference Speed on CPU: To improve in-
ference speed on CPU, we adopted post-training model quantization [3] as a
key strategy. Model quantization is a technique that converts the floating-point
parameters of a neural network into fixed-point representations. In traditional
floating-point representation, each parameter requires substantial storage space
and computational resources. However, through quantization, floating-point pa-
rameters can be converted into lower-precision fixed-point representations, sig-
nificantly reducing memory consumption and computational complexity. Specifi-
cally, after training, we applied quantization to convert the floating-point param-
eters of the model into 8-bit integer fixed-point representations. This conversion
not only significantly reduces the memory space required to store parameters but
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also accelerates computation during inference. Additionally, to ensure that the
accuracy of the quantized model during inference is not significantly affected, we
performed model calibration. The calibration process involves using a calibration
dataset to fine-tune the quantized model, adapting it to the precision changes
introduced by fixed-point representation and ensuring that the model’s perfor-
mance in practical applications is similar to that of the original floating-point
model.

Loss function: we use the summation between Dice loss and BCEWith-
Logits loss because compound loss functions have been proven to be robust in
various medical image segmentation tasks [4].

2.3 Post-processing

In the post-processing stage, we perform two main operations on the model
outputs to obtain the final output in the inference stage. Firstly, we crop the
predicted mask to ensure its size matches the adjusted image size. This cropping
helps remove noise from the boundary regions. After cropping, we resize the
mask back to the original image size using bilinear interpolation. This ensures
that the shape and details of the mask are preserved during resizing.

3 Experiments

3.1 Dataset and evaluation measures

We used the challenge dataset and external public datasets for model devel-
opment. The challenge dataset is a large-scale collection with over one million
image-mask pairs curated from publicly available datasets. This comprehensive
dataset encompasses 11 imaging modalities: Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI), Positron Emission Tomography (PET), X-ray,
ultrasound, mammography, Optical Coherence Tomography (OCT), endoscopy,
fundus, dermoscopy, and microscopy.

The evaluation metrics include two accuracy measures—Dice Similarity Co-
efficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measure—running time. These metrics collectively contribute to the ranking
computation.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Training protocols 1. Data augmentation

Data augmentation plays a crucial role in enhancing the robustness and gen-
eralization capability of segmentation models. In our approach, we have em-
ployed a variety of augmentation techniques to increase the diversity and richness
of training data, including:
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Table 1. Development environments and requirements.

System Ubuntu 18.04.5 LTS

CPU Intel(R) Core(TM) 19-7900X CPU@3.30GHz
RAM 16x4GB; 2.67MT /s

GPU (number and type) One NVIDIA 3090 24G

CUDA version 11.8

Programming language Python 3.8
Deep learning framework torch 2.0, torchvision 0.2.2

Reasonable Windowing: By setting the window width and level of images
reasonably, we can maximize the highlighting of features of interest, such as lesion
areas or organ structures, thereby enhancing the model’s ability to recognize and
segment target features.

Random Rotation: Applying random rotations to images allows the model
to better adapt to scan data with irregular positioning, thereby improving the
model’s robustness and generalization capability.

Random Contrast Adjustment: By randomly adjusting the contrast of im-
ages, we can simulate the appearance of images under different voltage, current,
and radiation dose conditions, thus making the model more generalizable and
capable of handling data from different imaging conditions.

Translation, Scaling, Random Cropping, Affine Transformation: These are
common geometric transformation techniques. By applying translation, scaling,
random cropping, and affine transformation to images, we can increase the di-
versity and variability of data, thereby improving the model’s robustness and
generalization capability.

By combining these various data augmentation techniques, we can effectively
increase the diversity and richness of training data, enhance the model’s adapt-
ability to data under different conditions, and achieve more accurate and robust
medical image segmentation.

2. data sampling strategy

Considering the class imbalance issue among modalities in the dataset, ef-
fective data sampling strategies are crucial to ensure that the model learns the
features of each modality class evenly. We have employed the following sampling
strategies:

Random Sampling: During the training process, samples from each modality
are randomly selected to ensure that each modality is represented in each batch.

Oversampling Strategy: Data augmentation is applied to modalities with
fewer samples and lower segmentation accuracy, effectively increasing their rep-
resentation in the dataset.

Modality Weighting: Higher weights are assigned to modalities with fewer
samples and lower segmentation accuracy during training, emphasizing their
importance and preventing dominant classes from overshadowing them.
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By adopting these sampling strategies, we aim to address the class imbalance
issue among modalities and improve the segmentation performance of the model
on minority modalities.

3. optimal model selection criteria

Selecting the best model is crucial for achieving optimal segmentation per-
formance. We employ the following criteria for model selection:

Performance Metrics: Evaluation of the model’s performance on the valida-
tion dataset using metrics such as Dice coefficient, Normalized Surface Distance
(NSD), and other relevant metrics.

Generalization Ability: Assessment of the model’s ability to generalize to
unseen data by evaluating its performance on a separate test dataset.

Computational Efficiency: Consideration of the computational resources and
inference time required during both training and inference processes to ensure
the model is practical for real-world deployment.

