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Abstract

Unsupervised learning aims to capture the underlying structure of potentially large and
high-dimensional datasets. Traditionally, this involves using dimensionality reduction (DR)
methods to project data onto lower-dimensional spaces or organizing points into meaningful
clusters (clustering). In this work, we revisit these approaches under the lens of optimal
transport and exhibit relationships with the Gromov-Wasserstein problem. This unveils a
new general framework, called distributional reduction, that recovers DR and clustering as
special cases and allows addressing them jointly within a single optimization problem. We
empirically demonstrate its relevance to the identification of low-dimensional prototypes
representing data at different scales, across multiple image and genomic datasets.

1 Introduction

One major objective of unsupervised learning (Hastie et al., 2009) is to provide interpretable and meaningful
approximate representations of the data that best preserve its structure i.e. the underlying geometric
relationships between the data samples. Similar in essence to Occam’s principle frequently employed in
supervised learning, the preference for unsupervised data representation often aligns with the pursuit of
simplicity, interpretability or visualizability in the associated model. These aspects are determinant in many
real-world applications where the interaction with domain experts is paramount for interpreting the results
and extracting meaningful insights from the model. For instance, the design of tissue atlases or the inference
of single-cell trajectories, which are essential for addressing various biological challenges (Rao et al., 2021;
Saelens et al., 2019), depends on the analysis of metacells, i.e. granular and interpretable representations of
cells that enable separating sampling effect from biological variance (Baran et al., 2019).

Dimensionality reduction and clustering. When faced with the question of extracting interpretable
representations, from a dataset X = (x1, ..., xN )⊤ ∈ RN×p of N samples in Rp, the machine learning
community has proposed a variety of methods. Among them, dimensionality reduction (DR) algorithms
have been widely used to summarize data in a low-dimensional space Z = (z1, ..., zN )⊤ ∈ RN×d with d≪ p,
allowing for visualization of every individual points for small enough d (Lee et al., 2007; Van Der Maaten
et al., 2009). Another major approach is to cluster the data into n groups, with n typically much smaller than
N , and to summarize these groups through their centroids (Bishop, 2006; Von Luxburg, 2007). Clustering is
particularly interpretable since it provides a smaller number of representative points that can be more easily
inspected. The cluster assignments can also be analyzed. Both DR and clustering follow a similar philosophy
of summarization and reduction of the dataset using a smaller size representation.

Two sides of the same coin. As a matter of fact, methods from both families share many similitudes,
including the construction of a similarity graph between input samples. In clustering, many popular approaches
design a reduced or coarsened version of the initial similarity graph while preserving some of its spectral
properties (Von Luxburg, 2007; Schaeffer, 2007). In DR, the goal is to solve the inverse problem of finding
low-dimensional embeddings that generate a similarity graph close to the one computed from input data
points (Ham et al., 2004; Hinton and Roweis, 2002). Our work builds on these converging viewpoints and
addresses the following question: can DR and clustering be expressed in a common and unified framework ?
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Figure 1: Illustration of our DistR method on two toys examples. For each example (left and right), the
data pairs X and Z represent the original data and their embedding as found by our method DistR. These
pairs are associated to similarity matrices CX(X) ∈ RN×N and CZ(Z) ∈ Rn×n (n < N), which encode the
pairwise similarities in their respective spaces. In the left example, we consider a Gaussian similarity for Z
and Symmetric Entropic Affinity (SEA) (Van Assel et al., 2023) for X. In the right example, we consider SEA
for X and a similarity in the Lorentz model (Nickel and Kiela, 2018) for Z. DistR also provides a coupling T
between the points in X and Z, illustrated in purple, with its marginals.

A distributional perspective. To answer this question, we propose to look at both problems from a
distributional point of view, treating the data as an empirical probability distribution µ = 1

N

∑
i δxi

. This
enables to consider statistical measures of similarity such as Optimal Transport (OT), which is at the core of
our work. On the one hand, OT and clustering are strongly related. The celebrated k-means algorithm can be
seen as a particular case of minimal Wasserstein estimator where a distribution of n Diracs is optimized w.r.t
their weights and positions (Canas and Rosasco, 2012). Other connections between spectral clustering and
the OT-based Gromov-Wasserstein (GW) distance have been recently developed in Chowdhury and Needham
(2021); Chen et al. (2023); Vincent-Cuaz et al. (2022a). On the other hand, the link between DR and OT is
less explored. DR methods, when modeling data as distributions, usually focus on joint distribution between
samples within each space separately, see e.g. Van Assel et al. (2023) or Lu et al. (2019). Consequently,
they do not consider couplings to transport samples across spaces of varying dimensions. At the time of
this paper’s submission, we note that other authors have independently developed a similar line of work, as
detailed in Clark et al. (2024); Murray and Pickarski (2024). Their studies focus on “multidimensional scaling”
problems and establish connections to the semi-relaxed GW framework but do not explore alternative DR
approaches or clustering aspects.

Contributions. In this paper, we develop a general distributional framework that encompasses both DR and
clustering as special cases. We notably cast those problems as finding a reduced distribution that minimizes
the GW divergence from the original empirical data distribution. Our method proceeds by first constructing
an input similarity matrix CX(X) that is matched with the embedding similarity CZ(Z) through an OT
coupling matrix T. The latter establishes correspondences between input and embedding samples. We
illustrate this principle in Figure 1 where one can notice that CZ(Z) preserves the topology of CX(X) with a
reduced number of nodes. The adaptivity of our model that can select an effective number of cluster < n,
is visible in the bottom plot, where only the exact number of clusters in the original data (9 out of the 12
initially proposed) is automatically recovered. Our method can operate in any embedding space, which is
illustrated by projecting in either a 2D Euclidean plane or a Poincaré ball.

Outline. We show that this framework is versatile and allows recovering as special cases many popular
DR methods such as the kernel PCA and neighbor embedding algorithms, but also clustering algorithms
such as weighted k-means and its kernel counterpart including spectral clustering (Chan et al., 2004; Dhillon
et al., 2007). We first prove in Section 3 that DR can be formulated as a GW projection problem under some
conditions on the loss and similarity functions. We then propose in Section 4 a novel formulation of data
summarization as a minimal GW estimator that allows selecting both the dimensionality of the embedding d
(DR) and the cardinality of the support n (Clustering). Finally, we show in section 5 the practical interest of
our approach on images and genomics datasets.

Notations. The ith entry of a vector v is denoted as either vi or [v]i. Similarly, for a matrix M, Mij and
[M]ij both denote its entry (i, j). SN is the set of permutations of [[N ]]. PN (Rd) refers to the set of discrete
probability measures composed of N points of Rd. ΣN stands for the probability simplex of size N that is
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ΣN := {h ∈ RN
+ s.t.

∑
i hi = 1}. log(M) and exp(M) are to be understood element-wise. For x ∈ RN , diag(x)

denotes the diagonal matrix whose elements are the xi.

2 Background on Dimensionality Reduction and Optimal Transport

We first review the most popular DR approaches and introduce the Gromov-Wasserstein problem.

2.1 Unified View of Dimensionality Reduction

Let X = (x1, ..., xN )⊤ ∈ RN×p be an input dataset. Dimensionality reduction focuses on constructing a low-
dimensional representation or embedding Z = (z1, ..., zN )⊤ ∈ RN×d, where d < p. The latter should preserve
a prescribed geometry for the dataset encoded via a symmetric pairwise similarity matrix CX ∈ RN×N

+
obtained from X. To this end, most popular DR methods optimize Z such that a certain pairwise similarity
matrix in the output space matches CX according to some criteria. We subsequently introduce the functions

CX : RN×p → RN×N , CZ : RN×d → RN×N , (1)

which define pairwise similarity matrices in the input and output space, from the dataset X and the embedding
Z respectively. The DR problem can be formulated quite generally as the optimization problem

min
Z∈RN×d

∑
(i,j)∈[[N ]]2

L
(
[CX(X)]ij , [CZ(Z)]ij

)
. (DR)

where L : R×R→ R is a loss that quantifies the discrepancy between similarities between points in the input
space Rp and in the output space Rd. Various losses are used, such as the quadratic loss L2(x, y) := (x− y)2

or the Kullback-Leibler divergence LKL(x, y) := x log(x/y)− x + y. Below, we recall several popular methods
that can be placed within this framework.

