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Abstract

Recent advances in false discovery rate (FDR)-controlled feature selection methods
have improved reliability by effectively limiting false positives, making them well-
suited for complex applications. A popular FDR-controlled framework called data
splitting uses the “mirror statistics" to select features. However, we find that the
unit variance assumption on mirror statistics could potentially limit the feature
selection power. To address this, we generalize the mirror statistics in the Gaussian
mirror framework and introduce a new approach called “generalized Gaussian
mirror" (G2M), which adaptively learns the variance and forms new test statistics.
We demonstrate both theoretically and empirically that the proposed test statistics
achieve higher power than those of Gaussian mirror and data splitting. Comparisons
with other FDR-controlled frameworks on synthetic, semi-synthetic, and real
datasets highlight the superior performance of the G2M method in achieving higher
power while maintaining FDR control. These findings suggest the potential for the
G2M method for practical applications in real-world problems. Code is available
at: https://github.com/skyve2012/G2M.

1 Introduction

The complexity and high dimensionality of data in the era of big data make it challenging to develop
a universal feature selection algorithm that performs well in diverse datasets [18]. An algorithm
that works effectively for one type of data may fail for another. This variability complicates the
verification of feature selection results, thereby hindering the practical use of selected features. Such
challenges are especially prevalent in fields like healthcare, where there is no guarantee that identified
genes or metabolites [8] correlate well with response variables (e.g., diseases), making downstream
applications such as drug discovery even more difficult.

To address these challenges, recent research has focused on false discovery rate (FDR)-controlled
feature selection methods [4, 8]. These methods limit the number of false positives during feature
selection, providing a guarantee of the maximum number of incorrect selections. This property is
particularly advantageous in ultra-high-dimensional settings, such as genetic or RNA-sequencing
data.

Over the past decade, various methods have been proposed. Model-X knockoffs [4, 8] is a novel
framework designed to select relevant features while controlling the FDR. It generates “knockoff"
variables as references to the original design matrix and forms knockoff statistics. The symmetry-
about-zero property of these statistics for null features enables FDR control under specified nominal
levels. Although theoretical guarantees exist for Gaussian design matrices [8, 37], challenges remain
for non-Gaussian settings due to the lack of theoretical assurances. Methods like Deep Knockoff [30],
KnockoffGAN [14], and DeepDRK [34] have been proposed to enhance selection power while
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controlling FDR in non-Gaussian data. However, as highlighted in Shen et al. [34], balancing
reconstructability (which enhances power) and the swap property (which ensures FDR control)
remains empirically difficult, and theoretical guarantees are still lacking.

Another line of work is the conditional randomization test (CRT), first introduced in Candès et al. [8].
CRT relies on conditional sampling for each feature given the others to compute p-value statistics,
which are then used with the Benjamini-Hochberg (BH) procedure to control FDR. Unlike knockoff
statistics, CRT avoids the reconstructability issue by sequentially considering individual features.
However, its computational bottleneck arises from the need to repeatedly generate conditional
samples, especially for non-Gaussian data where Markov Chain Monte Carlo (MCMC) techniques
are required. This substantially increases the computational cost. Recent methods such as HRT [40],
and Distillation-CRT [19] have sought to improve sampling accuracy and efficiency. Despite these
advances, the inherent challenges of non-Gaussian data remain unresolved.

Distinct from these approaches, data splitting [9] and Gaussian mirror [45] introduce a “mirror
statistics" with properties similar to knockoff statistics but without relying on the swap property. This
avoids the trade-off identified in Shen et al. [34]. The key difference between the two methods lies in
how the mirror statistics are constructed. Data splitting divides the design matrix and response into
two parts, generating paired estimates for each feature, which are then used to compute the mirror
statistics. In contrast, the Gaussian mirror introduces two Gaussian noise perturbations to create
additional columns in the design matrix, replacing the original feature column 1. These perturbed
columns are used to compute the mirror statistics. However, on the one hand, the data-splitting
approach is constrained by its unit-variance assumption for the mirror statistics. On the other hand,
the Gaussian mirror paper does not provide a discussion on the statistical power of the proposed
method.

To address these limitations, we generalize the variance assumptions in the mirror statistics introduced
in the data-splitting framework and propose a generalized Gaussian mirror test statistics that considers
the variance information of the fitting coefficients—an intermediate component that forms the
mirror statistics. We demonstrate that this statistics is the entry-wise uniformly most powerful test
statistics, leading to improved feature selection power compared to both the Gaussian mirror and data-
splitting test statistics. We call the proposed method a “generalized Gaussian mirror" (G2M) 2. With
experiments considering synthetic, semi-synthetic, and real datasets, we demonstrate the practical
value of the proposed approaches over a set of benchmarking methods.

2 Related Work

2.1 Data Splitting

Data splitting is a feature selection method designed to control the FDR [9]. This method partitions
the design matrix X and the response vector y into two disjoint datasets, denoted as (X+, y+) and
(X−, y−). Separate models are then fitted to each dataset using the same approach (e.g., both use
ordinary least squares), yielding the coefficients β+

j and β−
j from two respective models for each

feature xj . For each pair (β+
j , β−

j ), the method constructs a test statistics wj , which is a function of
these coefficients and reflects the importance of the corresponding feature xj .

Notably, the statistics wj is designed as a “mirror statistics," ensuring symmetry about 0 for null
features (j ∈ S0) while maintaining positive values for non-null features (j ∈ S1). After calculating
wj for all features, the selection procedure identifies the set of significant features Ŝ1 = {j : wj ≥ τq},
where the threshold τq is determined based on the desired FDR control.

τq = min
t>0

{
t :

1 + |{j : wj ≤ −t}|
max(1, |{j : wj ≥ t}|)

≤ q
}
. (1)

This setting controls feature selection FDR level at q according to Theorem 2.1.
1It is noteworthy that the data-splitting (Section 2.1) and Gaussian mirror (Section 2.2) methods are closely

related to the proposed G2M method. We describe their methods individually and discuss the linkage to our
proposed approach in Section 2.

2To the best of our knowledge, there are limited works concerning improvements of data splitting or Gaussian
mirror. Ge et al. [12] considers extending an uneven data splitting with cox model. Dai et al. [10], Xing et al.
[44] consider nonlinearity in test statistics. These are orthogonal to our focus, therefore omitted.
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Theorem 2.1. For a given set of mirror statistics {wj}pj=1, the following properties hold:

1. If j is a null feature index, then for any real number t, P(wj ≥ t) = P(wj ≤ −t).

2. If j is a non-null feature index, then P(wj ≥ 0) > P(wj ≤ 0).

Then, for a given nominal FDR level q, the feature selection set

Ŝ = {j ∈ {1, . . . , p} : wj ≥ τq}
controls the FDR, where τq is chosen via Eq. (1).

Proof. Given the above two properties for the mirror statistics, we have P(wj ≥ t) = P(wj ≤ −t)
due to the symmetry-about-zero property of the mirror statistics wj under the null distribution. As
a result, the selection rule Ŝ = {j : wj ≥ τq} (equivalently, the denominator of Eq. (1)) selects
features based on the level-q quantile on the right side of the null distribution, ensuring the FDR level
is controlled at most q.

2.2 Gaussian Mirror

The Gaussian mirror [45] is a different approach from the data splitting method given how β+
j

and β−
j are generated. Specifically, given an index j, the Gaussian mirror proposes two perturbed

variables in place of the original xj , resulting in a new design matrix Xj = (x+
j , x

−
j , X−j), where

x+
j = xj + cjzj , x−

j = xj − cjzj , zj ∼ N (0, In), and cj is a scalar in R. β+
j and β−

j are the
coefficient estimations for x+

j and x−
j , respectively.

The Gaussian mirror adopts a similar notion of mirror statistics as the data splitting method to select
features with controlled FDR. With cj =

∥P⊥−jxj∥
∥P⊥−jzj∥ , Xing et al. [45] shows that β+

j and β−
j are

independent, allowing the choice of a specific form of mirror statistics wj = |β+
j + β−

j | − |β+
j − β−

j |
to perform FDR-controlled feature selection at level q, according to Eq. (1). Here, P⊥−j denotes the
projection in the null space of X−j .

2.3 Connection between Data Splitting and Gaussian Mirror in the G2M setting

In this paper, the proposed G2M test statistics is based on a variance-generalized uniformly most
powerful (UMP) statistics under the mirror statistics setting in the data splitting paper [9]. Specifically,
it adopts the β+

j and β−
j from the Gaussian mirror paper [45] to form a generalized mirror statistics

(see Lemma. 3.5) over the one from the data splitting paper. The proposed statistics considers the
variance information of β+

j and β−
j , resulting in higher feature selection power compared to that of

the data splitting and Gaussian mirror. More importantly, it is theoretically verifiable. In addition, We
provide evidence on the no-constant variance of β+

j and β−
j in Appendix A—the rationale on why

such variance generalization is necessary.

3 Method

This section details the proposed approach in this paper. The arrangement is as follows:

• Section 3.2 considers a more general setup of Gaussian mirror variable x+
j and x−

j . And
provide the related form of β+

j and β−
j as a weighted sum of the true βj coefficient and the

noise variables. We also provide two useful properties about β+
j and β−

j whose proofs are
omitted in the original Gaussian mirror paper [45].

• Section 3.3 presents the first major result (i.e., Lemma 3.5) on the UMP test statistics given
the feature index j. The setup we consider is more realistic compared to the one considered
in Dai et al. [9], resulting in higher test power.

• Section 3.4 introduces the second major result that proves the proposed G2M test statistics
(see Proposition 3.1) is a more powerful test statistics compared to the mirror statistics
in Xing et al. [45], Dai et al. [9].
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• In Section 3.5, we combine the results discussed in the previous sections and propose two
algorithms—one exact algorithm that characterizes an ideal scenario, and one estimation
algorithm that can be used in practice. Experiments in Section 4 are conducted w.r.t. the
estimation version.

3.1 Notation

We first introduce the notation for the paper. Let X ∈ Rn×p be the design matrix, xj =
(x1j , . . . , xnj)

⊤ be the j-th column of X , and X−j be the submatrix of X with the j-th column
removed. n is the sample size and p is the feature dimension. Following the setting in Xing et al.
[45], we assume that X is normalized such that

∑n
i=1 xij = 0 and ∥xj∥2 = n, j ∈ [1, . . . , p]. Let

y = (y1, . . . , yn)
⊤ be the vector of n independent responses. We assume that the response variable y

only depends on a subset of features XS1 = {Xj : j ∈ S1}, and the task of feature selection is to
identify the set S1. And the response y follows a linear model: y = Xβ + ϵ, where β = (β1, . . . , βp)
indicates the coefficients for the features xj’s. Let S0 = {1, . . . , p} \ S1 be the index set of the
null features. Let p0 = |S0| and p1 = |S1| be the number of the null and the relevant features,
respectively.

3.2 A General form of Gaussian Mirror Coefficient Estimation

We propose to represent β+
j and β−

j as a function of the true βj and the noise vector ϵ, given a
generalized Gaussian mirror setup that considers additional variables (i.e., dj and qj). This improves
flexibility on the representation of β+

j and β−
j . Details are included in Proposition 3.1, which helps

us to understand the behavior of β+
j and β−

j in terms of qj , zj , cj , dj , βj and ϵ.

