

VIDEOARTGS: BUILDING DIGITAL TWINS OF ARTICULATED OBJECTS FROM MONOCULAR VIDEO

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Building digital twins of articulated objects from monocular video presents an essential challenge in computer vision, which requires simultaneous reconstruction of object geometry, part segmentation, and articulation parameters from limited viewpoint inputs. Monocular video offers an attractive input format due to its simplicity and scalability; however, it's challenging to disentangle the object geometry and part dynamics with visual supervision alone, as the joint movement of the camera and parts leads to ill-posed estimation. While motion priors from pre-trained tracking models can alleviate the issue, how to effectively integrate them for articulation learning remains largely unexplored. To address this problem, we introduce VideoArtGS, a novel approach that reconstructs high-fidelity digital twins of articulated objects from monocular video. We propose a motion prior guidance pipeline that analyzes 3D tracks, filters noise, and provides reliable initialization of articulation parameters. We also design a hybrid center-grid part assignment module for articulation-based deformation fields that captures accurate part motion. VideoArtGS demonstrates state-of-the-art performance in articulation and mesh reconstruction, reducing the reconstruction error by about **two orders of magnitude** compared to existing methods. VideoArtGS enables practical digital twin creation from monocular video, establishing a new benchmark for video-based articulated object reconstruction. More visualized results are made publicly available at: <https://videoartgs-2026.github.io>.

1 INTRODUCTION

Articulated objects, prevalent in our daily life, are becoming a major focus in recent research for computer vision and robotics (Weng et al., 2024; Luo et al., 2025; Liu et al., 2024b; Deng et al., 2024; Yang et al., 2023; Liu et al., 2024a). Reconstructing interactable digital twins of articulated objects from visual observations is fundamental to advancing applications in augmented reality, robotics simulation, and interactive scene understanding. By generating digital twins from simple inputs like video, we can significantly accelerate the development of intelligent systems, particularly by bridging the sim-to-real gap for robotic manipulation and interaction tasks (Torne et al., 2024; Kerr et al., 2024). To build powerful and generalizable robotic systems, reconstructing interactable objects from monocular video represents a critical frontier, as this would unlock the ability to learn from the vast amount of videos available online and allow robots to model the world through their own eyes.

Recent approaches to reconstructing articulated objects can be broadly categorized into two families based on the way to estimate articulation parameters. One family employs a feed-forward model to predict articulation parameters directly (Mandi et al., 2024; Le et al., 2025; Jiang et al., 2022). These methods, however, struggle with scalability and generalization, as they require extensive training on annotated data, which often fails to transfer to novel, real-world settings. Creating datasets that comprehensively cover the sheer combinatorial complexity of real-world objects, articulation types, and viewing conditions is practically infeasible. A second, more common family reconstructs objects by explicitly estimating joint parameters from multi-view images of the object in two or more discrete states (Liu et al., 2025; 2023a; Weng et al., 2024; Lin et al., 2025; Yu et al., 2025). While these methods benefit from strong geometric constraints, they require controlled, often cumbersome, data capture setups that limit their use outside the lab. This approach is not only constrained by impractical data capture requirements but is also highly brittle; slight misalignments in the coordinate frames between states can cause catastrophic failures in prediction accuracy. A far more practical

054 and scalable paradigm is reconstructing articulated objects from casually captured monocular videos,
 055 which enables the ability to learn from internet videos and allows robotic agents to model objects
 056 directly from their visual observations.

057 However, the convenience of video capture introduces a profound technical challenge: the reconstruction
 058 problem becomes fundamentally ill-posed. From a single, moving viewpoint, the observed pixel
 059 motion results from four entangled factors: camera trajectory, object geometry, part segmentation,
 060 and articulation-based part dynamics. Disentangling these variables without the strong parallax cues
 061 from multi-view data is highly ambiguous. Consequently, prior video-based methods often produce
 062 distorted geometries, fail to segment parts correctly, or are confined to overly simplistic objects (Kerr
 063 et al., 2024; Song et al., 2024; Peng et al., 2025), leaving robust, general-purpose reconstruction from
 064 monocular video a largely unsolved frontier. To break this ambiguity, motion priors from tracking
 065 models offer a promising direction. Previous methods, such as Shape-of-Motion (Wang et al., 2024a)
 066 and ArtiPoint (Werby et al., 2025), have explored lifting 2D tracks for supervision. More recently, the
 067 advent of powerful perception models like SpatialTrackerV2 (Xiao et al., 2025) and TAPIP3D (Zhang
 068 et al., 2025) provides 3D tracks, which offer richer motion information. However, both lifted tracks
 069 and 3D tracks contain substantial noise that makes them ineffective for direct use in articulated object
 070 reconstruction, leaving the problem of how to effectively leverage them as motion priors unexplored.

071 To address these challenges, we propose VideoArtGS, which introduces several key innovations for
 072 reconstructing articulated objects from monocular video. Central to our approach are two key insights:
 073 (1) motion priors from pre-trained tracking models are essential for disambiguating object movement,
 074 and (2) by enforcing articulation constraints (e.g., linear or circular trajectories for prismatic and
 075 revolute joints), we leverage both object-part movement priors and the reconstruction objective to
 076 jointly suppress noise in the tracks, recover structural cues of the moving parts. Specifically, we
 077 design a novel motion prior guidance pipeline that analyzes raw 3D tracking trajectories, filters noise,
 078 classifies motion types (e.g., revolute, prismatic), and clusters points into coherent parts. This process
 079 yields accurate initial estimates for the joint parameters and part centers, transforming the intractable
 080 joint optimization into a well-posed refinement problem. To further enhance reconstruction quality,
 081 we design a hybrid center-grid part assignment module. This module combines the strengths of spatial
 082 clustering for distinct movable parts with a flexible grid-based representation to model complex 3D
 083 geometry of objects, enabling clean part segmentation and precise deformation modeling.

084 These designs enable VideoArtGS to achieve state-of-the-art performance, reducing reconstruction
 085 and articulation estimation errors by approximately two orders of magnitude compared to previous
 086 methods on both simple two-part objects and on our new, challenging VideoArtGS-20 dataset. Our
 087 approach opens new possibilities for practical digital twin creation from readily available video
 088 data, with applications in scenarios where multi-state capture is impractical or impossible. Through
 089 extensive experiments, we demonstrate the effectiveness of our method in delivering high-quality
 090 reconstruction of articulated objects from monocular video sequences.

091 **Contributions** Our main contributions of this work can be summarized as follows:

- 092 • We propose VideoArtGS, a novel method for articulated object reconstruction from monocular
 093 video that achieves state-of-the-art performance, reducing key error metrics by up to two orders of
 094 magnitude over prior work.
- 095 • We introduce a motion prior guidance framework that analyzes 3D tracking trajectories to robustly
 096 initialize the deformation field, making the ill-posed reconstruction problem tractable. We design a
 097 hybrid center-grid part assignment module that accurately segments parts and benefit articulation
 098 learning, accommodating complex geometries.
- 099 • We conduct extensive experiments and establish a new benchmark for video-based articulated
 100 object reconstruction, validating the practical applicability of our approach. Our comprehensive
 101 ablation studies systematically validate our designs and point out directions for future improvement.

102 2 RELATED WORK

103 2.1 DYNAMIC SCENE RECONSTRUCTION

104 Dynamic scene reconstruction is a long-standing challenge in computer vision. A significant line of
 105 work focuses on jointly estimating camera poses and scene geometry, often represented as depth maps

108 or point clouds. Pioneering methods like DROID-SLAM (Teed & Deng, 2021), CasualSAM (Tang
 109 et al., 2025), and Mega-SaM (Li et al., 2025) established robust frameworks for this task. More
 110 recently, foundation models have emerged, with DUS3R (Wang et al., 2024b) and VGGT (Wang et al.,
 111 2025b) providing a powerful basis for 3D reconstruction. Subsequent works like MonST3R (Zhang
 112 et al., 2024), CUT3R (Wang et al., 2025d), and SpatialTrackerV2 (Xiao et al., 2025) have fine-tuned
 113 or extended DUS3R or VGGT to better handle dynamic content.

114 While the above methods provide camera and geometry information, representing the dynamic scene
 115 itself has been revolutionized by 3D Gaussian Splatting (Kerbl et al., 2023). Many 4D extensions
 116 learn to deform Gaussians implicitly over time (Jung et al., 2023; Katsumata et al., 2023; Wu et al.,
 117 2024; Luiten et al., 2024; Li et al., 2024; Lu et al., 2024; Lei et al., 2024a; Guo et al., 2024; Qian
 118 et al., 2024; Bae et al., 2024; LIU et al., 2025; Wu et al., 2025), which excels at capturing complex,
 119 non-rigid motion but offers no explicit control over an object’s underlying structure. Although some
 120 methods learn dense tracks by reconstructing videos (Wang et al., 2025c; Lei et al., 2024b), they do
 121 not model the articulated object and cannot reconstruct interactive assets from it. Attempts to add
 122 control via superpoints (Huang et al., 2024) or physics engines (Xie et al., 2024; Jiang et al., 2024)
 123 have been made, but they either fail to extract accurate physical parameters or require impractical
 124 priors. VideoArtGS bridges this gap by integrating an explicit articulation model directly into the
 125 deformable Gaussian framework, enabling high-fidelity reconstruction for articulated objects.

126 2.2 ARTICULATED OBJECT RECONSTRUCTION

130 Reconstructing articulated objects presents a dual challenge: one must solve for both the part-level
 131 geometry and the underlying articulation parameters. One family of methods employs end-to-end
 132 models to predict both part segmentation and joint parameters (Heppert et al., 2023; Wei et al., 2022;
 133 Kawana et al., 2021; Mandi et al., 2024; Jiang et al., 2022; Ma et al., 2023; Nie et al., 2022; Hsu
 134 et al., 2023; Goyal et al., 2025; Xia et al., 2024), while some similar methods only predict articulation
 135 parameters (Hu et al., 2017; Yi et al., 2018; Li et al., 2020; Wang et al., 2019; Sun et al., 2023; Liu
 136 et al., 2022; Weng et al., 2021; Sturm et al., 2011; Chu et al., 2023; Martín-Martín et al., 2016; Liu
 137 et al., 2023c; Gadre et al., 2021; Mo et al., 2021; Jain et al., 2021; Yan et al., 2020; Lei et al., 2023).
 138 Their fundamental limitation, however, is a reliance on large, annotated datasets, which prevents
 139 them from generalizing to unseen object categories. The dominant paradigm relies on multi-view
 140 observations at discrete multi-state (Liu et al., 2025; Tseng et al., 2022; Mu et al., 2021; Lewis et al.,
 141 2022; Liu et al., 2023a; Lei et al., 2024a; Deng et al., 2024; Swaminathan et al., 2024; Noguchi
 142 et al., 2022; Zhang et al., 2021; Pillai et al., 2015; Liu et al., 2023b; Wang et al., 2025a; Lewis
 143 et al., 2025; Zhang & Lee, 2025). These methods leverage strong geometric constraints, which
 144 simplify the problem but require impractical and controlled data capture setups. A more practical
 145 but far more challenging setting is reconstruction from a monocular video. Existing video-based
 146 methods are typically limited to simple objects (Song et al., 2024; Peng et al., 2025) or rely on a
 147 pre-trained segmentation model that has limited generalization ability (Zhou et al., 2025). In contrast,
 148 VideoArtGS is designed for this challenging setting. By introducing a robust motion prior guidance
 149 pipeline, we effectively disentangle the scene dynamics and transform the ill-posed problem into a
 150 tractable one, achieving state-of-the-art results where prior methods have struggled.

151 3 METHOD

154 Given a monocular video sequence $\{I_t\}_{t=1}^T$, VideoArtGS reconstructs articulated objects with part
 155 meshes \mathcal{M} and articulation parameters Ψ . We first use the VGGT (Wang et al., 2025b) trained
 156 for dynamic scenes from SpatialTrackerV2 (Xiao et al., 2025) to estimate the depths and camera
 157 poses, and then reconstruct the object with 3D Gaussians $\mathcal{G} = \{G_i\}_{i=1}^N$ and an articulation-based
 158 deformation field \mathcal{F} . This field contains a part segmentation module S_ϕ and articulation parameters Ψ
 159 (including axis directions d , axis origins o , and time-variant joint states θ_t) that control the dynamics
 160 of each part. We also introduce motion prior from a pre-trained tracking model TAPIP3D (Zhang
 161 et al., 2025) to guide the initialization and optimization of the deformation field. An overview of
 162 VideoArtGS is presented in Fig. 1, with details on key designs provided in the following sections.