Spectral methods. When CX(X) is a positive semi-definite matrix, eq. (DR) recovers spectral methods
by choosing the quadratic loss L = L2 and CZ(Z) = (⟨zi, zj⟩)(i,j)∈[[N ]]2 the matrix of inner products in the
embedding space. Indeed, in this case, the objective value of eq. (DR) reduces to∑

(i,j)∈[[N ]]2

L2([CX(X)]ij , ⟨zi, zj⟩) = ∥CX(X)− ZZ⊤∥2
F

where ∥ · ∥F is the Frobenius norm. This problem is commonly known as kernel Principal Component Analysis
(PCA) (Schölkopf et al., 1997) and an optimal solution is given by Z⋆ = (

√
λ1v1, ...,

√
λdvd)⊤ where λi is the

i-th largest eigenvalue of CX(X) with corresponding eigenvector vi (Eckart and Young, 1936). As shown
by Ham et al. (2004); Ghojogh et al. (2021), numerous dimension reduction methods can be categorized
in this manner. This includes PCA when CX(X) = XX⊤ is the matrix of inner products in the input
space; (classical) multidimensional scaling (Borg and Groenen, 2005), when CX(X) = − 1

2 HDXH with DX
the matrix of squared euclidean distance between the points in Rp and H = IN − 1

N 1N 1⊤
N is the centering

matrix; Isomap (Tenenbaum et al., 2000), with CX(X) = − 1
2 HD(g)

X H with D(g)
X the geodesic distance matrix;

Laplacian Eigenmap (Belkin and Niyogi, 2003), with CX(X) = L†
X the pseudo-inverse of the Laplacian

associated to some adjacency matrix WX; but also Locally Linear Embedding (Roweis and Saul, 2000), and
Diffusion Map (Coifman and Lafon, 2006) (for all of these examples we refer to Ghojogh et al. 2021, Table 1).

Neighbor embedding methods. An alternative group of methods relies on neighbor embedding techniques
which consists in minimizing in Z the quantity∑

(i,j)∈[[N ]]2

LKL([CX(X)]ij , [CZ(Z)]ij) . (NE)

Within our framework, this corresponds to eq. (DR) with L = LKL. The objective function of popular
methods such as stochastic neighbor embedding (SNE) (Hinton and Roweis, 2002) or t-SNE (Van der Maaten
and Hinton, 2008) can be derived from eq. (NE) with a particular choice of CX , CZ . For instance SNE and
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t-SNE both consider in the input space a symmetrized version of the entropic affinity (Vladymyrov and
Carreira-Perpinan, 2013; Van Assel et al., 2023). In the embedding space, CZ(Z) is usually constructed from
a “kernel” matrix KZ which undergoes a scalar (Van der Maaten and Hinton, 2008), row-stochastic (Hinton
and Roweis, 2002) or doubly stochastic (Lu et al., 2019; Van Assel et al., 2023) normalization. Gaussian kernel
[KZ]ij = exp(−∥zi − zj∥2

2), or heavy-tailed Student-t kernel [KZ]ij = (1 + ∥zi − zj∥2
2)−1, are typical choices

(Van der Maaten and Hinton, 2008). We also emphasize that one can retrieve the UMAP objective (McInnes
et al., 2018) from eq. (DR) using the binary cross-entropy loss LBCE(x, y) = x log x

y + (1 − x) log 1−x
1−y . A

comprehensive overview and probabilistic analysis of these methods can be found in Van Assel et al. (2022).
Remark 2.1. The usual formulations of neighbor embedding methods rely on the loss L(x, y) = x log(x/y)
instead of LKL. However, due to the normalization, the total mass

∑
ij [CZ(Z)]ij is constant (often equal to

1) in all of the cases mentioned above. Thus the minimization in Z with the LKL formulation is equivalent to
the usual formulations of neighbor embedding objectives.

Non-Euclidean geometries. Most DR methods can also be extended to incorporate non-Euclidean
geometries. For instance, Hyperbolic spaces (Chami et al., 2021; Fan et al., 2022; Guo et al., 2022; Lin et al.,
2023) are of particular interest as they can capture hierarchical structures more effectively than Euclidean
spaces and further mitigate the curse of dimensionality. However, these methods introduce additional
hyperparameters and optimization difficulties that can limit their applicability. For this reason, we report
some numerical experiments with such kernels in Appendix F.10 as proofs of concept supporting the versatility
of our methods.

2.2 Optimal Transport Across Spaces

Optimal Transport (OT) (Villani et al., 2009; Peyré et al., 2019) is a popular framework for comparing
probability distributions and is at the core of our contributions. We review in this section the Gromov-
Wasserstein formulation of OT aiming at comparing distributions across spaces.

Gromov-Wasserstein (GW). The GW framework (Mémoli, 2011; Sturm, 2012) comprises a collection of
OT methods designed to compare distributions by examining the pairwise relations within each space. For
two matrices C ∈ RN×N , C ∈ Rn×n, and weights h ∈ ΣN , h ∈ Σn, the GW discrepancy with inner loss L
(Peyré et al., 2016) is defined as

GWL(C, C, h, h) = min
T∈U(h,h)

EL(C, C, T)

with EL(C, C, T) =
∑
ijkl

L(Cij , Ckl)TikTjl ,
(GW)

and U(h, h) =
{

T ∈ RN×n
+ : T1n = h, T⊤1N = h

}
is the set of couplings between h and h. In this formula-

tion, both pairs (C, h) and (C, h) can be interpreted as graphs with corresponding connectivity matrices
C, C, and where nodes are weighted by histograms h, h (with implicit supports). Equation (GW) is thus a
quadratic problem (in T) which consists in finding a soft-assignment matrix T that aligns the nodes of the
two graphs in a way that preserves their pairwise connectivities.

From a distributional perspective, GW defines a distance between distributions that do not belong to
the same metric space. For two discrete probability distributions µX =

∑N
i=1[hX ]iδxi

∈ PN (Rp), µZ =∑n
i=1[hZ ]iδzi ∈ Pn(Rd) and pairwise similarity matrices CX(X) and CZ(Z) associated with the explicit

supports X = (x1, · · · , xn)⊤ and Z = (z1, · · · , zn)⊤, the quantity GWL(CX(X), CZ(Z), hX , hZ) is a measure
of dissimilarity or discrepancy between µX , µZ . Specifically, when L = L2, and CX(X), CZ(Z) are pairwise
distance matrices, GW defines a proper distance between µX and µZ with respect to measure preserving
isometries1.

Due to its versatile properties, notably in comparing distributions over different domains, the GW problem
has found many applications in machine learning, e.g., for 3D meshes alignment (Solomon et al., 2016; Ezuz
et al., 2017), NLP (Alvarez-Melis and Jaakkola, 2018), (co-)clustering (Peyré et al., 2016; Redko et al., 2020),

1With weaker assumptions on CX , CZ , GW defines a pseudo-metric w.r.t. a different notion of isomorphism (Chowdhury
and Mémoli, 2019), detailed in Appendix C.
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single-cell analysis (Demetci et al., 2020), neuroimaging (Thual et al., 2022), graph representation learning
(Xu, 2020; Vincent-Cuaz et al., 2021; Liu et al., 2022b; Vincent-Cuaz et al., 2022b; Zeng et al., 2023) and
partitioning (Xu et al., 2019; Chowdhury and Needham, 2021). In this work, we leverage the GW discrepancy
to extend classical DR approaches, framing them as the projection of a distribution onto a space of lower
dimensionality.

3 OT Formulation of DR

In this section, we outline the strong connections between the classical eq. (DR) and the GW problem.

Gromov-Monge interpretation of DR. As suggested by eq. (DR), dimension reduction seeks to find
embeddings Z so that the similarity between the (i, j) samples of the input data is as close as possible to
the similarity between the (i, j) samples of the embeddings. Under equivariant assumptions on CZ , this
also amounts to identifying the embedding Z and the best permutation that realigns the two similarity
matrices CX(X) and CZ(Z). Recall that the function CZ is equivariant by permutation, if, for any N ×N
permutation matrix P and any Z, CZ(PZ) = PCZ(Z)P⊤ (Bronstein et al., 2021). This type of assumption
is natural for CZ : if we rearrange the order of samples (i.e. the rows of Z), we expect the similarity matrix
between the samples to undergo the same rearrangement.
Lemma 3.1. Let CZ be a permutation equivariant function and L any loss. The minimum of eq. (DR) is
equal to

min
Z∈RN×d

min
σ∈SN

∑
ij

L([CX(X)]ij , [CZ(Z)]σ(i)σ(j)) . (2)

Also, any sol. Z of eq. (DR) is such that (Z, id) is solution of eq. (2). And conversely any (Z, σ) sol. of
eq. (2) is such that Z is a solution of eq. (DR) up to σ.