Proposition 3.1. Consider a generalized Gaussian mirror setup where x+
j = xj + cj · zj and

x−
j = xj − dj · qj , and zj and qj are n dimensional i.i.d. standard Gaussian. cj and dj are in R.

Then the least square regression coefficients for x+
j and x−

j have the following forms:

β+
j = α · βj + γ⊤ · ϵ, β−

j = ζ · βj + η⊤ · ϵ, (2)

where ϵ stands for n-dimensional i.i.d. standard Gaussian vector. And α, γ, ζ , and η are functions of
cj , dj , zj , and qj (see Appendix B.1 for full forms).

In addition to Proposition 3.1, we introduce three corollaries that reveal certain properties about β+
j

and β−
j and terms associated with them (see Eq. (2)). These properties are crucial in developing the

estimation algorithm in Section 3.5.
Corollary 3.2. Given zj = qj , α+ ζ = 1, where α and ζ are defined in Proposition 3.1.

Corollary 3.3. Given cj = dj , and zj = qj , α = ζ = 0.5, where α and ζ are defined in
Proposition 3.1.

Specifically, Corollary 3.2 describes a property on the behavior of α and η that sum to one as long
as the Gaussian mirror perturbation vectors zj = qj . Notice that this does not require cj = dj ,
indicating a more generalized setup beyond the Gaussian mirror. On the other hand Corollary 3.3
indicates that under the vanilla Gaussian mirror setup (see Section 2.2 and Xing et al. [45]), the mean
of β+

j and β−
j is 0.5β. Note that the result is only mentioned in Xing et al. [45] without any proof.

Here we provide formal proof of this fact, complementing the original Gaussian mirror work. The
proof of Corollary 3.2 and 3.3 can be found in Appendix B.
Corollary 3.4. Var(β+

j ) = ∥γ∥22 and Var(β−
j ) = ∥η∥22.

The proof is straightforward by realizing that ϵ is the only term that introduces randomness to β+
j and

β−
j . Hence Var(β+

j ) = Var(γ⊤ · ϵ) = ∥γ∥22. Similar reasoning can be applied to Var(β−
j ).

3.3 Entry-wise Uniformly Most Powerful Mirror Statistics

According to Section 2.3 and Appendix A, it is clear that the variances of β+
j and β−

j need not be 1.
This violates the condition for the UMP mirror test statistics proposed in Dai et al. [9]. To consider a
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more realistic setup, we present the first result (i.e., Lemma 3.5) that reveals a mirror test statistics that
is a function of the variance of β+

j and β−
j . We show that the proposed test statistics is UMP for every

pair of β+
j and β−

j . Note that we do not assume a universal distribution for β+
j and β−

j across all
j’s. This flexibility directly leads to Theorem 3.6, which proves that the test statistics in Lemma 3.5
achieves higher power during feature selection compared to the existing mirror statistics [45, 9].
Lemma 3.5. Suppose that the set of coefficients (β+

j , β−
j ) is independent for all j ∈ {1, . . . , p}.

Furthermore, suppose:

(a) For j ∈ S1, the two coefficients β+
j and β−

j follow N(ω, σ2
a), N(ω, σ2

b ) independently. And
ω ∼ δ · Rademacher(0.5) (δ > 0), where δ ∈ R is the absolute magnitude of ω 3;

(b) For j ∈ S0, the two coefficients β+
j and β−

j follow N(0, σ2
a) and N(0, σ2

b ) independently;

(c) p1

p0
→ r as p → ∞.

Then the optimal choice of f in the mirror statistics (i.e., sign(β+
j β−

j )f(|β+
j |, |β−

j |)) that yields the
highest power follows the form:

f(a, b) = U [P+ exp(−S−) + P− exp(−S+)] , (3)

where S− = δ(δ−2a)
2σ2

a
+ δ(δ−2b)

2σ2
b

, S+ = δ(δ+2a)
2σ2

a
+ δ(δ+2b)

2σ2
b

, and

P+ = Φ

(
δ

σa

)
Φ

(
δ

σb

)
, P− =

[
1− Φ

(
δ

σa

)][
1− Φ

(
δ

σb

)]
, U =

1

PE|H1

=
1

P− + P+
,

where Φ is the cumulative density function for the standard normal distribution.

Lemma 3.5 reveals a closed-form test statistics that is UMP. This is used in developing the proposed
feature selection algorithms in Section 3.5.

3.4 More Powerful Test Setting

Combining the results from Proposition 3.1 and Lemma 3.5, we present the following Theorem 3.6
that indicates a more powerful test statistics of the proposed over the existing ones in Xing et al.
[45], Dai et al. [9].
Theorem 3.6. The proposed test statistics f(a, b) in Eq. (3) achieves the highest power compared
to the Gaussian mirror test statistics: |a + b| − |a − b| [45], and the data splitting test statistics:
sign(ab)(|a|+ |b|) [9], under the same nominal FDR level q.

In Section 4, we will empirically observe evidence that supports Theorem 3.6. And the proof of
Theorem 3.6 can be found in Appendix B.

3.5 Algorithm

With all the ingredients introduced in the previous sections, we present two algorithms: 1. the exact
algorithm (Algorithm 1) when one has access to the scale of the true coefficients for the nonnull βj’s:
δ or δj if it is index-dependent; 2. the estimation algorithm (Algorithm 2) that essentially proposes
an estimation of δ or δj , resulting a generalized likelihood ratio test statistics given the estimation.
Note that the proposed algorithm considers the vanilla Gaussian mirror setup to take advantage of the
nice properties indicated in Corollary 3.2 and 3.3. This means cj = dj and zj = qj for all j’s. And
cj =

∥P⊥−jxj∥
∥P⊥−jzj∥ following the setup in Xing et al. [45].

Algorithm 1 introduces the exact algorithm when true δ presents. This is rarely the case as often we
do not have prior knowledge about true βj’s. To overcome this issue, we propose an algorithm to
estimate δ, which is Algorithm 2.

Essentially, the estimation algorithm employs a k-means-based algorithm to find k potential modes
for δj—a quantity that is assumed to be given in Algorithm 1, yet unavailable in practice. We

3We adopt a similar setting in Proposition 1 in Dai et al. [9] to define ω.
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Algorithm 1 Exact algorithm

1: Input: Design matrix X , response y, nominal FDR level q and true scale δ or δj for the βj ,
j ∈ S1.

2: Output: Ŝ1 = {j | wj ≥ τq}.
3: for j = 1 to p do
4: Sample zj ∼ N (0, In)

5: Calculate cj =
∥P⊥−jxj∥
∥P⊥−jzj∥ and form x+

j = xj + cjzj , x−
j = xj − cjzj .

6: Obtain the ordinary least squares estimator of β̂+
j and β̂−

j :

(β̂+
j , β̂−

j , β̂−j) = arg min
β+
j ,β−

j ,β−j

∥y −X−jβ−j − x+
j β

+
j − x−

j β
−
j ∥22.

7: Calculate Var(β+
j ) = ∥γ∥22 and Var(β−

j ) = ∥η∥22.
8: Compute wj = sign(β+

j β−
j )f(β+

j , β−
j ), where f(a, b) is specified in Eq. (3).

9: end for
10: Calculate the threshold given the FDR level q:

τq = min
t>0

{
t :

1 + |{j : wj ≤ −t}|
max(1, |{j : wj ≥ t}|)

≤ q
}
.

choose k-means given it has been widely considered as an efficient unsupervised algorithm due to no
accessible to true values of δj . First, combining the results of Corollary 3.2 and 3.3, the algorithm
obtains an unbiased estimate of the absolute value of βj (j ∈ (1, . . . , p)) in Step 7 of Algorithm 2.
This is because α and ζ are both equal to 0.5 based on Corollary 3.2 and 3.3. The p calculated
values represent possible values of δ. Then we utilize the k-means algorithm with k chosen via the
silhouette score—a common technique for choosing the number of clusters. Note that the k identified
modes include the case for the null βj’s, where δ = 0, due to not knowing which variable is null and
which is nonnull. Luckily, we can simply exclude the smallest mode (e.g., the closest one to zero),
which corresponds to the mode for the null βj’s, resulting in k − 1 candidates. For every calculated
pair of β+

j and β−
j , δ̂j is chosen to be the closest mode among the k − 1 candidates, compared to

the value
β+
j +β−

j

2 . With Algorithm 2, we can perform feature selection without accessing the true δ

information. In Section 4, all results about the proposed G2M method are based on the estimation
algorithm (Algorithm 2).

Algorithm 2 Estimation algorithm

1: Input: Design matrix X , response y, nominal FDR level q and the number of modes for δ:
k ≤ p.

2: Output: Algorithm 1(X , y, {δ̂j}pj=1, q)
3: for j = 1 to p do
4: Sample zj ∼ N (0, In)

5: Calculate cj =
∥P⊥−jxj∥
∥P⊥−jzj∥ and form x+

j = xj + cjzj , x−
j = xj − cjzj .

6: Obtain the ordinary least squares estimator of β̂+
j and β̂−

j :

(β̂+
j , β̂−

j , β̂−j) = arg min
β+
j ,β−

j ,β−j

∥y −X−jβ−j − x+
j β

+
j − x−

j β
−
j ∥22.

7: Calculate the value vj =
|β+

j +β−
j |

2 .
8: end for
9: Run k-means algorithm to find k modes given {vj}pj=1, represented as {ml}kl=1.

10: for j = 1 to p do
11: δ̂j = minml

|vj −ml|, l ∈ (1, . . . , k).
12: end for
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4 Experiment

In this section, we evaluate the proposed G2M approach using three types of datasets, following the
experimental setup described in Shen et al. [34] given its comprehensibility. Specifically, we consider:
1. Fully synthetic datasets, where the design matrix X and the response y are generated from known
distributions; 2. Semi-synthetic datasets, where the design matrix is extracted from real-world data,
and the response is generated using a predefined model; 3. A real-world case study, where both X
and y are fully unknown. The experimental details and corresponding results are summarized in
Section 4.1, Section 4.2, and Section 4.3, respectively. In each section, we provide details on the
benchmarking methods, the configuration of the dataset, and the results. All experiments were carried
out on an IBM AC922 server with 2x 20 core IBM POWER9 CPU @ 2.4GHz.

Table 1: FDR and power with Gaussian design matrix X for ρ = 0.6 (left) and ρ = 0.7 (right). Bold
entries indicate the highest power given controlled FDR at level 0.1. Blue for the second best, and
Red for FDR> 0.1.