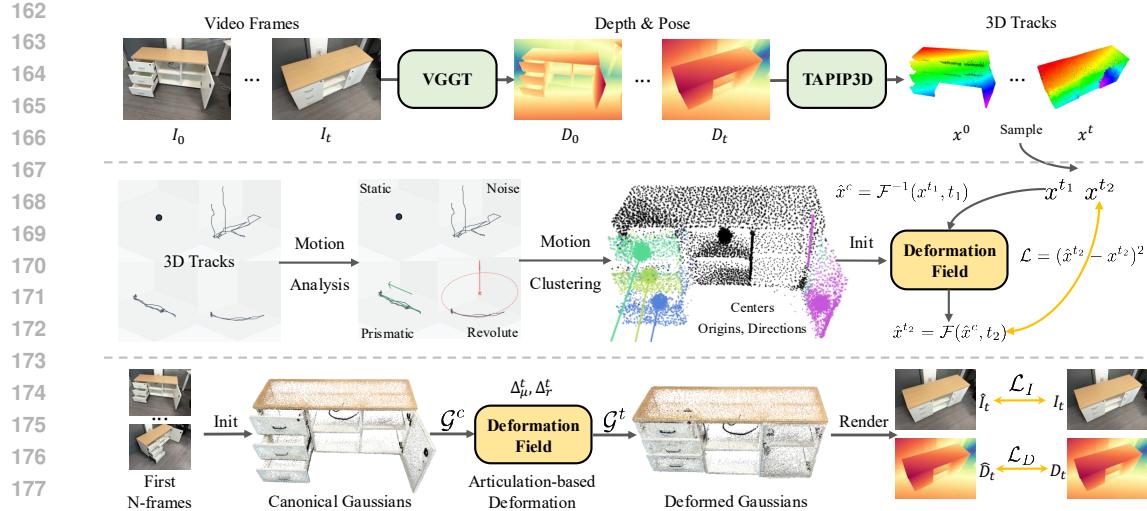


Figure 1: **The overview of VideoArtGS.** Given video frames, we first use VGGT (Wang et al., 2025b) to estimate the depths along with camera poses and then use TAPIP3D (Zhang et al., 2025) to obtain 3D tracks. We design a motion prior guidance pipeline to analyze and group these tracks, initializing our articulation-based deformation field with motion information and optimizing it with tracking loss. Finally, we reconstruct the object with 3D Gaussians and the deformation field, jointly optimizing both modules by rendering and tracking loss.

3.1 ARTICULATION-BASED DEFORMATION FIELD

To model the temporal dynamics of an articulated object, we formulate an articulation-based deformation field \mathcal{F} that transforms a set of canonical Gaussians $G_i^c = \{\mu_i^c, r_i^c, s_i, \sigma_i, h_i\}$ into the observation state $G_i^t = \{\mu_i^t, r_i^t, s_i, \sigma_i, h_i\}$ for any given time t . Since articulation is a rigid process, the intrinsic properties of each Gaussian—its scale (s_i^c), opacity (σ_i^c), and appearance (h_i^c)—are treated as time-invariant, while its position (μ_i^t) and rotation (r_i^t) are time-variant. Following ArtGS (Liu et al., 2025), VideoArtGS first assigns each Gaussian to object parts through a segmentation module $S_\phi(\cdot)$ and then applies the corresponding rigid transformation for each part:

$$\mathbf{m}_i = S_\phi(G_i^c), \quad G_i^t = \sum_{k=1}^K m_{ik} \cdot \mathcal{T}_k^t(G_i^c) \quad (1)$$

where $\mathbf{m}_i = [m_{i1}, \dots, m_{iK}]$ represents the assignment probabilities of i -th Gaussian to K parts, and \mathcal{T}_k^t denotes the rigid transformation for k -th part at time t . The number of movable parts and joint types (revolute or prismatic) could be obtained by GPT4-o (Hurst et al., 2024). We provide more details of articulation modeling in Appendix A.3.

Hybrid Center-grid Part Assignment To effectively assign Gaussians to articulable parts, ArtGS (Liu et al., 2025) proposes a center-based part assignment module that segments parts using the Mahalanobis distance between Gaussians and learnable centers. However, this approach faces limitations when the static base part has complex geometries. A simple but key observation is that static regions remain fixed in space. Unlike movable parts that naturally form distinct motion clusters, the static base part is better characterized by its fixed spatial volume rather than a movable center. We therefore propose a hybrid center-grid part assignment module that combines two strategies. For the $K - 1$ movable parts, we define learnable part centers $C_k = (\mathbf{p}_k, \mathbf{V}_k, \boldsymbol{\lambda}_k)$ with center location $\mathbf{p}_k \in \mathbb{R}^3$, rotation matrix $\mathbf{V}_k \in \mathbb{R}^{3 \times 3}$, and scale vector $\boldsymbol{\lambda}_k \in \mathbb{R}^3$. For the static base part, we use a learnable hash grid H to model its spatial region directly. Given the canonical position μ_i^c of a Gaussian G_i^c , we compute its assignment probabilities \mathbf{m}_i by fusing scores from both models. First, we compute the squared Mahalanobis distance $D_{i,k}$ to each of the $K - 1$ movable part centers:

$$\mathbf{D}_{i,k} = \left(\frac{\mathbf{V}_k(\mu_i^c - \mathbf{p}_k)}{\boldsymbol{\lambda}_k} \right)^\top \left(\frac{\mathbf{V}_k(\mu_i^c - \mathbf{p}_k)}{\boldsymbol{\lambda}_k} \right) + \Delta_{i,k}, \quad (2)$$

where $\Delta_{i,k}$ is a residual term for improving boundary identification that is introduced by ArtGS (Liu et al., 2025). Simultaneously, we query the hash grid at the Gaussian's position to get a feature vector,

which is processed by a small MLP to produce a single logit, $l_i = \text{MLP}(H(\mu_i^c))$, representing the "staticness" score. The final assignment probabilities $\mathbf{m}_i \in \mathbb{R}^K$ are obtained by concatenating the static logit with the negative distances of the movable parts and applying a softmax function:

$$\mathbf{m}_i = \text{Softmax}(\text{concat}([l_i, -\mathbf{D}_{i,1}, \dots, -\mathbf{D}_{i,K-1}])). \quad (3)$$

This hybrid formulation enables robust segmentation by leveraging both structured geometric relationships for movable parts and flexible spatial modeling for complex static regions.

3.2 MOTION PRIOR GUIDANCE

We use a pre-trained tracking model TAPIP3D (Zhang et al., 2025) to obtain 3D tracking trajectories, providing a motion prior to guide the initialization and optimization of the deformation field.

Motion Pattern Analysis. To identify noises and extract motion information from tracking trajectories, we first analyze the motion pattern of each trajectory and divide all trajectories into 4 classes: static, prismatic, revolute, and noise. If the maximum displacement distance of the i -th trajectory $\{\mathbf{x}_i^t\}_{t=1}^T$ is below a threshold ϵ_s , it is classified as a static trajectory. For the remaining dynamic trajectories, we use line fitting and circle fitting to identify the motion type and motion parameters. A main challenge is that all points remain static for most of the time and move for only a short period of time, which is particularly prominent for objects with multiple parts. Many points are concentrated in the same area, leading to the fitting collapse. To deal with this problem, we design an adaptive spatial downsampling approach. Specifically, we first voxelize each trajectory, and then retain only one point in each voxel. To handle different ranges of trajectories, we dynamically adjust the voxel size based on the range of the trajectory. After downsampling, we use the remaining points to fit the trajectory.

For prismatic motion, we use Principal Component Analysis (PCA) for line fitting, combined with the RANSAC algorithm to improve robustness. For revolute motion, we first fit the best plane, then fit a circle on that plane. We use Singular Value Decomposition (SVD) to find the normal vector and verify whether the trajectory conforms to rigid rotation. If the line/circle fitting error of a trajectory is less than pre-defined thresholds ϵ_l/ϵ_c , it is considered a valid track; otherwise, it is treated as a noise track. For a valid track, we prioritize models with smaller fitting errors. The above process also provides the direction of prismatic trajectories and the direction and origin of revolute trajectories.

Motion Clustering. Given valid trajectories with their motion type and motion parameters, we construct feature vectors and then use K-means clustering to group trajectories into different parts. For prismatic motion, the feature vector contains starting position, average position, motion direction, and normalized velocity. For revolute motion, the feature vector contains starting position, average position, axis direction, axis origin, and angular velocity. To improve clustering quality, we adopt an iterative filtering strategy, combining directional angle filtering and Euclidean distance filtering to remove outliers. Finally, we generate articulation information for core parameters initialization of the deformation field \mathcal{F} , including the axis direction \mathbf{d} , axis origin \mathbf{o} , and part centers \mathbf{p} .

Deformation Field Initialization. We randomly initialize the remaining parameters of \mathcal{F} and then use the tracking trajectories to optimize them. We design two different losses \mathcal{L}_{c2o} and \mathcal{L}_{o2o} to optimize the deformation field. \mathcal{L}_{c2o} is the canonical-to-observation loss, which provides direct supervision for the deformation from canonical state to the observation state:

$$\hat{\mathbf{x}}_i^t = \mathcal{F}(\mathbf{x}_i^c, t), \quad \mathcal{L}_{c2o} = \frac{1}{N} \sum_{i=1}^N (\mathbf{x}_i^t - \hat{\mathbf{x}}_i^t)^2, \quad (4)$$

where $\mathbf{x}_i^c, \mathbf{x}_i^t$ are point positions sampled from trajectory $\{\mathbf{x}_i^t\}_{t=1}^T$. \mathcal{L}_{o2o} is the observation-to-observation loss, which enhances temporal consistency between two observation states t_0 and t_1 :

$$\hat{\mathbf{x}}_i^c = \mathcal{F}^{-1}(\mathbf{x}_i^{t_0}, t_0), \quad \hat{\mathbf{x}}_i^{t_1} = \mathcal{F}(\hat{\mathbf{x}}_i^c, t_1), \quad \mathcal{L}_{o2o} = \frac{1}{N} \sum_{i=1}^N (\mathbf{x}_i^{t_1} - \hat{\mathbf{x}}_i^{t_1})^2, \quad (5)$$

where \mathcal{F}^{-1} is the inverted deformation field of \mathcal{F} and \mathcal{F}^{-1} shares the same parameters with \mathcal{F} . See Appendix A.4 for details of the inverse deformation field. We randomly sample pairs of tracking trajectories at time (c, t) for \mathcal{L}_{c2o} and (t_0, t_1) within a 30-frame window for \mathcal{L}_{o2o} to robustly optimize \mathcal{F} . The final tracking loss could be calculated by:

$$\mathcal{L}_{\text{track}} = \mathcal{L}_{c2o} + \mathcal{L}_{o2o}. \quad (6)$$

270 3.3 OPTIMIZATION
271

272 To reconstruct high-quality geometry of objects, we assume the object remains static in the first
273 N frames and initialize canonical Gaussians \mathcal{G}^c with these frames. We train \mathcal{G}^c with the rendering
274 loss $\mathcal{L}_{\text{render}} = (1 - \lambda_{\text{SSIM}})\mathcal{L}_1 + \lambda_{\text{SSIM}}\mathcal{L}_{\text{D-SSIM}} + \mathcal{L}_D$ used in ArtGS (Liu et al., 2025), where $\mathcal{L}_D =$
275 $\log(1 + \|\mathbf{D} - \bar{\mathbf{D}}\|_1)$ is a depth loss. After initializing the deformation field \mathcal{F} and canonical
276 Gaussians \mathcal{G}^c , we jointly optimize \mathcal{F} and \mathcal{G}^c across all video frames and tracking trajectories with
277 rendering loss $\mathcal{L}_{\text{render}}$ and canonical-to-observation tracking loss \mathcal{L}_{c2o} :

$$278 \quad \mathcal{L} = \mathcal{L}_{\text{render}} + \lambda_{c2o}\mathcal{L}_{c2o}. \quad (7)$$

279 We provide more implementation and model training details in Appendix A.

280 281 4 EXPERIMENTS
282

283 **Datasets** We conduct a comprehensive evaluation on two distinct datasets to assess the performance
284 of existing methods on objects with varying articulation complexity. (1) Video2Articulation-S, a
285 dataset proposed by (Peng et al., 2025), which serves as our benchmark for simple articulated objects.
286 It consists of 73 test videos across 11 categories of synthetic objects from the PartNet-Mobility
287 dataset (Xiang et al., 2020), where each object has only a single movable part. (2) VideoArtGS-20,
288 a newly curated dataset that evaluates the performance on more complex scenarios. It contains
289 20 videos of complex articulated objects of 10 categories from PartNet-Mobility, featuring more
290 challenging kinematics with 2 to 9 movable parts per object.

291 **Metrics** Our evaluation protocol includes metrics for both articulation estimation and mesh recon-
292 struction quality. For articulation estimation, we measure axis direction error (deg), axis position
293 error (cm), and joint state error (deg for revolute joints, cm for prismatic joints) between the predicted
294 and ground-truth joint parameters. For mesh reconstruction, we assess geometric accuracy using the
295 bi-directional Chamfer Distance (CD). This is computed between the reconstructed mesh and the
296 ground-truth mesh, using 10,000 points uniformly sampled from each surface. We report the CD (in
297 cm) for the whole object (CD-w), the static part (CD-s), and the movable parts (CD-m).

298 299 4.1 RESULTS ON SIMPLE ARTICULATED OBJECTS
300

301 **Experimental Setup** For this benchmark, we use the Video2Articulation-S dataset. We perform a
302 quantitative comparison against three state-of-the-art methods: ArticulateAnything (Le et al., 2025),
303 RSRD (Kerr et al., 2024), and Video2Articulation (Peng et al., 2025). Following the standard
304 evaluation protocol established by Video2Articulation (Peng et al., 2025), all metrics are reported
305 as the mean and standard deviation (mean \pm std) across all test videos, and articulation estimation
306 metrics are divided into revolute and prismatic. For a fair and direct comparison, our experimental
307 setup utilizes ground-truth depth and camera poses, and the results for all baseline methods are taken
308 directly from Video2Articulation (Peng et al., 2025). To ensure consistency with our evaluation,
309 we have converted their reported metrics from meters (m) to centimeters (cm) and from radians to
310 degrees. We also retrain and evaluate VideoArtGS on this dataset.