Lemma 3.1, proven in Appendix B.1, establishes an equivalence between eq. (DR) and the optimization of the
embedding Z w.r.t a Gromov-Monge discrepancy (Mémoli and Needham, 2018) given in eq. (2), which seeks
to identify the permutation σ that best aligns two similarity matrices, by solving a combinatorial quadratic
assignment problem (Cela, 2013). We can delve deeper into these comparisons and demonstrate that the
general formulation of dimension reduction is also equivalent to minimizing the Gromov-Wasserstein objective,
which serves as a relaxation of the Gromov-Monge problem (Mémoli and Needham, 2022).

DR as GW Minimization. We suppose that the distributions have the same number of points (N = n)
and uniform weights (hZ = hX = 1

N 1N ). We recall that a matrix C ∈ RN×N is conditionally positive
definite (CPD), resp. conditionally negative definite (CND), if it is symmetric and ∀x ∈ RN s.t. x⊤1N =
0 we have x⊤Cx ≥ 0, resp. ≤ 0.

We thus extend Lemma 3.1 to the GW problem in the following (proof in Appendix B.2):
Theorem 3.2. The minimum of eq. (DR) is equal to minZ GWL(CX(X), CZ(Z), 1

N 1N , 1
N 1N ) in the following

cases:

(i) (spectral methods) When CX(X) is any matrix, L = L2 and CZ(Z) = ZZ⊤.

(ii) (neighbor embedding methods) When Im(CX) ⊆ RN×N
>0 , L = LKL, the matrix CX(X) is CPD and,

for any Z,
CZ(Z) = diag(αZ)KZ diag(βZ) , (3)

for some αZ, βZ ∈ RN
>0 and KZ ∈ RN×N

>0 such that log(KZ) is CPD.

Remarkably, the first item of Theorem 3.2 shows that all spectral DR methods can be seen as OT problems in
disguise, as they all equivalently minimize a GW problem. The second item also provides some insights into
this equivalence in the case of neighbor embedding methods that require more assumptions. For instance, the
Gaussian kernel KZ, used extensively in DR (Section 2.1), satisfies the hypothesis as log(KZ) = (−∥zi−zj∥2

2)ij

is CPD (see e.g. Maron and Lipman 2018). The terms αZ, βZ also allow for considering all the usual
normalizations of KZ: by a scalar so as to have

∑
ij [CZ(Z)]ij = 1, but also any row or doubly stochastic

normalizations (with the Sinkhorn-Knopp algorithm Sinkhorn and Knopp 1967).
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Matrices satisfying log(KZ) being CPD are well-studied in the literature and are known as infinitely divisible
matrices (Bhatia, 2006). It is noteworthy that the t-Student kernel does not fall into this category. Moreover,
in the aforementioned neighbor embedding methods, the matrix CX(X) is generally not CPD. The intriguing
question of generalizing this result with weaker assumptions on CZ and CX remains open for future research.
Interestingly, we have observed in the numerical experiments performed in Section 5 that the symmetric
entropic affinity of Van Assel et al. (2023) was systematically CPD.
Remark 3.3. In Corollary B.3 of the appendix we also provide other sufficient conditions for neighbor
embedding methods with the cross-entropy loss L(x, y) = x log(x/y). They rely on specific structures for CZ

but do not impose any assumptions on CX . Additionally, in Appendix B.3, we provide a necessary condition
based on a bilinear relaxation of the GW problem. Although its applicability is limited due to challenges in
proving it in full generality, it requires minimal assumptions on CX , CZ and L.

In essence, both Lemma 3.1 and Theorem 3.2 indicate that dimensionality reduction can be reframed from a
distributional perspective, with the search for an empirical distribution that aligns with the data distribution
in the sense of optimal transport, through the GW framework. In other words, DR is informally solving
minz1,··· ,zN

GW( 1
n

∑N
i=1 δxi

, 1
n

∑N
i=1 δzi

).

4 Distributional Reduction

The above perspective on DR allows for the two following generalizations. Firstly, beyond solely determining
the positions zi of Diracs (as in classical DR) we can now optimize the mass of the distribution µZ . This
is interpreted as finding the relative importance of each point in the embedding Z. More importantly, due
to the flexibility of GW, we can also seek a distribution in the embedding with a smaller number of points
n < N . This will result in both reducing the dimension and clustering the points in the embedding space
through the optimal coupling. Informally, we thus propose a new Distributional Reduction (DistR) framework
that aims at solving minµZ ∈Pn(Rd) GW( 1

n

∑N
i=1 δxi

, µZ).

4.1 Distributional Reduction Problem

Precisely, the novel optimization problem that we tackle in this paper can be formulated as follows

min
Z∈Rn×d

hZ ∈Σn

GWL(CX(X), CZ(Z), hX , hZ) (DistR)

This problem comes down to learning the graph (CZ(Z), hZ) parametrized by Z that is the closest from
(CX(X), hX) in the GW sense. When n < N , the embeddings then act as low-dimensional prototypical
examples of input samples, whose learned relative importance hZ accommodates clusters of varying proportions
in the input data X (see Section 1). We refer to them as prototypes. The weight vector hX is typically
assumed to be uniform, that is hX = 1

N 1N , in the absence of prior knowledge. As discussed in Section 3,
traditional DR amounts to setting n = N, hZ = 1

N 1N .

One notable aspect of our model is its capability to simultaneously perform DR and clustering. Indeed, the
optimal coupling T ∈ [0, 1]N×n of problem eq. (DistR) is, by construction, a soft-assignment matrix from the
input data to the embeddings. It allows each point xi to be linked to one or more prototypes zj (clusters).
In Section 4.2 we explore conditions where these soft assignments transform into hard ones, such that each
point is therefore linked to a unique prototype/cluster.

A semi-relaxed objective. For a given embedding Z and L = L2, it is known that minimizing the DistR
objective w.r.t hZ is equivalent to a problem that is computationally simpler than the usual GW one, namely
the semi-relaxed GW divergence srGWL (Vincent-Cuaz et al., 2022a):

min
T∈Un(hX )

EL(CX(X), CZ(Z), T) , (srGW)

where Un(hX) :=
{

T ∈ RN×n
+ : T1n = hX

}
. To efficiently address eq. (DistR), we first observe that this

equivalence holds for any inner divergence L. Additionally, we prove that srGWL remains a divergence as
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SNA 1:  PCA
y=0
y=1
y=2
y=3

srGW on grid 16*16 srGW on grid 32*32 srGW on grid 64*64 srGW on grid 96*96

Figure 2: GW projections of a genomics dataset (Chen et al., 2019) on regular grids with increasing
resolutions, respectively encoded as CX(X) = XX⊤ and CZ(Z) = ZZ⊤. Pixels on cropped grids are colored
by interpolating samples’ colors according to the transport plan and their intensity is proportional to their
mass.

soon as L is itself a divergence. Consequently, srGWL vanishes iff both compared measures are isomorphic in
a weak sense (Chowdhury and Mémoli, 2019). We emphasize that taking a proper divergence L is important
(and basic assumptions on X), as it avoids some trivial solutions. These results are detailed in Appendix C.

Interestingly, srGW projections, i.e. optimizing only the weights hZ over simple fixed supports Z, have
already remarkable representational capability. We illustrate this in Figure 2, by considering projections of a
real-world dataset over 2D grids of increasing resolutions. Setting CX(X) = XX⊤ and CZ(X) = ZZ⊤, we
can see that those projections recover faithful coarsened representations of the embeddings learned using
PCA. DistR aims to exploit the full potential of this divergence by learning a few optimal prototypes that
best represent the dataset.

Computation. DistR is a non-convex problem that we propose to tackle using a Block Coordinate Descent
algorithm (BCD, Tseng 2001) guaranteed to converge to local optimum (Grippo and Sciandrone, 2000; Lyu
and Li, 2023). The BCD alternates between the two following steps. First, we optimize in Z for a fixed
transport plan using gradient descent with adaptive learning rates (Kingma and Ba, 2014). Then we solve for
a srGW problem given Z. To this end, we extended both solvers proposed in Vincent-Cuaz et al. (2022a) to
support losses L2, LKL and LBCE (see Appendix E.1). Namely, the Mirror Descent promoting smoothness
along iterations depending on a hyparameter ε > 0 and the Conditional Gradient seen as the edge-case ε = 0.
Following Proposition 1 in (Peyré et al., 2016), a vanilla implementation leads to O(nN2 +n2N) operations to
compute the loss or its gradient. However in many DR methods, CX(X) or CZ(Z), or their transformations
within the loss L, admit explicit low-rank factorizations. Including e.g. matrices involved in spectral methods
and other similarity matrices derived from squared Euclidean distance matrices (Scetbon et al., 2022). In
these settings, we exploit these factorizations to reduce the computational complexity of our solvers down to
O(Nn(p + d) + (N + n)pd + min(n2, nd2)) when L = L2, and O(Nnd + n2d) when L = LKL. We refer the
reader interested in these algorithmic details to Appendix E. As shown in Appendix F.9, DistR already runs
in a few seconds on datasets with several thousands of samples without leveraging low-rank properties.