Method

ρ = 0.6 ρ = 0.7

OLS Ridge LASSO OLS Ridge LASSO

FDR Power FDR Power FDR Power FDR Power FDR Power FDR Power

CRT [8] 0.00 0.13 0.07 0.69 0.07 0.77 0.00 0.02 0.13 0.51 0.11 0.56
Distilled-CRT [19] 0.53 0.98 0.27 0.98 0.13 0.97 0.58 0.95 0.25 0.93 0.11 0.87
Gaussian Mirror [45] 0.09 0.54 0.05 0.67 0.04 0.74 0.05 0.18 0.04 0.51 0.23 0.48
Gaussian Mirror† [45] 0.10 0.61 0.05 0.71 0.04 0.76 0.13 0.49 0.06 0.64 0.04 0.61
Data Splitting [9] 0.00 0.00 0.06 0.66 0.04 0.50 0.00 0.00 0.06 0.56 0.05 0.41
Data Splitting† [9] 0.72 0.07 0.08 0.71 0.17 0.70 0.73 0.07 0.07 0.66 0.25 0.70
HRT [40] 0.01 0.23 0.00 0.21 0.00 0.22 0.01 0.10 0.00 0.10 0.00 0.10
Powerful Knockoff [37] 0.00 0.00 0.05 0.48 0.06 0.69 0.01 0.00 0.04 0.29 0.05 0.55
Powerful Knockoff† [37] 0.75 0.08 0.08 0.61 0.06 0.73 0.80 0.07 0.07 0.50 0.05 0.63
G2M (ours) 0.08 0.65 0.05 0.82 0.05 0.82 0.08 0.36 0.03 0.67 0.03 0.68
G2M† (ours) 0.08 0.72 0.04 0.80 0.06 0.84 0.10 0.55 0.03 0.67 0.04 0.70

4.1 Synthetic Data

To thoroughly evaluate performance, we adopt the experimental framework outlined in Shen et al. [34]
to generate diverse synthetic datasets defined by (X, y). In this setup, X ∈ Rp represents dependent
variables drawn from predefined distributions, and y ∈ R serves as the response variable. We model
y using a linear response framework: y ∼ N (XTβ, 1). The true underlying β is a p-dimensional
vector with entries independently sampled from the distribution p

15·
√
n
· Rademacher(0.5). This

choice differs from the commonly used scaling factor p√
n
· Rademacher(0.5) [38, 22], enabling a

more challenging evaluation configuration.

In addition to the Copula and Gaussian mixture models considered in Shen et al. [34] that quantifies
the nonlinear design matrices, we include the Gaussian setting, exploring various correlation levels
among the features. Since methods such as knockoffs [8] and the conditional randomization test
(CRT) [8] have closed-form solutions in Gaussian settings, incorporating this setup offers valuable
insights into the consistency between empirical results and theoretical guarantees. Due to space limit,
we defer the introduction of these settings in Appendix D.

Benchmarking Methods & Settings 4: Given the linear and nonlinear nature of the design matrix,
we utilize two sets of benchmarking methods. The first set comprises methods that are theoretically
proven to control the false discovery rate (FDR), including knockoff [8], conditional randomization
test (CRT) [8], data splitting [9], Gaussian mirror [45], distilled-CRT [19], HRT [40], and powerful
knockoff [37]. In addition, we also consider another rule to choose τq (Eq. (4)) according to Ren and
Barber [29], to improve the power for certain applicable methods and mark them with “†":

τq = min
t>0

{
t :

1 + |{j : wj ≤ −t}|
max(1, |{j : wj ≥ t}|)

≤ q or
∑
j∈[p]

1{j : wj ≥ t} <
1

q

}
, (4)

where “1" is the indicator function. Essentially, the two equations differ only when mint>0{t :
1+|{j:wj≤−t}|

max(1,|{j:wj≥t}|) ≤ q} > mint>0{t :
∑

j∈[p] 1{j : wj ≥ t} < 1
q}. This means when q is small or

4We include discussion about computation complexity for non-deep-learning-based methods. We defer the
discussion in Appendix C given this is not the major focus on this work
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the fraction of non-nulls is small, then the first term usually finds a larger τq, in favor of the FDR
control. In this case, the power is pretty low, as when τq is large, there are only limited non-nulls
selected. Instead of choosing τq with the first term (e.g., Eq. (1)), the second term chooses a smaller
τq , which results in higher power.

The second set focuses on deep learning-based methods designed to handle nonlinear design ma-
trices, such as Deep Knockoff [30] 5, DDLK [38] 6, KnockoffGAN [14] 7, sRMMD [22] 8, and
DeepDRK [34] 14.

Table 2: FDR and power with Copula and Gaussian Mixture design matrix X . Bold entries indicate
the highest power with controlled FDR at level 0.1. Blue for the second best, and Red for FDR> 0.1.

Method Citation Gaussian Mixture Clayton & Exp. Clayton & Gamma Joe & Exp. Joe & Gamma
FDR Power FDR Power FDR Power FDR Power FDR Power

CRT [8] 0.00 0.21 0.08 0.69 0.05 0.91 0.08 0.45 0.07 0.87
Distilled-CRT [19] 0.17 0.22 0.06 0.43 0.06 0.36 0.05 0.26 0.04 0.26
Gaussian Mirror [45] 0.05 0.83 0.07 0.54 0.07 0.89 0.06 0.34 0.08 0.86
Gaussian Mirror† [45] 0.04 0.83 0.07 0.70 0.08 0.92 0.09 0.52 0.09 0.84
Data Splitting [9] 0.07 0.72 0.07 0.52 0.07 0.79 0.06 0.28 0.08 0.76
Data Splitting† [9] 0.09 0.76 0.09 0.62 0.08 0.81 0.10 0.49 0.09 0.78
HRT [40] 0.00 0.18 0.01 0.15 0.01 0.50 0.01 0.09 0.02 0.50
Powerful Knockoff [37] 0.08 0.62 0.03 0.17 0.05 0.38 0.04 0.11 0.07 0.39
Powerful Knockoff† [37] 0.09 0.64 0.12 0.40 0.06 0.51 0.14 0.39 0.07 0.53
Deep Knockoff [30] 0.74 1.00 0.29 0.88 0.25 0.95 0.40 0.86 0.26 0.94
DDLK [38] 0.79 0.99 0.13 0.30 0.27 0.66 0.04 0.00 0.32 0.59
KnockoffGAN [14] 0.44 0.99 0.07 0.35 0.09 0.70 0.05 0.17 0.09 0.60
sRMMD [22] 0.72 1.00 0.29 0.88 0.24 0.94 0.31 0.78 0.26 0.93
DeepDRK [34] 0.10 0.83 0.07 0.35 0.08 0.78 0.10 0.42 0.09 0.70
G2M (ours) – 0.07 0.86 0.09 0.58 0.10 0.94 0.10 0.32 0.10 0.89
G2M† (ours) – 0.06 0.92 0.06 0.75 0.09 0.95 0.10 0.61 0.10 0.91

For the Gaussian setup, we focus solely on the first set of methods, as they align with the theoretical
guarantees for Gaussian designs. We use three different fitting methods to generate the estimation
coefficient β̂j’s: ordinary least square (OLS), ridge regression, and LASSO, to consider common
adaptation of these methods in the feature selection setup. In contrast, for the Copula and Gaussian
mixture setups, we evaluate both sets of methods and consider ridge regression to be the fitting
method as empirically it produces the best performance according to Shen et al. [34]. Results are
presented for FDR and power with (n, p) = (200, 100), at the FDR nominal level 0.1. All reported
values are averaged over 100 independent repetitions.

Results: In Table 1, we present results with Gaussian data in two different correlation settings
(e.g., ρ = 0.6, 0.7). In both cases, the proposed G2M outperforms other benchmarking methods for
achieving the highest power while controlling the FDR under the nominal level of 0.1. In addition,
we notice that the power of the proposed G2M is always greater than that of the Gaussian mirror and
data splitting methods, indicating the consistency between the empirical results and the theoretical
reasoning. Surprisingly, we discover that G2M performs consistently across different fitting methods
other than OLS (e.g., LASSO and ridge regression) despite the fact that the theory was developed in
the least squares sense. This suggests a possible wide application of the proposed G2M method.

In Table 2, on the other hand, we consider results with nonlinear design matrix X with ridge
regression model being the fitting method. Similar to the Gaussian setting, G2M achieves the highest
power on all datasets while controlling the FDR under the nominal 0.1 level. The proposed method
even outperforms those deep-learning-based methods, suggesting its power in wide applications.
Importantly, this observation is consistent with the theoretical justification as the proof of the G2M
method does not depend on the distribution of the design matrix X .

To further demonstrate the performance of our method, we investigate high dimensional settings by
reducing the number of samples relative to the 100 dimensional input data. In addition, we consider
the impact of noise to the power and FDR during feature selection. The comparison is deferred to

5https://github.com/msesia/deepknockoffs
6https://github.com/rajesh-lab/ddlk
7https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/knockoffgan
8https://github.com/ShoaibBinMasud/soft-rank-energy-and-applications
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Appendix E due to space limit. The results, however, suggest that our proposed method outperforms
other benchmarking methods in most cases, indicating a new state-of-the-art.

4.2 Semi-synthetic Data

Table 3: FDR and power with two semi-synthetic
datasets: RNA and IBD. Bold entries indicate the
case with the highest power given controlled FDR
at level 0.1, Blue for the second best, and Red for
FDR> 0.1.

Method Citation Semi-RNA Semi-IBD
FDR Power FDR Power

CRT [8] 0.39 0.89 0.15 0.56
Distilled-CRT [19] 0.27 0.87 0.11 0.75
Gaussian Mirror [45] 0.61 0.97 0.04 0.26
Gaussian Mirror† [45] 0.06 0.58 0.08 0.55
Data Splitting [9] 0.21 0.86 0.16 0.73
Data Splitting† [9] 0.14 0.64 0.16 0.77
HRT [40] 0.38 0.87 0.05 0.42
Powerful Knockoff [37] 0.50 0.94 0.07 0.21
Powerful Knockoff† [37] 0.14 0.43 0.14 0.51
Deep Knockoff [30] 0.00 0.14 0.27 0.55
DDLK [38] 0.14 0.81 0.09 0.26
KnockoffGAN [14] 0.00 0.00 0.10 0.25
sRMMD [22] 0.00 0.00 0.24 0.44
DeepDRK [34] 0.08 0.73 0.10 0.25
G2M (ours) – 0.00 0.43 0.07 0.45
G2M† (ours) – 0.04 0.66 0.10 0.61

In this section, we conduct a semi-synthetic
study by extracting the design matrix X from
two real-world datasets.

Single-cell RNA Sequencing: The first dataset
consists of single-cell RNA sequencing (scRNA-
seq) data obtained from 10× Genomics 9. Each
entry of X ∈ Rn×p represents the observed ex-
pression levels of p genes across n cells. For
additional background on this dataset, we refer
readers to Hansen et al. [13] and Agarwal et al.
[1]. Following the preprocessing pipeline de-
scribed in Hansen et al. [13], we obtain the final
dataset X with n = 10, 000 and p = 100 10.
The response y is formulated according to a non-
linear function of X . Details including the form
of y and the data preparation about X are in-
cluded in Appendix F due to space limit.

Inflammatory Bowel Disease (IBD): The
second dataset, publicly available from the
Metabolomics Workbench 11, originates
from a real-world study titled “Longitudinal
Metabolomics of the Human Microbiome in Inflammatory Bowel Disease (IBD)” [20]. The objective
of this study is to identify significant metabolites associated with two forms of inflammatory bowel
disease: ulcerative colitis (UC) and Crohn’s disease (CD). We use the C18 Reverse-Phase Negative
Mode dataset, which comprises 546 samples and 91 metabolites.

To handle missing values, we preprocess the dataset by removing metabolites with more than 20%
missing data, resulting in a final set of 80 metabolites. The data matrix is normalized entry-wise to
have zero mean and unit variance, following a log transform and imputation of missing values using
the k-nearest neighbor algorithm, as described in Masud et al. [22]. The response y uses the same
linear model described in Section 4.1, which has lower signal strength compared to the experiment
in Shen et al. [34].