By considering these criteria, we aim to select a model that achieves the
optimal balance between segmentation performance, generalization ability, and
computational efficiency.

Table 2. Training protocols.

Pre-trained Model SAM [1] MedSAM [5]
Batch size 4

Patch size 256x256x3

Total epochs 20

Optimizer AdamW

Initial learning rate (Ir) 0.00005

Lr decay schedule ReduceLROnPlateau
Training time 72.5 hours

Loss function DiceLoss+BCEWithLogitsLoss
Number of model parameters 9.49M’

Number of flops 57.36G?

4 Results and discussion

4.1 Quantitative results on validation set

Our method demonstrates robust performance across various imaging modalities,
achieving significant segmentation accuracy. Particularly, it excels when imaging
data exhibit clear and distinct features, such as in CT, MR, and endoscopy
modalities. The effectiveness of our approach can be attributed to its ability to
efficiently capture and utilize relevant image features.
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However, our method may face challenges in certain cases, resulting in sub-
optimal segmentation results. These cases typically involve imaging data with
low contrast or blurred boundaries, as seen in PET and microscopy modalities.
In such situations, the model may struggle to differentiate between target struc-
tures and background noise, leading to segmentation errors. To address these
issues, we employed an oversampling strategy for modalities with poor segmen-
tation performance. This strategy significantly improves segmentation outcomes,
enhancing the model’s performance in these modalities.

The quantitative evaluation results presented in Tables 3 and 4 demonstrate
the effectiveness and efficiency of our proposed method in medical image seg-
mentation tasks. It excels in accurately delineating anatomical structures across
different imaging modalities, making it a promising solution for clinical applica-
tions.

Table 3. Quantitative evaluation results.

Target Baseline w/o Data Augmentation|w/o Model Quantization Proposed
DSC(%) NSD(%)|DSC(%) NSD(%) DSC(%) NSD (%) |DSC(%) NSD (%)

CT 0.8199 0.8368 | 0.9066 0.9219 0.898 0.9179 0.9043 0.9238
MR 0.8056 0.8307 | 0.8236 0.8487 0.8206 0.8501 0.8183  0.8467
PET 0.551  0.2912 | 0.7108 0.5599 0.7375 0.6076 0.7435 0.61
US 0.9477 0.9681 | 0.826 0.8744 0.8321 0.8835 0.8265 0.8737
X-Ray 0.7583 0.8039 | 0.7368 0.7969 0.7857 0.8453 0.789  0.8473
Dermotology| 0.9247 0.9385 | 0.8791 0.8968 0.9249 0.9398 0.9134  0.9285
Endoscopy | 0.9604 0.9811 | 0.8935 0.9233 0.9248 0.9526 0.9294 0.9576
Fundus 0.9481 0.9641 | 0.9528 0.9691 0.9671 0.9821 0.9572  0.972
Microscopy | 0.6163 0.6538 | 0.761 0.8275 0.7662 0.8336 0.7825 0.8483
Average 0.8147 0.8076 | 0.8322 0.8465 0.8508 0.868 0.8516  0.8675

4.2 Ablation study

We conducted ablation experiments to assess the impact of data augmentation,
modality oversampling, and model quantization on model performance. We cre-
ated several variants of the baseline model, removing data augmentation, model
quantization, and utilizing modality oversampling techniques. By comparing the
performance of these variant models, we were able to evaluate the influence of
these techniques on model performance.

Table 3 presents the quantitative evaluation results of each model under dif-
ferent ablation conditions. Here, "Baseline" denotes the baseline model without
any additional processing. For the ablation conditions, "w/o Data Augmenta-
tion" indicates the removal of data augmentation, "w/o Model Quantization"
indicates the removal of model quantization, and "Proposed" signifies the appli-
cation of all proposed techniques, including data augmentation, modality over-
sampling, and model quantization.
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Table 4. Quantitative evaluation of segmentation efficiency in terms of running time

(s)-

heightCase ID Size Num. Objects Baseline Proposed
3DBox_CT_ 0566 (287, 512, 512) 6 376.4 352.3
3DBox_ CT_ 0888 (237, 512, 512) 6 100.5 99.5
3DBox_CT_ 0860 (246, 512, 512) 1 17.7 14.7
3DBox_ MR _0621 (115, 400, 400) 6 157.1 115.8
3DBox MR _ 0121 (64, 290, 320) 6 99.9 91.4
3DBox_MR_0179 (84, 512, 512) 1 17.1 16.2
3DBox_PET 0001 (264, 200, 200) 1 12.1 6.3
2DBox_US 0525 (256, 256, 3) 1 6.3 7.7
2DBox_ X-Ray 0053 (320, 640, 3) 34 7.3 9.5
2DBox_Dermoscopy 0003 (3024, 4032, 3) 1 6.5 7.1
2DBox_Endoscopy 0086 (480, 560, 3) 1 6.1 2.7
2DBox_ Fundus_ 0003 (2048, 2048, 3) 1 6.1 5.8
2DBox_Microscope 0008 (1536, 2040, 3) 19 6.8 6.3
2DBox_Microscope 0016 (1920, 2560, 3) 241 19.1 74.5

By comparing the Dice Similarity Coefficient (DSC) and Normalized Sur-
face Dice (NSD) scores under different conditions, we can draw the following
conclusions:

Data Augmentation: From the experimental results, it is evident that re-
moving data augmentation leads to a decrease in DSC and NSD scores. This
indicates that data augmentation has a positive impact on model performance,
enhancing the model’s generalization ability to different modalities of data.