Related work. The CO-Optimal Transport (COOT) clustering approach proposed in Redko et al. (2020)
is the closest to our work. It simultaneously estimates sample and feature clustering and thus can be
directly applied to perform joint clustering and DR. Despite SOTA performances on co-clustering tasks,
COOT-clustering corresponds to a linear DR method which is limiting for joint clustering and DR tasks.
In Appendix F.2, we show that COOT leads to a low average homogeneity of the prototypes {zk}k∈[[n]],
indicating that it often assigns points with different labels to the same prototype. In contrast, DistR exploits
the more expressive non-linear similarity functions offered by existing DR methods and leads to significantly
improved results. Other joint DR-clustering approaches, such as Liu et al. (2022a), involve modeling latent
variables by a mixture of distributions. In comparison, DistR is more versatile, as it easily adapts to any
(L, CX , CZ) of existing DR methods.

4.2 Clustering Properties

We elaborate now on the links between DistR and clustering methods. In what follows, we call a coupling
T ∈ [0, 1]N×n with a single non-null element per row a membership matrix. When the coupling is a membership
matrix each data point is associated with a single prototype thus achieving a hard clustering of the input
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samples. We will see that a link can be drawn with kernel k-means using the analogy of GW barycenters.
More precisely the srGW barycenter (Vincent-Cuaz et al., 2022a) seeks for a closest target graph (C, h) from
(CX , hX) by solving

min
C∈Rn×n

min
T∈Un(hX )

EL(CX(X), C, T) . (srGWB)

We stress that the only (important) difference between eq. (srGWB) and eq. (DistR) is that there is no
constraint imposed on C in srGWB. In contrast, eq. (DistR) looks for minimizing over C ∈ {CZ(Z) : Z ∈
RN×d}. For instance, choosing CZ(Z) = ZZ⊤ in eq. (DistR) is equivalent to enforcing rank(C) ≤ d in
eq. (srGWB).

We establish below that srGWB is of particular interest for clustering. The motivation for this arises from
the findings of (Chen et al., 2023), which demonstrate that, when CX(X) is positive semi-definite and T is
constrained to belong to the set of membership matrices (as opposed to couplings in Un(h)), eq. (srGWB) is
equivalent to a kernel k-means whose samples are weighted by hX (Dhillon et al., 2004; 2007). Interestingly,
these additional constraints are unnecessary. Indeed, we show below that the original srGWB problem admits
membership matrices as the optimal coupling for a broader class of CX(X) input matrices for L = L2 (see
proof in Appendix D).
Theorem 4.1. Let hX ∈ ΣN and L = L2. Suppose that for any X ∈ RN×p the matrix CX(X) is CPD
or CND. Then the problem eq. (srGWB) admits a membership matrix as optimal coupling, i.e. , there is a
minimizer of T ∈ Un(hX)→ minC∈Rn×n EL(CX(X), C, T) with only one non-zero value per row.

The implications of this theorem are as follows. First, as shown in Appendix D, given an optimal plan T,
the coefficient (i, j) of the barycenter C can be written as 1

ninj

∑
pq[CX(X)]pqTpiTqj where ni =

∑
p Tpi.

Consequently, when T is a membership matrix, C represent graph weights, where each element (i, j) is the
weighted sum of the original graph weights CX(X) for nodes in the clusters of i and j, following standard edge
contraction methods (Loukas, 2019). Second, Theorem 4.1 and relations proven in Chen et al. (2023) state
that eq. (srGWB) is equivalent to the aforementioned kernel k-means when CX(X) is positive semi-definite.
This equivalence also emphasizes spectrum-preservating properties of the srGWB problem, whose optimal
value satisfies EL2(CX(X), C, T) =

∑N
i=1 λ2

i −
∑n

j=1 ν2
j , where {λi}N

i=1 and {νj}n
j=1 are the eigenvalues

sorted in descending order of diag(hX)−1/2CX(X)diag(hX)−1/2 and C respectively, and satisfy the Pointcaré
Separation Theorem. Finally, as the (hard) clustering property holds for more generic types of matrices,
namely CPD and CND, srGWB stands out as a fully-fledged clustering method. Although these results do
not apply directly to DistR, except if e.g. the dimension d is set to the unknown rank of the srGW barycenter,
we argue that they further legitimize the use of GW projections for clustering. Interestingly, we also observe
in practice that the couplings obtained by DistR are always membership matrices, regardless of CZ .

5 Numerical Experiments

In this section, we demonstrate the relevance of our approach for joint clustering and DR, over 8 labeled
datasets detailed in Appendix F including: 3 image datasets (COIL-20 Nene et al. 1996, MNIST & fashion-
MNIST Xiao et al. 2017) and 5 genomic ones (PBMC Wolf et al. 2018, SNA 1 & 2 Chen et al. 2019 and
ZEISEL 1 & 2Zeisel et al. 2015). To this end, we examine how effectively DistR prototypes offer discriminative
representations of input samples at various granularities, using an evaluation system described below.

Benchmarked methods. Let us recall that any DR method presented in Section 2.1 is fully characterized
by a triplet (L, CX , CZ) of loss and pairwise similarity functions. Given such triplet, we compare our
DistR model against sequential approaches of DR and clustering, namely DR then clustering (DR→C) and
Clustering then DR (C→DR). These 2-step methods are representative of current practice in the field of
joint clustering and DR (Baran et al., 2019). In both cases, the clustering step is performed with spectral
clustering (a benchmark with Kmeans clustering is provided in Appendix F.7). The three methods produce
a sample-to-prototype association matrix (formally described in Appendix F.1) further used to evaluate
performance. For the choices of (L, CX , CZ), we experiment with both spectral and neighbor embedding
methods (NE). For the former, we consider the usual PCA setting with d = 10. Regarding NE, we rely on the
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Figure 3: Best trade-off between homogeneity vs silhouette (2 first plots), and homogeneity vs NMI (2 last
plots). Scores are normalized in [0, 1] via min-max scaling over a dataset. Small markers are scores per
dataset for 5 runs, while big ones are their mean. We illustrate the 20-80% percentiles of scores per method
as a colored surface.

MNIST Fashion-MNIST COIL PBMC

Figure 4: Examples of embeddings produced by DistR, using the SEA similarity for CX and the Student’s
kernel for CZ , respectively in R2 for the first three datasets and the Poincaré ball for the last one. Displayed
images are medoids for each cluster i.e. arg maxi[CX(X)T:,k]i for cluster k. The area of image k is proportional
to [hZ ]k.

Symmetric Entropic Affinity (SEA)2 from Van Assel et al. (2023) for CX and the scalar-normalized student
similarity for CZ (Van der Maaten and Hinton, 2008), setting the dimension d = 2 as it coincides with real-life
visualization purposes while outperforming PCA-based approaches. We report validated hyperparemeters
(e.g perplexity, number of prototypes n) and implementation details in Appendix F.1, and provide our code
with the submission. Moreover, we report additional experiments using the vanilla tSNE and UMAP kernels
in Appendix F, leading to similar behaviors than kernels reported in the main paper.

Evaluation metrics. We consider several evaluation metrics. Firstly, we wonder whether the prototypes are
individually discriminating input samples {xi} w.r.t their class label. We consider the homogeneity score
(Rosenberg and Hirschberg, 2007) that quantifies to which extent each prototype zk is associated with points
in the same class. Secondly, we aim to evaluate whether the embedding space is also globally discriminant,
i.e. that prototypes organize themselves to form clusters that match the classes, measured by two metrics.
i) We associate with each prototype zk a label using majority voting from the associated samples. Then
we make use of the popular silhouette score (Rousseeuw, 1987) to evaluate whether prototypes’ positions
are correctly aligned with these labels. ii) As commonly done to assess DR representations (Huang et al.,
2022), we also consider the downstream task of clustering the prototypes using the k-means algorithm. We
then assign to each {xi} the cluster of its associated prototype, acting as a predicted label, and compute the
Normalized Mutual Information (NMI) (Kvålseth, 2017) between these labels and {yi}. More details about
evaluation metrics can be found in Appendix F.

