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Abstract

In the era of high-dimensional data, traditional machine learning models often face chal-
lenges related to computational complexity, overfitting, and suboptimal feature representa-
tions. This paper introduces Kolmogorov-Arnold Network Autoencoders (KANAs), a novel
framework that leverages Kolmogorov-Arnold Networks (KANs) to transform dimensional-
ity reduction and data reconstruction. Through experiments across diverse datasets, KANA
consistently demonstrates superior reconstruction fidelity and linear probing accuracy, es-
tablishing itself as a powerful and versatile tool for high-dimensional data processing. The
proposed framework shows strong potential for applications in areas such as scientific mod-
eling and data compression.

1 Introduction

In the age of big data, machine learning algorithms are increasingly tasked with processing and interpreting
high-dimensional datasets across a variety of domains LeCun et al. (2015); He et al. (2016); Schmidhuber
(2015). The ability to extract meaningful insights from such data has fueled advancements in fields as di-
verse as genomics, climate science, and financial analytics Hassan et al. (2022); Fathi et al. (2022); Sohangir
et al. (2018). While high-dimensional data offers rich informational potential, it also introduces significant
challenges, including computational complexity, large storage requirements, and the heightened risk of over-
fitting Bolón-Canedo et al. (2015); Tufail et al. (2023). These challenges are often exacerbated by the "curse
of dimensionality," a phenomenon wherein the effective volume of the feature space grows exponentially with
the dimensionality, leading to sparsity and diminishing model performance Verleysen & François (2005).

To mitigate these issues, the machine learning field has seen the development of advanced techniques aimed
at reducing dimensionality and learning efficient representations. Among these, autoencoders have emerged
as a fundamental tool in unsupervised learning, capable of capturing the underlying structure of data in a
compressed form Hinton & Salakhutdinov (2006); Bengio et al. (2013). However, traditional autoencoder
architectures often rely on static activation functions such as ReLU or sigmoid, which may limit their
adaptability to the complex geometries and dynamics inherent in high-dimensional data.

Recent advancements have sought to address these limitations by innovating network architectures and acti-
vation functions. Notably, the success of Kolmogorov-Arnold Networks (KANs) Liu et al. (2025), inspired by
the Kolmogorov-Arnold representation theorem, has highlighted the potential of neural networks to approx-
imate high-dimensional mappings with enhanced expressiveness. Building on these innovations, learnable
activation functions such as Swish Ramachandran et al. (2017) and Mish Misra (2019) have further expanded
the capacity of neural networks to adapt to varying data distributions.

Motivated by these advancements, we introduce Kolmogorov-Arnold Network Autoencoders (KANAs), a
framework designed specifically to tackle the complexities of high-dimensional data representation. Unlike
conventional models, KANA integrates KANs within the autoencoder architecture, enhancing its ability to
capture intricate patterns and adapt to diverse data structures. This dynamic approach enables KANA to
achieve superior reconstruction quality and generalization, making it a robust solution for a wide range of
applications, from data compression to scientific modeling.

1



Under review as submission to TMLR

2 Related Work

The study of KANs has gained significant attention in recent years as a promising alternative to traditional
multilayer perceptrons (MLPs) Samadi et al. (2024). Unlike conventional MLPs, which employ static linear
weights followed by fixed activation functions, KANs replace linear weights with learnable activation func-
tions, allowing for dynamic pattern learning and enhanced adaptability. This architectural innovation has
enabled KANs to achieve superior performance with fewer parameters, outperforming larger MLPs in terms
of accuracy, scaling efficiency, and interpretability Vaca-Rubio et al. (2024). These characteristics make
KANs particularly attractive for applications requiring compact yet expressive models.

KANs have demonstrated significant success across various domains. In graph learning, for example, spe-
cialized KAN-based architectures such as the Kolmogorov-Arnold Graph Isomorphism Network (KAGIN)
and the Kolmogorov-Arnold Graph Convolution Network (KAGCN) have achieved state-of-the-art results in
graph regression tasks by providing more effective node feature updates Bresson et al. (2024). These mod-
els leverage the flexibility of learnable activation functions to capture intricate relationships within graph
structures, surpassing the capabilities of traditional MLPs. Similarly, KANs have been shown to improve
transfer learning frameworks by replacing conventional linear probing layers in ResNet-50 architectures with
KAN layers Shen & Younes (2024), significantly enhancing adaptability to complex and diverse data patterns
while improving generalization performance.

