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ABSTRACT

Building digital twins of articulated objects from monocular video presents an
essential challenge in computer vision, which requires simultaneous reconstruction
of object geometry, part segmentation, and articulation parameters from limited
viewpoint inputs. Monocular video offers an attractive input format due to its
simplicity and scalability; however, it’s challenging to disentangle the object
geometry and part dynamics with visual supervision alone, as the joint movement
of the camera and parts leads to ill-posed estimation. While motion priors from
pre-trained tracking models can alleviate the issue, how to effectively integrate
them for articulation learning remains largely unexplored. To address this problem,
we introduce VideoArtGS, a novel approach that reconstructs high-fidelity digital
twins of articulated objects from monocular video. We propose a motion prior
guidance pipeline that analyzes 3D tracks, filters noise, and provides reliable
initialization of articulation parameters. We also design a hybrid center-grid part
assignment module for articulation-based deformation fields that captures accurate
part motion. VideoArtGS demonstrates state-of-the-art performance in articulation
and mesh reconstruction, reducing the reconstruction error by about two orders of
magnitude compared to existing methods. VideoArtGS enables practical digital
twin creation from monocular video, establishing a new benchmark for video-
based articulated object reconstruction. More visualized results are made publicly
available at: https://videoartgs-2026.github.io.

1 INTRODUCTION

Articulated objects, prevalent in our daily life, are becoming a major focus in recent research for
computer vision and robotics (Weng et al., 2024; Luo et al., 2025; Liu et al., 2024b; Deng et al., 2024;
Yang et al., 2023; Liu et al., 2024a). Reconstructing interactable digital twins of articulated objects
from visual observations is fundamental to advancing applications in augmented reality, robotics
simulation, and interactive scene understanding. By generating digital twins from simple inputs like
video, we can significantly accelerate the development of intelligent systems, particularly by bridging
the sim-to-real gap for robotic manipulation and interaction tasks (Torne et al., 2024; Kerr et al.,
2024). To build powerful and generalizable robotic systems, reconstructing interactable objects from
monocular video represents a critical frontier, as this would unlock the ability to learn from the vast
amount of videos available online and allow robots to model the world through their own eyes.

Recent approaches to reconstructing articulated objects can be broadly categorized into two families
based on the way to estimate articulation parameters. One family employs a feed-forward model
to predict articulation parameters directly (Mandi et al., 2024; Le et al., 2025; Jiang et al., 2022).
These methods, however, struggle with scalability and generalization, as they require extensive
training on annotated data, which often fails to transfer to novel, real-world settings. Creating datasets
that comprehensively cover the sheer combinatorial complexity of real-world objects, articulation
types, and viewing conditions is practically infeasible. A second, more common family reconstructs
objects by explicitly estimating joint parameters from multi-view images of the object in two or more
discrete states (Liu et al., 2025; 2023a; Weng et al., 2024; Lin et al., 2025; Yu et al., 2025). While
these methods benefit from strong geometric constraints, they require controlled, often cumbersome,
data capture setups that limit their use outside the lab. This approach is not only constrained by
impractical data capture requirements but is also highly brittle; slight misalignments in the coordinate
frames between states can cause catastrophic failures in prediction accuracy. A far more practical
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and scalable paradigm is reconstructing articulated objects from casually captured monocular videos,
which enables the ability to learn from internet videos and allows robotic agents to model objects
directly from their visual observations.

However, the convenience of video capture introduces a profound technical challenge: the reconstruc-
tion problem becomes fundamentally ill-posed. From a single, moving viewpoint, the observed pixel
motion results from four entangled factors: camera trajectory, object geometry, part segmentation,
and articulation-based part dynamics. Disentangling these variables without the strong parallax cues
from multi-view data is highly ambiguous. Consequently, prior video-based methods often produce
distorted geometries, fail to segment parts correctly, or are confined to overly simplistic objects (Kerr
et al., 2024; Song et al., 2024; Peng et al., 2025), leaving robust, general-purpose reconstruction from
monocular video a largely unsolved frontier. To break this ambiguity, motion priors from tracking
models offer a promising direction. Previous methods, such as Shape-of-Motion (Wang et al., 2024a)
and ArtiPoint (Werby et al., 2025), have explored lifting 2D tracks for supervision. More recently, the
advent of powerful perception models like SpatialTrackerV2 (Xiao et al., 2025) and TAPIP3D (Zhang
et al., 2025) provides 3D tracks, which offer richer motion information. However, both lifted tracks
and 3D tracks contain substantial noise that makes them ineffective for direct use in articulated object
reconstruction, leaving the problem of how to effectively leverage them as motion priors unexplored.

To address these challenges, we propose VideoArtGS, which introduces several key innovations for
reconstructing articulated objects from monocular video. Central to our approach are two key insights:
(1) motion priors from pre-trained tracking models are essential for disambiguating object movement,
and (2) by enforcing articulation constraints (e.g., linear or circular trajectories for prismatic and
revolute joints), we leverage both object-part movement priors and the reconstruction objective to
jointly suppress noise in the tracks, recover structural cues of the moving parts. Specifically, we
design a novel motion prior guidance pipeline that analyzes raw 3D tracking trajectories, filters noise,
classifies motion types (e.g., revolute, prismatic), and clusters points into coherent parts. This process
yields accurate initial estimates for the joint parameters and part centers, transforming the intractable
joint optimization into a well-posed refinement problem. To further enhance reconstruction quality,
we design a hybrid center-grid part assignment module. This module combines the strengths of spatial
clustering for distinct movable parts with a flexible grid-based representation to model complex 3D
geometry of objects, enabling clean part segmentation and precise deformation modeling.

These designs enable VideoArtGS to achieve state-of-the-art performance, reducing reconstruction
and articulation estimation errors by approximately two orders of magnitude compared to previous
methods on both simple two-part objects and on our new, challenging VideoArtGS-20 dataset. Our
approach opens new possibilities for practical digital twin creation from readily available video
data, with applications in scenarios where multi-state capture is impractical or impossible. Through
extensive experiments, we demonstrate the effectiveness of our method in delivering high-quality
reconstruction of articulated objects from monocular video sequences.

Contributions Our main contributions of this work can be summarized as follows:

• We propose VideoArtGS, a novel method for articulated object reconstruction from monocular
video that achieves state-of-the-art performance, reducing key error metrics by up to two orders of
magnitude over prior work.

• We introduce a motion prior guidance framework that analyzes 3D tracking trajectories to robustly
initialize the deformation field, making the ill-posed reconstruction problem tractable. We design a
hybrid center-grid part assignment module that accurately segments parts and benefit articulation
learning, accommodating complex geometries.

• We conduct extensive experiments and establish a new benchmark for video-based articulated
object reconstruction, validating the practical applicability of our approach. Our comprehensive
ablation studies systematically validate our designs and point out directions for future improvement.

2 RELATED WORK

2.1 DYNAMIC SCENE RECONSTRUCTION

Dynamic scene reconstruction is a long-standing challenge in computer vision. A significant line of
work focuses on jointly estimating camera poses and scene geometry, often represented as depth maps
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or point clouds. Pioneering methods like DROID-SLAM (Teed & Deng, 2021), CasualSAM (Tang
et al., 2025), and Mega-SaM (Li et al., 2025) established robust frameworks for this task. More
recently, foundation models have emerged, with DUSt3R (Wang et al., 2024b) and VGGT (Wang et al.,
2025b) providing a powerful basis for 3D reconstruction. Subsequent works like MonST3R (Zhang
et al., 2024), CUT3R (Wang et al., 2025d), and SpatialTrackerV2 (Xiao et al., 2025) have fine-tuned
or extended DUSt3R or VGGT to better handle dynamic content.

While the above methods provide camera and geometry information, representing the dynamic scene
itself has been revolutionized by 3D Gaussian Splatting (Kerbl et al., 2023). Many 4D extensions
learn to deform Gaussians implicitly over time (Jung et al., 2023; Katsumata et al., 2023; Wu et al.,
2024; Luiten et al., 2024; Li et al., 2024; Lu et al., 2024; Lei et al., 2024a; Guo et al., 2024; Qian
et al., 2024; Bae et al., 2024; LIU et al., 2025; Wu et al., 2025), which excels at capturing complex,
non-rigid motion but offers no explicit control over an object’s underlying structure. Although some
methods learn dense tracks by reconstructing videos (Wang et al., 2025c; Lei et al., 2024b), they do
not model the articulated object and cannot reconstruct interactive assets from it. Attempts to add
control via superpoints (Huang et al., 2024) or physics engines (Xie et al., 2024; Jiang et al., 2024)
have been made, but they either fail to extract accurate physical parameters or require impractical
priors. VideoArtGS bridges this gap by integrating an explicit articulation model directly into the
deformable Gaussian framework, enabling high-fidelity reconstruction for articulated objects.