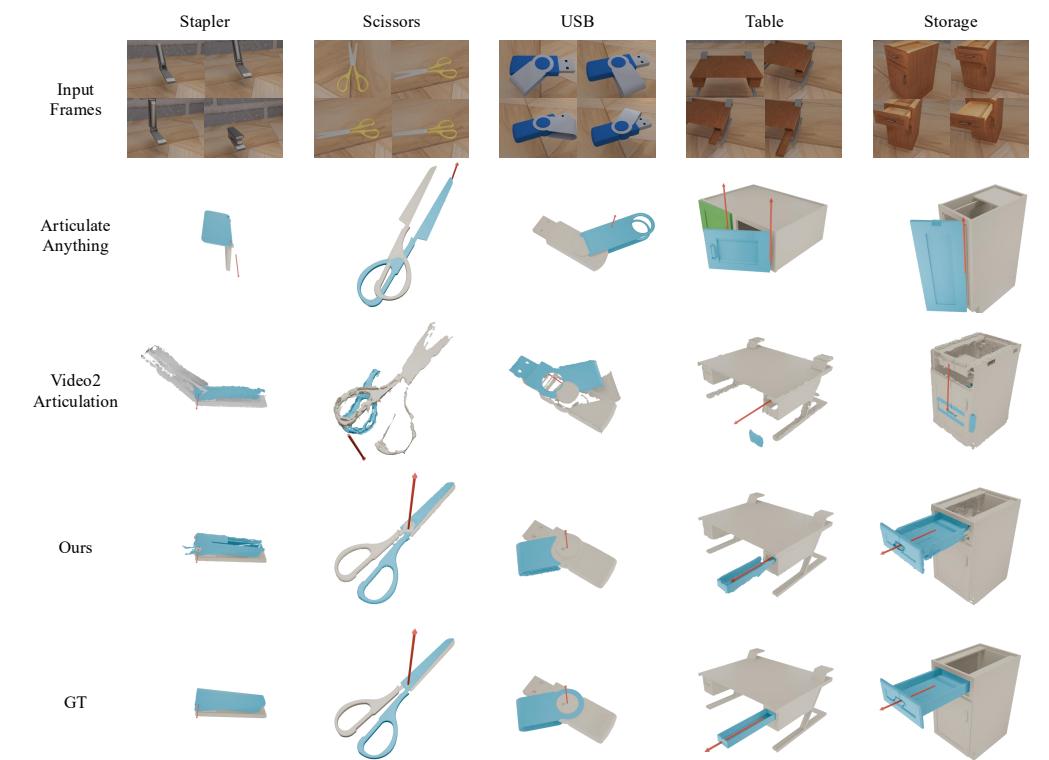
311 **Results and Analysis** The quantitative results, presented in Tab. 1, demonstrate that our method
312 substantially outperforms all baseline approaches across all metrics. The most significant gains are
313 in joint parameter estimation, where VideoArtGS achieves an order-of-magnitude reduction in error
314 compared to the second-best method, Video2Articulation. This dramatic increase in accuracy is
315 primarily attributable to our motion prior guidance, which provides an accurate starting point for
316 optimization that prior methods lack. Our method also achieves a new state of the art in reconstruction
317 quality. The exceptional improvements on both movable parts and the static part validate the
318 effectiveness of VideoArtGS. As illustrated in Fig. 2, our method consistently produces high-fidelity
319 mesh reconstructions with clean part boundaries and precise articulation. This demonstrates the
320 robustness and high quality of our approach across the diverse object categories.

321 322 4.2 RESULTS ON COMPLEX ARTICULATED OBJECTS
323

Experimental Setup We conduct an evaluation on our newly curated VideoArtGS-20 dataset,
324 which contains complex, multi-part objects. We compare our method against current state-of-the-

324
 325 **Table 1: Quantitative evaluation on Video2Articulation-S dataset.** Metrics are reported as mean \pm std over
 326 all test videos. Lower (\downarrow) is better on all metrics, and the **best results** are highlighted in bold. † means the results
 327 are taken from VideoArticulation (Peng et al., 2025).

Method	Revolute Joint Estimation			Prismatic Joint Estimation		Reconstruction		
	Axis (\circ)	Position (cm)	State (\circ)	Axis (deg)	State (cm)	CD-w (cm)	CD-m (cm)	CD-s (cm)
ArticulateAnything † (Le et al., 2025)	46.98 \pm 45.27	81.00 \pm 40.00	N/A	52.71 \pm 44.69	N/A	11.00 \pm 22.00	59.00 \pm 73.00	7.00 \pm 18.00
RSRD † (Kerr et al., 2024)	67.06 \pm 29.22	203.00 \pm 748.00	59.02 \pm 34.38	69.91 \pm 24.07	70.00 \pm 48.00	339.00 \pm 2147.00	82.00 \pm 117.00	14.00 \pm 41.00
Video2Articulation † (Peng et al., 2025)	18.34 \pm 32.09	13.00 \pm 25.00	14.32 \pm 26.35	13.75 \pm 18.91	8.00 \pm 22.00	1.00 \pm 1.00	13.00 \pm 26.00	6.00 \pm 19.00
Video2Articulation (Peng et al., 2025)	13.83 \pm 28.15	11.55 \pm 22.39	10.25 \pm 21.27	14.37 \pm 19.08	3.44 \pm 6.25	3.45 \pm 16.46	12.21 \pm 24.44	5.39 \pm 17.09
Ours	0.32\pm0.44	0.42\pm0.75	1.15\pm2.29	0.35\pm0.45	1.03\pm2.46	0.29\pm0.24	0.40\pm0.32	1.11\pm2.11



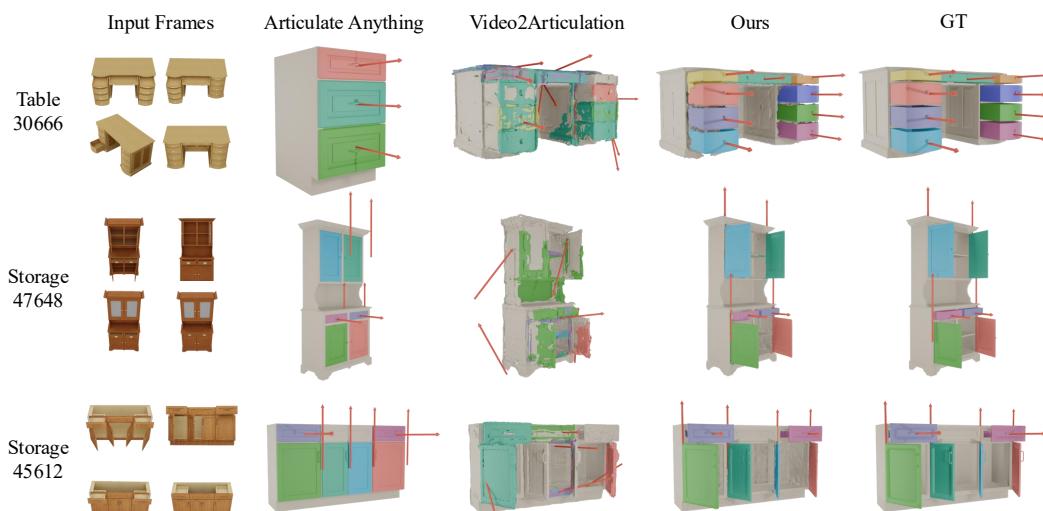
358 **Figure 2: Qualitative results on Video2Articulation-S dataset.** We present reconstruction comparisons
 359 between baselines and our model on the Video2Articulation-S dataset.

360
 361 art methods ArticulateAnything (Le et al., 2025) and Video2Articulation (Peng et al., 2025). As
 362 RSRD (Kerr et al., 2024) failed to correctly segment parts, we don't use it as a baseline. All metrics
 363 are averaged across all parts and reported as mean \pm std over all objects. A critical limitation of prior
 364 work is that Video2Articulation (Peng et al., 2025) is designed only for a single movable part. To
 365 establish a baseline, we extend it to multi-part objects: we manually isolate video segments where
 366 only a single part is in motion and then merge the moving map to extract multiple part meshes.

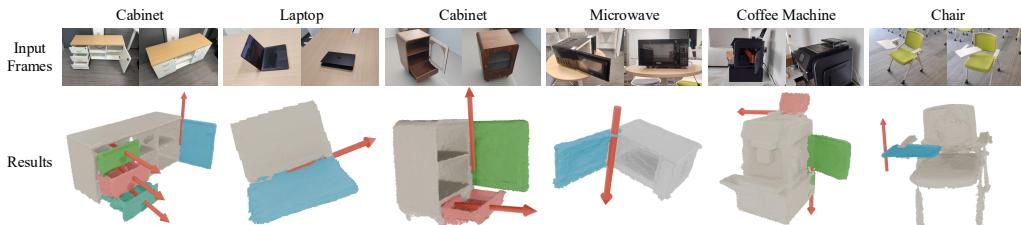
367
 368 **Results and Analysis** On the complex, multi-part VideoArtGS-20 dataset, our method's advan-
 369 tages become even more pronounced. Compared to Video2Articulation-S, VideoArtGS-20 has larger
 370 camera motion and includes more moving parts, posing a greater challenge to existing baselines.
 371 As shown in Fig. 3, Video2Articulation struggles to accurately segment moving parts, while Ar-
 372 ticulateAnything often retrieves incorrect parts. As demonstrated in Tab. 2, VideoArtGS achieves
 373 state-of-the-art performance, drastically outperforming baselines in this complex multi-part setting.
 374 It is critical to note that the retrieval database of ArticulateAnything (Le et al., 2025) contains the
 375 ground-truth meshes and joints from PartNet-Mobility, the same source as our test data. Despite
 376 this near-oracle condition for the baseline, our method still reduces articulation estimation errors by
 377 nearly two orders of magnitude and excels at mesh reconstruction where baselines fail. These results
 378 confirm that VideoArtGS's advantages generalize from simple to complex scenarios, providing a
 379 robust and scalable solution for reconstructing articulated objects from monocular video.

378
379 Table 2: **Quantitative evaluation on VideoArtGS-20 dataset.** Metrics are reported as mean \pm std over all test
380 videos. Lower (↓) is better on all metrics, and the **best results** are highlighted in bold.
381

Method	Axis (°)	Position(cm)	CD-w (cm)	CD-m (cm)	CD-s (cm)
ArticulateAnything (Le et al., 2025)	43.65 \pm 44.72	15.66 \pm 36.20	16.10 \pm 37.34	17.66 \pm 36.74	16.04 \pm 37.36
Video2Articulation (Peng et al., 2025)	48.88 \pm 24.18	37.04 \pm 31.82	5.07 \pm 21.78	30.63 \pm 25.64	10.22 \pm 22.23
Ours	0.34\pm0.80	0.10\pm0.10	0.09\pm0.09	0.26\pm0.61	0.24\pm0.58



402 Figure 3: **Qualitative results on VideoArtGS-20 dataset.** We present reconstruction comparisons between
403 baselines and our model on the VideoArtGS-20 dataset.
404



412 Figure 4: **Qualitative results on real-world data.** We present reconstruction results of our model on real-world
413 data, including both simple two-part and complex multi-part objects.
414

4.3 RESULTS ON REAL-WORLD DATA

417 **Experimental Setup** We also validate the effectiveness of VideoArtGS on real-world data. We
418 capture monocular videos using a mobile phone camera without LiDAR. We use articulated objects
419 of different categories with different numbers of joints to verify the generalization ability of our
420 method. The input to our model is solely the monocular RGB video.
421

422 **Results and Analysis** As shown in Fig. 4, our VideoArtGS successfully reconstructs a diverse set
423 of articulated objects from self-captured, real-world monocular videos, building digital twins with
424 high-fidelity geometry and accurate articulation parameters. VideoArtGS effectively decouples the
425 object’s geometry from its time-varying motion, enabling the creation of a controllable digital asset,
426 fulfilling the promise of creating truly interactable digital twins from casual video captures.
427

4.4 ABLATION STUDIES

430 **Experimental Setup** To validate the effectiveness of each component in our method, we conduct
431 comprehensive ablation studies on the VideoArtGS-20 dataset. We systematically remove different
432 components and analyze their impact on performance, with all metrics reported as mean \pm std.
433

432
 433 Table 3: **Ablation studies on VideoArtGS-20 dataset.** Lower (↓) is better on all metrics, and the **best results**
 434 are highlighted in bold.

Method	Axis (°)	Position (cm)	CD-w (cm)	CD-m (cm)	CD-s (cm)
Ours	0.34±0.80	0.10±0.10	0.09±0.09	0.26±0.61	0.24±0.58
w/o motion prior	55.28±15.49	23.74±17.49	10.18±29.94	87.77±17.02	14.37±29.69
w/o center init	20.64±21.64	22.42±25.03	10.33±29.90	83.32±14.06	14.07±29.80
w/o deform init	3.96±3.73	2.45±3.07	0.11±0.12	1.50±2.71	0.72±2.05
w/o axis init	0.60±1.26	0.86±2.58	0.09±0.09	0.25±0.56	0.27±0.74
w/o hybrid	1.21±1.77	2.51±10.47	0.15±0.29	10.35±23.84	0.50±1.08
w/o \mathcal{L}_{o2o}	0.68±1.55	0.57±1.85	0.11±0.12	0.58±1.03	0.27±0.65
w/o \mathcal{L}_{c2o}	0.40±0.79	0.13±0.11	0.09±0.10	0.35±0.86	0.26±0.70

446
 447 **Results and Analysis** The results, summarized in Tab. 3, systematically deconstruct our model’s
 448 performance and validate the critical role of our core design choices.