In both semi-synthetic settings, we consider ridge regression as the fitting method as empirically it
performs the best according to Shen et al. [34]. All reported values are averaged over 100 independent
repetitions. The FDR nominal level is set to 0.1.

Results: Since we consider the nonlinear design matrix X , methods from both the deep-learning-
based and non-deep-learning-based (see Section 4.1) are considered in this experiment. Results are
presented in Table 3. We find that almost all non-deep-learning- and framework-based methods fail to
control the FDR with the RNA data, and part of the methods fail on the IBD data. In comparison, the
proposed G2M method is the only one that can successfully control the FDR under the nominal level
while achieving the second-best in power (the best-performing DeepDRK achieves a higher power
of 0.73 in this case). In the IBD setting, on the other hand, G2M beats all non-deep-learning-based
methods and deep-learning-based methods for producing the highest power with the controlled FDR.
This evidence suggests a stable application of G2M on real-world data.

9https://kb.10xgenomics.com/hc/en-us
10Data processing code is available at: https://github.com/dereklhansen/flowselect/tree/

master/data
11https://www.metabolomicsworkbench.org/ under project DOI: 10.21228/M82T15
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Table 4: Feature selection results with IBD real dataset that consider true X and y.: RNA and IBD.
FDR level is specified as 0.2. Since there is no ground truth on the features, we report “number of
referenced metabolites/number of identified" in place of FDR or power.

Model G2M (ours)† CRT Distilled-CRT Gaussian Mirror† Data Splitting† HRT Powerful Knockoff

Referenced / Identified 18/22 12/21 17/26 18/25 17/23 2/5 4/6

Model DeepDRK Deep Knockoff sRMMD KnockoffGAN DDLK

Referenced / Identified 19/23 15/20 5/5 12/14 17/25

4.3 Real Case Study

We further conduct two case studies using real data (i.e., IBD dataset [20] and breast cancer
dataset [43]) for both the design matrix X and the response variable y to qualitatively evaluate
the selection performance of the proposed method. We defer the breast cancer dataset analysis in
Appendix E.4.

In the IBD analysis, the response variable y is categorical, where y = 1 indicates that a sample
is associated with UC/CD, and y = 0 otherwise. The covariates X are identical to those used in
the second semi-synthetic setup described in Section 4.2. Since ground truth is not available for
this dataset, we evaluate the results by identifying evidence of IBD-associated metabolites from
existing literature, following the curation in Shen et al. [34], which draws upon the following sources:
1. Metabolites explicitly documented as being associated with IBD, UC, or CD in the PubChem
database 12; 2. Metabolites reported in peer-reviewed publications; 3. Metabolites mentioned in
preprints. For convenience, we reproduce the nominal metabolite table from Shen et al. [34] in
Appendix G.1.

We use the DeepPINK [21] model as the fitting method to obtain the feature coefficients in considera-
tion of the nonlinearity between the input X and the response y in this real setting. The FDR nominal
level is set to 0.2.

Results: We present feature selection results for the real IBD data in Table 4. Among the considered
methods, clearly the G2M method performs on par with the DeepDRK method and identifies more re-
ported metabolites while keeping a lower number of total selections compared to other benchmarking
methods. This reveals the potential of the G2M method for real-world applications. For completeness,
we include a full list of names for the identified metabolites by each method in Appendix G.2.

5 Conclusion

In this paper, we first identify a limitation of the existing mirror statistics in the data splitting
paper—the strong unit variance assumption. We then proposed a variance-dependent Gaussian mirror
method—G2M—and show both theoretically and empirically the performance of G2M compared
to popular FDR-feature controlled frameworks and deep-learning-based knockoff methods with
synthetic, semi-synthetic, and real datasets. The results demonstrate that the G2M method effectively
controls the FDR while achieving the highest power in most cases and delivering comparable
performance in others. These findings suggest the potential for broad adoption of the G2M method in
real-world applications.

Limitations and broader impacts: one limitation of the work is the normal distribution assumption
on the fitting coefficients (e.g., β+

j and β−
j ). This is tied to the proposed UMP test statistics in

Lemma 3.5 and the fundamental result in Dai et al. [9]. A possible future work would be to generalize
this part beyond the normality assumption in light of existing work on the generalized linear model
setting: e.g., Dai et al. [10]. Nonetheless, based on experimental results with synthetic, semi-synthetic
or real case study, we demonstrate that despite having this limitation in the theoretical formulation,
our model still outperformed the existing state-of-the-art methods, suggesting the importance of the
work and its potential use cases in biological data where dimensionality and FDR are crucial aspects.

12https://pubchem.ncbi.nlm.nih.gov/
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Appendix: G2M: A Generalized Gaussian Mirror Method to boost feature
selection power

This appendix is structured as follows: in Appendix 2 we provide details on related work and the
connection with our method; in Appendix A we show the empirical observation of the variance of
Gaussian mirror statistics; in Appendix B we provide proofs for the theorems and lemmas in the main
paper; in Appendix E we provide additional experimental results; in Appendix F we detail the RNA
data preparation for experiment in Section 4.2; in Appendix G we provide additional information for
the IBD study.

A Empirical Evidence on Variance Differences in Gaussian Mirror Statistics

This section provides empirical results about the variance (e.g. standard deviation) of the Gaussian
mirror coefficients β+

j and β−
j given different design matrices. To start, we randomly generate

10000 samples of the standard deviations of β+
j and β−

j for both null and nonnull cases, respectively.
Specifically, each sample is generated by first sampling a design matrix and then performing the
Gaussian mirror perturbation based on a randomly sampled Gaussian vector zj . Both the design
matrix X and the sampled vector zj are used to calculate the corresponding cj =

∥P⊥−jxj∥
∥P⊥−jzj∥ —a

component in the Gassuain mirror. The feature xj is uniformly sampled on the index j given either
null or nonnull. With the information of xj , cj and zj , we are able to calculate the standard deviation
of β+

j and β−
j according to Corollary 3.4 and Eq. (2).

We present the histograms of the results with Gaussian design matrix in Figure 1 and 2, Gaussian
mixture design matrix in Figure 3 and 4, and IBD design matrix in Figure 5 and 6. The description
on the Gaussian, Gaussian mixture and IBD design matrices can be found in Section 4. Clearly, the
standard deviations for both null and nonnull coefficients are distributions that are not concentrated at
1, indicating the unrealistic assumption about the unit variance outlined in Dai et al. [9].
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Figure 1: Histogram of the standard deviation of β+
j and β−

j for null variables over 10000 samples.
The design matrix X is based on Gaussian distributions.
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Figure 2: Histogram of the standard deviation of β+
j and β−

j for nonnull variables over 10000 samples.
The design matrix X is based on Gaussian distributions.
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Figure 3: Histogram of the standard deviation of β+
j and β−

j for null variables over 10000 samples.
The design matrix X is based on Gaussian mixture distributions.
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Figure 4: Histogram of the standard deviation of β+
j and β−

j for nonnull variables over 10000 samples.
The design matrix X is based on Gaussian mixture distributions.

0.054 0.056 0.058 0.060
Standard Deviation of +

j

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

0.054 0.056 0.058 0.060
Standard Deviation of j

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

Figure 5: Histogram of the standard deviation of β+
j and β−

j for null variables over 10000 samples.
The design matrix X is based on the IBD dataset.
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Figure 6: Histogram of the standard deviation of β+
j and β−

j for nonnull variables over 10000 samples.
The design matrix X is based on the IBD dataset.
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B Proof

B.1 Proposition 3.1

To show proposition 3.1, we first consider two models. The original model that produces the response
y and the new model that considers the inclusion of x+

j and x−
j in place of the original xj . In the

following, we have the original model:
y = Xβ + ϵ.

After modification of the design matrix, we have the new design matrix:
Xnew = [X−j , x

+
j , x

−
j ],

and the new coefficient vector:

βnew =

βnew
−j

β+
j

β−
j .


To perform the least square fit with the new design matrix and the original response variable y, we
can expand normal equations X⊤

newXnewβnew = X⊤
newy: X⊤

−jX−j X⊤
−jx

+
j X⊤

−jx
−
j

(x+
j )

⊤X−j (x+
j )

⊤x+
j (x+

j )
⊤x−

j

(x−
j )

⊤X−j (x−
j )

⊤x+
j (x−

j )
⊤x−

j

βnew
−j

β+
j

β−
j

 =

 X⊤
−jy

(x+
j )

⊤y

(x−
j )

⊤y

 .

We use βnew
−j to distinguish from the original β−j that represents the coefficients in the original linear

model with j-th entry removed. Expanding the normal equation we have:
(X⊤

−jxj+cjX
⊤
−jzj)·β+

j +(X⊤
−jxj−djX

⊤
−jqj)·β−

j = X⊤
−jX−j ·(β−j−βnew

−j )+X⊤
−jxj ·βj+X⊤

−jϵ,

(x+⊤
j X−j) · βnew

−j + (x+⊤
j x+

j ) · β
+
j + (x+⊤

j x−
j ) · β

−
j = x+⊤

j X−j · βj + x+⊤
j xj · βj + x+⊤

j ϵ,

(x−⊤
j X−j) · βnew

−j + (x−⊤
j x+

j ) · β
+
j + (x−⊤

j x−
j ) · β

−
j = x−⊤

j X−j · βj + x−⊤
j xj · βj + x−⊤

j ϵ.

Since we have three equations and three unknowns: βnew
−j , β+

j and β−
j , we cancel out βnew

−j , leaving
two functions that are the functions of β+

j and β−
j . Eventually, we obtain the final form that represents

β+
j and β−

j as a linear function of the true betaj and the noise ϵ:

β+
j = α · βj + γ⊤ · ϵ,
β−
j = ζ · βj + η⊤ · ϵ,

where

α =
Nj− · F −Mj− ·H

L
, γ =

Nj− ·G−Mj− ·K
L

,

ζ =
−Nj+ · F +Mj+ ·H

L
, η =

−Nj+ ·G+Mj+ ·K
L

.