2.2 ARTICULATED OBJECT RECONSTRUCTION

Reconstructing articulated objects presents a dual challenge: one must solve for both the part-level
geometry and the underlying articulation parameters. One family of methods employs end-to-end
models to predict both part segmentation and joint parameters (Heppert et al., 2023; Wei et al., 2022;
Kawana et al., 2021; Mandi et al., 2024; Jiang et al., 2022; Ma et al., 2023; Nie et al., 2022; Hsu
et al., 2023; Goyal et al., 2025; Xia et al., 2024), while some similar methods only predict articulation
parameters (Hu et al., 2017; Yi et al., 2018; Li et al., 2020; Wang et al., 2019; Sun et al., 2023; Liu
et al., 2022; Weng et al., 2021; Sturm et al., 2011; Chu et al., 2023; Martín-Martín et al., 2016; Liu
et al., 2023c; Gadre et al., 2021; Mo et al., 2021; Jain et al., 2021; Yan et al., 2020; Lei et al., 2023).
Their fundamental limitation, however, is a reliance on large, annotated datasets, which prevents
them from generalizing to unseen object categories. The dominant paradigm relies on multi-view
observations at discrete multi-state (Liu et al., 2025; Tseng et al., 2022; Mu et al., 2021; Lewis et al.,
2022; Liu et al., 2023a; Lei et al., 2024a; Deng et al., 2024; Swaminathan et al., 2024; Noguchi
et al., 2022; Zhang et al., 2021; Pillai et al., 2015; Liu et al., 2023b; Wang et al., 2025a; Lewis
et al., 2025; Zhang & Lee, 2025). These methods leverage strong geometric constraints, which
simplify the problem but require impractical and controlled data capture setups. A more practical
but far more challenging setting is reconstruction from a monocular video. Existing video-based
methods are typically limited to simple objects (Song et al., 2024; Peng et al., 2025) or rely on a
pre-trained segmentation model that has limited generalization ability (Zhou et al., 2025). In contrast,
VideoArtGS is designed for this challenging setting. By introducing a robust motion prior guidance
pipeline, we effectively disentangle the scene dynamics and transform the ill-posed problem into a
tractable one, achieving state-of-the-art results where prior methods have struggled.

3 METHOD

Given a monocular video sequence tItu
T
t“1, VideoArtGS reconstructs articulated objects with part

meshes M and articulation parameters Ψ. We first use the VGGT (Wang et al., 2025b) trained
for dynamic scenes from SpatialTrackerV2 (Xiao et al., 2025) to estimate the depths and camera
poses, and then reconstruct the object with 3D Gaussians G “ tGiu

N
i“1 and an articulation-based

deformation field F . This field contains a part segmentation module Sϕ and articulation parameters Ψ
(including axis directions d, axis origins o, and time-variant joint states θt) that control the dynamics
of each part. We also introduce motion prior from a pre-trained tracking model TAPIP3D (Zhang
et al., 2025) to guide the initialization and optimization of the deformation field. An overview of
VideoArtGS is presented in Fig. 1, with details on key designs provided in the following sections.
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Figure 1: The overview of VideoArtGS. Given video frames, we first use VGGT (Wang et al., 2025b) to
estimate the depths along with camera poses and then use TAPIP3D (Zhang et al., 2025) to obtain 3D tracks. We
design a motion prior guidance pipeline to analyze and group these tracks, initializing our articulation-based
deformation field with motion information and optimizing it with tracking loss. Finally, we reconstruct the object
with 3D Gaussians and the deformation field, jointly optimizing both modules by rendering and tracking loss.

3.1 ARTICULATION-BASED DEFORMATION FIELD

To model the temporal dynamics of an articulated object, we formulate an articulation-based deforma-
tion field F that transforms a set of canonical Gaussians Gc

i “ tµc
i , r

c
i , si, σi,hiu into the observation

state Gt
i “ tµt

i, r
t
i , si, σi,hiu for any given time t. Since articulation is a rigid process, the intrin-

sic properties of each Gaussian—its scale (sci ), opacity (σc
i ), and appearance (hc

i )—are treated as
time-invariant, while its position (µt

i) and rotation (rti ) are time-variant. Following ArtGS (Liu et al.,
2025), VideoArtGS first assigns each Gaussian to object parts through a segmentation module Sϕp¨q

and then applies the corresponding rigid transformation for each part:

mi “ SϕpGc
i q, Gt

i “

K
ÿ

k“1

mik ¨ T t
k pGc

i q (1)

where mi “ rmi1, . . . ,miKs represents the assignment probabilities of i-th Gaussian to K parts,
and T t

k denotes the rigid transformation for k-th part at time t. The number of movable parts and
joint types (revolute or prismatic) could be obtained by GPT4-o (Hurst et al., 2024). We provide
more details of articulation modeling in Appendix A.3.

Hybrid Center-grid Part Assignment To effectively assign Gaussians to articulable parts,
ArtGS (Liu et al., 2025) proposes a center-based part assignment module that segments parts using
the Mahalanobis distance between Gaussians and learnable centers. However, this approach faces
limitations when the static base part has complex geometries. A simple but key observation is that
static regions remain fixed in space. Unlike movable parts that naturally form distinct motion clusters,
the static base part is better characterized by its fixed spatial volume rather than a movable center.
We therefore propose a hybrid center-grid part assignment module that combines two strategies. For
the K ´ 1 movable parts, we define learnable part centers Ck “ ppk,Vk,λkq with center location
pk P R3, rotation matrix Vk P R3ˆ3, and scale vector λk P R3. For the static base part, we use
a learnable hash grid H to model its spatial region directly. Given the canonical position µc

i of a
Gaussian Gc

i , we compute its assignment probabilities mi by fusing scores from both models. First,
we compute the squared Mahalanobis distance Di,k to each of the K ´ 1 movable part centers:

Di,k “

ˆ

Vkpµc
i ´ pkq

λk

˙J ˆ

Vkpµc
i ´ pkq

λk

˙

` ∆i,k, (2)

where ∆i,k is a residual term for improving boundary identification that is introduced by ArtGS (Liu
et al., 2025). Simultaneously, we query the hash grid at the Gaussian’s position to get a feature vector,
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which is processed by a small MLP to produce a single logit, li “ MLPpHpµc
i qq, representing the

"staticness" score. The final assignment probabilities mi P RK are obtained by concatenating the
static logit with the negative distances of the movable parts and applying a softmax function:

mi “ Softmax pconcat prli,´Di,1, . . . ,´Di,K´1sqq . (3)
This hybrid formulation enables robust segmentation by leveraging both structured geometric rela-
tionships for movable parts and flexible spatial modeling for complex static regions.

3.2 MOTION PRIOR GUIDANCE

We use a pre-trained tracking model TAPIP3D (Zhang et al., 2025) to obtain 3D tracking trajectories,
providing a motion prior to guide the initialization and optimization of the deformation field.

Motion Pattern Analysis. To identify noises and extract motion information from tracking trajec-
tories, we first analyze the motion pattern of each trajectory and divide all trajectories into 4 classes:
static, prismatic, revolute, and noise. If the maximum displacement distance of the i-th trajectory
txt

iu
T
t“1 is below a threshold ϵs, it is classified as a static trajectory. For the remaining dynamic

trajectories, we use line fitting and circle fitting to identify the motion type and motion parameters. A
main challenge is that all points remain static for most of the time and move for only a short period of
time, which is particularly prominent for objects with multiple parts. Many points are concentrated in
the same area, leading to the fitting collapse. To deal with this problem, we design an adaptive spatial
downsampling approach. Specifically, we first voxelize each trajectory, and then retain only one point
in each voxel. To handle different ranges of trajectories, we dynamically adjust the voxel size based
on the range of the trajectory. After downsampling, we use the remaining points to fit the trajectory.