- 449 • *Motion Prior Guidance.* The most profound impact comes from removing the entire motion prior
 450 guidance (w/o motion prior), including the initialization of centers, joint axes, and deformation
 451 field, which results in a catastrophic failure of the model. This unequivocally confirms our central
 452 hypothesis: without a strong initial estimate derived from motion cues, the optimization problem of
 453 complex articulated objects is intractable.
- 454 • *Initialization of components.* Removing the part centers initialization (w/o center init) leads to
 455 a complete failure, underscoring the necessity of establishing a correct spatial anchor for each
 456 part before optimizing its motion. Removing the deformation field initialization (w/o deform init)
 457 causes a notable but not catastrophic performance drop, particularly on movable part reconstruction.
 458 Interestingly, removing the axis initialization (w/o axis init) yields a marginal drop in articulation
 459 estimation and has a minimal effect on reconstruction. This suggests that the framework is robust
 460 enough to find the correct axis if the part centers and correspondences are well-initialized, though
 461 direct initialization remains beneficial for stability and performance.
- 462 • *Hybrid Center-Grid Assignment.* Replacing the hybrid center-grid assignment module with the
 463 center-based assignment module (w/o hybrid) leads to moderate performance drops, especially
 464 for the reconstruction of movable parts and articulation estimation. This result highlights that our
 465 hybrid assignment is essential for correctly segmenting parts and learning articulation dynamics.
- 466 • *Tracking Losses.* Disabling the observation-to-observation tracking loss (w/o \mathcal{L}_{o2o}) degrades
 467 performance more than disabling the direct canonical-to-observation loss (w/o \mathcal{L}_{c2o}). This indicates
 468 that enforcing temporal consistency directly on the observation space is a more critical constraint
 469 for achieving precise and stable joint estimation.

470 These ablation results confirm that our method’s success relies on the synergistic combination of all
 471 components. The results unequivocally demonstrate that the motion prior guidance and the hybrid
 472 part assignment are the two foundational pillars enabling our method’s success. The remaining
 473 components, while having a smaller individual impact, contribute synergistically to the stability and
 474 precision of the final result, solidifying the robustness of our overall framework.

475 5 CONCLUSION

476
 477 In conclusion, we introduce VideoArtGS, a novel method that reconstructs high-fidelity articulated
 478 objects from a monocular video. We solve the fundamentally ill-posed challenge by introducing a
 479 motion prior guidance pipeline, leveraging 3D tracks to provide robust initialization and optimization
 480 of the deformation field. Combined with a hybrid center-grid assignment module for accurate part
 481 segmentation, VideoArtGS achieves a new state of the art, reducing key error metrics by up to two
 482 orders of magnitude and validating on our new, challenging VideoArtGS-20 benchmark. While
 483 VideoArtGS sets a new performance benchmark, its reliance on upstream trackers, pose estimators,
 484 and the necessity of visible motion in the video present avenues for future work. Promising directions
 485 include developing end-to-end models that jointly learn tracking and reconstruction or integrating
 486 physical priors to handle more challenging, motion-scarce scenarios.

486 **Reproducibility Statement** We re-executed all experiments before submission to ensure repro-
 487 ducibility and consistency of our results. Detailed implementation and training procedures are
 488 provided in the appendix. Upon paper acceptance, we will release all code, data, and model weights
 489 publicly. The planned code release will include training scripts, evaluation protocols, and detailed
 490 documentation to facilitate easy reproduction of all experimental results.
 491

492 **REFERENCES**
 493

494 Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang, and Youngjung Uh. Per-
 495 gaussian embedding-based deformation for deformable 3d gaussian splatting. *arXiv preprint*
 496 *arXiv:2404.03613*, 2024. 3

497 Ruihang Chu, Zhengzhe Liu, Xiaoqing Ye, Xiao Tan, Xiaojuan Qi, Chi-Wing Fu, and Jiaya Jia.
 498 Command-driven articulated object understanding and manipulation. In *Proceedings of Conference*
 499 *on Computer Vision and Pattern Recognition (CVPR)*, 2023. 3

500 Jianning Deng, Kartic Subr, and Hakan Bilen. Articulate your nerf: Unsupervised articulated object
 501 modeling via conditional view synthesis. *arXiv preprint arXiv:2406.16623*, 2024. 1, 3

503 Samir Yitzhak Gadre, Kiana Ehsani, and Shuran Song. Act the part: Learning interaction strategies
 504 for articulated object part discovery. In *Proceedings of International Conference on Computer*
 505 *Vision (ICCV)*, 2021. 3

506 Pradyumn Goyal, Dmitry Petrov, Sheldon Andrews, Yizhak Ben-Shabat, Hsueh-Ti Derek Liu, and
 507 Evangelos Kalogerakis. Geopard: Geometric pretraining for articulation prediction in 3d shapes.
 508 *arXiv preprint arXiv:2504.02747*, 2025. 3

510 Zhiyang Guo, Wengang Zhou, Li Li, Min Wang, and Houqiang Li. Motion-aware 3d gaussian
 511 splatting for efficient dynamic scene reconstruction. *arXiv preprint arXiv:2403.11447*, 2024. 3

512 Nick Heppert, Muhammad Zubair Irshad, Sergey Zakharov, Katherine Liu, Rares Andrei Ambrus,
 513 Jeannette Bohg, Abhinav Valada, and Thomas Kollar. Carto: Category and joint agnostic recon-
 514 struction of articulated objects. In *Proceedings of Conference on Computer Vision and Pattern*
 515 *Recognition (CVPR)*, 2023. 3

517 Cheng-Chun Hsu, Zhenyu Jiang, and Yuke Zhu. Ditto in the house: Building articulation models
 518 of indoor scenes through interactive perception. In *Proceedings of International Conference on*
 519 *Robotics and Automation (ICRA)*, 2023. 3

520 Ruizhen Hu, Wenchao Li, Oliver Van Kaick, Ariel Shamir, Hao Zhang, and Hui Huang. Learning to
 521 predict part mobility from a single static snapshot. *ACM Transactions on Graphics (TOG)*, 36(6):
 522 1–13, 2017. 3

524 Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs:
 525 Sparse-controlled gaussian splatting for editable dynamic scenes. In *Proceedings of Conference on*
 526 *Computer Vision and Pattern Recognition (CVPR)*, 2024. 3

527 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 528 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 529 *arXiv:2410.21276*, 2024. 4

531 Ajinkya Jain, Rudolf Lioutikov, Caleb Chuck, and Scott Niekum. Screwnet: Category-independent ar-
 532 ticulation model estimation from depth images using screw theory. In *Proceedings of International*
 533 *Conference on Robotics and Automation (ICRA)*, 2021. 3

534 Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen Li, Henry Lau,
 535 Feng Gao, Yin Yang, et al. Vr-gs: a physical dynamics-aware interactive gaussian splatting system
 536 in virtual reality. In *ACM SIGGRAPH 2024 Conference Papers*, 2024. 3

538 Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto: Building digital twins of articulated objects
 539 from interaction. In *Proceedings of Conference on Computer Vision and Pattern Recognition*
 540 *(CVPR)*, 2022. 1, 3

540 HyunJun Jung, Nikolas Brasch, Jifei Song, Eduardo Perez-Pellitero, Yiren Zhou, Zhihao Li, Nassir
 541 Navab, and Benjamin Busam. Deformable 3d gaussian splatting for animatable human avatars.
 542 *arXiv preprint arXiv:2312.15059*, 2023. 3

543 Kai Katsumata, Duc Minh Vo, and Hideki Nakayama. An efficient 3d gaussian representation for
 544 monocular/multi-view dynamic scenes. *arXiv preprint arXiv:2311.12897*, 2023. 3

545 Yuki Kawana, Yusuke Mukuta, and Tatsuya Harada. Unsupervised pose-aware part decomposition
 546 for 3d articulated objects. *arXiv preprint arXiv:2110.04411*, 2021. 3

547 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
 548 for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023. 3, 16

549 Justin Kerr, Chung Min Kim, Mingxuan Wu, Brent Yi, Qianqian Wang, Ken Goldberg, and Angjoo
 550 Kanazawa. Robot see robot do: Imitating articulated object manipulation with monocular 4d
 551 reconstruction. In *Conference on Robot Learning (CoRL)*, 2024. 1, 2, 6, 7

552 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 553 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings
 554 of International Conference on Computer Vision (ICCV)*, 2023. 20, 23

555 Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue Yang, Yecheng Jason Ma, Kyle Vedder,
 556 Arjun Krishna, Dinesh Jayaraman, and Eric Eaton. Articulate-anything: Automatic modeling
 557 of articulated objects via a vision-language foundation model. In *Proceedings of International
 558 Conference on Learning Representations (ICLR)*, 2025. 1, 6, 7, 8

559 Jiahui Lei, Congyue Deng, William B Shen, Leonidas J Guibas, and Kostas Daniilidis. Nap: Neural
 560 3d articulated object prior. 2023. 3

561 Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and Kostas Daniilidis. Gart: Gaussian
 562 articulated template models. In *Proceedings of Conference on Computer Vision and Pattern
 563 Recognition (CVPR)*, 2024a. 3

564 Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas, and Kostas Daniilidis. MoSca: Dynamic
 565 gaussian fusion from casual videos via 4D motion scaffolds. *arXiv preprint arXiv:2405.17421*,
 566 2024b. 3

567 Stanley Lewis, Jana Pavlasek, and Odest Chadwicke Jenkins. Narf22: Neural articulated radiance
 568 fields for configuration-aware rendering. In *Proceedings of International Conference on Intelligent
 569 Robots and Systems (IROS)*, 2022. 3

570 Stanley Lewis, Vishal Chandra, Tom Gao, and Odest Chadwicke Jenkins. Splatart: Articulated
 571 gaussian splatting with estimated object structure. *arXiv preprint arXiv:2506.12184*, 2025. 3

572 Xiaolong Li, He Wang, Li Yi, Leonidas J Guibas, A Lynn Abbott, and Shuran Song. Category-level
 573 articulated object pose estimation. In *Proceedings of Conference on Computer Vision and Pattern
 574 Recognition (CVPR)*, 2020. 3

575 Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
 576 dynamic view synthesis. In *Proceedings of Conference on Computer Vision and Pattern Recognition
 577 (CVPR)*, 2024. 3

578 Zhengqi Li, Richard Tucker, Forrester Cole, Qianqian Wang, Linyi Jin, Vickie Ye, Angjoo Kanazawa,
 579 Aleksander Holynski, and Noah Snavely. Megasam: Accurate, fast and robust structure and motion
 580 from casual dynamic videos. In *CVPR*, 2025. 3

581 Shengjie Lin, Jiading Fang, Muhammad Zubair Irshad, Vitor Campagnolo Guizilini, Rares Andrei
 582 Ambrus, Greg Shakhnarovich, and Matthew R Walter. Splat: Articulation estimation and part-level
 583 reconstruction with 3d gaussian splatting. *arXiv preprint arXiv:2506.03594*, 2025. 1

584 Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. Paris: Part-level reconstruction and motion
 585 analysis for articulated objects. In *Proceedings of International Conference on Computer Vision
 586 (ICCV)*, 2023a. 1, 3

594 Jiayi Liu, Manolis Savva, and Ali Mahdavi-Amiri. Survey on modeling of articulated objects. *arXiv*
 595 *preprint arXiv:2403.14937*, 2024a. 1
 596

597 Jiayi Liu, Hou In Ivan Tam, Ali Mahdavi-Amiri, and Manolis Savva. Cage: Controllable articulation
 598 generation. In *Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)*,
 599 2024b. 1

600 Jiayi Liu, Denys Iliash, Angel X Chang, Manolis Savva, and Ali Mahdavi-Amiri. Singapo: Single
 601 image controlled generation of articulated parts in objects. In *Proceedings of International*
 602 *Conference on Learning Representations (ICLR)*, 2025. 19
 603

604 Liu Liu, Han Xue, Wenqiang Xu, Haoyuan Fu, and Cewu Lu. Toward real-world category-level
 605 articulation pose estimation. *Proceedings of Transactions on Image Processing (TIP)*, 31:1072–
 606 1083, 2022. 3

607 Qingming LIU, Yuan Liu, Jiepeng Wang, Xianqiang Lyu, Peng Wang, Wenping Wang, and Junhui
 608 Hou. MoDGs: Dynamic gaussian splatting from casually-captured monocular videos with depth
 609 priors. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 610 <https://openreview.net/forum?id=2prShxdLkX>. 3

611

612 Shaowei Liu, Saurabh Gupta, and Shenlong Wang. Building rearticulable models for arbitrary 3d
 613 objects from 4d point clouds. In *Proceedings of Conference on Computer Vision and Pattern*
 614 *Recognition (CVPR)*, 2023b. 3

615 Xueyi Liu, Ji Zhang, Ruizhen Hu, Haibin Huang, He Wang, and Li Yi. Self-supervised category-
 616 level articulated object pose estimation with part-level se (3) equivariance. In *Proceedings of*
 617 *International Conference on Learning Representations (ICLR)*, 2023c. 3

618

619 Yu Liu, Baoxiong Jia, Ruijie Lu, Junfeng Ni, Song-Chun Zhu, and Siyuan Huang. Building
 620 interactable replicas of complex articulated objects via gaussian splatting. In *Proceedings of*
 621 *International Conference on Learning Representations (ICLR)*, 2025. 1, 3, 4, 6

622

623 Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Min Yang, Xiao Tang, Feng Zhu, and Yuchao Dai.
 624 3d geometry-aware deformable gaussian splatting for dynamic view synthesis. In *Proceedings of*
 625 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024. 3

626

627 Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
 628 Tracking by persistent dynamic view synthesis. In *Proceedings of International Conference on 3D*
 629 *Vision (3DV)*, 2024. 3