KAN principles have also been successfully integrated into Convolutional Neural Networks (CNNs). For in-
stance, the Residual KAN (RKAN) incorporates KAN modules into established architectures like ResNet and
DenseNet. By using Chebyshev polynomial-based convolutions, RKAN achieves improved feature extraction
capabilities while maintaining computational efficiency Yu et al. (2024).

Beyond KANs, the concept of learnable activation functions has emerged as a broader research theme in
neural network design. Methods such as Parametric Rectified Linear Unit (PReLU) He et al. (2015) and
spline-based activation functions Bohra et al. (2020) share the goal of enhancing network adaptability by
allowing activation functions to evolve during training.

Our proposed KANA build upon the theoretical foundations of learnable activation functions. By integrating
learnable activation functions into the autoencoder architecture, KANA offers a more adaptable solution for
tasks such as dimensionality reduction and data reconstruction.

3 Method

3.1 Architecture

The architecture of KANA is designed to effectively process high-dimensional data by transforming it through
a structured sequence of encoding and decoding steps. At its core, KANA consists of two primary com-
ponents: an encoder and a decoder, which work together to achieve dimensionality reduction and data
reconstruction, respectively. The overall structure of KANA is illustrated in Figure 1.

The encoder maps high-dimensional input data x ∈ RD into a compressed, lower-dimensional latent space
z ∈ Rd, where d ≪ D. This is achieved through a composition of functions, each corresponding to a layer in
the encoder:

z = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ0)(x), (1)

where each Φi represents a transformation applied at layer i, typically combining a linear transformation,
a learnable activation function, and optional normalization techniques. This layered approach progressively
encodes the input x into increasingly abstract representations, culminating in the latent variable z, which
captures the most salient features necessary for reconstruction.

The decoder, conversely, reconstructs the original high-dimensional input x from its latent representation z.
This is achieved through another sequence of function compositions, reversing the encoding process:

x̂ = (ΨL−1 ◦ ΨL−2 ◦ · · · ◦ Ψ0)(z), (2)
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Figure 1: Overview of the KANA architecture.

where each Ψi represents a transformation applied at layer i of the decoder. These transformations progres-
sively map the latent representation z back into the original data space. The output x̂ is the reconstruction
of the input data x, with the aim of minimizing the discrepancy between x̂ and x.

This layered architecture, coupled with learnable activation functions within the transformations Φi and Ψi,
enables KANA to adapt dynamically to the underlying structure of the data.

3.2 KAN Layer

The Kolmogorov-Arnold representation theorem establishes that any continuous function mapping from
[0, 1]n to R can be decomposed into a sum of univariate continuous functions combined through addition
operations Schmidt-Hieber (2021). This theorem serves as a cornerstone in high-dimensional function ap-
proximation and is formally expressed as:

f(x) = f(x1, . . . , xn) =
2n+1∑
q=1

ψq

(
n∑

p=1
ϕq,p(xp)

)
, (3)

where ψq,p : [0, 1] → R and Φq : R → R are continuous univariate functions.

Inspired by this theorem, the KAN layer in KANA is designed to adapt dynamically during training by
employing a collection of trainable activation functions, denoted collectively as Φ. These functions allow the
KAN layer to adjust its behavior to the specific patterns and structures present in the input data. However,
instead of adhering to the 2n + 1 dimensional framework suggested by the theorem, KANA adopts a more
flexible approach. By optimizing the latent dimensionality and learnable activation parameters empirically,
we aim to achieve an optimal trade-off between representational capacity and computational efficiency. This
deviation is motivated by the observation that the rigid 2n+1 structure may over-parameterize the activation
layer, leading to diminishing returns in performance.