Modality Oversampling: The experimental results show that modality over-
sampling helps improve the model’s recognition ability for minority class sam-
ples, particularly evident in the PET and Microscopy modalities.

Model Quantization: Model quantization significantly reduces the model’s
storage space and computational overhead while maintaining high inference ac-
curacy. Although quantized models may slightly decrease performance in some
modalities, overall, they still maintain a high level of performance.

In conclusion, the combined application of data augmentation, modality over-
sampling, and model quantization techniques effectively enhances model perfor-
mance and generalization ability, providing a viable solution for medical image
segmentation tasks.

4.3 Qualitative results on validation set

We present qualitative results on the validation set, showcasing examples with
both good and bad segmentation results.

Good segmentation results include examples where there is clear delineation
of anatomical structures with accurate segmentation boundaries, such as in Ex-
ample 1, and where target regions are precisely segmented with minimal errors,
as shown in Example 2. In contrast, bad segmentation results are character-
ized by inaccuracies such as under-segmentation or over-segmentation, as seen
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example 1 example 2 example 3 example 4

Fig. 2. Qualitative segmentation results on the validation set.

in Example 3, and failures to accurately delineate target structures, leading to
significant segmentation errors, as illustrated in Example 4.

4.4 Segmentation efficiency results on validation set

Additionally, segmentation efficiency analysis reveals our method’s computa-
tional performance, i.e., runtime. As shown in Table 4, our method generally
achieves faster segmentation speeds compared to baseline methods, especially
when dealing with 3D image data. This efficiency is crucial for real-time ap-
plications and clinical workflows, where timely processing of medical images is
essential.

4.5 Results on final testing set

This is a placeholder. We will announce the testing results during CVPR, (6.17-
18)

4.6 Limitation and future work

Although our lightweight SAM medical image segmentation model based on
ViT-Tiny and model quantization techniques has shown promising results, there
are still several limitations that need to be addressed:

Limited coverage of modalities: While the current model performs effectively
across multiple modalities, it may not achieve optimal performance for all types
of medical imaging, especially those with fewer samples or unique features in the
training data.

Computational constraints: Despite the model’s lightweight design and suit-
ability for CPU, challenges may still arise in real-time processing of extremely
high-resolution images or clinical settings.

Generalization to unseen data: Despite employing extensive data augmenta-
tion techniques, the model’s ability to generalize to completely unseen or rare
medical conditions remains a concern.

To address these limitations and further enhance our model, future research
will focus on the following aspects:
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Expanding modality coverage: Plans include incorporating a more diverse
range of medical imaging modalities into the training dataset to enhance the
model’s generalization and performance across a broader spectrum of imaging
techniques.

Optimizing computational efficiency: Exploration of advanced model com-
pression methods and hardware-specific acceleration techniques will be under-
taken to enhance the model’s performance in real-time and resource-constrained
environments.

Enhancing generalization techniques: Introduction of more sophisticated data
augmentation methods and domain adaptation techniques will be explored to
improve the model’s robustness and generalization capability to unseen data
and rare conditions.

5 Conclusion

In this study, we proposed a lightweight medical image segmentation model
based on SAM utilizing ViT-Tiny and provided a detailed description of its
methods and implementation strategies. By replacing SAM’s image encoder
with ViT-Tiny and retaining SAM’s lightweight prompt encoder and mask de-
coder architecture, we successfully reduced the model’s computational complex-
ity while maintaining high-level segmentation performance. We employed a series
of data augmentation techniques, including reasonable window width and level
settings, random rotations, random contrast adjustments, and transformations
such as translation, scaling, random cropping, and affine transformations. These
strategies significantly improved the model’s robustness and generalization abil-
ity. To address the class imbalance issue among modalities in the dataset, we
adopted strategies such as random sampling, oversampling, and modality weight-
ing. These ensured that the model could learn the features of each modality
class evenly, thereby improving segmentation performance for minority modali-
ties. Through model quantization techniques, we enhanced the model’s inference
speed on CPUs, ensuring its feasibility for real-world deployment. Our model
demonstrated outstanding performance on various evaluation metrics across the
validation dataset, proving its effectiveness and reliability in medical image seg-
mentation tasks. In summary, our approach achieved a well-balanced trade-off
between segmentation performance, generalization ability, and computational
efficiency, providing an efficient and reliable solution for medical image segmen-
tation. We believe that this research outcome not only holds significant potential
for improving clinical diagnostic efficiency but also offers valuable insights for
future research and applications.
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