For prismatic motion, we use Principal Component Analysis (PCA) for line fitting, combined with
the RANSAC algorithm to improve robustness. For revolute motion, we first fit the best plane, then
fit a circle on that plane. We use Singular Value Decomposition (SVD) to find the normal vector and
verify whether the trajectory conforms to rigid rotation. If the line/circle fitting error of a trajectory
is less than pre-defined thresholds ϵl/ϵc, it is considered a valid track; otherwise, it is treated as a
noise track. For a valid track, we prioritize models with smaller fitting errors. The above process also
provides the direction of prismatic trajectories and the direction and origin of revolute trajectories.

Motion Clustering. Given valid trajectories with their motion type and motion parameters, we
construct feature vectors and then use K-means clustering to group trajectories into different parts.
For prismatic motion, the feature vector contains starting position, average position, motion direction,
and normalized velocity. For revolute motion, the feature vector contains starting position, average
position, axis direction, axis origin, and angular velocity. To improve clustering quality, we adopt an
iterative filtering strategy, combining directional angle filtering and Euclidean distance filtering to
remove outliers. Finally, we generate articulation information for core parameters initialization of the
deformation field F , including the axis direction d, axis origin o, and part centers p.

Deformation Field Initialization. We randomly initialize the remaining parameters of F and
then use the tracking trajectories to optimize them. We design two different losses Lc2o and Lo2o

to optimize the deformation field. Lc2o is the canonical-to-observation loss, which provides direct
supervision for the deformation from canonical state to the observation state:

x̂t
i “ Fpxc

i , tq, Lc2o “
1

N

N
ÿ

i“1

pxt
i ´ x̂t

iq
2, (4)

where xc
i ,x

t
i are point positions sampled from trajectory txt

iu
T
t“1. Lo2o is the observation-to-

observation loss, which enhances temporal consistency between two observation states t0 and t1:

x̂c
i “ F´1pxt0

i , t0q, x̂t1
i “ Fpx̂c

i , t1q, Lo2o “
1

N

N
ÿ

i“1

pxt1
i ´ x̂t1

i q2, (5)

where F´1 is the inversed deformation field of F and F´1 shares the same parameters with F . See
Appendix A.4 for details of the inverse deformation field. We randomly sample pairs of tracking
trajectories at time pc, tq for Lc2o and pt0, t1q within a 30-frame window for Lo2o to robustly optimize
F . The final tracking loss could be calculated by:

Ltrack “ Lc2o ` Lo2o. (6)
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3.3 OPTIMIZATION

To reconstruct high-quality geometry of objects, we assume the object remains static in the first
N frames and initialize canonical Gaussians Gc with these frames. We train Gc with the rendering
loss Lrender “ p1 ´ λSSIMqL1 ` λSSIMLD-SSIM ` LD used in ArtGS (Liu et al., 2025), where LD “

log
`

1 ` ||D ´ D̄||1
˘

is a depth loss. After initializing the deformation field F and canonical
Gaussians Gc, we jointly optimize F and Gc across all video frames and tracking trajectories with
rendering loss Lrender and canonical-to-observation tracking loss Lc2o:

L “ Lrender ` λc2oLc2o. (7)
We provide more implementation and model training details in Appendix A.

4 EXPERIMENTS

Datasets We conduct a comprehensive evaluation on two distinct datasets to assess the performance
of existing methods on objects with varying articulation complexity. (1) Video2Articulation-S, a
dataset proposed by (Peng et al., 2025), which serves as our benchmark for simple articulated objects.
It consists of 73 test videos across 11 categories of synthetic objects from the PartNet-Mobility
dataset (Xiang et al., 2020), where each object has only a single movable part. (2) VideoArtGS-20,
a newly curated dataset that evaluates the performance on more complex scenarios. It contains
20 videos of complex articulated objects of 10 categories from PartNet-Mobility, featuring more
challenging kinematics with 2 to 9 movable parts per object.

Metrics Our evaluation protocol includes metrics for both articulation estimation and mesh recon-
struction quality. For articulation estimation, we measure axis direction error (deg), axis position
error (cm), and joint state error (deg for revolute joints, cm for prismatic joints) between the predicted
and ground-truth joint parameters. For mesh reconstruction, we assess geometric accuracy using the
bi-directional Chamfer Distance (CD). This is computed between the reconstructed mesh and the
ground-truth mesh, using 10,000 points uniformly sampled from each surface. We report the CD (in
cm) for the whole object (CD-w), the static part (CD-s), and the movable parts (CD-m).

4.1 RESULTS ON SIMPLE ARTICULATED OBJECTS

Experimental Setup For this benchmark, we use the Video2Articulation-S dataset. We perform a
quantitative comparison against three state-of-the-art methods: ArticulateAnything (Le et al., 2025),
RSRD (Kerr et al., 2024), and Video2Articulation (Peng et al., 2025). Following the standard
evaluation protocol established by Video2Articulation (Peng et al., 2025), all metrics are reported
as the mean and standard deviation (mean ± std) across all test videos, and articulation estimation
metrics are divided into revolute and prismatic. For a fair and direct comparison, our experimental
setup utilizes ground-truth depth and camera poses, and the results for all baseline methods are taken
directly from Video2Articulation (Peng et al., 2025). To ensure consistency with our evaluation,
we have converted their reported metrics from meters (m) to centimeters (cm) and from radians to
degrees. We also retrain and evaluate VideoAticulation on this dataset.

Results and Analysis The quantitative results, presented in Tab. 1, demonstrate that our method
substantially outperforms all baseline approaches across all metrics. The most significant gains are
in joint parameter estimation, where VideoArtGS achieves an order-of-magnitude reduction in error
compared to the second-best method, Video2Articulation. This dramatic increase in accuracy is
primarily attributable to our motion prior guidance, which provides an accurate starting point for
optimization that prior methods lack. Our method also achieves a new state of the art in reconstruction
quality. The exceptional improvements on both movable parts and the static part validate the
effectiveness of VideoArtGS. As illustrated in Fig. 2, our method consistently produces high-fidelity
mesh reconstructions with clean part boundaries and precise articulation. This demonstrates the
robustness and high quality of our approach across the diverse object categories.

4.2 RESULTS ON COMPLEX ARTICULATED OBJECTS

Experimental Setup We conduct an evaluation on our newly curated VideoArtGS-20 dataset,
which contains complex, multi-part objects. We compare our method against current state-of-the-
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Table 1: Quantitative evaluation on Video2Articulation-S dataset. Metrics are reported as mean ˘ std over
all test videos. Lower (Ó) is better on all metrics, and the best results are highlighted in bold. : means the results
are taken from VideoAticulation (Peng et al., 2025).

Method
Revolute Joint Estimation Prismatic Joint Estimation Reconstruction

Axis (0) Position (cm) State (0) Axis (deg) State (cm) CD-w (cm) CD-m (cm) CD-s (cm)

ArticulateAnything: (Le et al., 2025) 46.98±45.27 81.00±40.00 N/A 52.71±44.69 N/A 11.00±22.00 59.00±73.00 7.00±18.00
RSRD: (Kerr et al., 2024) 67.06±29.22 203.00±748.00 59.02±34.38 69.91±24.07 70.00±48.00 339.00±2147.00 82.00±117.00 14.00±41.00

Video2Articulation: (Peng et al., 2025) 18.34±32.09 13.00±25.00 14.32±26.35 13.75±18.91 8.00±22.00 1.00±1.00 13.00±26.00 6.00±19.00
Video2Articulation (Peng et al., 2025) 13.83±28.15 11.55±22.39 10.25±21.27 14.37±19.08 3.44±6.25 3.45±16.46 12.21±24.44 5.39±17.09

Ours 0.32±0.44 0.42±0.75 1.15±2.29 0.35±0.45 1.03±2.46 0.29±0.24 0.40±0.32 1.11±2.11

Articulate

Anything

Input

Frames

Ours

Video2

Articulation

GT

Scissors Table StorageStapler USB

Figure 2: Qualitative results on Video2Articulation-S dataset. We present reconstruction comparisons
between baselines and our model on the Video2Articulation-S dataset.

art methods ArticulateAnything (Le et al., 2025) and Video2Articulation (Peng et al., 2025). As
RSRD (Kerr et al., 2024) failed to correctly segment parts, we don’t use it as a baseline. All metrics
are averaged across all parts and reported as mean ± std over all objects. A critical limitation of prior
work is that Video2Articulation (Peng et al., 2025) is designed only for a single movable part. To
establish a baseline, we extend it to multi-part objects: we manually isolate video segments where
only a single part is in motion and then merge the moving map to extract multiple part meshes.