The activation output for an input vector x is represented as:

Φ(x) =
N∑

i=1
ϕi(xi), (4)
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where ϕi(xi) represents the learnable activation function corresponding to the i-th input dimension. By tai-
loring each ϕi(xi) to optimize specific attributes of the data, the KAN layer is able to enhance its effectiveness
in modeling complex, non-linear relationships.

Each activation function ϕ(x) within the KAN layer integrates a spline-based representation with a base
activation function to achieve a high degree of flexibility and expressiveness. This is mathematically defined
as:

ϕ(x) =
l+p∑
i=1

Bi,p(x) · wi + b(x) · w0, (5)

where Bi,p(x) are B-spline basis functions of degree p, which provide a localized and adaptable basis for
approximating functions. The grid size, l, determines the number of basis functions, and wi are the trainable
coefficients that adjust the contribution of each basis function. The term b(x) represents the base activation
function, which is scaled by the trainable coefficient w0.

3.3 Convolutional KAN Layer

Inspired by the architecture of CNNs, the Convolutional KAN (CKAN) layer introduces shift-invariant
properties into neural networks, enabling the model to recognize patterns regardless of their spatial position.
This design addresses a key limitation of the standard KAN layer, which assigns a separate set of parameters
to each input dimension. By incorporating parameter sharing across different input locations, the KAN layer
significantly reduces the number of trainable parameters, enhancing computational efficiency while retaining
expressiveness.

The core of the CKAN layer is a kernel composed of learnable activation functions organized in a matrix
format:

Φ =



ϕ1,1 ϕ1,2 ϕ1,3 · · · ϕ1,m

ϕ2,1 ϕ2,2 ϕ2,3 · · · ϕ2,m

ϕ3,1 ϕ3,2 ϕ3,3 · · · ϕ3,m

...
...

...
. . .

...

ϕn,1 ϕn,2 ϕn,3 · · · ϕn,m


, (6)

where each element ϕi,j represents a distinct learnable activation function.

The CKAN layer applies the kernel Φ in a convolution-like manner over the input, enabling the activation
functions to account for spatial relationships while maintaining shift invariance. This approach mirrors the
way CNN kernels learn spatially invariant features but extends the concept to learnable, non-linear activation
functions.

4 Experiments

4.1 Experimental Setup

Self-supervised pretraining. During the self-supervised pretraining stage, the model is trained over 50
epochs to learn meaningful and robust representations in the latent space. The AdamW optimizer Loshchilov
(2017) is utilized with a learning rate of 1×10−3, a weight decay of 1×10−4, and a cosine annealing learning
rate schedule Loshchilov & Hutter (2016). Training is conducted with a batch size of 1024, optimizing the
reconstruction quality. Unless otherwise specified, the latent space dimension is set to 16.

Linear probing. The linear probing phase evaluates the quality of the representations learned during
pretraining. Here, the pretrained encoder is frozen, and a lightweight linear classifier is trained on the
extracted latent features. The training is conducted over 5 epochs using the SGD optimizer Robbins &
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Model Dimension MNIST Fashion-MNIST
MSE Accuracy MSE Accuracy

Baseline
8 0.0223 87.2% 0.0169 74.4%
16 0.0172 88.2% 0.0144 78.8%
32 0.0132 89.4% 0.0120 80.1%

KANA
8 0.0174 88.9% 0.0139 76.4%
16 0.0108 91.5% 0.0112 79.0%
32 0.0075 91.0% 0.0096 80.6%

Table 1: Model performance across different latent dimensions on MNIST and Fashion-MNIST datasets.

Monro (1951) with a learning rate of 0.1, momentum Qian (1999) set to 0.9 , and a batch size of 256. This
stage provides a quantitative assessment of the discriminative power of the learned features.