630

631 Rundong Luo, Haoran Geng, Congyue Deng, Puhao Li, Zan Wang, Baoxiong Jia, Leonidas Guibas,
 632 and Siyang Huang. Physpart: Physically plausible part completion for interactable objects. In
 633 *Proceedings of International Conference on Robotics and Automation (ICRA)*, 2025. 1

634

635 Liqian Ma, Jiaojiao Meng, Shuntao Liu, Weihang Chen, Jing Xu, and Rui Chen. Sim2real 2: Actively
 636 building explicit physics model for precise articulated object manipulation. In *Proceedings of*
 637 *International Conference on Robotics and Automation (ICRA)*, 2023. 3

638

639 Zhao Mandi, Yijia Weng, Dominik Bauer, and Shuran Song. Real2code: Reconstruct articulated
 640 objects via code generation. *arXiv preprint arXiv:2406.08474*, 2024. 1, 3

641

642 Roberto Martín-Martín, Sebastian Höfer, and Oliver Brock. An integrated approach to visual
 643 perception of articulated objects. In *Proceedings of International Conference on Robotics and*
 644 *Automation (ICRA)*, 2016. 3

645

646 Kaichun Mo, Leonidas J Guibas, Mustafa Mukadam, Abhinav Gupta, and Shubham Tulsiani.
 647 Where2act: From pixels to actions for articulated 3d objects. In *Proceedings of International*
 648 *Conference on Computer Vision (ICCV)*, 2021. 3

649

650 Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan Yuille, Nuno Vasconcelos, and Xiaolong Wang.
 651 A-sdf: Learning disentangled signed distance functions for articulated shape representation. In
 652 *Proceedings of International Conference on Computer Vision (ICCV)*, 2021. 3

648 Neil Nie, Samir Yitzhak Gadre, Kiana Ehsani, and Shuran Song. Structure from action: Learning
 649 interactions for articulated object 3d structure discovery. *arXiv preprint arXiv:2207.08997*, 2022.
 650 3

651 Atsuhiko Noguchi, Umar Iqbal, Jonathan Tremblay, Tatsuya Harada, and Orazio Gallo. Watch it
 652 move: Unsupervised discovery of 3d joints for re-posing of articulated objects. In *Proceedings of*
 653 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022. 3

654 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 655 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 656 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023. 20

657 Weikun Peng, Jun Lv, Cewu Lu, and Manolis Savva. Generalizable articulated object reconstruction
 658 from casually captured rgbd videos. *arXiv preprint arXiv:2506.08334*, 2025. 2, 3, 6, 7, 8, 20

659 Sudeep Pillai, Matthew R Walter, and Seth Teller. Learning articulated motions from visual demon-
 660 stration. *arXiv preprint arXiv:1502.01659*, 2015. 3

661 Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, and Siyu Tang. 3dgs-avatar:
 662 Animatable avatars via deformable 3d gaussian splatting. In *Proceedings of Conference on*
 663 *Computer Vision and Pattern Recognition (CVPR)*, 2024. 3

664 Chaoyue Song, Jiacheng Wei, Chuan Sheng Foo, Guosheng Lin, and Fayao Liu. Reacto: Reconstruct-
 665 ing articulated objects from a single video. In *Proceedings of Conference on Computer Vision and*
 666 *Pattern Recognition (CVPR)*, 2024. 2, 3

667 Jürgen Sturm, Cyrill Stachniss, and Wolfram Burgard. A probabilistic framework for learning
 668 kinematic models of articulated objects. *Journal of Artificial Intelligence Research*, 41, 2011. 3

669 Xiaohao Sun, Hanxiao Jiang, Manolis Savva, and Angel Xuan Chang. Opdmulti: Openable part
 670 detection for multiple objects. *arXiv preprint arXiv:2303.14087*, 2023. 3

671 Archana Swaminathan, Anubhav Gupta, Kamal Gupta, Shishira R Maiya, Vatsal Agarwal, and
 672 Abhinav Shrivastava. Leia: Latent view-invariant embeddings for implicit 3d articulation. *arXiv*
 673 *preprint arXiv:2409.06703*, 2024. 3

674 Tao Tang, Shijie Xu, Yiting Wu, and Zhixiang Lu. Causal-sam-llm: Large language models as causal
 675 reasoners for robust medical segmentation. *arXiv preprint arXiv:2507.03585*, 2025. 3

676 Zachary Teed and Jia Deng. DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D
 677 Cameras. *Advances in neural information processing systems*, 2021. 3

678 Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
 679 Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust
 680 manipulation. *arXiv preprint arXiv:2403.03949*, 2024. 1

681 Wei-Cheng Tseng, Hung-Ju Liao, Lin Yen-Chen, and Min Sun. Cla-nerf: Category-level articulated
 682 neural radiance field. In *Proceedings of International Conference on Robotics and Automation*
 683 (*ICRA*), 2022. 3

684 Haowen Wang, Xiaoping Yuan, Zhao Jin, Zhen Zhao, Zhengping Che, Yousong Xue, Jin Tian, Yakun
 685 Huang, and Jian Tang. Self-supervised multi-part articulated objects modeling via deformable
 686 gaussian splatting and progressive primitive segmentation. *arXiv preprint arXiv:2506.09663*,
 687 2025a. 3

688 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 689 Novotny. Vggt: Visual geometry grounded transformer. In *CVPR*, 2025b. 3, 4

690 Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape of
 691 motion: 4d reconstruction from a single video. *arXiv preprint arXiv:2407.13764*, 2024a. 2, 21

692 Qianqian Wang, Vickie Ye, Hang Gao, Weijia Zeng, Jake Austin, Zhengqi Li, and Angjoo Kanazawa.
 693 Shape of motion: 4d reconstruction from a single video. In *International Conference on Computer*
 694 *Vision (ICCV)*, 2025c. 3

702 Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Continuous
 703 3d perception model with persistent state. In *CVPR*, 2025d. 3
 704

705 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
 706 Geometric 3d vision made easy. In *Proceedings of Conference on Computer Vision and Pattern*
 707 *Recognition (CVPR)*, 2024b. 3

708 Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. Shape2motion:
 709 Joint analysis of motion parts and attributes from 3d shapes. In *Proceedings of Conference on*
 710 *Computer Vision and Pattern Recognition (CVPR)*, 2019. 3

711 Fangyin Wei, Rohan Chabra, Lingni Ma, Christoph Lassner, Michael Zollhöfer, Szymon
 712 Rusinkiewicz, Chris Sweeney, Richard Newcombe, and Mira Slavcheva. Self-supervised neural
 713 articulated shape and appearance models. In *Proceedings of Conference on Computer Vision and*
 714 *Pattern Recognition (CVPR)*, 2022. 3

715 Yijia Weng, He Wang, Qiang Zhou, Yuzhe Qin, Yueqi Duan, Qingnan Fan, Baoquan Chen, Hao Su,
 716 and Leonidas J Guibas. Captra: Category-level pose tracking for rigid and articulated objects from
 717 point clouds. In *Proceedings of International Conference on Computer Vision (ICCV)*, 2021. 3

718 Yijia Weng, Bowen Wen, Jonathan Tremblay, Valts Blukis, Dieter Fox, Leonidas Guibas, and Stan
 719 Birchfield. Neural implicit representation for building digital twins of unknown articulated objects.
 720 In *Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024. 1

721 Abdelrhman Werby, Martin Büchner, Adrian Röfer, Chenguang Huang, Wolfram Burgard, and
 722 Abhinav Valada. Articulated object estimation in the wild. In *Conference on Robot Learning*
 723 (*CoRL*), 2025. 2

724 Diankun Wu, Fangfu Liu, Yi-Hsin Hung, Yue Qian, Xiaohang Zhan, and Yueqi Duan. 4d-fly: Fast 4d
 725 reconstruction from a single monocular video. In *Proceedings of the Computer Vision and Pattern*
 726 *Recognition Conference*, 2025. 3

727 Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
 728 and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *Proceedings*
 729 *of Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024. 3

730 Hongchi Xia, Entong Su, Marius Memmel, Arhan Jain, Raymond Yu, Numfor Mbiziwo-Tiapo, Ali
 731 Farhadi, Abhishek Gupta, Shenlong Wang, and Wei-Chiu Ma. Drawer: Digital reconstruction and
 732 articulation with environment realism. In *Proceedings of Conference on Computer Vision and*
 733 *Pattern Recognition (CVPR)*, 2024. 3

734 Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
 735 Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
 736 *Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020. 6

737 Yuxi Xiao, Jianyuan Wang, Nan Xue, Nikita Karaev, Iurii Makarov, Bingyi Kang, Xin Zhu, Hujun
 738 Bao, Yujun Shen, and Xiaowei Zhou. Spatialtrackerv2: 3d point tracking made easy. In *ICCV*,
 739 2025. 2, 3

740 Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang. Phys-
 741 gaussian: Physics-integrated 3d gaussians for generative dynamics. In *Proceedings of Conference*
 742 *on Computer Vision and Pattern Recognition (CVPR)*, 2024. 3

743 Zihao Yan, Ruizhen Hu, Xinguang Yan, Luanmin Chen, Oliver Van Kaick, Hao Zhang, and Hui
 744 Huang. Rpm-net: recurrent prediction of motion and parts from point cloud. *arXiv preprint*
 745 *arXiv:2006.14865*, 2020. 3

746 Gengshan Yang, Chaoyang Wang, N Dinesh Reddy, and Deva Ramanan. Reconstructing animatable
 747 categories from videos. In *Proceedings of Conference on Computer Vision and Pattern Recognition*
 748 (*CVPR*), 2023. 1

749 Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao Su, and Leonidas Guibas. Deep part
 750 induction from articulated object pairs. *arXiv preprint arXiv:1809.07417*, 2018. 3

756 Tianjiao Yu, Vedant Shah, Muntasir Wahed, Ying Shen, Kiet A Nguyen, and Ismini Lourentzou.
757 Part²gs: Part-aware modeling of articulated objects using 3d gaussian splatting. *arXiv preprint*
758 *arXiv:2506.17212*, 2025. 1

759 Bowei Zhang, Lei Ke, Adam W Harley, and Katerina Fragkiadaki. Tapip3d: Tracking any point in
760 persistent 3d geometry. *arXiv preprint arXiv:2504.14717*, 2025. 2, 3, 4, 5, 21

762 Can Zhang and Gim Hee Lee. Iaao: Interactive affordance learning for articulated objects in 3d
763 environments. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
764 12132–12142, 2025. 3

766 Ge Zhang, Or Litany, Srinath Sridhar, and Leonidas Guibas. Strobenet: Category-level multiview
767 reconstruction of articulated objects. *arXiv preprint arXiv:2105.08016*, 2021. 3

768 Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing
769 Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence
770 of motion. *arXiv preprint arxiv:2410.03825*, 2024. 3

771 Hongyi Zhou, Xiaogang Wang, Yulan Guo, and Kai Xu. Monomobility: Zero-shot 3d mobility
772 analysis from monocular videos. *arXiv preprint arXiv:2505.11868*, 2025. 3

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A IMPLEMENTATION AND TRAINING DETAILS
811812 A.1 VIDEOARTGS-20 DATASET
813

814 We introduce and evaluate our method on VideoArtGS-20, a newly curated dataset featuring 10 object
815 categories: Faucet, Door, Refrigerator, Table, Storage Furniture, Bucket, Eyeglasses, Oven, Window,
816 and Printer. For each object, we render a monocular video with 150 static frames in different view-
817 points and 60 dynamic frames for each movable part. The dataset provides a challenging benchmark
818 with objects containing up to 10 parts and 9 movable joints. Further details and visualizations are
819 available in Tab. A.1 and Fig. A.1.