All the involved variables are presented below:
L = Mj+ ·Nj− −Mj− ·Nj+

Mj+ =
(
x⊤
j xj + 2cz⊤j xj + c2jz

⊤
j zj

)
−

(
x⊤
j X−j + cjz

⊤
j X−j

)
A−1B,

Mj− =
(
x⊤
j xj − djx

⊤
j qj + cjz

⊤
j xj − cjdjz

⊤
j qj

)
−

(
x⊤
j X−j + cjz

⊤
j X−j

)
A−1C,

Nj+ =
(
x⊤
j xj + cjz

⊤
j xj − djq

⊤
j xj − cjdjq

⊤
j zj

)
−
(
x⊤
j X−j − djq

⊤
j X−j

)
A−1B,

Nj− =
(
x⊤
j xj − 2dq⊤j xj + d2jq

⊤
j qj

)
−
(
x⊤
j X−j − djq

⊤
j X−j

)
A−1C,

F = (xj + cjzj)
⊤xj −

(
x⊤
j X−j + cjz

⊤
j X−j

)
A−1D,

G = (xj + cjzj)
⊤ (

X−j − cjz
⊤
j X−j

)
A−1X⊤

−j ,

H = (xj − djqj)
⊤xj −

(
x⊤
j X−j − djq

⊤
j X−j

)
A−1D,

K = (xj − djqj)
⊤ (

X−j − djq
⊤
j X−j

)
A−1X⊤

−j ,

A = X⊤
−jX−j ,

B = X⊤
−jxj + cjX

⊤
−jzj ,

C = X⊤
−jxj − djX

⊤
−jqj ,

D = X⊤
−jxj ,

E = X⊤
−jϵ.
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B.2 Corollary 3.2

To prove, we only need to show L = Mj+ ·Nj− −Mj− ·Nj+ and Nj− · F −Mj− ·H +−Nj+ ·
F +Mj+ ·H are the same. We first expand

Mj+Nj− −Mj−Nj+ =

− 2cd (x⊤
j xj) (q

⊤
j xj)− 2cd (z⊤j xj) (q

⊤
j xj)− 2d2 (x⊤

j qj)
2 + d2j (q

⊤
j qj) (x

⊤
j xj)

+ c2j (z
⊤
j zj) (x

⊤
j xj)− c2j (z

⊤
j xj)

2 − c2jdj (z
⊤
j zj) (x

⊤
j qj) + 2cd (z⊤j qj) (x

⊤
j xj)

+ d2jcj (q
⊤
j qj) (z

⊤
j xj) + c2jdj (z

⊤
j qj) (z

⊤
j xj)− cd2 (z⊤j qj) (x

⊤
j qj)

+ [Terms related to A−1and higher orders].

Similarly, we expand

Nj− · F −Mj− ·H +−Nj+ · F +Mj+ ·H =

(Mj+ −Mj−)H + (Nj− −Nj+)F =

cj(z
⊤
j xj)(x

⊤
j xj)− cd(z⊤j xj)(x

⊤
j qj) + c2j (z

⊤
j zj)(x

⊤
j xj)− c2jdj(z

⊤
j zj)(x

⊤
j qj)

+ dj(x
⊤
j qj)(x

⊤
j xj)− d2j (x

⊤
j qj)

2 + cd(z⊤j qj)(x
⊤
j xj)− cd2(z⊤j qj)(x

⊤
j qj)

− dj(q
⊤
j xj)(x

⊤
j xj)− dc(q⊤j xj)(z

⊤
j xj) + cd(z⊤j qj)(x

⊤
j xj) + d2j (q

⊤
j qj)(x

⊤
j xj)

+ d2jcj(q
⊤
j qj)(z

⊤
j xj)− c2j (z

⊤
j xj)

2 − cj(z
⊤
j xj)(x

⊤
j xj) + c2jdj(z

⊤
j qj)(z

⊤
j xj)

[Terms involving A−1and higher orders].

We can find matches for every term, proving the equality.

B.3 Corollary 3.3

The proof is similar to the one in Corollary 3.2, we expand terms and show the match. In this proof,
we need to show Nj− · F −Mj− ·H = −Nj+ · F +Mj+ ·H . We expand both sides and compare,
which proves the corollary. In the following, we have:

−Nj+ · F +Mj+ ·H =

c2j

[
(z⊤j zj)(x

⊤
j xj)− (z⊤j xj)

2

]
− cd(q⊤j xj)(z

⊤
j xj) + cd(q⊤j zj)(x

⊤
j xj)

+ c2jdj(q
⊤
j zj)(z

⊤
j xj)− c2jdj(z

⊤
j zj)(q

⊤
j xj)

+ [Complex terms involving X−j , A
−1],

Nj− · F −Mj− ·H =[
− cd(q⊤j xj)(z

⊤
j xj) + cd(z⊤j qj)(x

⊤
j xj)

]
+ d2j

[
(q⊤j qj)(x

⊤
j xj)− (q⊤j xj)

2

]
+ cd2

[
(q⊤j qj)(z

⊤
j xj)− (q⊤j xj)(z

⊤
j qj)

]
+
[
Complex terms involving X−j , A

−1
]
.

After considering cj = dj and zj = qj , we can verify the two functions are equal, completing the
proof.
Remark B.1. Note that the Gaussian mirror work [45] only presents the β+

j = β−
j = 0.5 without

providing the formal proof. Combining Corollary 3.2 and Corollary 3.3, we can provide formal
evidence for this statement.
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B.4 Lemma 3.5

This proof is inspired by [9] for a more general setting. First, we identify the general form of the
statistics following the proof in [9]. We then provide explicitly the form of f (e.g., in Eq. (3))
according to the Neyman-Pearson lemma. The proof of the latter is omitted in [9]. We hope this
proof can serve as a complement, which provides insights for people who are interested in any future
extension on the optimal test statistics in this more general setting.

To start with, let Z1, Z2 ∼ N(ω, σ2
1), N(ω, σ2

2), respectively. Z3, Z4 ∼ N(0, σ2
3) and N(0, σ2

4),
respectively 13. And ω ∼ δ · Rademacher(0.5), δ > 0. All variables are independent. Following [9],
we assume that the designated FDR control level q ∈ (0, 1) satisfies rq

1−q < 1, otherwise selecting all
features would maximize the power and also achieve asymptotic FDR control. Let fopt(u, v) be the
optimal choice, and let Sopt be the optimal selection result that achieves asymptotic FDR control. By
the law of large numbers, we have:

lim
p→∞

#{j : j ∈ S0, j ∈ Sopt}
#{j : j ∈ Sopt}

=
P (j ∈ Sopt|j ∈ S0)

P (j ∈ Sopt|j ∈ S0) + rP (j ∈ Sopt|j ∈ S1)
≤ q, (5)

in which the numerator is the type-I error. More precisely:

P (j ∈ Sopt|j ∈ S1) = P (sign(Z1Z2)fopt(|Z1|, |Z2|) > topt).

P (j ∈ Sopt|j ∈ S0) = P (sign(Z3Z4)fopt(|Z3|, |Z4|) > topt),

Here, topt > 0 is the cutoff that maximizes the power P (j ∈ Sopt|j ∈ S1), under the constraint that
Eq. (5) holds.

In practice, we consider testing whether the covariate Xj is a null feature, with the significance level
α specified as:

α =
rq

1− q
P (j ∈ Sopt|j ∈ S1) < 1.

Given two realizations β+
j and β−

j , we consider their random variables independently following
the normal distributions described by Z1, Z2 if Xj is a nonnull feature, and by Z3, Z4 otherwise.
According to Eq. (5), the test which rejects the null hypothesis (i.e., j ∈ Sopt) if:

sign(β+
j β−

j )fopt(|β+
j |, |β−

j |) > topt (6)

achieves the significance level α.

We consider the following rejection rule with a certain form of f that will be revealed later in the
proof:

sign(β+
j β−

j )f(|β+
j |, |β−

j |) > tlik,

in which tlik > 0 satisfies:

P (f(|Z3|, |Z4|) > tlik| sign(Z3) = sign(Z4)) = 2α.

Let Slik be the corresponding selection set. We first show that this rejection rule controls the type-I
error below α. Indeed:

P (j ∈ Slik|j ∈ S0) =
1

2
P (f(|β+

j |, |β−
j |) > tlik|j ∈ S0, sign(β

+
j ) = sign(β−

j )) = α.

In terms of power, we have:

P (j ∈ Slik|j ∈ S1) = pwP (f(|β+
j |, |β−

j |) > tlik|j ∈ S1, sign(β
+
j ) = sign(β−

j ))

≥ pwP (fopt(|β+
j |, |β−

j |) > topt|j ∈ S1, sign(β
+
j ) = sign(β−

j )) = P (j ∈ Sopt|j ∈ S1),

where pw = P
(
sign(β

(1)
j ) = sign(β

(2)
j ) | j ∈ S1

)
.

In the following, we show the proof of the inequality and the exact form of the function f via the
Neyman-Pearson lemma.

13Note that we consider a more general setting with σ1, σ2, σ3, and σ4. Later on, we assume σ1 = σ3 = σa

and σ2 = σ4 = σb, to reach the results in Lemma 3.5.
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Since we consider a function f that takes the realizations as inputs (e.g., Eq. (6)), we first need to
study the distribution of |β+

j |, |β−
j | conditioning on the equal sign constraint: sign(β+

j ) = sign(β−
j ).

We first define the event E to represent sign(β+
j ) = sign(β−

j ). Then the events would have two cases:
1. both terms are positive; 2. both terms are negative. Under H0, since β+

j and β−
j are independent

and symmetric around zero. Therefore:

PE|H0
= PH0(β

+
j > 0, β−

j > 0) + PH0(β
+
j < 0, β−

j < 0) = 0.25 + 0.25 = 0.5.

Under H1, on the other hand, we have:

PE|H1
= 0.5 · PE|w=δ + 0.5 · PE|w=−δ,

where

PE|w=δ = PE|w=−δ = Φ

(
δ

σ1

)
Φ

(
δ

σ2

)
+

[
1− Φ

(
δ

σ1

)][
1− Φ

(
δ

σ2

)]
,

with Φ being the cumulative density function of the standard normal distribution. Combining the two
equations above, we obtain:

PE|H1
= Φ

(
δ

σ1

)
Φ

(
δ

σ2

)
+

[
1− Φ

(
δ

σ1

)][
1− Φ

(
δ

σ2

)]
.

After characterizing the probability of the equal sign event, we consider two conditional density
functions under H0 and H1, respectively. Specifically under H0:

f|β+
j |,|β−

j ||E,H0
(a, b) =

PH0
(β+

j > 0, β−
j > 0) · fH0

(a, b) + PH0
(β+

j < 0, β−
j < 0) · fH0

(−a,−b)

PE|H0

,

where fH0(β
+
j , β−

j ) = fβ+
j
(β+

j ; 0, σ2
3) · fβ−

j
(β−

j ; 0, σ2
4).

Similarly under H1, we have:

f|β+
j |,|β−

j ||E,H1
(a, b) =

P++ · f++(a, b) + P−− · f−−(a, b)

PE|H1

,

where:
f++(a, b) = fβ+

j
(a; δ, σ2

1) · fβ−
j
(b; δ, σ2

2),

f−−(a, b) = fβ+
j
(a;−δ, σ2

1) · fβ−
j
(b;−δ, σ2

2),

P++ = P−− =
1

2

[
Φ

(
δ

σ1

)
Φ

(
δ

σ2

)
+Φ

(
− δ

σ1

)
Φ

(
− δ

σ2

)]
.

Overall, the likelihood ratio between H1 and H0 can be represented as:

Λ(a, b) =
f|β+

j |,|β−
j ||E,H1

(a, b)

f|β+
j |,|β−

j ||E,H0
(a, b)

= U · [P+ exp(−S−) + P− exp(−S+)]

where

U =

(
1

PE|H1

)(
σ3σ4

σ1σ2

)
,

S− =
(a− δ)2

2σ2
1

+
(b− δ)2

2σ2
2

−
[
a2

2σ2
3

+
b2

2σ2
4

]
,

S+ =
(a+ δ)2

2σ2
1

+
(b+ δ)2

2σ2
2

−
[
a2

2σ2
3

+
b2

2σ2
4

]
,

P+ = Φ

(
δ

σ1

)
Φ

(
δ

σ2

)
,

P− =

[
1− Φ

(
δ

σ1

)][
1− Φ

(
δ

σ2

)]
.
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In addition, we let σ1 = σ3 = σa and σ2 = σ4 = σb, leading to:

U =

(
1

PE|H1

)
,

S− =
δ(δ − 2a)

2σ2
a

+
δ(δ − 2b)

2σ2
b

,

S+ =
δ(δ + 2a)

2σ2
a

+
δ(δ + 2b)

2σ2
b

,

P+ = Φ

(
δ

σa

)
Φ

(
δ

σb

)
,

P− =

[
1− Φ

(
δ

σa

)][
1− Φ

(
δ

σb

)]
.