4.2 Model Robustness

We evaluated KANA’s robustness across different latent space dimensions using the MNIST Deng (2012)
and Fashion-MNIST Xiao et al. (2017) datasets. For comparison, our baseline model uses a standard MLP
architecture for both encoder and decoder, matching KANA in depth and hidden units. The results, sum-
marized in Table 1, show that KANA consistently outperformed the baseline model. Notably, increasing
the latent dimension to 32 for MNIST did not yield further improvements in linear probing classification
accuracy, which slightly declined to 91.0%. This indicates that additional latent dimensions may introduce
redundancy rather than contributing meaningful new features for this dataset. In contrast, the baseline
model, even with a latent dimension of 32, struggled to match KANA’s performance at just 16 dimen-
sions, achieving a accuracy of only 89.4% during linear probing. This highlights KANA’s ability to learn
compact and expressive representations more effectively than traditional methods. The findings underscore
KANA’s efficiency in balancing latent dimensionality and performance, offering robust results across diverse
configurations and datasets.

4.3 Qualitative Analysis

Reconstructed images. Figure 2 compares original and reconstructed images. KANA demonstrates a
remarkable ability to reconstruct input data, preserving high-fidelity details even for complex patterns.

Latent space interpolation. To evaluate the quality of the learned latent space, we performed linear
interpolations between selected data points in this space. Given two latent vectors, z0 = f(x0) and z1 =
f(x1), where f(·) is the encoder function, we compute a linear interpolation, zλ = (1 − λ)z0 + λz1, where
λ ∈ [0, 1]. Decoding these interpolated latent vectors with the decoder function g(·) produces smooth
transitions between the original data points, x̂λ = g(zλ). The results, with λ chosen at equal intervals, shown
in Figure 3, demonstrate the model’s ability to learn continuous, meaningful, and semantically coherent
representations within its latent space.

4.4 Ablation Studies

To understand the impact of key architectural and design choices, we performed a series of ablation studies on
the MNIST dataset. These studies focused on encoder and decoder design choices, hidden layer dimensions,
and loss functions, with evaluations based on reconstruction quality and linear probing classification accuracy.

Encoder Design. The encoder designs evaluated in our experiments span four distinct configurations,
each progressively enhancing representational capabilities. The baseline MLP consists of two fully connected
layers with a ReLU activation in between. The convolution-enhanced MLP incorporates a convolutional layer
at the start, followed by a ReLU activation and a fully connected linear layer. The standard KAN encoder
employs two stacked KAN layers, which dynamically adapt their activation functions to improve feature
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Figure 2: Visual comparison of original and reconstructed images on MNIST and Fashion-MNIST datasets.

Type MSE Accuracy
MLP 0.0120 89.1%
Conv 0.0138 87.1%
KAN 0.0108 91.5%

CKAN 0.0130 87.2%

Table 2: Ablation study on encoder design. Default settings are highlighted in gray .

extraction. Finally, the CKAN encoder combines a CKAN layer with a KAN layer, which learns spatially
invariant features and reduce the parameters by weight sharing. The results, summarized in Table 2, the
significance of learnable activation functions. Interestingly, while CKAN layers enhance shift invariance,
their performance on MNIST suggests a trade-off between parameter sharing and expressiveness.

6



Under review as submission to TMLR

M
N
IS
T

F
as
hi
on
-M
N
IS
T

Figure 3: Visualization of linear interpolation between latent representations on MNIST and Fashion-MNIST
datasets.

Type MSE Accuracy
MLP 0.0160 88.4%
KAN 0.0108 91.5%

Table 3: Ablation study on decoder design. Default settings are highlighted in gray .

Decoder design. Similarly, we compared MLP-based decoders with those incorporating KAN layers. As
shown in Table 3, decoders with KAN layers significantly outperformed their MLP counterparts, achieving
lower reconstruction error and higher accuracy. These results indicate that learnable activation mechanisms
are not only beneficial in encoding but also enhance decoding processes, likely by better capturing complex
data distributions.
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Encoder Decoder MSE Accuracy
196 33 0.0167 90.1%
196 196 0.0108 91.5%
1569 33 0.0156 89.1%
1569 196 0.0107 91.2%

Table 4: Ablation study on hidden layer dimensions. Default settings are highlighted in gray .