2An enhanced version of the original tSNE affinity that preserves entropy normalization during symmetrization.
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Figure 5: Scores (×100) w.r.t with respect to the number of prototypes (in R2) using the t-SNE model: SEA
similarity for CX (Van Assel et al., 2023), Student’s kernel for CZ and loss LKL.
Results. First, we illustrate in Figure 3 the best trade-off between the aforementioned metrics achieved
by all methods. For each method and dataset, we considered the model maximizing the sum of the two
normalized metrics to account for their different ranges. DistR, being present on the top-right of all plots,
provides on average the most discriminant low-dimensional representations endowed with a simple geometry,
seconded by C→DR. The significant variance of these dynamics for all methods emphasize the difficulty
of performing jointly clustering and DR. Interestingly, we show in Appendices F.5-F.6 that DistR is the
best suited to describing most datasets at various granularities in low-dimension. For a given configuration,
DistR leads to the most consistent performance over n on average across datasets. We also check that this
consistency holds for different dimensions d in Appendix F.8.
We then display in Figure 5 the scores obtained with the neighbor embedding model for several datasets and
across all considered number of prototypes n. Other kernels and datasets are illustrated in Appendix F.4.
Interestingly, looking at the homogeneity score (third row), one can notice that DistR is at least as good as
C→DR for grouping points of the same label, even though C→DR performs clustering in the high dimensional
input space. DistR is also generally better than sequential approaches at representing a meaningful structure
of the prototypes in low-dimension, measured by the silhouette and k-means NMI scores. Therefore, our
approach DistR seems to effectively achieve the best equilibrium between homogeneity and preservation of
the structure of the prototypes. For a qualitative illustration, we also plot some embeddings produced by our
method in Figure 4.

6 Conclusion

By making a connection between the GW problem and popular clustering and DR algorithms, we proposed a
unifying framework denoted as DistR. DistR enables transforming any DR algorithm into a joint DR-clustering
method that produces embeddings (or prototypes) with chosen granularity. We believe that the versatility
of the GW framework will enable new extensions in unsupervised learning. For instance, the formalism
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associated with (semi-relaxed) GW barycenters naturally enables addressing multi-view settings with multiple
unaligned inputs of different sizes. Other promising directions involve, better capturing multiple dependency
scales in the input data by hierarchically adapting the resolution of the embedding similarity graph, or
enabling batch optimization of embeddings to operate over much larger datasets.
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A Appendix

Outline of the appendix:

• Appendix B: provide the proofs for the results stated in Section 3, namely the one for Lemma 3.1 in
Appendix B.1; for Theorem 3.2 in Appendix B.2 and additional necessary and sufficient conditions
under different assumptions as discussed in Remark 3.3 developed in Appendix B.3

• Appendix C: provide the definition of weak isomorphism in the GW framework, proofs regarding the
characterization of the generalized srGW discrepancy as a divergence, mentioned in Section 4.1 of
the main paper.
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• Appendix D: proof of Theorem 4.1 on the clustering properties of srGW barycenters.

• Appendix E: Algorithmic details for DistR under generic and low-rank settings.

• Appendix F: Several additional information and results regarding the experiments detailed in Section 5
of the main paper.

– Appendix F.1 provides details on methods’ implementation, validation of hyperparameters,
datasets and metrics.

– Appendix F.2 compares DistR with COOT clustering.
– Appendix F.3: Best trade-off between metrics using t-SNE with l2 symmetrization and UMAP.
– Appendix F.4 reports complete scores on all datasets.
– Appendix F.5 and F.6 study homogeneity vs silhouette and homogeneity vs kmeans NMI scores

for various numbers of prototypes.
– Appendix F.8 study the sensitivity of benchmarked methods to the embedding dimension d

using spectral DR methods.
– Appendix F.9 compares computation time across methods.
– Appendix F.10 detail our proofs of concepts with hyperbolic DR kernels.

B Proof of results in Section 3

B.1 Proof of lemma 3.1

We recall the result.
Lemma 3.1. Let CZ be a permutation equivariant function and L any loss. The minimum of eq. (DR) is
equal to

min
Z∈RN×d

min
σ∈SN

∑
ij

L([CX(X)]ij , [CZ(Z)]σ(i)σ(j)) . (2)

Also, any sol. Z of eq. (DR) is such that (Z, id) is solution of eq. (2). And conversely any (Z, σ) sol. of
eq. (2) is such that Z is a solution of eq. (DR) up to σ.

Proof. By suboptimality of σ = id we clearly have

min
Z∈RN×d

min
σ∈SN

∑
ij

L([CX(X)]ij , [CZ(Z)]σ(i)σ(j)) ≤ min
Z∈RN×d

∑
ij

L([CX(X)]ij , [CZ(Z)]ij). (4)

For the other direction, take an optimal solution (Z, σ) of eq. (2). Using the permutation equivariance of CZ ,
[CZ(Z)]σ(i)σ(j) = [PCZ(Z)P⊤]ij = [CZ(PZ)]ij for some permutation matrix P. But PZ is admissible for
problem eq. (DR). Hence

min
Z∈RN×d

min
σ∈SN

∑
ij

L([CX(X)]ij , [CZ(Z)]σ(i)σ(j)) ≥ min
Z∈RN×d

∑
ij

L([CX(X)]ij , [CZ(Z)]ij). (5)

B.2 Proof of theorem 3.2

In the following DS is the space of N ×N doubly stochastic matrices. We begin by proving the first point of
theorem 3.2. We will rely on the simple, but useful, result below.
Proposition B.1. Let Ω ⊆ R and Im(CX) ⊆ ΩN×N . Suppose that L(a, ·) is convex for any a ∈ Ω and

min
Z∈RN×d

∑
ij

L([CX(X)]ij , [CZ(Z)]ij) ≤ min
Z∈RN×d,T∈DS

∑
ij

L([CX(X)]ij , [TCZ(Z)T⊤]ij) . (6)

Then the minimum eq. (DR) is equal to minZ GWL(CX(X), CZ(Z), 1
N 1N , 1

N 1N ).
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Proof. Consider any doubly stochastic matrix T and note that [TCZ(Z)T⊤]ij =
∑

kl[CZ(Z)]klTikTjl. Using
the convexity of L(a, ·) for any a ∈ Ω and Jensen’s inequality we have∑

ij

L([CX(X)]ij , [TCZ(Z)T⊤]ij) =
∑

ij

L([CX(X)]ij ,
∑
kl

[CZ(Z)]klTikTjl)

≤
∑
ijkl

L([CX(X)]ij , [CZ(Z)]kl)TikTjl .
(7)

In particular

min
Z

min
T∈DS

∑
ij

L([CX(X)]ij , [TCZ(Z)T⊤]ij) ≤ min
Z

min
T∈DS

∑
ijkl

L([CX(X)]ij , [CZ(Z)]kl)TikTjl . (8)

Hence, using eq. (6),

min
Z

∑
ij

L([CX(X)]ij , [CZ(Z)]ij) ≤ min
Z

min
T∈DS

∑
ijkl

L([CX(X)]ij , [CZ(Z)]kl)TikTjl . (9)

But the converse inequality is also true by sub-optimality of T = IN for the problem
minZ minT∈DS

∑
ijkl L([CX(X)]ij , [CZ(Z)]kl)TikTjl. Overall

min
Z

∑
ij

L([CX(X)]ij , [CZ(Z)]ij) = min
Z

min
T∈DS

∑
ijkl

L([CX(X)]ij , [CZ(Z)]kl)TikTjl . (10)

Now we conclude by using that the RHS of this equation is equivalent to the minimization in Z of
GWL(CX(X), CZ(Z), 1

N 1N , 1
N 1N ) (both problems only differ from a constant scaling factor N2).

As a consequence we have the following result.
Proposition B.2. Let Ω ⊆ R and Im(CX) ⊆ ΩN×N . The minimum eq. (DR) is equal to
minZ GWL(CX(X), CZ(Z), 1

N 1N , 1
N 1N ) when:

(i) L(a, ·) is convex for any a ∈ Ω and the image of CZ is stable by doubly-stochastic matrices, i.e. ,

∀Z ∈ RN×d,∀T ∈ DS,∃Y ∈ RN×d, CZ(Y) = TCZ(Z)T⊤ . (11)

(ii) L(a, ·) is convex and non-decreasing for any a ∈ Ω and

∀Z ∈ RN×d,∀T ∈ DS,∃Y ∈ RN×d, CZ(Y) ≤ TCZ(Z)T⊤ , (12)

where ≤ is understood element-wise, i.e. , A ≤ B ⇐⇒ ∀(i, j), Aij ≤ Bij.

Proof. For the first point it suffices to see that the condition eq. (11) implies that {TCZ(Z)T⊤ : Z ∈
RN×d, T ∈ DS} ⊆ {CZ(Z) : Z ∈ RN×d} (in fact we have equality by choosing T = IN ) and thus eq. (6) holds
and we apply proposition B.1.