Letting Λ(a, b) be f(a, b) completes the proof, as Λ(a, b) is the UMP test statistic according to the
Neyman-Pearson lemma.

B.5 Theorem 3.6

To show that the proposed test statistic sign(ab)f(a, b) (Eq. (3)) is better than the Gaussian mirror [45]
and data splitting [9] counterparts, we prove with two parts. In the first part, we show that the mirror
statistics can vary for different j’s. Secondly, we show that the proposed test statistic (Eq. (3)) is
UMP given j.

B.5.1 Part I

Differing from existing works like Gaussian mirror or data splitting that considers a generic distribu-
tion for all βj under H0 and H1, we interpret the FDR under H0 from another angle that considers
the changes in distribution to βj across different j’s. Namely, given an arbitrary mirror test statis-
tic sign(β+

j β−
j )fj(β

+
j , β−

j ) that depends on the index j, and a general index-agnostic counterpart
sign(β+

j β−
j )f(β+

j , β−
j ), the FDR can be defined as:

P (sign(β+β−)f(β+, β−) < tq|H0) =
∑

j∈[1,...,p]

P (j)P (sign(β+
j β−

j )fj(β
+
j , β−

j ) < tjq|H0, j),

(7)

where P (j) refers to the probability of the presence of the index j. In practice, we do not need to
know the specification of this distribution as the proof relies only on the symmetry of the conditional
distribution: P (sign(β+

j β−
j )fj(β

+
j , β−

j )|H0, j). Apparently
∑

j∈[1,...,p] P (j) = 1 holds. tq is a
threshold chosen such that the FDR can be controlled by the nominal level q. tjq adds the dependence
on the index j. In previous works, it is common to assume identical βj in H0 and H1 to have the
same distribution across all j’s, leading to the fact that sign(β+

j β−
j )f(β+

j , β−
j ) < tq is the same as

sign(β+β−)f(β+, β−) < tq . However, if one considers the selection rule for these approaches (e.g.,
Gaussian mirror/data splitting), it is clear that such a universal assumption need not to held. This
is because to control the FDR, the only necessary property is the symmetry of the null distribution.
According to Eq. 7, we realize that even in the case where sign(β+

j β−
j )f(β+

j , β−
j ) varies across j’s,

the overall FDR can still be controlled if all of these distributions are symmetric about zero. The
only difference is that for each sign(β+

j β−
j )f(β+

j , β−
j ), the threshold tjq is different given different

distributions. And the proof of higher power is straightforward given this distributional flexibility.

B.5.2 Part II

According to Lemma 3.5, we already showed that the proposed test statistic sign(β+
j β−

j )f(β+
j , β−

j )

in Eq. (3) is UMP given the setting considered in this paper. This means that given any arbitrary tjq
for some FDR level (not necessarily q as q refers to the general selection rule across all βj’s), we can
achieve the highest power compared to the test statistics in Gaussian mirror and data splitting. This
leads to the conclusion that the overall power is the highest, hence completing the proof.
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Remark B.2. This proof simply reveals a fact that under the controlled nominal FDR level q, to find a
better test statistic, we only need to maximize the power of individual test statistic for every βj (or,
equivalently, Xj), rather than a general form of test statistic across all j ∈ [1, . . . , p].

To the best of our knowledge, we are the first to provide this reasoning in the proof and we hope this
brings insights into developing the UMP test statistics, which is beyond the scope of this paper.

C Complexity Discussion between Benchmarking Methods

The complexity of the Gaussian Mirror method is O(np3 + p4) (for n > p). Essentially it runs
p ordinary least square fit (OLS), each of which has O(np2 + p3) complexity (n > p). The
computational complexity of Algorithm 2 is O(np3 + p4 + pki) (for n > p), where the O(pki)
part is introduced by the k-means (following Lloyd’s algorithm). k is the number of clusters and
i stands for the number of iterations until convergence. In comparison, the data splitting runs two
OLS, resulting in O(np2 + p3) complexity. The knockoff framework, according to Askari et al. [3],
requires at least O(p3.5) to solve for the knockoff variable in a semi-definite programming setting.
Later on, it requires one OLS for 2p dimension, resulting in O(p3.5 +4np2 +8p3) complexity. Other
deep-learning-based knockoff variables require additional deep learning model fitting to obtain the
knockoff statistics, making the complexity analysis hard given the choice of optimizer and the model
architecture, hence ignored. According to Zhong et al. [46], the computational complexity for CRT,
assuming p = n is O(p3 log2 p). We did not find any rigorous complexity analysis about HRT and
dCRT, however, based on the results reported in Table 2 of the paper [26], we believe the complexity
is between model-X knockoff and CRT.

D Design Matrix Setup for Synthetic Experiment

This section presents the model applied to the design matrix X in the synthetic dataset setup in
Section 4.1.

Gaussian: We replicate the multivariate normal benchmark described in Romano et al. [30].
Specifically, we sample x ∼ N (0,Σ), where Σ is a d-dimensional covariance matrix with en-
tries Σi,j = ρ|i−j|. This autoregressive Gaussian data structure captures strong correlations between
adjacent features, with diminishing correlations as the distance between features increases. For our
experiments, we consider ρ ∈ {0.5, 0.6, 0.7} to provide additional context on how the change of ρ
affects the feature selection performance, in addition to the chosen 0.6 from Romano et al. [30]. Due
to limited space in the main paper, we present results for ρ = 0.5 in Appendix E.1.

Gaussian mixture: We utilize a Gaussian mixture model for X , represented as X ∼∑3
k=1 πkN (µk,Σk), where the proportions of the three Gaussian components are given by

(π1, π2, π3) = (0.4, 0.2, 0.4). The mean vectors µk ∈ Rp are defined as µk = 1p · 20 · (k − 1),
where 1p is a p-dimensional vector of ones. The covariance matrices Σk ∈ Rp×p have entries (i, j)
computed as ρ

|i−j|
k , where ρk = ρk−0.1

base and ρbase = 0.6. Both Gaussian and Gaussian mixture
implementation can be found in [34] 14.

Copula Models: To evaluate data structures with more complex correlation, we incorporate copula
models [32]. Specifically, we consider two copula families: Clayton and Joe, each parameterized
with a consistent copula parameter of 2. Marginal distributions are selected as either a uniform
distribution (via identity transformation) or an exponential distribution with a rate of 1. These
copulas are implemented using the PyCop library 15. Essentially, copulas are statistical tools designed
to model and simulate complex dependencies among random variables, independently from the
shapes of their marginal distributions. Unlike traditional multivariate models that assume linear or
Gaussian relationships, copulas allow us to construct datasets where variables exhibit non-linear or
asymmetric dependencies, better reflecting patterns seen in real-world data. In our study, we use
two widely-studied copula families: the Clayton copula, which models strong lower-tail dependence
(i.e., variables tend to move together when their values are low), and the Joe copula, which captures
strong upper-tail dependence (i.e., variables tend to move together when their values are high). By

14 https://github.com/nowonder2000/DeepDRK
15https://github.com/maximenc/pycop/
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specifying a copula parameter of 2, we control the strength of these dependencies in a consistent way
across scenarios. For each simulated dataset, the individual variable distributions (marginals) are
chosen to be either uniform (via identity transformation) or exponential (rate=1), allowing us to assess
the robustness of our methods under different data distributions. This setup enables a comprehensive
evaluation of how our proposed methods perform under diverse and realistic correlation structures.

E Additional Experiment

This section extends the experiments in the main paper to cover e.g., the high dimensional setting and
various noise levels, to further demonstrate the performance of the proposed method. In particular,
we consider synthetic experiments and focus on the ridge regression model for the fitting coefficients
(see Sec. 4.1) for details).

E.1 Additional Gaussian Synthetic Dataset Result

This section presents benchmarking results for the Gaussian setting complementing Table 1 with
rho = 0.5. Results are presented in Table 5.

Table 5: FDR and power with Gaussian design matrix X for ρ = 0.5. Bold entries indicate the case
with the highest power given controlled FDR level: 0.1. Blue entries indicate the second best. Red
entries indicate FDR> 0.1.

Method OLS Ridge LASSO

FDR Power FDR Power FDR Power

CRT [8] 0.38 0.93 0.27 0.95 0.17 0.99
Distilled-CRT [19] 0.54 0.99 0.34 0.99 0.15 0.98
Data Splitting [9] 0.00 0.00 0.13 0.82 0.08 0.70
Data Splitting† [9] 0.06 0.75 0.13 0.82 0.13 0.76
Gaussian Mirror [45] 0.10 0.79 0.05 0.77 0.07 0.84
Gaussian Mirror† [45] 0.10 0.82 0.05 0.80 0.07 0.87
HRT [40] 0.00 0.34 0.00 0.36 0.01 0.36
Powerful Knockoff [37] 0.00 0.00 0.07 0.49 0.05 0.77
Powerful Knockoff† [37] 0.06 0.80 0.09 0.60 0.05 0.80
G2M (ours) 0.10 0.88 0.07 0.90 0.07 0.94
G2M† (ours) 0.10 0.88 0.07 0.90 0.07 0.94

E.2 High Dimensional Setting

We extend Table 1 and Table 2 with two additional low sample-size settings (i.e., n/p = 30/100 and
90/100), considering ridge regression for its better performance compared to LASSO.

Notably, given that we already consider a low signal strength setting in both synthetic and semi-
synthetic experiments, following the experimental setup in Shen et al. [34] (see Sec. 4 in the main
paper), to balance the reduced sample size with signal strength, we apply a multiplier to boost the
signal strength. This is a common practice in statistical analysis. Specifically, we use the multiplier√
200/

√
p, where p = 30 or 100, to ensure a fair comparison between the new cases and the

n/p = 200/100 case in Sec. 4.

Additionally, for Data Splitting, Gaussian Mirror, and the proposed G2M , we consider the non-
dagger versions, as we observed that the dagger versions cannot properly control FDR when p > n.
The results for the Gaussian setting and the non-Gaussian setting are included in Table 6 and 7,
respectively.

From Table 6, we observe that the proposed G2M outperforms all other methods by achieving the
highest power with controlled FDR. In addition, Table 7 suggests that G2M is generally a good
feature selection algorithm for having the best or the second best power with controlled FDR. More
importantly, in this case, G2M never exceeds the FDR nominal level of 0.1, suggesting its soundness
in the proposed theoretical framework.
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Table 6: Extension of Table 1 with high-dimensional settings: FDR / power under two different
n/p ratios and two correlation strengths. Red entries indicate FDR failures (> 0.1), Bold entries
indicate the highest power among methods controlling FDR ≤ 0.1, and Blue entries indicate the
second highest.