Results and Analysis On the complex, multi-part VideoArtGS-20 dataset, our method’s advan-
tages become even more pronounced. Compared to Video2Articulation-S, VideoArtGS-20 has larger
camera motion and includes more moving parts, posing a greater challenge to existing baselines.
As shown in Fig. 3, Video2Articulation struggles to accurately segment moving parts, while Ar-
ticulateAnything often retrieves incorrect parts. As demonstrated in Tab. 2, VideoArtGS achieves
state-of-the-art performance, drastically outperforming baselines in this complex multi-part setting.
It is critical to note that the retrieval database of ArticulateAnything (Le et al., 2025) contains the
ground-truth meshes and joints from PartNet-Mobility, the same source as our test data. Despite
this near-oracle condition for the baseline, our method still reduces articulation estimation errors by
nearly two orders of magnitude and excels at mesh reconstruction where baselines fail. These results
confirm that VideoArtGS’s advantages generalize from simple to complex scenarios, providing a
robust and scalable solution for reconstructing articulated objects from monocular video.
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Table 2: Quantitative evaluation on VideoArtGS-20 dataset. Metrics are reported as mean ˘ std over all test
videos. Lower (Ó) is better on all metrics, and the best results are highlighted in bold.

Method Axis (0) Position(cm) CD-w (cm) CD-m (cm) CD-s (cm)

ArticulateAnything (Le et al., 2025) 43.65 ± 44.72 15.66 ± 36.20 16.10 ± 37.34 17.66 ± 36.74 16.04 ± 37.36
Video2Articulation (Peng et al., 2025) 48.88 ± 24.18 37.04 ± 31.82 5.07 ± 21.78 30.63 ± 25.64 10.22 ± 22.23

Ours 0.34±0.80 0.10±0.10 0.09±0.09 0.26±0.61 0.24±0.58

Articulate Anything Video2Articulation Ours GTInput Frames

Storage

47648

Storage

45612

Table

30666

Figure 3: Qualitative results on VideoArtGS-20 dataset. We present reconstruction comparisons between
baselines and our model on the VideoArtGS-20 dataset.

Results

Input

Frames

Cabinet Laptop Cabinet Microwave Coffee Machine Chair

Figure 4: Qualitative results on real-world data. We present reconstruction results of our model on real-world
data, including both simple two-part and complex multi-part objects.

4.3 RESULTS ON REAL-WORLD DATA

Experimental Setup We also validate the effectiveness of VideoArtGS on real-world data. We
capture monocular videos using a mobile phone camera without LiDAR. We use articulated objects
of different categories with different numbers of joints to verify the generalization ability of our
method. The input to our model is solely the monocular RGB video.

Results and Analysis As shown in Fig. 4, our VideoArtGS successfully reconstructs a diverse set
of articulated objects from self-captured, real-world monocular videos, building digital twins with
high-fidelity geometry and accurate articulation parameters. VideoArtGS effectively decouples the
object’s geometry from its time-varying motion, enabling the creation of a controllable digital asset,
fulfilling the promise of creating truly interactable digital twins from casual video captures.

4.4 ABLATION STUDIES

Experimental Setup To validate the effectiveness of each component in our method, we conduct
comprehensive ablation studies on the VideoArtGS-20 dataset. We systematically remove different
components and analyze their impact on performance, with all metrics reported as mean ± std.
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Table 3: Ablation studies on VideoArtGS-20 dataset. Lower (Ó) is better on all metrics, and the best results
are highlighted in bold.

Method Axis (0) Position (cm) CD-w (cm) CD-m (cm) CD-s (cm)

Ours 0.34±0.80 0.10±0.10 0.09±0.09 0.26±0.61 0.24±0.58
w/o motion prior 55.28±15.49 23.74±17.49 10.18±29.94 87.77±17.02 14.37±29.69

w/o center init 20.64±21.64 22.42±25.03 10.33±29.90 83.32±14.06 14.07±29.80
w/o deform init 3.96±3.73 2.45±3.07 0.11±0.12 1.50±2.71 0.72±2.05

w/o axis init 0.60±1.26 0.86±2.58 0.09±0.09 0.25±0.56 0.27±0.74
w/o hybrid 1.21±1.77 2.51±10.47 0.15±0.29 10.35±23.84 0.50±1.08
w/o Lo2o 0.68±1.55 0.57±1.85 0.11±0.12 0.58±1.03 0.27±0.65
w/o Lc2o 0.40±0.79 0.13±0.11 0.09±0.10 0.35±0.86 0.26±0.70

Results and Analysis The results, summarized in Tab. 3, systematically deconstruct our model’s
performance and validate the critical role of our core design choices.

• Motion Prior Guidance. The most profound impact comes from removing the entire motion prior
guidance (w/o motion prior), including the initialization of centers, joint axes, and deformation
field, which results in a catastrophic failure of the model. This unequivocally confirms our central
hypothesis: without a strong initial estimate derived from motion cues, the optimization problem of
complex articulated objects is intractable.

• Initialization of components. Removing the part centers initialization (w/o center init) leads to
a complete failure, underscoring the necessity of establishing a correct spatial anchor for each
part before optimizing its motion. Removing the deformation field initialization (w/o deform init)
causes a notable but not catastrophic performance drop, particularly on movable part reconstruction.
Interestingly, removing the axis initialization (w/o axis init) yields a marginal drop in articulation
estimation and has a minimal effect on reconstruction. This suggests that the framework is robust
enough to find the correct axis if the part centers and correspondences are well-initialized, though
direct initialization remains beneficial for stability and performance.

• Hybrid Center-Grid Assignment. Replacing the hybrid center-grid assignment module with the
center-based assignment module (w/o hybrid) leads to moderate performance drops, especially
for the reconstruction of movable parts and articulation estimation. This result highlights that our
hybrid assignment is essential for correctly segmenting parts and learning articulation dynamics.

• Tracking Losses. Disabling the observation-to-observation tracking loss (w/o Lo2o) degrades
performance more than disabling the direct canonical-to-observation loss (w/o Lc2o). This indicates
that enforcing temporal consistency directly on the observation space is a more critical constraint
for achieving precise and stable joint estimation.

These ablation results confirm that our method’s success relies on the synergistic combination of all
components. The results unequivocally demonstrate that the motion prior guidance and the hybrid
part assignment are the two foundational pillars enabling our method’s success. The remaining
components, while having a smaller individual impact, contribute synergistically to the stability and
precision of the final result, solidifying the robustness of our overall framework.

5 CONCLUSION

In conclusion, we introduce VideoArtGS, a novel method that reconstructs high-fidelity articulated
objects from a monocular video. We solve the fundamentally ill-posed challenge by introducing a
motion prior guidance pipeline, leveraging 3D tracks to provide robust initialization and optimization
of the deformation field. Combined with a hybrid center-grid assignment module for accurate part
segmentation, VideoArtGS achieves a new state of the art, reducing key error metrics by up to two
orders of magnitude and validating on our new, challenging VideoArtGS-20 benchmark. While
VideoArtGS sets a new performance benchmark, its reliance on upstream trackers, pose estimators,
and the necessity of visible motion in the video present avenues for future work. Promising directions
include developing end-to-end models that jointly learn tracking and reconstruction or integrating
physical priors to handle more challenging, motion-scarce scenarios.
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Reproducibility Statement We re-executed all experiments before submission to ensure repro-
ducibility and consistency of our results. Detailed implementation and training procedures are
provided in the appendix. Upon paper acceptance, we will release all code, data, and model weights
publicly. The planned code release will include training scripts, evaluation protocols, and detailed
documentation to facilitate easy reproduction of all experimental results.
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A IMPLEMENTATION AND TRAINING DETAILS

A.1 VIDEOARTGS-20 DATASET

We introduce and evaluate our method on VideoArtGS-20, a newly curated dataset featuring 10 object
categories: Faucet, Door, Refrigerator, Table, Storage Furniture, Bucket, Eyeglasses, Oven, Window,
and Printer. For each object, we render a monocular video with 150 static frames in different view-
points and 60 dynamic frames for each movable part. The dataset provides a challenging benchmark
with objects containing up to 10 parts and 9 movable joints. Further details and visualizations are
available in Tab. A.1 and Fig. A.1.