Type MSE Accuracy
Log-Cosh 0.0107 91.0%

MAE 0.0144 91.1%
MSE 0.0108 91.5%

MSLE 0.0113 91.1%

Table 5: Ablation study on loss functions. Default settings are highlighted in gray .

Hidden layer dimensions. We explored the relationship between hidden layer dimensionality and model
performance by testing various configurations, as shown in Table 4. Contrary to theoretical expectations
based on Kolmogorov–Arnold representation (2n + 1 dimensions for input dimension n), the best results
were achieved with balanced 196-dimensional hidden layers. This configuration struck an optimal balance
between parameter efficiency and representational capacity, resulting in low reconstruction error and high
classification accuracy during linear probing.

Loss funtions. The choice of loss function plays a crucial role in shaping the model’s learning behavior
and convergence. We evaluated several loss functions, including Log-Cosh, Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Mean Squared Logarithmic Error (MSLE). As shown in Table 5, the MSE
loss demonstrated the best balance between reconstruction error and linear probing classification accuracy,
confirming its effectiveness for this task.

5 Discussion

Our findings demonstrate that the KANA framework, through its innovative integration of KAN layers,
effectively tackles the complex challenges associated with processing high-dimensional data. By enabling
dynamic and adaptive activation functions, KANA not only enhances reconstruction quality but also gen-
erates latent representations that are both meaningful and semantically coherent. These advancements are
substantiated by a comprehensive set of qualitative and quantitative analyses, which highlight the model’s
ability to capture intricate patterns and dependencies in the data.

However, one limitation of the KANA framework is the computational overhead introduced by its use
of spline-based learnable activation functions, particularly when compared to traditional method. The
overhead primarily arises from the increased complexity in parameter optimization, as well as the additional
computational resources required during both training and inference. While this computational burden
may limit KANA’s scalability, particularly in applications that involve extremely high-dimensional data or
demand real-time processing capabilities, the significant improvements in reconstruction fidelity and latent
representation quality make it a highly valuable tool in contexts where precision and accuracy are of utmost
importance.

Looking to the future, research should focus on expanding KANA’s capabilities by applying it to more com-
plex, multi-layered network architectures. Such expansions would provide a more thorough understanding
of the model’s performance improvements, as well as the trade-offs that come with increased model com-
plexity, including potential risks of overfitting and increased computational requirements. Exploring efficient
approximations of spline-based activations or novel learnable activation designs could help strike a balance
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between maintaining model expressiveness and reducing computational demands. Furthermore, it will be
critical to assess KANA’s scalability and computational efficiency in large-scale deployments, especially in
applications involving massive datasets or stringent real-time processing requirements. Lastly, future stud-
ies should evaluate KANA’s adaptability to a broader range of tasks and datasets, including multi-modal,
graph-structured, and domain-specific data, to better understand its robustness, generalization capabilities,
and potential across diverse use cases and industries.

6 Conclusion

In conclusion, KANA marks a transformative step forward in the field of high-dimensional data processing.
By introducing KAN layers, KANA enhances both the quality of reconstruction and the richness of latent
representations. These improvements make KANA a powerful tool in a wide array of machine learning
applications, particularly those requiring high accuracy and nuanced understanding of complex data. The
ability to dynamically adapt activation functions allows KANA to model intricate dependencies in the data,
which can lead to more robust and flexible representations compared to traditional static activations.

Although challenges related to computational efficiency and scalability remain, especially in resource-
constrained environments, the results thus far strongly suggest that KANA offers substantial promise for a
variety of real-world applications. Its potential to improve performance in fields such as computer vision, nat-
ural language processing, and time-series analysis underscores the broad applicability of the framework. As
further refinements are made to reduce its computational overhead and optimize its deployment, KANA’s
impact could extend to even more complex and large-scale tasks, where the need for both accuracy and
computational efficiency is critical.

Ultimately, KANA represents not only an important advance in activation function design but also a foun-
dation upon which future innovations in deep learning architectures can be built. The ongoing development
of KANA will likely inspire new methods for improving model expressiveness, efficiency, and generalization,
making it a valuable asset in pushing the boundaries of machine learning research and application.
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