820 A.2 3D GAUSSIAN SPLATTING
821

822 3D Gaussian Splatting (3DGS) represents a 3D scene using a collection of 3D Gaussians (Kerbl
823 et al., 2023). Each Gaussian G_i is parameterized by its center $\mu_i \in \mathbb{R}^3$, covariance matrix $\Sigma_i \in \mathbb{R}^{3 \times 3}$,
824 opacity $\sigma_i \in [0, 1]$, and spherical harmonics coefficients \mathbf{h}_i for view-dependent color. The opacity of
825 a 3D Gaussian at spatial point \mathbf{x} is computed as:

$$827 \quad \alpha_i(\mathbf{x}) = \sigma_i \exp \left(-\frac{1}{2} (\mathbf{x} - \mu_i)^\top \Sigma_i^{-1} (\mathbf{x} - \mu_i) \right), \quad \text{where } \Sigma_i = \mathbf{R}_i \mathbf{S}_i \mathbf{S}_i^\top \mathbf{R}_i^\top. \quad (\text{A.1})$$

829 To ensure Σ_i remains positive semi-definite, it is decomposed into a rotation matrix \mathbf{R}_i (parameterized
830 by quaternion \mathbf{r}_i) and a scaling diagonal matrix \mathbf{S}_i (parameterized by scale vector \mathbf{s}_i). To render an
831 image, 3D Gaussians are projected onto the 2D image plane and aggregated using α -blending:

$$833 \quad \mathbf{I} = \sum_{i=1}^N T_i \alpha_i^{2D} \mathcal{SH}(\mathbf{h}_i, \mathbf{v}_i), \quad \text{where } T_i = \prod_{j=1}^{i-1} (1 - \alpha_j^{2D}). \quad (\text{A.2})$$

836 Here, α_i^{2D} is the 2D version of Eq. (A.1), $\mathcal{SH}(\cdot)$ calculates spherical harmonics for view direction
837 \mathbf{v}_i . Given multi-view images $\{\bar{\mathbf{I}}_i\}_{i=1}^N$, 3DGS optimizes the parameters using L1 loss and D-SSIM
838 loss (Kerbl et al., 2023) with a loss weight λ_{SSIM} :

$$839 \quad \mathcal{L}_I = (1 - \lambda_{\text{SSIM}}) \mathcal{L}_1 + \lambda_{\text{SSIM}} \mathcal{L}_{\text{D-SSIM}}, \quad (\text{A.3})$$

842 A.3 ARTICULATION MODELING
843

844 **Articulation Modeling** Building upon the part assignments, we model articulation through learn-
845 able joint parameters, including axis direction \mathbf{d} , axis origin \mathbf{o} , and time-variant joint state θ^t . To learn
846 a smooth trajectory of joint states, we model it with Fourier embedding $E(\cdot)$ followed by a learnable
847 MLP: $\theta^t = \text{MLP}(E(t))$. We represent the rigid transformation as dual-quaternion $\mathbf{q}^t = (\mathbf{q}_r^t, \mathbf{q}_d^t)$ for
848 smooth skinning, where $\mathbf{q}_r^t, \mathbf{q}_d^t$ represent the rotation and translation components respectively. The
849 dual-quaternion of each joint could be calculated as:

$$850 \quad \text{prismatic : } \mathbf{q}_r^t = (1, 0, 0, 0), \quad \bar{\mathbf{o}}^t = (0, \theta^t \cdot \mathbf{d}), \quad \mathbf{q}_d^t = 0.5 \cdot \bar{\mathbf{o}}^t \otimes \mathbf{q}_r^t, \\ 851 \quad \text{revolute : } \mathbf{q}_r^t = (\cos \frac{\theta^t}{2}, \sin \frac{\theta^t}{2} \cdot \mathbf{d}), \quad \bar{\mathbf{o}}^t = (0, \mathbf{o}), \quad \mathbf{q}_d^t = 0.5 \cdot (\bar{\mathbf{o}}^t \otimes \mathbf{q}_r^t - \mathbf{q}_r^t \otimes \bar{\mathbf{o}}^t). \quad (\text{A.4})$$

854 Then we calculate the per-gaussian dual-quaternion \mathbf{q}_i^t with part assignment probabilities \mathbf{m}_i by:

$$855 \quad \mathbf{q}_i^t = \sum_{k=1}^K m_{ik} \cdot \mathbf{q}_k^t = \left(\sum_{k=1}^K m_{ik} \cdot \mathbf{q}_{k,r}^t, \sum_{k=1}^K m_{ik} \cdot \mathbf{q}_{k,d}^t \right). \quad (\text{A.5})$$

858 where \mathbf{q}_k^t is the dual-quaternion of k -th part. The position and rotation of Gaussian G_i^t are obtained
859 by:

$$860 \quad \mu_i^t = \mathbf{R}_i^t \cdot \mu_i^c + \mathbf{t}_i^t, \quad \mathbf{r}_i^t = \mathbf{q}_{i,r}^t \otimes \mathbf{r}_i^c, \quad (\text{A.6})$$

862 where \mathbf{R}_i^t and \mathbf{t}_i^t is rotation matrix and translation vector derived from \mathbf{q}_i^t , and \otimes denotes quaternion
863 multiplication operation. We provide the detailed derivation process of dual-quaternion in the
following paragraphs.

864

865

Table A.1: Dataset configuration.

Object ID	Category	#Part	#Joint	#Revolute	#Prismatic
168	Faucet	3	2	2	0
1280	Faucet	3	2	2	0
8961	Door	3	2	2	0
9016	Door	3	2	2	0
10489	Refrigerator	3	2	2	0
10655	Refrigerator	3	2	2	0
25493	Table	4	3	0	3
30666	Table	10	9	0	9
31249	Table	5	4	2	2
45194	Storage Furniture	5	4	2	2
45503	Storage Furniture	4	3	3	0
45612	Storage Furniture	7	6	4	2
47648	Storage Furniture	7	6	4	2
100481	Bucket	3	2	2	0
101284	Eyeglasses	3	2	2	0
101287	Eyeglasses	3	2	2	0
101808	Oven	3	2	2	0
101908	Oven	4	3	3	0
103015	Window	4	3	3	0
103811	Printer	7	6	0	6
Average	—	4.35	3.35	2.05	1.3

890

891

892

Dual Quaternions for SE(3) Transformation A general rigid SE(3) transformation in 3D space consists of a rotation followed by a translation. A dual quaternion represents this combined operation within a single algebraic entity. Let the rotation be represented by a unit quaternion q_r and the translation by a vector t . A point p in space, represented as a pure quaternion $\bar{p} = (0, p)$, is transformed to a new point p' by first applying the rotation and then the translation: $p' = q_r \otimes p \otimes q_r^* + t$, where q_r^* is the conjugate of q_r and \otimes denotes the quaternion multiplication operation.

893

894

895

A dual quaternion q is defined as $q = q_r + \varepsilon q_d$, where q_r is the real part, q_d is the dual part, and ε is the dual unit with the property $\varepsilon^2 = 0$. Given the rotation quaternion q_r and translation t , the dual part q_d could be calculated by: $q_d = \frac{1}{2}(0, t) \otimes q_r$.

896

897

898

Dual Quaternions for Articulated Transformation We apply the above principles to derive the specific formulas for prismatic and revolute joints at time t .

899

900

901

Prismatic: A prismatic joint executes a pure translation with no rotation, so that the real part is the unit quaternion $q_r^t = (1, 0, 0, 0)$. Given the axis direction d and joint state θ^t , its translation component is $t = \theta^t \cdot d$. Let $\bar{o}^t = (0, \theta^t \cdot d)$, the dual part could be calculated by: $q_d = \frac{1}{2}\bar{o}^t \otimes q_r^t$.

902

903

904

Revolute: A revolute joint executes a pure rotation, not about the world origin, but about the joint's origin point o . Given the axis direction d , axis origin o and joint state θ^t this "off-center" rotation is equivalent to a sequence of three operations: (1) translate the system so the pivot point o moves to the origin: $\bar{o}^t = (0, o)$, $q_{T_1} = 1 - \frac{\varepsilon}{2}\bar{o}^t$; (2) perform the rotation around the origin: $q_R = q_r^t = (\cos \frac{\theta^t}{2}, \sin \frac{\theta^t}{2} \cdot d)$. (3) translate the system back: $q_{T_2} = 1 + \frac{\varepsilon}{2}\bar{o}^t$. The total transformation q^t is the product:

905

906

907

$$q^t = q_{T_2} q_R q_{T_1} = (1 + \frac{\varepsilon}{2}\bar{o}^t) q_r^t (1 - \frac{\varepsilon}{2}\bar{o}^t) = (1 + \frac{\varepsilon}{2}\bar{o}^t)(q_r^t - \frac{\varepsilon}{2}q_r^t\bar{o}^t) = q_r^t + \varepsilon \left(\frac{1}{2}\bar{o}^t q_r^t - \frac{1}{2}q_r^t \bar{o}^t \right),$$

908

907

where \otimes is omitted for brevity. As a result, the real part and dual part are calculated as: $q_r^t = (\cos \frac{\theta^t}{2}, \sin \frac{\theta^t}{2} \cdot d)$, $q_d^t = \frac{1}{2}(\bar{o}^t \otimes q_r^t - q_r^t \otimes \bar{o}^t)$.

Figure A.1: Visualization of VideoArtGS-20 dataset.

A.4 INITIALIZATION AND OPTIMIZATION

Inversed Deformation Field Given a point position $\mathbf{x}_i^{t_0}$ sampled from the trajectory $\{\mathbf{x}_i^t\}_{t=1}^T$, we extend our part assignment module from canonical space to observation space to obtain the part assignment probabilities $\mathbf{m}_i^{t_0}$ of $\mathbf{x}_i^{t_0}$ at time t_0 . Specifically, we deform the learnable centers $C_k = (\mathbf{p}_k, \mathbf{V}_k, \lambda_k)$ from canonical space to observation space by:

$$\mathbf{p}_k^{t_0} = \mathbf{R}_k^{t_0} \cdot \mathbf{p}_k + \mathbf{t}_k^{t_0}, \quad \mathbf{V}_k^{t_0} = \mathbf{R}_k^{t_0} \cdot \mathbf{V}_k, \quad C_k^{t_0} = (\mathbf{p}_k^{t_0}, \mathbf{V}_k^{t_0}, \lambda_k), \quad (\text{A.7})$$

where $\mathbf{R}_k^{t_0}$ and $\mathbf{t}_k^{t_0}$ is rotation matrix and translation vector derived from $\mathbf{q}_k^{t_0}$. We replacing C_k with $C_k^{t_0}$ in Eq. (2) and Eq. (3) to calculate $\mathbf{m}_i^{t_0}$, then the canonical position $\hat{\mathbf{x}}_i^c$ is calculated by:

$$\mathbf{q}_i^{t_0} = \sum_{k=1}^K m_{ik}^{t_0} \cdot \mathbf{q}_k^{t_0}, \quad \hat{\mathbf{x}}_i^c = (\mathbf{R}_i^{t_0})^{-1} \cdot (\mathbf{x}_i^{t_0} - \mathbf{t}_i^{t_0}), \quad (\text{A.8})$$

where $\mathbf{R}_i^{t_0}$ and $\mathbf{t}_i^{t_0}$ is rotation matrix and translation vector derived from $\mathbf{q}_i^{t_0}$.

Training Configuration We train deformation field \mathcal{F} for 10K steps with loss $\mathcal{L}_{\text{track}} = \mathcal{L}_{o2o} + \mathcal{L}_{c2o}$ described in Eq. (4) and Eq. (5), taking 5-10 minutes per object. We train canonical Gaussians \mathcal{G}^c for 20K steps with loss $\mathcal{L}_{\text{render}} = (1 - \lambda_{\text{SSIM}})\mathcal{L}_1 + \lambda_{\text{SSIM}}\mathcal{L}_{\text{D-SSIM}} + \mathcal{L}_D$, where $\lambda_{\text{SSIM}} = 0.2$ is used in experiments. This stage takes about 4 minutes per object. We jointly optimize the canonical Gaussians and deformation field for 20K steps with $\mathcal{L} = \mathcal{L}_I + \mathcal{L}_D + \lambda_{c2o}\mathcal{L}_{c2o}$, where $\lambda_{c2o} = 0.5$. This state takes 10-20 minutes per object.

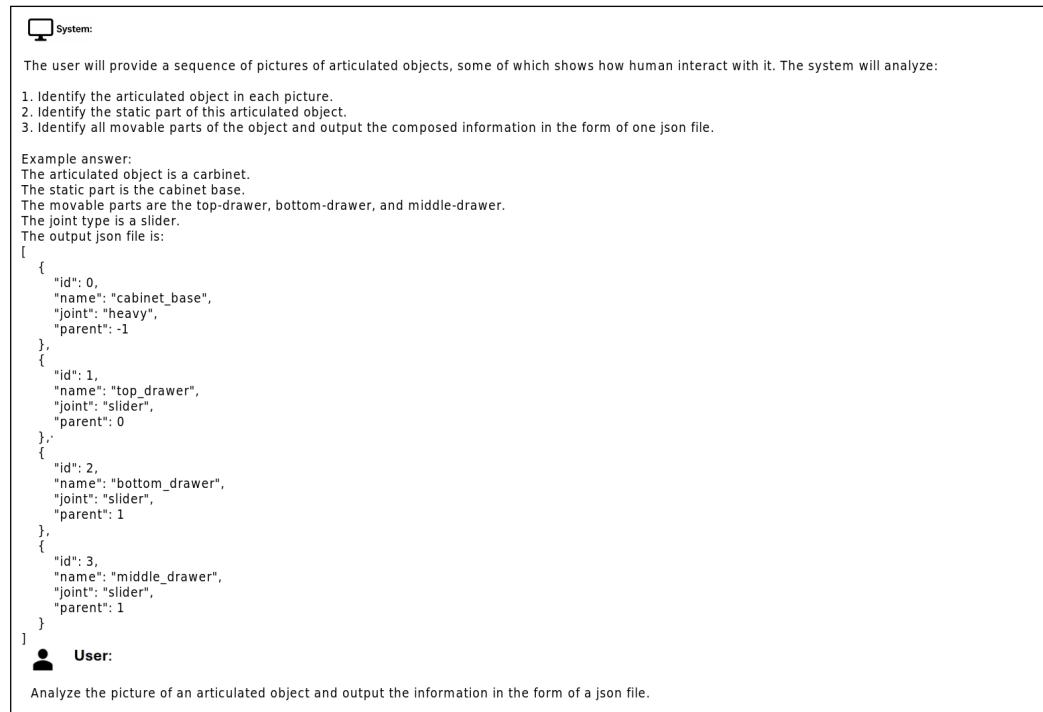
972 A.5 JOINT TYPE PREDICTION USING GPT-4O
973974 Inspired by SINGAPO (Liu et al., 2025), we use GPT-4o to predict the number of joints and joint
975 types. We input the video and a step-by-step instruction to make GPT-4o understand the articulated
976 objects. The version of GPT-4o used in our experiments is gpt-4o-2024-11-20. The instruction is:
977

Figure A.2: Prompt for GPT-4o to predict the number of joints and joint types.