A.2 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) represents a 3D scene using a collection of 3D Gaussians (Kerbl
et al., 2023). Each Gaussian Gi is parameterized by its center µi P R3, covariance matrix Σi P R3ˆ3,
opacity σi P r0, 1s, and spherical harmonics coefficients hi for view-dependent color. The opacity of
a 3D Gaussian at spatial point x is computed as:

αipxq “ σi exp

ˆ

´
1

2
px ´ µiq

JΣ´1
i px ´ µiq

˙

, where Σi “ RiSiS
J
i R

J
i . (A.1)

To ensure Σi remains positive semi-definite, it is decomposed into a rotation matrix Ri (parameterized
by quaternion ri) and a scaling diagonal matrix Si (parameterized by scale vector si). To render an
image, 3D Gaussians are projected onto the 2D image plane and aggregated using α-blending:

I “

N
ÿ

i“1

Tiα
2D
i SHphi,viq, where Ti “

i´1
ź

j“1

p1 ´ α2D
j q. (A.2)

Here, α2D
i is the 2D version of Eq. (A.1), SHp¨q calculates spherical harmonics for view direction

vi. Given multi-view images tĪiu
N
i“1, 3DGS optimizes the paramters using L1 loss and D-SSIM

loss (Kerbl et al., 2023) with a loss weight λSSIM:

LI “ p1 ´ λSSIMqL1 ` λSSIMLD-SSIM, (A.3)

A.3 ARTICULATION MODELING

Articulation Modeling Building upon the part assignments, we model articulation through learn-
able joint parameters, including axis direction d, axis origin o, and time-variant joint state θt. To learn
a smooth trajectory of joint states, we model it with Foriour embedding Ep¨q followed by a learnable
MLP: θt “ MLPpEptqq. We represent the rigid transformation as dual-quarternion qt “ pqt

r, q
t
dq for

smooth skinning, where qt
r, q

t
p represent the rotation and translation components respectively. The

dual-quaternion of each joint could be calculated as:

prismatic : qt
r “ p1, 0, 0, 0q, ōt “ p0, θt ¨ dq, qt

d “ 0.5 ¨ ōt b qt
r,

revolute : qt
r “ pcos

θt

2
, sin

θt

2
¨ dq, ōt “ p0,oq, qt

d “ 0.5 ¨ pōt b qt
r ´ qt

r b ōtq.
(A.4)

Then we calculate the per-gaussian dual-quaternion qt
i with part assignment probabilities mi by:

qt
i “

K
ÿ

k“1

mik ¨ qt
k “ p

K
ÿ

k“1

mik ¨ qt
k,r,

K
ÿ

k“1

mik ¨ qt
k,dq. (A.5)

where qt
k is the dual-quaternion of k-th part. The position and rotation of Gaussian Gt

i are obtained
by:

µt
i “ Rt

i ¨ µc
i ` tti, rti “ qt

i,r b rci , (A.6)

where Rt
i and tti is rotation matrix and translation vector derived from qt

i , and b denotes quaternion
multiplication operation. We provide the detailed derivation process of dual-quaternion in the
following paragraphs.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table A.1: Dataset configuration.

Object ID Category #Part #Joint #Revolute #Prismatic

168 Faucet 3 2 2 0
1280 Faucet 3 2 2 0
8961 Door 3 2 2 0
9016 Door 3 2 2 0

10489 Refrigerator 3 2 2 0
10655 Refrigerator 3 2 2 0
25493 Table 4 3 0 3
30666 Table 10 9 0 9
31249 Table 5 4 2 2
45194 Storage Furniture 5 4 2 2
45503 Storage Furniture 4 3 3 0
45612 Storage Furniture 7 6 4 2
47648 Storage Furniture 7 6 4 2

100481 Bucket 3 2 2 0
101284 Eyeglasses 3 2 2 0
101287 Eyeglasses 3 2 2 0
101808 Oven 3 2 2 0
101908 Oven 4 3 3 0
103015 Window 4 3 3 0
103811 Printer 7 6 0 6

Average — 4.35 3.35 2.05 1.3

Dual Quaternions for SE(3) Transformation A general rigid SE(3) transformation in 3D space
consists of a rotation followed by a translation. A dual quaternion represents this combined operation
within a single algebraic entity. Let the rotation be represented by a unit quaternion qr and the
translation by a vector t. A point p in space, represented as a pure quaternion p̄ “ p0,pq, is
transformed to a new point p1 by first applying the rotation and then the translation: p1 “ qr b p b

q˚
r ` t, where q˚

r is the conjugate of qr and b denotes the quaternion multiplication operation.

A dual quaternion q is defined as q “ qr ` εqd, where qr is the real part, qd is the dual part, and ε is
the dual unit with the property ε2 “ 0. Given the rotation quaternion qr and translation t, the dual
part qd could be calculated by: qd “ 1

2 p0, tq b qr.

Dual Quaternions for Articulated Transformation We apply the above principles to derive the
specific formulas for prismatic and revolute joints at time t.

Prismatic: A prismatic joint executes a pure translation with no rotation, so that the real part is
the unit quaternion qt

r “ p1, 0, 0, 0q. Given the axis direction d and joint state θt, its translation
component is t “ θt ¨ d. Let ōt “ p0, θt ¨ dq, the dual part could be calculated by: qd “ 1

2 ō b qt
r.

Revolute: A revolute joint executes a pure rotation, not about the world origin, but about the
joint’s origin point o. Given the axis direction d, axis origin o and joint state θt this "off-center"
rotation is equivalent to a sequence of three operations: (1) translate the system so the pivot point
o moves to the origin: ōt “ p0,oq, qT1

“ 1 ´ ε
2 ō); (2) perform the rotation around the origin:

qR “ qt
r “ pcos θt

2 , sin
θt

2 ¨dq. (3) translate the system back: qT2 “ 1` ε
2 ō. The total transformation

qt is the product:

qt “ qT2qRqT1 “ p1 `
ε

2
ōqqt

rp1 ´
ε

2
ōq “ p1 `

ε

2
ōqpqt

r ´
ε

2
qt
rōq “ qt

r ` ε

ˆ

1

2
ōqt

r ´
1

2
qt
rō

˙

,

where b is omitted for brevity. As a result, the real part and dual part are calculated as: qt
r “

pcos θt

2 , sin
θt

2 ¨ dq, qt
d “ 1

2 pō b qt
r ´ qt

r b ōq.
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168 1280 8961 9016 10489

10655 25493 30666 31249 45194

45503 45612 47648 100481 101284

101287 101808 101908 103015 103811

Figure A.1: Visualization of VideoArtGS-20 dataset.

A.4 INITIALZATION AND OPTIMIZATION

Inversed Deformation Field Given a point position xt0
i sampled from the trajectory txt

iu
T
t“1,

we extend our part assignment module from canonical space to observation space to obtain the
part assignment probabilities mt0

i of xt0
i at time t0. Specifically, we deform the learnable centers

Ck “ ppk,Vk, λkq from canonical space to observation space by:

pt0
k “ Rt0

k ¨ pk ` tt0k , V t0
k “ Rt0

k ¨ Vk, Ct0
k “ ppt0

k ,V t0
k , λkq, (A.7)

where Rt0
k and tt0k is rotation matrix and translation vector derived from qt0

k . We replacing Ck with
Ct0

k in Eq. (2) and Eq. (3) to calculate mt0
i , then the canonical position x̂c

i is calculated by:

qt0
i “

K
ÿ

k“1

mt0
ik ¨ qt0

k , x̂c
i “ pRt0

i q´1 ¨ pxt0
i ´ tt0i q, (A.8)

where Rt0
i and tt0i is rotation matrix and translation vector derived from qt0

i .