For the second point we will also show that eq. (6) holds. Consider Z⋆, T⋆ minimizers
of minZ,T∈DS

∑
ij L([CX(X)]ij , [TCZ(Z)T⊤]ij). By hypothesis there exists Y ∈ RN×d such

that ∀(i, j) ∈ [[N ]]2, [T⋆CZ(Z⋆)T⋆⊤]ij ≥ [CZ(Y)]ij . Since L([CX(X)]ij , ·) is non-decreasing
for any (i, j) then

∑
ij L([CX(X)]ij , [T⋆CZ(Z⋆)T⋆⊤]ij) ≥

∑
ij L([CX(X)]ij , [CZ(Y)]ij) and thus∑

ij L([CX(X)]ij , [T⋆CZ(Z⋆)T⋆⊤]ij) ≥ minZ
∑

ij L([CX(X)]ij , [CZ(Z)]ij) which gives the condition eq. (6)
and we have the conclusion by proposition B.1.

We recall that a function R : RN×d → R is called permutation invariant if R(PZ) = R(Z) for any Z ∈ RN×d

and N ×N permutation matrix P. From the previous results we have the following corollary, which proves,
in particular, the first point of theorem 3.2.
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Corollary B.3. We have the following equivalences:

(i) Consider the spectral methods which correspond to CZ(Z) = ZZ⊤ and L = L2. Then for any CX

min
Z∈RN×d

∑
ij

L2([CX(X)]ij , ⟨zi, zj⟩) (13)

and
min

Z∈RN×d
GWL2(CX(X), ZZ⊤,

1
N

1N ,
1
N

1N ) (14)

are equal.

(ii) Consider the cross-entropy loss L(x, y) = x log(x/y) and CX such that Im(CX) ⊆ RN×N
+ . Suppose

that the similarity in the output space can be written as

∀(i, j) ∈ [[N ]]2, [CZ(Z)]ij = f(zi − zj)/R(Z) , (15)

for some logarithmically concave function f : Rd → R+ and normalizing factor R : RN×d → R∗
+

which is both convex and permutation invariant. Then,

min
Z∈RN×d

∑
ij

L([CX(X)]ij , [CZ(Z)]ij) (16)

and
min

Z∈RN×d
GWL(CX(X), CZ(Z), 1

N
1N ,

1
N

1N ) (17)

are equal.

Proof. For the first point we show that the condition eq. (11) of proposition B.2 is satisfied. Indeed take any
Z, T then TCZ(Z)T⊤ = TZZ⊤T⊤ = (TZ)(TZ)⊤ = CZ(TZ).

For the second point if we consider L̃(a, b) = a× b then we use that the neighbor embedding problem eq. (16)
is equivalent to minZ∈RN×d

∑
ij −[CX(X)]ij log([CZ(Z)]ij) = minZ∈RN×d

∑
ij L̃([CX(X)]ij , [C̃Z(Z)]ij) where

[C̃Z(Z)]ij = g(zi − zj) + log(R(Z)) with g = − log ◦f . Since f is logarithmically concave g is convex.
Moreover we have that L̃(a, ·) is convex (it is linear) and non-decreasing since a ∈ R+ in this case (CX(X)
is non-negative). Also for any Z ∈ RN×d and T ∈ DS we have, using Jensen’s inequality since T is
doubly-stochastic,

[TC̃Z(Z)T⊤]ij =
∑
kl

g(zk − zl)TikTjl + log(R(Z))

≥ g(
∑
kl

(zk − zl)TikTjl) + log(R(Z))

= g(
∑

k

zkTik −
∑

l

zlTjl) + log(R(Z)) .

(18)

Now we will prove that log(R(Z)) ≥ log(R(TZ)). Using Birkhoff’s theorem (Birkhoff, 1946) the matrix T
can be decomposed as a convex combination of permutation matrices, i.e. , T =

∑
k λkPk where (Pk)k are

permutation matrices and λk ∈ R+ with
∑

k λk = 1. Hence by convexity and Jensen’s inequality R(TZ) =
R(

∑
k λkPkZ) ≤

∑
k λkR(PkZ). Now using that R is permutation invariant we get R(PkZ) = R(Z) and

thus R(TZ) ≤
∑

k λkR(Z) = R(Z). Since the logarithm is non-decreasing we have log(R(Z)) ≥ log(R(TZ))
and, overall,

[TC̃Z(Z)T⊤]ij ≥ g(
∑

k

zkTik −
∑

l

zlTjl) + log(R(TZ)) = [C̃Z(TZ)]ij . (19)

Thus if we introduce Y = TZ we have [TC̃Z(Z)T⊤]ij ≥ [C̃Z(Y)]ij and eq. (12) is satis-
fied. Thus we can apply proposition B.2 and state that minZ∈RN×d

∑
ij L̃([CX(X)]ij , [C̃Z(Z)]ij)

and minZ∈RN×d GWL̃(CX(X), C̃Z(Z), 1
N 1N , 1

N 1N ) are equivalent which concludes as
minZ∈RN×d GWL̃(CX(X), C̃Z(Z), 1

N 1N , 1
N 1N ) = minZ∈RN×d GWL(CX(X), CZ(Z), 1

N 1N , 1
N 1N ).
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It remains to prove the second point of theorem 3.2 as stated below.
Proposition B.4. Consider Im(CX) ⊆ RN×N

+ , L = LKL. Suppose that for any X the matrix CX(X) is
CPD and for any Z

CZ(Z) = diag(αZ)KZ diag(βZ) , (20)
where αZ, βZ ∈ RN

>0 and KZ ∈ RN×N
>0 is such that log(KZ) is CPD. Then the minimum eq. (DR) is equal to

minZ GWL(CX(X), CZ(Z), 1
N 1N , 1

N 1N ).

Proof. To prove this result we will show that, for any Z, the function

T ∈ U( 1
N

1N ,
1
N

1N )→ EL(CX(X), CZ(Z), T) , (21)

is actually concave. Indeed, in this case there exists a minimizer which is an extremal point of
U( 1

N 1N , 1
N 1N ). By Birkhoff’s theorem (Birkhoff, 1946) these extreme points are the matrices 1

N P where
P is a N × N permutation matrix. Consequently, when the function eq. (21) is concave minimizing
GWL(CX(X), CZ(Z), 1

N 1N , 1
N 1N ) in Z is equivalent to minimizing in Z

min
P∈RN×N permutation

∑
ijkl

L([CX(X)]ik, [CZ(Z)]jl)PijPkl = min
σ∈SN

∑
ij

L([CX(X)]ij , [CZ(Z)]σ(i)σ(j)) , (22)

which is exactly the Gromov-Monge problem described in lemma 3.1 and thus the problem is equivalent to
eq. (DR) by lemma 3.1.

First note that L(x, y) = x log(x) − x − x log(y) + y so for any T ∈ U( 1
N 1N , 1

N 1N ) the loss
EL(CX(X), CZ(Z), T) is equal to∑

ijkl

L([CX(X)]ik, [CZ(Z)]jl)TijTkl = aX + bZ −
∑
ijkl

[CX(X)]ik log([CZ(Z)]jl)TijTkl

= aX + bZ −
∑
ijkl

[CX(X)]ik log([αZ]j [βZ]l[W]jl)TijTkl

= aX + bZ −
1
N

∑
ijk

[CX(X)]ik log([αZ]j)Tij

− 1
N

∑
ikl

[CX(X)]ik log([βZ]l)Tkl

−
∑
ijkl

[CX(X)]ik log([KZ]jl)TijTkl ,

(23)

where aX, bZ are terms that do not depend on T. Since the problem is quadratic the concavity only depends
on the term −

∑
ijkl[CX(X)]ik log([KZ]jl)TijTkl = −Tr(CX(X)T⊤ log(KZ)T). From (Maron and Lipman,

2018) we know that the function T→ −Tr(CX(X)T⊤ log(KZ)T) is concave on U( 1
N 1N , 1

N 1N ) when CX(X)
is CPD and log(WZ) is CPD. This concludes the proof.

B.3 Necessary and sufficient condition

We give a necessary and sufficient condition under which the DR problem is equivalent to a GW problem
Proposition B.5. Let C1 ∈ RN×N , L : R × R → R and C ⊆ RN×N a subspace of N × N matrices. We
suppose that C is stable by permutations i.e. , C ∈ C implies that PCP⊤ ∈ C for any N ×N permutation
matrix P. Then

min
C2∈C

∑
(i,j)∈[[N ]]2

L([C1]ij , [C2]ij) = min
C2∈C

min
T∈RN×N

+
T1N =1N

T⊤1N =1N

∑
ijkl

L([C1]ij , [C2]kl) TikTjl (24)
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if and only if the optimal assignment problem

min
σ1,σ2∈SN

f(σ1, σ2) := min
C2∈C

∑
ij

L([C1]ij , [C2]σ1(i)σ2(j)) (25)

admits an optimal solution (σ⋆
1 , σ⋆

2) with σ⋆
1 = σ⋆

2 .