Method n/p = 90/100 n/p = 30/100

ρ = 0.6 ρ = 0.7 ρ = 0.6 ρ = 0.7

CRT [8] 0.00 / 0.15 0.00 / 0.09 0.00 / 0.00 0.00 / 0.01
Distilled-CRT [19] 0.59 / 0.95 0.59 / 0.92 0.04 / 0.06 0.09 / 0.09
Gaussian Mirror [45] 0.11 / 0.55 0.08 / 0.54 0.01 / 0.03 0.00 / 0.00
Data Splitting [9] 0.08 / 0.53 0.07 / 0.52 0.02 / 0.05 0.06 / 0.10
HRT [40] 0.00 / 0.08 0.00 / 0.03 0.00 / 0.00 0.00 / 0.00
Powerful Knockoff [37] 0.02 / 0.11 0.03 / 0.13 0.00 / 0.00 0.00 / 0.00
G2M (ours) 0.06 / 0.58 0.08 / 0.55 0.09 / 0.13 0.05 / 0.11

E.3 Noise Level Variation

To study robustness to noise, we follow Shen et al. [34] and vary the signal strength by scaling β as
p

10
√
n

, p
15

√
n

(already in the paper), and p
20

√
n

. Below, we report results for the additional p
10

√
n

and
p

20
√
n

settings. All other experimental parameters remain the same. Similarly, ridge regression is
considered for all methods. And results for the Gaussian setting and the non-Gaussian setting are
included in Table 8 and 9, respectively.

From Table 8, we observe that G2M beats other methods by having the highest power with controlled
FDR—a case that is similarly revealed in Table 6. Besides, Table 9 also suggests a good performance
of the proposed G2M for having 8 out of 10 best performing results (i.e., consider the highest power
with controlled FDR). This indicate the outperformance of the proposed G2M in both Gaussian and
non-Gaussian settings.

E.4 Another Real Case Study—Breast Cancer Dataset

We conduct an additional real-world case study using the Breast Cancer Wisconsin (Diagnostic)
dataset [43], which consists of 569 patient samples. Each sample is labeled with a binary diagnostic
outcome (malignant vs. benign), accompanied by 30 quantitative features extracted from digitized
images of fine-needle aspirate (FNA) of breast mass tissue. Following the same evaluation protocol
as our previous case study, we reviewed the biomedical literature to identify features that have been
consistently reported as highly indicative of malignant tissue. These literature-supported features
serve as the ground truth for our analysis. Based on this reference set, we report in Table X the
number of “referenced vs. identified” features selected by each competing method. In total, 22
features are recognized as clinically relevant. Results are in Table 10.

F Preparation of the RNA Data

We first normalize the raw data X to value range [0, 1] and then standardize it to have zero mean and
unit variance. Y is synthesized according to X . We consider the response Y is generated following
the expression:

k ∈ [m/4]

φ
(1)
k , φ

(2)
k ∼ N (1, 1)

φ
(3)
k , φ

(4)
k , φ

(5)
k ∼ N (2, 1)

Y | X = ϵ+

m/4∑
k=1

φ
(1)
k X4k−3 + φ

(3)
k X4k−2

+φ
(4)
k tanh

(
φ
(2)
k X4k−1 + φ

(5)
k X4k

)
,

(8)
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Table 7: Extension of Table 2 with high-dimensional settings: FDR and power for each dataset under
two sample-size regimes. Red entries indicate FDR> 0.1, Bold for the highest power among methods
controlling FDR ≤ 0.1, and Blue for the second highest.

Dataset Method FDR / Power
n/p = 90/100 n/p = 30/100

GaussianMixtureAR1

CRT [8] 0.00 / 0.00 0.00 / 0.00
Distilled-CRT [19] 0.10 / 0.13 0.00 / 0.00
Gaussian Mirror [45] 0.06 / 0.52 0.01 / 0.01
Data Splitting [9] 0.05 / 0.32 0.06 / 0.07
HRT [40] 0.00 / 0.01 0.00 / 0.01
Deep Knockoff [30] 0.77 / 1.00 0.79 / 0.97
DDLK [38] 0.25 / 0.21 0.00 / 0.00
KnockoffGAN [14] 0.02 / 0.10 0.00 / 0.01
sRMMD [22] 0.75 / 1.00 0.79 / 0.97
DeepDRK [34] 0.01 / 0.20 0.00 / 0.00
G2M (ours) 0.04 / 0.39 0.04 / 0.04

Copula: Clayton & Exp.

CRT [8] 0.00 / 0.00 0.00 / 0.00
Distilled-CRT [19] 0.12 / 0.21 0.08 / 0.04
Gaussian Mirror [45] 0.03 / 0.10 0.11 / 0.14
Data Splitting [9] 0.07 / 0.20 0.05 / 0.02
HRT [40] 0.00 / 0.00 0.00 / 0.00
Deep Knockoff [30] 0.47 / 0.88 0.77 / 0.84
DDLK [38] 0.00 / 0.00 0.00 / 0.00
KnockoffGAN [14] 0.00 / 0.00 0.00 / 0.00
sRMMD [22] 0.42 / 0.81 0.75 / 0.81
DeepDRK [34] 0.08 / 0.15 0.17 / 0.35
G2M (ours) 0.05 / 0.20 0.02 / 0.03

Copula: Clayton & Gamma

CRT [8] 0.00 / 0.00 0.00 / 0.00
Distilled-CRT [19] 0.13 / 0.19 0.07 / 0.07
Gaussian Mirror [45] 0.02 / 0.18 0.12 / 0.18
Data Splitting [9] 0.07 / 0.28 0.04 / 0.02
HRT [40] 0.00 / 0.00 0.00 / 0.00
Deep Knockoff [30] 0.50 / 0.94 0.78 / 0.89
DDLK [38] 0.00 / 0.00 0.00 / 0.00
KnockoffGAN [14] 0.00 / 0.03 0.00 / 0.00
sRMMD [22] 0.52 / 0.95 0.78 / 0.92
DeepDRK [34] 0.01 / 0.08 0.12 / 0.13
G2M (ours) 0.03 / 0.18 0.10 / 0.10

Copula: Joe & Exp.

CRT [8] 0.00 / 0.00 0.00 / 0.00
Distilled-CRT [19] 0.03 / 0.09 0.00 / 0.00
Gaussian Mirror [45] 0.05 / 0.28 0.01 / 0.02
Data Splitting [9] 0.06 / 0.19 0.02 / 0.01
HRT [40] 0.00 / 0.00 0.00 / 0.00
Deep Knockoff [30] 0.53 / 0.90 0.77 / 0.88
DDLK [38] 0.00 / 0.00 0.00 / 0.00
KnockoffGAN [14] 0.00 / 0.00 0.00 / 0.00
sRMMD [22] 0.42 / 0.79 0.75 / 0.83
DeepDRK [34] 0.09 / 0.21 0.08 / 0.00
G2M (ours) 0.06 / 0.27 0.02 / 0.01

Copula: Joe & Gamma

CRT [8] 0.00 / 0.00 0.00 / 0.00
Distilled-CRT [19] 0.04 / 0.07 0.00 / 0.00
Gaussian Mirror [45] 0.09 / 0.52 0.01 / 0.02
Data Splitting [9] 0.07 / 0.28 0.02 / 0.01
HRT [40] 0.00 / 0.00 0.00 / 0.00
Deep Knockoff [30] 0.50 / 0.97 0.00 / 0.00
DDLK [38] 0.01 / 0.00 0.00 / 0.00
KnockoffGAN [14] 0.06 / 0.27 0.03 / 0.04
sRMMD [22] 0.48 / 0.96 0.79 / 0.95
DeepDRK [34] 0.05 / 0.30 0.03 / 0.05
G2M (ours) 0.09 / 0.62 0.05 / 0.05
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Table 8: Extension of Table 1 with different noise levels: FDR / power under two additional different
signal strength parameters p

10
√
n

and p
20

√
n

. Red entries indicate FDR> 0.1; among those with
FDR≤ 0.1, Bold entries indicate the highest power and Blue entries indicate the second highest.

Method
p

10
√
n

p

20
√
n

ρ = 0.6 ρ = 0.7 ρ = 0.6 ρ = 0.7

CRT [8] 0.04 / 0.96 0.05 / 0.88 0.07 / 0.42 0.09 / 0.25
Distilled-CRT [19] 0.40 / 1.00 0.40 / 1.00 0.26 / 0.89 0.21 / 0.65
Gaussian Mirror [45] 0.09 / 1.00 0.06 / 0.88 0.07 / 0.52 0.06 / 0.40
Data Splitting [9] 0.11 / 0.81 0.07 / 0.77 0.03 / 0.56 0.08 / 0.45
HRT [40] 0.01 / 0.71 0.02 / 0.46 0.02 / 0.13 0.00 / 0.05
Powerful Knockoff [37] 0.08 / 0.78 0.02 / 0.53 0.05 / 0.20 0.02 / 0.06
G2M (ours) 0.07 / 1.00 0.05 / 0.93 0.02 / 0.58 0.02 / 0.45

where ϵ follows the standard normal distribution and the m = 20 for 20 covariates that are sampled
uniformly.

G Supplementary Material for the Case Study

G.1 Nominal Metabolite List

In Table 11, we include the list of the nominal metabolites curated by [34] for the IBD dataset.

G.2 Additional Results for the IBD Study

Here we provide the supplementary information for the experimental results described in Section 4.3.
In Table 12 and 13, we provide the list of identified metabolites by each of the considered models. This
table provides additional information for Table 4 in the main paper which only includes metabolite
counts due to limited space.
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Table 9: Extension of Table 2 with different noise levels: FDR and power under two signal strength
regimes p

10
√
n

and p
20

√
n

. Red entries indicate FDR> 0.1; Bold for the highest power among methods
controlling FDR ≤ 0.1; and Blue for the second highest.

Dataset Method
p

10
√
n

p
20

√
n

(FDR / Power) (FDR / Power)

Gaussian Mixture

CRT [8] 0.31 / 0.40 0.30 / 0.40
Gaussian Mirror [45] 0.06 / 1.00 0.07 / 0.62
Data Splitting [9] 0.09 / 0.94 0.06 / 0.64
HRT [40] 0.01 / 0.39 0.02 / 0.09
Deep Knockoff [30] 0.56 / 0.99 0.76 / 1.00
DDLK [38] 0.79 / 1.00 0.72 / 0.91
KnockoffGAN [14] 0.21 / 1.00 0.52 / 0.98
sRMMD [22] 0.60 / 1.00 0.77 / 1.00
DeepDRK [34] 0.06 / 0.94 0.15 / 0.70
G2M (ours) 0.06 / 1.00 0.05 / 0.78

Copula: Clayton & Exp.