Training Configuration We train deformation field F for 10K steps with loss Ltrack “ Lo2o `Lc2o

described in Eq. (4) and Eq. (5), taking 5-10 minutes per object. We train canonical Gaussians
Gc for 20K steps with loss Lrender “ p1 ´ λSSIMqL1 ` λSSIMLD-SSIM ` LD, where λSSIM “ 0.2 is
used in experiments. This stage takes about 4 minutes per object. We jointly optimize the canonical
Gaussians and deformation field for 20K steps with L “ LI ` LD ` λc2oLc2o, where λc2o “ 0.5.
This state takes 10-20 minutes per object.
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A.5 JOINT TYPE PREDICTION USING GPT-4O

Inspired by SINGAPO (Liu et al., 2025), we use GPT-4o to predict the number of joints and joint
types. We input the video and a step-by-step instruction to make GPT-4o understand the articulated
objects. The version of GPT-4o used in our experiments is gpt-4o-2024-11-20. The instruction is:

Figure A.2: Prompt for GPT-4o to predict the number of joints and joint types.

B LIMITATIONS

Our method, while effective, has limitations that open avenues for future research.

Dependency on Upstream Perception Models. The final quality of our reconstruction is inherently
dependent on the accuracy of the upstream models used for perception. Our pipeline first relies on
a monocular depth and camera pose estimator (e.g., VGGT). Subsequently, a pre-trained tracking
model (e.g., TAPIP3D) generates 3D motion tracks. If the depth or camera pose estimates contain
significant errors, the resulting 3D tracks will be noisy and fail to capture the object’s true rigid-body
motion. This can lead to failures in our downstream fitting and clustering steps, resulting in distorted
geometry or incorrect joint estimation. However, as this is a rapidly advancing field, we anticipate that
progress in visual foundation models and tracking models will continue to mitigate this dependency.

Canonical Gaussian Initialization. Our current framework assumes that the input video begins
with a short sequence (N frames) where the scene is static. This segment is crucial for initializing
the canonical Gaussian representation of the object’s geometry. While this assumption is practical
for data captured by a user (self-shot), it restricts the method’s applicability to in-the-wild videos
from the internet, which often begin with immediate motion. Relaxing this condition is non-trivial, as
it makes the ill-posed problem of disentangling geometry from motion even more challenging. A
promising direction for future work is to incorporate powerful generative priors. Such models could
help infer a plausible canonical shape even from a video with continuous motion, thereby enabling
reconstruction from arbitrary monocular inputs.
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Table A.2: Detailed results on Video2Articulation-S dataset. Following Video2Articulation(Peng et al., 2025),
if the method failed, we assign a 900 angle error for the joint axis, and a 100cm error for the other metrics. “Diff."
denotes the results of Video2Articulation minus ours, which demonstrate the improvements of VideoArtGS. The
best results are highlighted in bold.

Metric CD-s (cm) CD-w (cm) CD-m (cm) Axis (0) Position (cm)

Method V2A Ours Diff. V2A Ours Diff. V2A Ours Diff. V2A Ours Diff. V2A Ours Diff.

Box 1.56 0.03 -1.53 1.04 0.07 -0.96 0.34 0.10 -0.24 0.06 0.06 0.00 2.31 0.17 -2.14
Dishwasher 0.74 0.37 -0.37 0.58 0.30 -0.28 3.34 0.14 -3.20 3.27 0.11 -3.16 11.93 0.39 -11.54

Laptop 7.30 0.15 -7.15 0.09 0.09 0.00 0.13 0.10 -0.03 8.40 0.06 -8.35 3.48 0.22 -3.26
Microwave 2.84 0.35 -2.49 2.06 0.31 -1.74 0.20 0.07 -0.13 0.40 0.26 -0.14 9.49 0.10 -9.39
Refrigerator 22.91 0.28 -22.63 22.66 0.16 -22.50 22.05 0.49 -21.56 18.91 0.67 -18.24 23.08 0.30 -22.78

Scissors 10.05 0.16 -9.88 0.02 0.02 0.00 8.52 0.04 -8.47 30.21 0.32 -29.90 5.86 0.23 -5.63
Stapler 64.07 0.37 -63.70 50.13 0.27 -49.85 51.26 0.19 -51.07 46.07 0.05 -46.01 50.19 1.83 -48.36

StorageFurniture 0.61 0.68 0.07 0.48 0.48 0.00 10.39 3.02 -7.37 4.47 0.14 -4.33 0.61 0.01 -0.60
Table 0.40 0.35 -0.04 0.43 0.32 -0.11 19.21 1.56 -17.65 17.22 0.44 -16.78 3.01 0.07 -2.94
USB 1.75 0.43 -1.32 0.24 0.19 -0.05 4.27 0.95 -3.33 11.29 0.18 -11.12 3.95 0.05 -3.90

WashingMachine 2.20 0.82 -1.37 1.93 0.76 -1.17 4.32 0.09 -4.23 13.03 1.29 -11.74 5.28 1.89 -3.39

Table A.3: Detailed results on VideoArtGS-20 dataset. Following Video2Articulation(Peng et al., 2025), if
the method failed, we assign a 900 angle error for the joint axis, and a 100cm error for the other metrics. “Diff."
denotes the results of Video2Articulation minus ours, which demonstrate the improvements of VideoArtGS. The
best results are highlighted in bold.

Metric CD-s (cm) CD-w (cm) CD-m (cm) Axis (0) Position (cm)

Method V2A Ours Diff. V2A Ours Diff. V2A Ours Diff. V2A Ours Diff. V2A Ours Diff.

100481 2.63 0.11 -2.52 0.05 0.11 0.07 1.43 0.03 -1.40 43.93 0.06 -43.88 35.92 0.00 -35.91
101284 7.28 0.01 -7.28 0.02 0.01 -0.01 76.58 0.00 -76.58 14.91 0.18 -14.73 29.31 0.13 -29.18
101287 10.16 0.01 -10.15 0.01 0.01 0.00 24.70 0.00 -24.70 9.07 0.20 -8.87 28.55 0.03 -28.52
101808 0.89 0.10 -0.79 0.09 0.10 0.01 13.78 0.01 -13.76 44.95 3.79 -41.16 35.94 0.02 -35.92
101908 2.02 0.10 -1.93 0.05 0.09 0.04 19.53 0.01 -19.52 78.44 0.14 -78.29 65.14 0.11 -65.03
103015 100.00 0.27 -99.73 100.00 0.24 -99.76 100.00 0.01 -99.99 54.74 0.07 -54.66 49.06 0.12 -48.93
103811 4.51 0.53 -3.98 0.30 0.43 0.13 18.74 2.65 -16.09 80.81 0.22 -80.59 0.00 0.00 0.00
10489 3.60 0.05 -3.55 0.07 0.06 -0.01 60.79 0.01 -60.78 68.98 0.08 -68.89 133.32 0.18 -133.14
10655 3.05 0.06 -2.99 0.10 0.08 -0.02 0.08 0.01 -0.07 7.71 0.03 -7.68 35.16 0.20 -34.96
1280 0.56 0.11 -0.45 0.02 0.03 0.01 6.07 0.03 -6.04 74.84 0.68 -74.15 48.53 0.32 -48.21
168 39.67 2.68 -36.99 0.02 0.04 0.02 17.23 0.43 -16.80 53.59 0.32 -53.27 10.59 0.22 -10.36

25493 0.75 0.11 -0.63 0.09 0.06 -0.03 65.98 0.18 -65.79 53.67 0.14 -53.53 0.00 0.00 0.00
30666 1.19 0.22 -0.97 0.12 0.17 0.05 37.51 1.17 -36.34 66.94 0.14 -66.80 0.00 0.00 0.00
31249 1.51 0.11 -1.41 0.09 0.09 0.00 11.98 0.22 -11.76 40.68 0.08 -40.59 3.69 0.02 -3.68
45194 4.60 0.09 -4.51 0.09 0.10 0.01 41.50 0.01 -41.49 47.82 0.11 -47.71 43.39 0.03 -43.36
45503 3.11 0.07 -3.04 0.07 0.08 0.01 21.32 0.01 -21.31 62.82 0.03 -62.79 34.59 0.11 -34.48
45612 1.87 0.06 -1.81 0.06 0.07 0.02 28.81 0.02 -28.79 48.19 0.13 -48.06 16.74 0.05 -16.70
47648 0.69 0.06 -0.64 0.05 0.06 0.00 24.90 0.33 -24.57 48.90 0.18 -48.72 37.10 0.06 -37.04
8961 4.92 0.02 -4.90 0.03 0.03 0.00 27.25 0.02 -27.23 1.05 0.02 -1.03 84.21 0.05 -84.16
9016 11.38 0.02 -11.36 0.03 0.03 0.00 14.42 0.02 -14.40 75.53 0.10 -75.43 49.52 0.35 -49.17