1005 B LIMITATIONS
10061007 Our method, while effective, has limitations that open avenues for future research.
10081009 **Dependency on Upstream Perception Models.** The final quality of our reconstruction is inherently
1010 dependent on the accuracy of the upstream models used for perception. Our pipeline first relies on
1011 a monocular depth and camera pose estimator (e.g., VGGT). Subsequently, a pre-trained tracking
1012 model (e.g., TAPIP3D) generates 3D motion tracks. If the depth or camera pose estimates contain
1013 significant errors, the resulting 3D tracks will be noisy and fail to capture the object’s true rigid-body
1014 motion. This can lead to failures in our downstream fitting and clustering steps, resulting in distorted
1015 geometry or incorrect joint estimation. However, as this is a rapidly advancing field, we anticipate that
1016 progress in visual foundation models and tracking models will continue to mitigate this dependency.
10171018 **Canonical Gaussian Initialization.** Our current framework assumes that the input video begins
1019 with a short sequence (N frames) where the scene is static. This segment is crucial for initializing
1020 the canonical Gaussian representation of the object’s geometry. While this assumption is practical
1021 for data captured by a user (self-shot), it restricts the method’s applicability to in-the-wild videos
1022 from the internet, which often begin with immediate motion. Relaxing this condition is non-trivial, as
1023 it makes the ill-posed problem of disentangling geometry from motion even more challenging. A
1024 promising direction for future work is to incorporate powerful generative priors. Such models could
1025 help infer a plausible canonical shape even from a video with continuous motion, thereby enabling
reconstruction from arbitrary monocular inputs.

Table A.2: **Detailed results on Video2Articulation-S dataset.** Following Video2Articulation(Peng et al., 2025), if the method failed, we assign a 90° angle error for the joint axis, and a 100cm error for the other metrics. “Diff.” denotes the results of Video2Articulation minus ours, which demonstrate the improvements of VideoArtGS. The **best results** are highlighted in bold.

Metric	CD-s (cm)			CD-w (cm)			CD-m (cm)			Axis (°)			Position (cm)		
	V2A	Ours	Diff.	V2A	Ours	Diff.	V2A	Ours	Diff.	V2A	Ours	Diff.	V2A	Ours	Diff.
Box	1.56	0.03	-1.53	1.04	0.07	-0.96	0.34	0.10	-0.24	0.06	0.06	0.00	2.31	0.17	-2.14
Dishwasher	0.74	0.37	-0.37	0.58	0.30	-0.28	3.34	0.14	-3.20	3.27	0.11	-3.16	11.93	0.39	-11.54
Laptop	7.30	0.15	-7.15	0.09	0.09	0.00	0.13	0.10	-0.03	8.40	0.06	-8.35	3.48	0.22	-3.26
Microwave	2.84	0.35	-2.49	2.06	0.31	-1.74	0.20	0.07	-0.13	0.40	0.26	-0.14	9.49	0.10	-9.39
Refrigerator	22.91	0.28	-22.63	22.66	0.16	-22.50	22.05	0.49	-21.56	18.91	0.67	-18.24	23.08	0.30	-22.78
Scissors	10.05	0.16	-9.88	0.02	0.02	0.00	8.52	0.04	-8.47	30.21	0.32	-29.90	5.86	0.23	-5.63
Stapler	64.07	0.37	-63.70	50.13	0.27	-49.85	51.26	0.19	-51.07	46.07	0.05	-46.01	50.19	1.83	-48.36
StorageFurniture	0.61	0.68	0.07	0.48	0.48	0.00	10.39	3.02	-7.37	4.47	0.14	-4.33	0.61	0.01	-0.60
Table	0.40	0.35	-0.04	0.43	0.32	-0.11	19.21	1.56	-17.65	17.22	0.44	-16.78	3.01	0.07	-2.94
USB	1.75	0.43	-1.32	0.24	0.19	-0.05	4.27	0.95	-3.33	11.29	0.18	-11.12	3.95	0.05	-3.90
WashingMachine	2.20	0.82	-1.37	1.93	0.76	-1.17	4.32	0.09	-4.23	13.03	1.29	-11.74	5.28	1.89	-3.39

Table A.3: **Detailed results on VideoArtGS-20 dataset.** Following Video2Articulation(Peng et al., 2025), if the method failed, we assign a 90° angle error for the joint axis, and a 100cm error for the other metrics. “Diff.” denotes the results of Video2Articulation minus ours, which demonstrate the improvements of VideoArtGS. The **best results** are highlighted in bold.

Metric	CD-s (cm)			CD-w (cm)			CD-m (cm)			Axis (°)			Position (cm)		
	Method	V2A	Ours	Diff.	V2A	Ours	Diff.	V2A	Ours	Diff.	V2A	Ours	Diff.	V2A	Ours
100481	2.63	0.11	-2.52	0.05	0.11	0.07	1.43	0.03	-1.40	43.93	0.06	-43.88	35.92	0.00	-35.91
101284	7.28	0.01	-7.28	0.02	0.01	-0.01	76.58	0.00	-76.58	14.91	0.18	-14.73	29.31	0.13	-29.18
101287	10.16	0.01	-10.15	0.01	0.01	0.00	24.70	0.00	-24.70	9.07	0.20	-8.87	28.55	0.03	-28.52
101808	0.89	0.10	-0.79	0.09	0.10	0.01	13.78	0.01	-13.76	44.95	3.79	-41.16	35.94	0.02	-35.92
101908	2.02	0.10	-1.93	0.05	0.09	0.04	19.53	0.01	-19.52	78.44	0.14	-78.29	65.14	0.11	-65.03
103015	100.00	0.27	-99.73	100.00	0.24	-99.76	100.00	0.01	-99.99	54.74	0.07	-54.66	49.06	0.12	-48.93
103811	4.51	0.53	-3.98	0.30	0.43	0.13	18.74	2.65	-16.09	80.81	0.22	-80.59	0.00	0.00	0.00
10489	3.60	0.05	-3.55	0.07	0.06	-0.01	60.79	0.01	-60.78	68.98	0.08	-68.89	133.32	0.18	-133.14
10655	3.05	0.06	-2.99	0.10	0.08	-0.02	0.08	0.01	-0.07	7.71	0.03	-7.68	35.16	0.20	-34.96
1280	0.56	0.11	-0.45	0.02	0.03	0.01	6.07	0.03	-6.04	74.84	0.68	-74.15	48.53	0.32	-48.21
168	39.67	2.68	-36.99	0.02	0.04	0.02	17.23	0.43	-16.80	53.59	0.32	-53.27	10.59	0.22	-10.36
25493	0.75	0.11	-0.63	0.09	0.06	-0.03	65.98	0.18	-65.79	53.67	0.14	-53.53	0.00	0.00	0.00
30666	1.19	0.22	-0.97	0.12	0.17	0.05	37.51	1.17	-36.34	66.94	0.14	-66.80	0.00	0.00	0.00
31249	1.51	0.11	-1.41	0.09	0.09	0.00	11.98	0.22	-11.76	40.68	0.08	-40.59	3.69	0.02	-3.68
45194	4.60	0.09	-4.51	0.09	0.10	0.01	41.50	0.01	-41.49	47.82	0.11	-47.71	43.39	0.03	-43.36
45503	3.11	0.07	-3.04	0.07	0.08	0.01	21.32	0.01	-21.31	62.82	0.03	-62.79	34.59	0.11	-34.48
45612	1.87	0.06	-1.81	0.06	0.07	0.02	28.81	0.02	-28.79	48.19	0.13	-48.06	16.74	0.05	-16.70
47648	0.69	0.06	-0.64	0.05	0.06	0.00	24.90	0.33	-24.57	48.90	0.18	-48.72	37.10	0.06	-37.04
8961	4.92	0.02	-4.90	0.03	0.03	0.00	27.25	0.02	-27.23	1.05	0.02	-1.03	84.21	0.05	-84.16
9016	11.38	0.02	-11.36	0.03	0.03	0.00	14.42	0.02	-14.40	75.53	0.10	-75.43	49.52	0.35	-49.17
Average	10.22	0.24	-9.98	5.07	0.09	-4.97	30.63	0.26	-30.37	48.88	0.34	-48.54	37.04	0.10	-36.93

Reliance on Motion for Part Segmentation. Our approach infers part segmentation exclusively from motion cues by clustering the derived 3D tracks. This reliance on dynamics places high demands on the tracking quality and can be fragile for objects with many parts or for parts that exhibit very subtle relative motion. In such challenging cases, the segmentation quality can degrade, leading to incorrectly merged or split components. A valuable future direction is to augment our motion-based clustering with appearance-based priors from pre-trained foundation models. For instance, integrating semantic features from DINOv2 (Oquab et al., 2023) or segmentation masks from models like SAM (Kirillov et al., 2023) could provide a powerful, independent signal for identifying object parts, making the segmentation process significantly more robust.

C ADDITIONAL EXPERIMENT RESULTS AND ANALYSIS

C.1 DETAILED RESULTS ON VIDEO2ARTICULATION-S AND VIDEOARTGS-20

We provide detailed results on the Video2Articulation-S and VideoArtGS-20 dataset. As shown in Appendix C.1 and Tab. A.3, we observe consistent improvements across all categories in both Video2Articulation-S and VideoArtGS-20 datasets.

1080
 1081 Table A.4: **Tracking ability comparison on VideoArtGS-20 dataset.** “Diff.” denotes the results of TAPIP3D
 1082 minus ours, which demonstrate the improvements of VideoArtGS. The **best results** are highlighted in bold.
 1083

Metric	EPE (m) ↓			$\delta_{0.05} \uparrow$			$\delta_{0.10} \uparrow$		
	Method	TAPIP3D	Ours	Diff.	TAPIP3D	Ours	Diff.	TAPIP3D	Ours
100481	0.16	0.12	-0.04	59.04	66.95	7.92	65.40	72.76	7.37
101284	0.03	0.01	-0.02	88.99	95.96	6.98	90.46	96.75	6.29
101287	0.08	0.02	-0.06	70.11	91.73	21.62	74.16	93.16	19.00
101808	0.13	0.06	-0.07	57.83	76.65	18.82	64.66	81.31	16.65
101908	0.14	0.06	-0.08	58.73	81.16	22.43	64.64	84.38	19.74
103015	0.02	0.01	-0.02	89.70	93.38	3.68	93.35	96.22	2.87
103811	0.16	0.09	-0.08	65.16	80.87	15.70	67.86	81.15	13.29
10489	0.32	0.14	-0.18	45.49	75.72	30.23	50.88	78.84	27.95
10655	0.30	0.14	-0.15	35.31	66.00	30.69	43.81	69.36	25.55
1280	0.04	0.02	-0.02	83.63	91.12	7.49	88.27	94.07	5.80
168	0.43	0.32	-0.11	43.91	52.82	8.91	51.29	58.39	7.10
25493	0.08	0.04	-0.04	72.33	78.55	6.21	76.59	83.49	6.90
30666	0.12	0.06	-0.05	59.75	80.04	20.29	64.98	80.28	15.30
31249	0.12	0.07	-0.05	60.21	76.67	16.47	63.36	78.54	15.17
45194	0.23	0.12	-0.10	42.23	70.65	28.42	48.28	71.34	23.06
45503	0.19	0.10	-0.09	42.32	69.75	27.43	48.46	72.88	24.41
45612	0.16	0.08	-0.09	35.50	66.47	30.98	43.17	69.60	26.43
47648	0.09	0.03	-0.06	58.05	81.46	23.42	66.89	82.98	16.10
8961	0.18	0.15	-0.02	22.74	29.21	6.47	37.46	46.51	9.05
9016	0.16	0.26	0.10	20.36	35.27	14.91	37.47	47.54	10.06
Average	0.16	0.09	-0.06	55.57	73.02	17.45	62.07	76.98	14.91

1102 C.2 TRACKING IMPROVEMENT

1103
 1104 Tracks from TAPIP3D (Zhang et al., 2025) maintain noisy and inaccurate trajectories. Our pipeline
 1105 filters noise and refines the tracks, enabling more accurate learning of dynamic and articulation
 1106 parameters. We add track-quality metrics to demonstrate our method’s track-correction capability.
 1107

1108 **Evaluation protocol.** Following Shape of Motion (Wang et al., 2024a), we use the 3D end-point-error
 1109 (EPE), which measures the Euclidean distance between ground truth and predicted 3D tracks. We
 1110 also report the percentage of points falling within given thresholds of the ground truth: $\delta_{0.05} = 5\text{cm}$
 1111 and $\delta_{0.10} = 10\text{cm}$. Given noisy tracks from TAPIR3D (Zhang et al., 2025), we use our motion prior
 1112 guidance pipeline to filter noise and then input the filtered tracks as query points to our optimized
 1113 model, calculating new tracks using our learned deformation field. Ground truth tracks are obtained
 1114 by deforming the query points with ground truth joint parameters and states at each time step. Each
 1115 query point inherits the part label of its nearest vertex on the ground truth meshes.

1116 **Results.** As shown in Tab. A.4, our method consistently improves upon TAPIP3D (Zhang et al.,
 1117 2025) across all metrics. These improvements are particularly significant for challenging objects (e.g.
 1118 47648, 30666) with complex articulated motion.

1119 C.3 SENSITIVITY ANALYSIS OF FITTING THRESHOLD ϵ_l/ϵ_c

1120 Our method uses equal thresholds for line/circle fitting (ϵ_l/ϵ_c). Throughout our main experiments,
 1121 we adopt $\epsilon_l = \epsilon_c = 0.01$. We provide comprehensive experimental results across different threshold
 1122 values in Tab. A.5 and Tab. A.6.

1123 Importantly, our method does not require filtering out all noise. Our hybrid center-grid assignment
 1124 module is learnable—its parameters are optimized via gradient descent during training, which
 1125 naturally corrects initialization errors from tracking noise. The initialization only needs to provide
 1126 reasonable starting parameters for robust optimization.