CRT [8] 0.01 / 0.26 0.02 / 0.12
Gaussian Mirror [45] 0.05 / 0.95 0.08 / 0.46
Data Splitting [9] 0.08 / 0.86 0.13 / 0.46
HRT [40] 0.02 / 0.58 0.00 / 0.06
Deep Knockoff [30] 0.09 / 0.92 0.38 / 0.82
DDLK [38] 0.49 / 0.88 0.02 / 0.05
KnockoffGAN [14] 0.06 / 0.56 0.05 / 0.12
sRMMD [22] 0.10 / 0.92 0.37 / 0.81
DeepDRK [34] 0.07 / 0.85 0.17 / 0.51
G2M (ours) 0.04 / 0.97 0.12 / 0.59

Copula: Clayton & Gamma

CRT [8] 0.00 / 0.19 0.00 / 0.04
Gaussian Mirror [45] 0.09 / 1.00 0.05 / 0.69
Data Splitting [9] 0.10 / 0.96 0.09 / 0.72
HRT [40] 0.02 / 0.92 0.02 / 0.29
Deep Knockoff [30] 0.07 / 0.97 0.37 / 0.94
DDLK [38] 0.47 / 0.95 0.14 / 0.30
KnockoffGAN [14] 0.08 / 0.91 0.09 / 0.43
sRMMD [22] 0.06 / 0.97 0.35 / 0.94
DeepDRK [34] 0.06 / 0.92 0.12 / 0.67
G2M (ours) 0.07 / 1.00 0.10 / 0.86

Copula: Joe & Exponential

CRT [8] 0.11 / 0.57 0.08 / 0.23
Gaussian Mirror [45] 0.05 / 0.76 0.15 / 0.35
Data Splitting [9] 0.09 / 0.78 0.20 / 0.36
HRT [40] 0.01 / 0.39 0.00 / 0.02
Deep Knockoff [30] 0.18 / 0.91 0.48 / 0.79
DDLK [38] 0.25 / 0.57 0.02 / 0.02
KnockoffGAN [14] 0.05 / 0.37 0.03 / 0.06
sRMMD [22] 0.16 / 0.88 0.40 / 0.68
DeepDRK [34] 0.08 / 0.74 0.20 / 0.39
G2M (ours) 0.08 / 0.91 0.19 / 0.43

Copula: Joe & Gamma

CRT [8] 0.11 / 0.56 0.10 / 0.33
Gaussian Mirror [45] 0.05 / 0.98 0.08 / 0.56
Data Splitting [9] 0.07 / 0.92 0.10 / 0.58
HRT [40] 0.01 / 0.91 0.01 / 0.16
Deep Knockoff [30] 0.06 / 0.96 0.35 / 0.91
DDLK [38] 0.48 / 0.95 0.09 / 0.17
KnockoffGAN [14] 0.05 / 0.77 0.07 / 0.30
sRMMD [22] 0.06 / 0.95 0.38 / 0.92
DeepDRK [34] 0.05 / 0.86 0.12 / 0.61
G2M (ours) 0.09 / 1.00 0.08 / 0.68
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Table 10: Feature selection performance on the Breast Cancer Wisconsin (Diagnostic) dataset [43].
Since the true support is unknown, we report “number of literature-referenced features / number of
identified features” instead of FDR or power.

Model G2M (ours)† CRT Distilled-CRT Gaussian Mirror† Data Splitting† HRT Powerful Knockoff

Referenced / Identified 18/21 5/6 12/15 18/26 11/15 2/4 21/26

Model DeepDRK Deep Knockoff sRMMD KnockoffGAN DDLK

Referenced / Identified 15/20 11/15 13/18 17/22 8/13

Table 11: IBD-associated metabolites that are supported by the literature. This table includes all
47 referenced metabolites for the IBD case study. Each metabolite is supported by one of the three
sources: PubChem, peer-reviewed publications, or preprints. For PubChem case, we report the
PubChem reference ID (CID), and for the other two cases, we report the publication references.

Reference Type Metabolite Source Metabolite Source

PubChem palmitate CID: 985 taurocholate CID: 6675
cholate CID: 221493 p-hydroxyphenylacetate CID: 127
linoleate CID: 5280450 deoxycholate CID: 222528
taurochenodeoxycholate CID: 387316

Publications

12.13-diHOME [6] dodecanedioate [6]
arachidonate [6] eicosatrienoate [6, 5]
eicosadienoate [6] docosapentaenoate [6, 5]
taurolithocholate [6] salicylate [6]
saccharin [6] 1.2.3.4-tetrahydro-beta-carboline-1.3-dicarboxylate [6]
oleate [5] arachidate [5]
glycocholate [5] chenodeoxycholate [5]
phenyllactate [22, 16] glycolithocholate [5]
urobilin [22, 28] caproate [22, 17]
hydrocinnamate [22, 15] myristate [22, 11]
adrenate [22, 20] olmesartan [22, 31]
tetradecanedioate [39, 23] hexadecanedioate [39, 23]
oxypurinol [7] porphobilinogen [24]
caprate [35, 36] undecanedionate [17, 42]
stearate [2, 5] oleanate [27]
glycochenodeoxycholate [33] sebacate [17]
nervonic acid [41] lithocholate [5]

Preprints
alpha-muricholate [25] tauro-alpha-muricholate/tauro-beta-muricholate [25]
17-methylstearate [25] myristoleate [25]
taurodeoxycholate [25] ketodeoxycholate [25]
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Table 12: A list of literature-supported metabolites out of a total of 80 candidates. “∗” indicates the
important metabolites marked by the corresponding algorithms.

Metabolite G2M† CRT Distilled-CRT Gaussian Mirror† Data Splitting† HRT Powerful Knockoff

12.13-diHOME ∗ ∗
9.10-diHOME
caproate ∗ ∗ ∗ ∗
hydrocinnamate ∗ ∗
mandelate ∗
3-hydroxyoctanoate ∗
caprate ∗
indoleacetate
3-hydroxydecanoate
dodecanoate ∗
undecanedionate ∗
myristoleate ∗
myristate
dodecanedioate
pentadecanoate ∗ ∗
hydroxymyristate
palmitoleate ∗
palmitate ∗
tetradecanedioate ∗ ∗ ∗ ∗
10-heptadecenoate
2-hydroxyhexadecanoate ∗
alpha-linolenate ∗
linoleate ∗ ∗ ∗
oleate ∗ ∗
stearate ∗ ∗ ∗
hexadecanedioate ∗ ∗
10-nonadecenoate
nonadecanoate ∗ ∗ ∗ ∗
17-methylstearate ∗ ∗
eicosapentaenoate
arachidonate ∗ ∗ ∗ ∗ ∗
eicosatrienoate ∗
eicosadienoate ∗ ∗ ∗
eicosenoate ∗ ∗
arachidate ∗
phytanate
docosahexaenoate ∗ ∗
docosapentaenoate ∗ ∗ ∗
adrenate ∗ ∗ ∗ ∗
13-docosenoate ∗
eicosanedioate ∗ ∗ ∗ ∗
oleanate ∗
masilinate ∗
lithocholate ∗
chenodeoxycholate ∗ ∗
deoxycholate
hyodeoxycholate/ursodeoxycholate ∗
ketodeoxycholate ∗
alpha-muricholate
cholate ∗ ∗
glycolithocholate
glycochenodeoxycholate ∗ ∗
glycodeoxycholate ∗
glycoursodeoxycholate ∗ ∗ ∗ ∗
glycocholate ∗ ∗
taurolithocholate ∗
taurochenodeoxycholate ∗ ∗ ∗ ∗
taurodeoxycholate ∗ ∗
tauro-alpha-muricholate/tauro-beta-muricholate ∗
taurocholate ∗ ∗ ∗
salicylate ∗ ∗ ∗ ∗ ∗
saccharin ∗
azelate
sebacate
carboxyibuprofen
olmesartan
1.2.3.4-tetrahydro-beta-carboline-1.3-dicarboxylate ∗
4-hydroxystyrene ∗ ∗ ∗ ∗ ∗
acetytyrosine
alpha-CEHC
carnosol ∗ ∗
oxypurinol
palmitoylethanolamide ∗ ∗
phenyllactate ∗ ∗ ∗ ∗ ∗
p-hydroxyphenylacetate ∗
porphobilinogen ∗ ∗
urobilin ∗ ∗ ∗ ∗
nervonic acid ∗ ∗ ∗
oxymetazoline ∗ ∗
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Table 13: A continued list of literature-supported metabolites out of a total of 80 candidates to
Table 12. “∗” indicates the important metabolites marked by the corresponding algorithms.

Metabolite DeepDRK Deep Knockoff sRMMD KnockoffGAN DDLK

12.13-diHOME ∗
9.10-diHOME
caproate ∗ ∗ ∗ ∗
hydrocinnamate
mandelate
3-hydroxyoctanoate
caprate
indoleacetate ∗
3-hydroxydecanoate
dodecanoate ∗
undecanedionate ∗ ∗
myristoleate
myristate
dodecanedioate ∗
pentadecanoate
hydroxymyristate
palmitoleate
palmitate ∗
tetradecanedioate ∗
10-heptadecenoate
2-hydroxyhexadecanoate
alpha-linolenate ∗
linoleate
oleate
stearate ∗
hexadecanedioate ∗ ∗ ∗
10-nonadecenoate
nonadecanoate
17-methylstearate ∗ ∗ ∗
eicosapentaenoate ∗ ∗ ∗
arachidonate ∗ ∗ ∗ ∗
eicosatrienoate ∗ ∗ ∗
eicosadienoate ∗ ∗ ∗ ∗
eicosenoate
arachidate ∗
phytanate
docosahexaenoate ∗ ∗ ∗
docosapentaenoate ∗ ∗ ∗ ∗
adrenate ∗ ∗ ∗ ∗ ∗
13-docosenoate
eicosanedioate ∗ ∗
oleanate
masilinate
lithocholate ∗
chenodeoxycholate
deoxycholate ∗ ∗ ∗
hyodeoxycholate/ursodeoxycholate
ketodeoxycholate ∗
alpha-muricholate ∗
cholate ∗
glycolithocholate ∗
glycochenodeoxycholate
glycodeoxycholate
glycoursodeoxycholate
glycocholate
taurolithocholate ∗
taurochenodeoxycholate
taurodeoxycholate
taurohyodeoxycholate/tauroursodeoxycholate
tauro-alpha-muricholate/tauro-beta-muricholate ∗ ∗
taurocholate
salicylate ∗ ∗ ∗ ∗
saccharin ∗
azelate ∗
sebacate ∗ ∗
carboxyibuprofen
olmesartan
1.2.3.4-tetrahydro-beta-carboline-1.3-dicarboxylate
4-hydroxystyrene ∗ ∗ ∗
acetytyrosine
alpha-CEHC
carnosol ∗
oxypurinol
palmitoylethanolamide
phenyllactate ∗ ∗ ∗ ∗
p-hydroxyphenylacetate ∗ ∗ ∗
porphobilinogen ∗
urobilin ∗ ∗ ∗ ∗
nervonic acid
oxymetazoline ∗ ∗ ∗
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly stated the objective on proposing a new
method in FDR-controlled feature selection regime.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is essentially described in the form of assumptions in the theo-
retical parts in the method section. We have also discussed the limitation in the conclusion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Please refer to the method section for the theoretical results and the appendix
for the proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper presents two algorithms that should provide full details of imple-
mentation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: https://github.com/skyve2012/G2M.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Such details are introduced and discussed in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As per feature selection, we follow the convention and report FDR and power
(as empirical estimation of the means), with independent and repeated experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The configuration is specified in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The social impact and the importance of the work is discussed in the introduc-
tion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

33

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: N/A.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Existing works/codes are all properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets are theoretical results and codes. The latter will be released upon
acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No such assets involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No such assets involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is only used for grammatical correction and text polishing levels.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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