Average 10.22 0.24 -9.98 5.07 0.09 -4.97 30.63 0.26 -30.37 48.88 0.34 -48.54 37.04 0.10 -36.93

Reliance on Motion for Part Segmentation. Our approach infers part segmentation exclusively
from motion cues by clustering the derived 3D tracks. This reliance on dynamics places high demands
on the tracking quality and can be fragile for objects with many parts or for parts that exhibit very
subtle relative motion. In such challenging cases, the segmentation quality can degrade, leading to
incorrectly merged or split components. A valuable future direction is to augment our motion-based
clustering with appearance-based priors from pre-trained foundation models. For instance, integrating
semantic features from DINOv2 (Oquab et al., 2023) or segmentation masks from models like
SAM (Kirillov et al., 2023) could provide a powerful, independent signal for identifying object parts,
making the segmentation process significantly more robust.

C ADDITIONAL EXPERIMENT RESULTS AND ANALYSIS

C.1 DETAILED RESULTS ON VIDEO2ARTICULATION-S AND VIDEOARTGS-20

We provide detailed results on the Video2Articulation-S and VideoArtGS-20 dataset. As shown
in Appendix C.1 and Tab. A.3, we observe consistent improvements across all categories in both
Video2Articulation-S and VideoArtGS-20 datasets.
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Table A.4: Tracking ability comparison on VideoArtGS-20 dataset. “Diff." denotes the results of TAPIP3D
minus ours, which demonstrate the improvements of VideoArtGS. The best results are highlighted in bold.

Metric EPE (m) Ó δ0.05 Ò δ0.10 Ò

Method TAPIP3D Ours Diff. TAPIP3D Ours Diff. TAPIP3D Ours Diff.

100481 0.16 0.12 -0.04 59.04 66.95 7.92 65.40 72.76 7.37
101284 0.03 0.01 -0.02 88.99 95.96 6.98 90.46 96.75 6.29
101287 0.08 0.02 -0.06 70.11 91.73 21.62 74.16 93.16 19.00
101808 0.13 0.06 -0.07 57.83 76.65 18.82 64.66 81.31 16.65
101908 0.14 0.06 -0.08 58.73 81.16 22.43 64.64 84.38 19.74
103015 0.02 0.01 -0.02 89.70 93.38 3.68 93.35 96.22 2.87
103811 0.16 0.09 -0.08 65.16 80.87 15.70 67.86 81.15 13.29
10489 0.32 0.14 -0.18 45.49 75.72 30.23 50.88 78.84 27.95
10655 0.30 0.14 -0.15 35.31 66.00 30.69 43.81 69.36 25.55
1280 0.04 0.02 -0.02 83.63 91.12 7.49 88.27 94.07 5.80
168 0.43 0.32 -0.11 43.91 52.82 8.91 51.29 58.39 7.10

25493 0.08 0.04 -0.04 72.33 78.55 6.21 76.59 83.49 6.90
30666 0.12 0.06 -0.05 59.75 80.04 20.29 64.98 80.28 15.30
31249 0.12 0.07 -0.05 60.21 76.67 16.47 63.36 78.54 15.17
45194 0.23 0.12 -0.10 42.23 70.65 28.42 48.28 71.34 23.06
45503 0.19 0.10 -0.09 42.32 69.75 27.43 48.46 72.88 24.41
45612 0.16 0.08 -0.09 35.50 66.47 30.98 43.17 69.60 26.43
47648 0.09 0.03 -0.06 58.05 81.46 23.42 66.89 82.98 16.10
8961 0.18 0.15 -0.02 22.74 29.21 6.47 37.46 46.51 9.05
9016 0.16 0.26 0.10 20.36 35.27 14.91 37.47 47.54 10.06

Average 0.16 0.09 -0.06 55.57 73.02 17.45 62.07 76.98 14.91

C.2 TRACKING IMPROVEMENT

Tracks from TAPIP3D (Zhang et al., 2025) maintain noisy and inaccurate trajectories. Our pipeline
filters noise and refines the tracks, enabling more accurate learning of dynamic and articulation
parameters. We add track-quality metrics to demonstrate our method’s track-correction capability.

Evaluation protocol. Following Shape of Motion (Wang et al., 2024a), we use the 3D end-point-error
(EPE), which measures the Euclidean distance between ground truth and predicted 3D tracks. We
also report the percentage of points falling within given thresholds of the ground truth: δ0.05 “ 5cm
and δ0.10 “ 10cm. Given noisy tracks from TAPIR3D (Zhang et al., 2025), we use our motion prior
guidance pipeline to filter noise and then input the filtered tracks as query points to our optimized
model, calculating new tracks using our learned deformation field. Ground truth tracks are obtained
by deforming the query points with ground truth joint parameters and states at each time step. Each
query point inherits the part label of its nearest vertex on the ground truth meshes.

Results. As shown in Tab. A.4, our method consistently improves upon TAPIP3D (Zhang et al.,
2025) across all metrics. These improvements are particularly significant for challenging objects (e.g.
47648, 30666) with complex articulated motion.

C.3 SENSITIVITY ANALYSIS OF FITTING THRESHOLD ϵl{ϵc

Our method uses equal thresholds for line/circle fitting (ϵl{ϵc). Throughout our main experiments,
we adopt ϵl “ ϵc “ 0.01. We provide comprehensive experimental results across different threshold
values in Tab. A.5 and Tab. A.6.

Importantly, our method does not require filtering out all noise. Our hybrid center-grid assignment
module is learnable—its parameters are optimized via gradient descent during training, which
naturally corrects initialization errors from tracking noise. The initialization only needs to provide
reasonable starting parameters for robust optimization.

As shown in Tab. A.5 and Tab. A.6, the initialization joint parameter errors exhibit minimal variation
across different thresholds, and the differences in optimized metrics are similarly small. A clear trend
emerges: smaller thresholds filter out more noise, yielding more accurate initial joint parameters.
However, excessively small thresholds (e.g., 0.005) cause most trajectories to be classified as noise,
leading to significant performance degradation on certain objects (e.g., object 168). Our experiments
demonstrate robust performance across reasonable threshold variations.
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Table A.5: Initialization joint parameter error with different fitting threshold ϵl{ϵc on VideoArtGS-20 dataset.
The best results are highlighted in bold.

Metric Axis (0) Position (cm)

ϵl{ϵc 0.100 0.040 0.020 0.010 0.005 0.100 0.040 0.020 0.010 0.005

100481 5.45 5.45 5.70 5.80 4.45 0.16 0.16 0.15 1.52 6.92
101284 0.86 0.86 0.93 0.93 2.14 1.34 1.34 1.42 1.70 2.95
101287 1.07 1.07 1.14 1.36 3.07 0.35 0.35 0.22 0.21 1.21
101808 7.76 7.76 7.78 7.70 7.04 1.00 1.00 1.00 1.02 0.92
101908 1.21 1.21 1.15 1.42 0.89 1.20 1.20 1.60 1.14 0.32
103015 5.89 5.89 5.90 6.14 6.13 1.25 1.25 1.25 1.26 1.36
103811 0.69 0.54 0.65 0.57 0.38 0.00 0.00 0.00 0.00 0.00
10489 0.99 0.99 0.94 1.02 0.50 0.22 0.22 0.32 0.40 0.39
10655 1.48 1.50 1.56 1.68 2.18 0.54 0.51 0.52 0.54 25.51
1280 4.88 4.88 4.88 5.58 2.48 1.23 1.23 1.23 1.58 0.72
168 1.54 1.54 1.55 1.65 44.25 1.41 1.41 1.40 1.32 3.38

25493 0.34 0.34 0.34 0.37 0.31 0.00 0.00 0.00 0.00 0.00
30666 1.10 1.37 0.96 0.91 0.80 0.00 0.00 0.00 0.00 0.00
31249 2.50 2.49 2.16 1.08 0.50 0.12 0.12 0.12 0.16 0.25
45194 1.75 1.66 1.37 0.66 0.25 0.22 0.22 0.21 0.26 0.34
45503 1.24 1.23 1.23 1.22 2.95 0.10 0.10 0.10 0.11 0.08
45612 3.14 3.15 2.77 1.91 1.72 0.21 0.21 0.20 0.25 0.16
47648 6.16 4.95 2.83 2.89 2.09 0.19 0.19 0.19 0.17 0.24
8961 0.96 0.96 0.97 0.98 0.74 0.42 0.42 0.42 0.41 0.33
9016 1.38 1.38 1.51 1.44 0.80 0.18 0.16 0.98 0.60 2.84

Average 2.52 2.46 2.32 2.26 4.18 0.51 0.50 0.57 0.63 2.39

Table A.6: Optimized results with different fitting threshold ϵl{ϵc on VideoArtGS-20 dataset. We ignore the
CD-w metric because it changes almost imperceptibly with different ϵl{ϵc. The best results are highlighted in
bold.