1127 As shown in Tab. A.5 and Tab. A.6, the initialization joint parameter errors exhibit minimal variation
 1128 across different thresholds, and the differences in optimized metrics are similarly small. A clear trend
 1129 emerges: smaller thresholds filter out more noise, yielding more accurate initial joint parameters.
 1130 However, excessively small thresholds (e.g., 0.005) cause most trajectories to be classified as noise,
 1131 leading to significant performance degradation on certain objects (e.g., object 168). Our experiments
 1132 demonstrate robust performance across reasonable threshold variations.

1134
 1135 Table A.5: Initialization joint parameter error with different fitting threshold ϵ_l/ϵ_c on VideoArtGS-20 dataset.
 1136 The **best results** are highlighted in bold.

Metric	Axis (°)					Position (cm)				
	ϵ_l/ϵ_c	0.100	0.040	0.020	0.010	0.005	0.100	0.040	0.020	0.010
100481	5.45	5.45	5.70	5.80	4.45	0.16	0.16	0.15	1.52	6.92
101284	0.86	0.86	0.93	0.93	2.14	1.34	1.34	1.42	1.70	2.95
101287	1.07	1.07	1.14	1.36	3.07	0.35	0.35	0.22	0.21	1.21
101808	7.76	7.76	7.78	7.70	7.04	1.00	1.00	1.00	1.02	0.92
101908	1.21	1.21	1.15	1.42	0.89	1.20	1.20	1.60	1.14	0.32
103015	5.89	5.89	5.90	6.14	6.13	1.25	1.25	1.25	1.26	1.36
103811	0.69	0.54	0.65	0.57	0.38	0.00	0.00	0.00	0.00	0.00
10489	0.99	0.99	0.94	1.02	0.50	0.22	0.22	0.32	0.40	0.39
10655	1.48	1.50	1.56	1.68	2.18	0.54	0.51	0.52	0.54	25.51
1280	4.88	4.88	4.88	5.58	2.48	1.23	1.23	1.23	1.58	0.72
168	1.54	1.54	1.55	1.65	44.25	1.41	1.41	1.40	1.32	3.38
25493	0.34	0.34	0.34	0.37	0.31	0.00	0.00	0.00	0.00	0.00
30666	1.10	1.37	0.96	0.91	0.80	0.00	0.00	0.00	0.00	0.00
31249	2.50	2.49	2.16	1.08	0.50	0.12	0.12	0.12	0.16	0.25
45194	1.75	1.66	1.37	0.66	0.25	0.22	0.22	0.21	0.26	0.34
45503	1.24	1.23	1.23	1.22	2.95	0.10	0.10	0.10	0.11	0.08
45612	3.14	3.15	2.77	1.91	1.72	0.21	0.21	0.20	0.25	0.16
47648	6.16	4.95	2.83	2.89	2.09	0.19	0.19	0.19	0.17	0.24
8961	0.96	0.96	0.97	0.98	0.74	0.42	0.42	0.42	0.41	0.33
9016	1.38	1.38	1.51	1.44	0.80	0.18	0.16	0.98	0.60	2.84
Average	2.52	2.46	2.32	2.26	4.18	0.51	0.50	0.57	0.63	2.39

1155
 1156 Table A.6: Optimized results with different fitting threshold ϵ_l/ϵ_c on VideoArtGS-20 dataset. We ignore the
 1157 CD-w metric because it changes almost imperceptibly with different ϵ_l/ϵ_c . The **best results** are highlighted in
 1158 bold.

Metric	CD_s (cm)			CD_m (cm)			Axis (°)			Position (cm)			
	ϵ_l/ϵ_c	V2A	0.100	0.010	0.005	V2A	0.100	0.010	0.005	V2A	0.100	0.010	0.005
100481	2.63	0.11	0.11	0.37	1.43	0.02	0.03	14.07	43.93	0.01	0.06	12.37	35.92
101284	7.28	0.01	0.01	0.01	76.58	0.00	0.00	0.00	14.91	0.14	0.18	0.35	29.31
101287	10.16	0.01	0.01	0.01	24.70	0.00	0.00	0.00	9.07	0.25	0.20	0.28	28.55
101808	0.89	0.10	0.10	0.10	13.78	0.01	0.01	0.01	44.95	3.79	3.79	3.80	35.94
101908	2.02	0.10	0.10	0.10	19.53	0.01	0.01	0.01	78.44	0.12	0.14	0.10	65.14
103015	100.00	0.20	0.27	0.18	100.00	0.01	0.01	0.01	54.74	0.13	0.07	0.13	49.06
103811	4.51	0.49	0.53	0.43	18.74	4.33	2.65	21.53	80.81	0.17	0.22	1.24	0.00
10489	3.60	0.05	0.05	0.05	60.79	0.01	0.01	0.01	68.98	0.08	0.08	0.09	133.32
10655	3.05	0.06	0.06	2.40	0.08	0.01	0.01	132.42	7.71	0.01	0.03	0.04	35.16
1280	0.56	0.09	0.11	0.08	6.07	0.08	0.03	0.12	74.84	0.67	0.68	1.05	48.53
168	39.67	3.13	2.68	3.74	17.23	0.25	0.43	92.35	53.59	0.35	0.32	45.11	10.59
25493	0.75	0.11	0.11	0.11	65.98	0.15	0.18	0.16	53.67	0.11	0.14	0.11	0.00
30666	1.19	0.22	0.22	0.22	37.51	1.20	1.17	13.36	66.94	0.13	0.14	0.66	0.00
31249	1.51	0.10	0.11	0.11	11.98	0.17	0.22	0.24	40.68	0.07	0.08	0.07	3.69
45194	4.60	0.15	0.09	0.12	41.50	0.14	0.01	0.09	47.82	0.25	0.11	0.23	43.39
45503	3.11	0.07	0.07	0.07	21.32	0.01	0.01	0.01	62.82	0.02	0.03	0.02	34.59
45612	1.87	0.06	0.06	0.06	28.81	0.01	0.02	0.01	48.19	0.12	0.13	0.11	16.74
47648	0.69	0.07	0.06	0.07	24.90	16.92	0.33	16.94	48.90	39.79	0.18	36.81	37.10
8961	4.92	0.02	0.02	0.02	27.25	0.02	0.02	0.02	1.05	0.02	0.02	0.02	84.21
9016	11.38	0.02	0.02	0.02	14.42	0.02	0.02	0.01	75.53	0.10	0.10	0.09	49.52
Average	10.22	0.26	0.24	0.41	30.63	1.17	0.26	14.57	48.88	2.32	0.34	5.13	37.04
													1.06
													0.10
													2.05

C.4 EFFICIENCY COMPARISON

We provide runtime and GPU memory comparison with a single NVIDIA RTX 3090 GPU in Tab. A.7. Our method achieves a favorable balance between efficiency and reconstruction quality. While ArticulateAnything is faster, it uses GPT to predict joint parameters rather than reconstructing from video, making direct comparison less meaningful. Compared to Video2Articulation, our approach reduces GPU memory requirements and significantly improves efficiency. Video2Articulation requires 20-30 minutes per joint, meaning multi-joint objects can take hours to process, whereas our method completes reconstruction for objects with multiple parts in 15-40 minutes total. This efficiency gain stems from our joint optimization framework, which simultaneously reconstructs all articulated parts rather than processing each joint sequentially.

1188

Table A.7: Efficiency Comparison.

1189

1190

1191

1192

1193

1194

1195

1196

1197

Table A.8: Failure cases of GPT-4o. ‘1r1p’ means 1 revolute joint and 1 prismatic joint.

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

Figure A.3: Failure cases. We illustrate failure cases of our VideoArtGS.

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

C.5 FAILURE CASE ANALYSIS

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

GPT-4o Prediction We provide failure cases of GPT-4o prediction in Tab. A.8. GPT-4o made 2 incorrect predictions on the 73 videos in Video2Articulation-S (wrong joint types) and 3 incorrect predictions on VideoArtGS-20 (wrong number of parts or joint types). The model tends to misclassify joint types when the range of motion is limited and underestimates the number of parts in objects with multiple joints. Notably, we tried alternative methods for automatically detecting the number of parts in the early stages of our experiments, including clustering and detection-based approaches. However, these methods exhibited weaker generalization than GPT-4o. Their reliance on additional assumptions makes them more prone to failure on novel data.

Imperfect Part Segmentation As shown in Fig. A.3 (a), when multiple components are spatially close and share identical motion patterns (e.g., prismatic joints moving in the same direction), our method may fail to correctly segment them. As discussed in Appendix B, this limitation arises from the lack of semantic information in our current approach. Integrating semantic segmentation models such as SAM (Kirillov et al., 2023) could potentially address this issue.

Clustering Error As shown in Fig. A.3 (b), when objects have numerous parts and tracks contain substantial noise, our method may produce incorrect initial centers. Large initialization errors are difficult to correct during optimization, as the model tends to converge to local minima. Addressing this limitation requires more robust methods for discovering part centers, such as incorporating semantic information to help with clustering.

1242 **D LLM USAGE STATEMENT**
12431244 The authors acknowledge the use of Large Language Models (LLM) in the preparation of this
1245 paper. LLM was used to assist with improving writing clarity and grammar checking throughout
1246 the document. All AI-generated suggestions were carefully reviewed, modified as necessary, and
1247 validated by the authors. The core research contributions, experimental design, data analysis, and
1248 scientific conclusions are entirely the original work of the authors.
12491250 **E ADDITIONAL QUALITATIVE RESULTS**
12511252 We provide additional qualitative results in the following pages.
12531254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

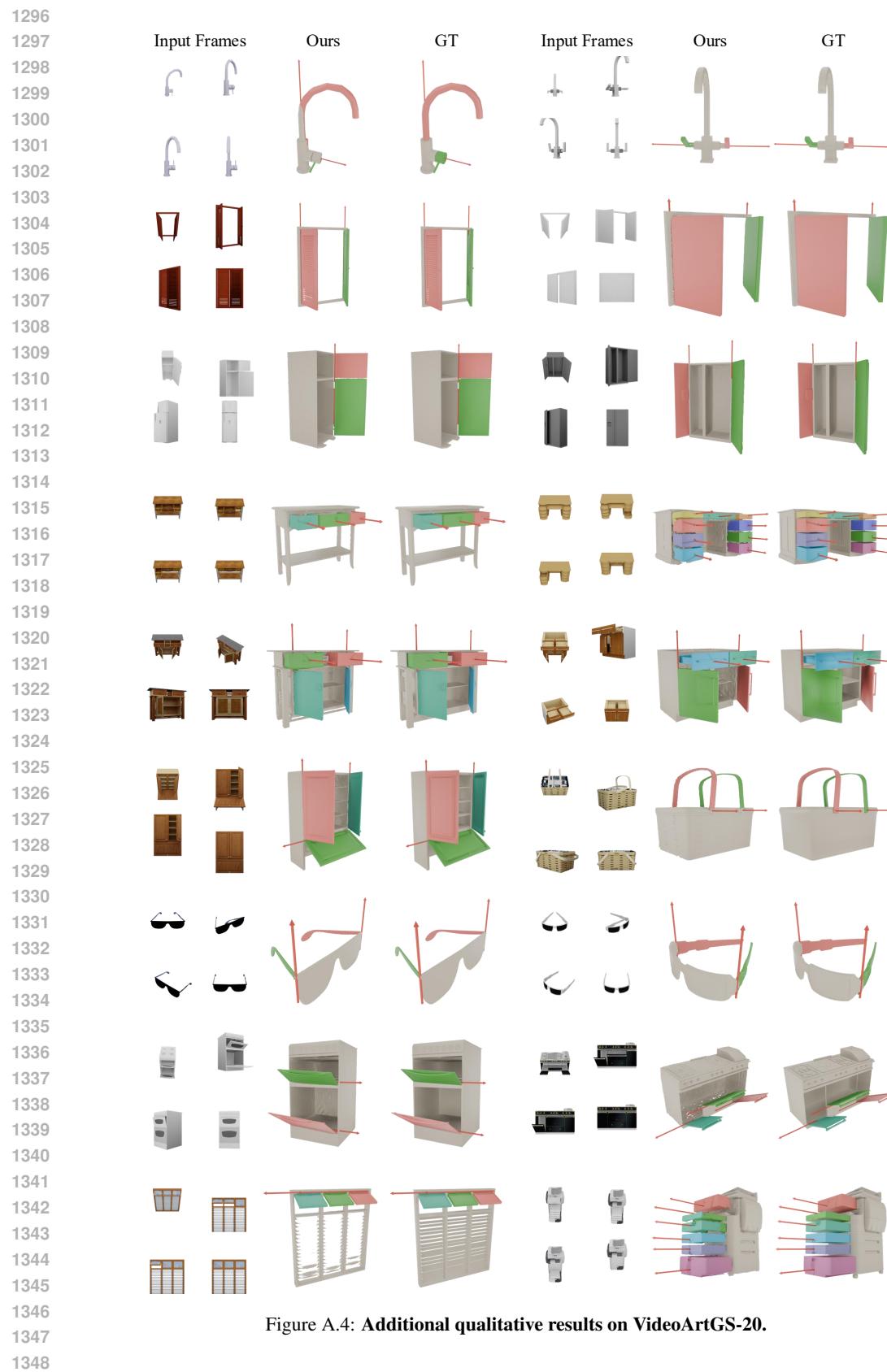


Figure A.4: Additional qualitative results on VideoArtGS-20.