Proof. We note that the LHS of eq. (24) is always smaller than the RHS since T = IN is admissible for the
RHS problem. So both problems are equal if and only if

min
C2∈C

∑
(i,j)∈[[N ]]2

L([C1]ij , [C2]ij) ≤ min
C2∈C

min
T∈RN×N

+
T1N =1N

T⊤1N =1N

∑
ijkl

L([C1]ij , [C2]kl) TikTjl . (26)

Now consider any C2 fixed and observe that

min
T∈DS

∑
ijkl

L([C1]ij , [C2]kl) TikTjl ≥ min
T(1),T(2)∈DS

∑
ijkl

L([C1]ij , [C2]kl) T
(1)
ik T

(2)
jl . (27)

The latter problem is a co-optimal transport problem (Redko et al., 2020), and, since it is a bilinear problem,
there is an optimal solution (T(1), T(2)) such that both T(1) and T(2) are in an extremal point of DS which
is the space of N ×N permutation matrices by Birkhoff’s theorem (Birkhoff, 1946). This point was already
noted by Konno (1976) but we recall the proof for completeness. We note Lijkl = L([C1]ij , [C2]kl) and
consider an optimal solution (T(1)

⋆ , T(2)
⋆ ) of minT(1),T(2)∈DS ϕ(T(1), T(2)) :=

∑
ijkl LijklT

(1)
ik T

(2)
jl . Consider

the linear problem minT∈DS ϕ(T, T(2)
⋆ ). Since it is a linear over the space of doubly stochastic matrices it

admits a permutation matrix P(1) as optimal solution. Also ϕ(P(1), T(2)
⋆ ) ≤ ϕ(T(1)

⋆ , T(2)
⋆ ) by optimality. Now

consider the linear problem minT∈DS ϕ(P(1), T), in the same it admits a permutation matrix P(2) as optimal
solution and by optimality ϕ(P(1), P(2)) ≤ ϕ(P(1), T(2)

⋆ ) thus ϕ(P(1), P(2)) ≤ ϕ(T(1)
⋆ , T(2)

⋆ ) which implies that
(P(1), P(2)) is an optimal solution. Combining with eq. (27) we get

min
C2∈C

min
T∈DS

∑
ijkl

L([C1]ij , [C2]kl) TikTjl ≥ min
C2∈C

min
σ1,σ2∈SN

∑
ij

L([C1]ij , [C2]σ1(i)σ2(j))

= min
σ1,σ2∈SN

f(σ1, σ2) .
(28)

Now suppose that the optimal assignment problem minσ1,σ2∈SN
f(σ1, σ2) admits an optimal solution (σ⋆

1 , σ⋆
2)

with σ⋆
1 = σ⋆

2 . Then with eq. (31)

min
C2∈C

min
T∈DS

∑
ijkl

L([C1]ij , [C2]kl) TikTjl ≥ min
C2∈C

∑
ij

L([C1]ij , [C2]σ⋆
1 (i)σ⋆

1 (j))

≥ min
σ∈SN

min
C2∈C

∑
ij

L([C1]ij , [C2]σ(i)σ(j)) .
(29)

Now since C is stable by permutation then {
(
[C]σ(i)σ(j)

)
(i,j)∈[[N ]]2 : C ∈ C, σ ∈ SN} = C and consequently

minσ∈SN
minC2∈C

∑
ij L([C1]ij , [C2]σ(i)σ(j)) = minC2∈C

∑
ij L([C1]ij , [C2]ij). Consequently, using eq. (29),

min
C2∈C

min
T∈DS

∑
ijkl

L([C1]ij , [C2]kl) TikTjl ≥ min
C2∈C

∑
ij

L([C1]ij , [C2]ij) , (30)

and thus both are equal.

Conversely suppose that eq. (24) holds. Then, from eq. (31) we have

min
σ1,σ2∈SN

f(σ1, σ2) = min
σ1,σ2∈SN

min
C2∈C

∑
ij

L([C1]ij , [C2]σ1(i)σ2(j))

≤ min
C2∈C

min
T∈DS

∑
ijkl

L([C1]ij , [C2]kl) TikTjl

= min
C2∈C

∑
(i,j)∈[[N ]]2

L([C1]ij , [C2]ij) = f(id, id) ,

(31)
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which concludes the proof.

Remark B.6. The condition on the set of similarity matrices C is quite reasonable: it indicates that if C is
an admissible similarity matrix, then permuting the rows and columns of C results in another admissible
similarity matrix. For DR, the corresponding C is C = {CZ(Z) : Z ∈ RN×d}. In this case, if CZ(Z) is of the
form

[CZ(Z)]ij = h(f(zi, zj), g(Z)) , (32)

where f : Rd × Rd → R, h : R × R → R and g : RN×d → R which is permutation invariant (Bronstein
et al., 2021), then C is stable under permutation. Indeed, permuting the rows and columns of CZ(Z) by σ is
equivalent to considering the similarity CZ(Y), where Y = (zσ(1), · · · , zσ(n))⊤. Moreover, most similarities in
the target space considered in DR take the form eq. (32): ⟨Φ(zi), Φ(zj)⟩H (kernels such as in spectral methods
with Φ = id), f(zi, zj)/

∑
nm f(zn, zm) (normalized similarities such as in SNE and t-SNE). Also note that

the condition on C = {CZ(Z) : Z ∈ RN×d} of proposition B.5 is met as soon as CZ : RN×d → RN×N is
permutation equivariant.

C Generalized Semi-relaxed Gromov-Wasserstein is a divergence

Remark C.1 (Weak isomorphism). According to the notion of weak isomorphism in Chowdhury and Mémoli
(2019), for a graph (C, h) with corresponding discrete measure µ =

∑
i hiδxi

, two nodes xi and xj are
the “same” if they have the same internal perception i.e Cii = Cjj = Cij = Cji and external perception
∀k ̸= (i, j), Cik = Cjk, Cki = Ckj . So two graphs (C1, h1) and (C2, h2) are said to be weakly isomorphic,
if there exist a canonical representation (Cc, hc) such that card(supp(hc)) = p ≤ n, m and M1 ∈ {0, 1}n×p

(resp. M2 ∈ {0, 1}m×p) such that for k ∈ {1, 2}

Cc = M⊤
k CcMk and hc = M⊤

k hk (33)

We first emphasize a simple result extending a proof in Vincent-Cuaz et al. (2022a).
Proposition C.2. Let any divergence L : Ω× Ω→ R+ for Ω ⊆ R, then for any (C, h) and (C, h), we have
GWL(C, C, h, h) = 0 if and only if GWL2(C, C, h, h) = 0.

Proof. If GWL(C, C, h, h) = 0, then there exists T ∈ U(h, h) such that

EL(C, C, T) =
∑
ijkl

L(Cij , Ckl)TikTjl = 0 (34)

so whenever TikTjl ̸= 0, we must have L(Cij , Ckl) = 0 i.e Cij = Ckl as L is a divergence. Which implies that
EL′(C, C, T) = 0 for any other divergence L′ well defined on any domain Ω×Ω, necessarily including L2.

Lemma C.3. Let any divergence L : Ω × Ω → R+ for Ω ⊆ R. Let (C, h) ∈ Ωn×n × Σn and (C, h) ∈
Rm×m × Σm. Then srGWL(C, C, h, h) = 0 if and only if there exists h ∈ Σm such that (C, h) and (C, h)
are weakly isomorphic.

Proof. (⇒) As srGWL(C, C, h, h) = 0 there exists T ∈ U(h, h) such that EL(C, C, T) = 0 hence
GWL(C, C, h, h) = 0. Using proposition C.2, GWL2 = 0 hence using Theorem 18 in Chowdhury and
Mémoli (2019), it implies that (C, h) and (C, h) are weakly isomorphic.