Metric CD_s (cm) CD_m (cm) Axis (0) Position (cm)

ϵl{ϵc V2A 0.100 0.010 0.005 V2A 0.100 0.010 0.005 V2A 0.100 0.010 0.005 V2A 0.100 0.010 0.005

100481 2.63 0.11 0.11 0.37 1.43 0.02 0.03 14.07 43.93 0.01 0.06 12.37 35.92 0.02 0.00 2.53
101284 7.28 0.01 0.01 0.01 76.58 0.00 0.00 0.00 14.91 0.14 0.18 0.35 29.31 0.10 0.13 0.15
101287 10.16 0.01 0.01 0.01 24.70 0.00 0.00 0.00 9.07 0.25 0.20 0.28 28.55 0.06 0.03 0.07
101808 0.89 0.10 0.10 0.10 13.78 0.01 0.01 0.01 44.95 3.79 3.79 3.80 35.94 0.09 0.02 0.09
101908 2.02 0.10 0.10 0.10 19.53 0.01 0.01 0.01 78.44 0.12 0.14 0.10 65.14 0.08 0.11 0.10
103015 100.00 0.20 0.27 0.18 100.00 0.01 0.01 0.01 54.74 0.13 0.07 0.13 49.06 0.24 0.12 0.23
103811 4.51 0.49 0.53 0.43 18.74 4.33 2.65 21.53 80.81 0.17 0.22 1.24 0.00 0.00 0.00 0.00
10489 3.60 0.05 0.05 0.05 60.79 0.01 0.01 0.01 68.98 0.08 0.08 0.09 133.32 0.29 0.18 0.27
10655 3.05 0.06 0.06 2.40 0.08 0.01 0.01 132.42 7.71 0.01 0.03 0.04 35.16 0.16 0.20 17.51
1280 0.56 0.09 0.11 0.08 6.07 0.08 0.03 0.12 74.84 0.67 0.68 1.05 48.53 0.31 0.32 0.30
168 39.67 3.13 2.68 3.74 17.23 0.25 0.43 92.35 53.59 0.35 0.32 45.11 10.59 0.25 0.22 0.52

25493 0.75 0.11 0.11 0.11 65.98 0.15 0.18 0.16 53.67 0.11 0.14 0.11 0.00 0.00 0.00 0.00
30666 1.19 0.22 0.22 0.22 37.51 1.20 1.17 13.36 66.94 0.13 0.14 0.66 0.00 0.00 0.00 0.00
31249 1.51 0.10 0.11 0.11 11.98 0.17 0.22 0.24 40.68 0.07 0.08 0.07 3.69 0.00 0.02 0.01
45194 4.60 0.15 0.09 0.12 41.50 0.14 0.01 0.09 47.82 0.25 0.11 0.23 43.39 15.82 0.03 15.59
45503 3.11 0.07 0.07 0.07 21.32 0.01 0.01 0.01 62.82 0.02 0.03 0.02 34.59 0.10 0.11 0.10
45612 1.87 0.06 0.06 0.06 28.81 0.01 0.02 0.01 48.19 0.12 0.13 0.11 16.74 0.04 0.05 0.05
47648 0.69 0.07 0.06 0.07 24.90 16.92 0.33 16.94 48.90 39.79 0.18 36.81 37.10 3.21 0.06 3.17
8961 4.92 0.02 0.02 0.02 27.25 0.02 0.02 0.02 1.05 0.02 0.02 0.02 84.21 0.03 0.05 0.05
9016 11.38 0.02 0.02 0.02 14.42 0.02 0.02 0.01 75.53 0.10 0.10 0.09 49.52 0.34 0.35 0.32

Average 10.22 0.26 0.24 0.41 30.63 1.17 0.26 14.57 48.88 2.32 0.34 5.13 37.04 1.06 0.10 2.05

C.4 EFFICIENCY COMPARISON

We provide runtime and GPU memory comparison with a single NVIDIA RTX 3090 GPU in Tab. A.7.
Our method achieves a favorable balance between efficiency and reconstruction quality. While
ArticulateAnything is faster, it uses GPT to predict joint parameters rather than reconstructing from
video, making direct comparison less meaningful. Compared to Video2Articulation, our approach
reduces GPU memory requirements and significantly improves efficiency. Video2Articulation
requires 20-30 minutes per joint, meaning multi-joint objects can take hours to process, whereas
our method completes reconstruction for objects with multiple parts in 15-40 minutes total. This
efficiency gain stems from our joint optimization framework, which simultaneously reconstructs all
articulated parts rather than processing each joint sequentially.
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Table A.7: Efficiency Comparison.

Method GPU Memory Runtime

ArticulateAnything N/A 2-5 minutes
Video2Articulation 24GB 20-30 minutes per joint

Ours 12GB 15-40 minutes

Table A.8: Failure cases of GPT-4o. ‘1r1p’ means 1 revolute joint and 1 prismatic joint.

Dataset Object ID Category GT Joint Pred. Joint

Video2Articulation-S 19898 Table 1r 1p
Video2Articulation-S 22433 Table 1r 1p

VideoArtGS-20 30666 Table 9p 7p
VideoArtGS-20 103811 Printer 6p 1r1p
VideoArtGS-20 1280 Faucet 2r 3r

(a) (b)

Figure A.3: Failure cases. We illustrate failure cases of our VideoArtGS.

C.5 FAILURE CASE ANALYSIS

GPT-4o Prediction We provide failure cases of GPT-4o prediction in Tab. A.8. GPT-4o made 2
incorrect predictions on the 73 videos in Video2Articulation-S (wrong joint types) and 3 incorrect
predictions on VideoArtGS-20 (wrong number of parts or joint types). The model tends to misclassify
joint types when the range of motion is limited and underestimates the number of parts in objects
with multiple joints. Notably, we tried alternative methods for automatically detecting the number
of parts in the early stages of our experiments, including clustering and detection-based approaches.
However, these methods exhibited weaker generalization than GPT-4o. Their reliance on additional
assumptions makes them more prone to failure on novel data.

Imperfect Part Segmentation As shown in Fig. A.3 (a), when multiple components are spatially
close and share identical motion patterns (e.g., prismatic joints moving in the same direction), our
method may fail to correctly segment them. As discussed in Appendix B, this limitation arises from
the lack of semantic information in our current approach. Integrating semantic segmentation models
such as SAM (Kirillov et al., 2023) could potentially address this issue.

Clustering Error As shown in Fig. A.3 (b), when objects have numerous parts and tracks contain
substantial noise, our method may produce incorrect initial centers. Large initialization errors are
difficult to correct during optimization, as the model tends to converge to local minima. Addressing
this limitation requires more robust methods for discovering part centers, such as incorporating
semantic information to help with clustering.
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D LLM USAGE STATEMENT

The authors acknowledge the use of Large Language Models (LLM) in the preparation of this
paper. LLM was used to assist with improving writing clarity and grammar checking throughout
the document. All AI-generated suggestions were carefully reviewed, modified as necessary, and
validated by the authors. The core research contributions, experimental design, data analysis, and
scientific conclusions are entirely the original work of the authors.

E ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results in the following pages.
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Ours GTInput Frames Ours GTInput Frames

Figure A.4: Additional qualitative results on VideoArtGS-20.
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