(⇐) As mentioned, (C, h) and (C, h) being weakly isomorphic implies that GWL2 = 0. So there exists
T ∈ U(h, h), such that EL(C, C, T) = 0. Moreover T is admissible for the srGW problem as T ∈ U(h, h) ⊂
Un(h), thus srGWL(C, C, h, h) = 0.
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C.1 About trivial solutions of semi-relaxed GW when L is not a proper divergence

We briefly describe here some trivial solutions of srGWL when L is not a proper divergence. We recall that

srGWL(C, C, h) = min
T∈RN×n

+ :T1n=h
EL(C, C, T) =

∑
ijkl

L(Cij , Ckl)TikTjl . (35)

Suppose that h ∈ Σ∗
N and that C has a minimum value on its diagonal i.e. min(i,j) Cij = minii Cii. Suppose

also that ∀a, L(a, ·) is both convex and non-decreasing. First we have
∑

j
Tij

hi
= 1 for any i ∈ [[N ]]. Hence

using the convexity of L, Jensen inequality and the fact that L(a, ·) is non-decreasing for any a∑
ijkl

L(Cij , Ckl)TikTjl =
∑
ijkl

L(Cij , Ckl)hihj
Tik

hi

Tjl

hj

≥
∑

ij

L(Cij ,
∑
kl

Ckl
Tik

hi

Tjl

hj
)hihj

≥
∑

ij

L(Cij ,
∑
kl

(min
nm

Cnm)Tik

hi

Tjl

hj
)hihj

=
∑

ij

L(Cij , (min
nm

Cnm))hihj

=
∑

ij

L(Cij , (min
nn

Cnn))hihj .

(36)

Now suppose without loss of generality that minii Cii = C11 then this gives

min
T∈RN×n

+ :T1n=h

∑
ijkl

L(Cij , Ckl)TikTjl ≥
∑

ij

L(Cij , C11)hihj . (37)

Now consider the coupling T⋆ =


h1 0 0 0
h2 0 0 0
...

...
...

...
hN 0 0 0

. It is admissible and satisfies

EL(C, C, T⋆) =
∑

ij

L(Cij , C11)hihj ≤ min
T∈RN×n

+ :T1n=h
EL(C, C, T) . (38)

Consequently the coupling T⋆ is optimal. However the solution given by this coupling is trivial: it consists in
sending all the mass to one unique point. In another words, all the nodes in the input graph are sent to a
unique node in the target graph. Note that this phenomena is impossible for standard GW because of the
coupling constraints.

We emphasize that this hypothesis on L cannot be satisfied as soon as L is a proper divergence. Indeed when
L is a divergence the constraint “L(a, ·) is non-decreasing for any a” is not possible as it would break the
divergence constraints ∀a, b L(a, b) ≥ 0 and L(a, b) = 0 ⇐⇒ a = b (at some point L must be decreasing).

D Clustering properties: Proof of theorem 4.1

We recall that a matrix C ∈ RN×N is conditionally positive definite (CPD), resp. negative definite (CND),
if ∀x ∈ RN , x⊤1N = 0 s.t. x⊤Cx ≥ 0, resp. ≤ 0. We also consider the Hadamard product of matrices as
A⊙B = (Aij ×Bij)ij . The i-th column of a matrix T is the vector denoted by T:,i. For a vector x ∈ Rn we
denote by diag(x) the diagonal n× n matrix whose elements are the xi.

We state below the theorem that we prove in this section.
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Theorem 4.1. Let hX ∈ ΣN and L = L2. Suppose that for any X ∈ RN×p the matrix CX(X) is CPD
or CND. Then the problem eq. (srGWB) admits a membership matrix as optimal coupling, i.e. , there is a
minimizer of T ∈ Un(hX)→ minC∈Rn×n EL(CX(X), C, T) with only one non-zero value per row.

In order to prove this result we introduce the space of semi-relaxed couplings whose columns are not zero

U+
n (hX) = {T ∈ Un(hX) : ∀i ∈ [[n]], T:,i ̸= 0} , (39)

and we will use the following lemma.
Lemma D.1. Let hX ∈ ΣN , L = L2 and CX(X) symmetric. For any T ∈ Un(hX), the matrix C(T) ∈ Rn×n

defined by

C(T) =
{

T⊤
:,iCX(X)T:,j/(T⊤

:,i1N )(T⊤
:,j1N ) for (i, j) such that T:,i and T:,j ̸= 0

0 otherwise
(40)

is a minimizer of G : C ∈ Rn×n → EL(CX(X), C, T). For T ∈ Un(hX) the expression of the minimum is

G(T) = cte−Tr
(
(T⊤1N )(T⊤1N )⊤(C(T)⊙C(T))

)
, (41)

which defines a continuous function on Un(hX). If T ∈ U+
n (hX) it becomes

G(T) = cte−
∑

ij

(T⊤
:,iCX(X)T:,j)2

(T⊤
:,i1N )(T⊤

:,j1N )
= cte−∥ diag(T⊤1N )− 1

2 T⊤CX(X)T diag(T⊤1N )− 1
2 ∥2

F . (42)

Proof. First see that C(T) is well defined since T:,i ≠ 0 ⇐⇒ T⊤
:,i1N ̸= 0 because T is non-negative.

Consider, for T ∈ Un(hX), the function

F (T, C) := EL(CX(X), C, T) =
∑
ijkl

([CX(X)]ik − Cjl)2TijTkl , (43)

A development yields (using T⊤1N = hX)

F (T, C) =
∑
ik

[CX(X)]2ik[hX ]i[hX ]k +
∑

jl

C
2
jl(

∑
i

Tij)(
∑

k

Tkl)− 2
∑
ijkl

Cjl[CX(X)]ikTijTkl . (44)

We can rewrite
∑

ijkl Cjl[CX(X)]ikTijTkl = Tr(T⊤CX(X)TC). Also we have (
∑

i Tij)(
∑

k Tkl) =
[(T⊤1N )(T⊤1N )⊤]jl Thus∑

jl

C
2
jl(

∑
i

Tij)(
∑

k

Tkl) = Tr((T⊤1N )(T⊤1N )⊤(C⊙C)) . (45)

Overall
F (T, C) = cte + Tr((T⊤1N )(T⊤1N )⊤(C⊙C))− 2 Tr(T⊤CX(X)TC) . (46)

Now taking the derivative with respect to C, the first order conditions are

∂2F (T, C) = 2(C⊙ (T⊤1N )(T⊤1N )⊤ −T⊤CX(X)T) = 0 . (47)

For (i, j) such that T:,i and T:,j ̸= 0 we have [∂2F (T, C(T))]ij = 0. For (i, j) such that T:,i or T:,j = 0
we have [C ⊙ (T⊤1N )(T⊤1N )⊤]ij = 0 and also [T⊤CX(X)T]ij = T⊤

:,iCX(X)T:,j = 0. In particular the
matrix C(T) satisfies the first order conditions. When L = L2 the problem minC∈Rn×n EL(CX(X), C, T) =
1
2

∑
ijkl([CX(X)]ik − Cjl)2TijTkl is convex in C. The first order conditions are sufficient hence C(T) is a

minimizer.

Also T⊤CX(X)T = C(T)⊙ (T⊤1N )(T⊤1N )⊤ by definition of C(T) thus

Tr(T⊤CX(X)TC(T)) = Tr([C(T)⊙ (T⊤1N )(T⊤1N )⊤]C(T))
= Tr((T⊤1N )(T⊤1N )⊤[C(T)⊙C(T)]) .

(48)
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Hence

F (T, C(T)) = cte−Tr
(
(T⊤1N )(T⊤1N )⊤(C(T)⊙C(T))

)
. (49)

Consequently for T ∈ Un(hX) such that ∀i ∈ [[n]], T:,i ̸= 0 we have

F (T, C(T)) = cte−
∑

ij

(T⊤
:,iCX(X)T:,j)2

(T⊤
:,i1N )(T⊤

:,j1N )

= cte−∥ diag(T⊤1N )− 1
2 T⊤CX(X)T diag(T⊤1N )− 1

2 ∥2
F .

(50)

It just remains to demonstrate the continuity of G. We consider for (x, y) ∈ RN
+ × RN

+ the function

g(x, y) =
{

(x⊤CX (X)y)2

∥x∥1∥y∥1
when x ̸= 0 and y ̸= 0

0 otherwise
(51)

and we show that g is continuous. For (x, y) ̸= (0, 0) this is clear. Now using that

0 ≤ g(x, y) =
(
∑

ij [CX(X)]ijxiyj)2

(
∑

i xi)(
∑

j yj) ≤ ∥CX(X)∥2
∞

(
∑

i xi)2(
∑

j yj)2

(
∑

i xi)(
∑

j yj) = ∥CX(X)∥2
∞∥x∥1∥y∥1 , (52)

this shows limx→0 g(x, y) = 0 = g(0, y) and limy→0 g(x, y) = 0 = g(x, 0). Now for T ∈ Un(hX) we have
G(T) = cte−

∑
ij g(T:,i, T:,j) which defines a continuous function.

To prove the theorem we will first prove that the function G : T→ minC∈Rn×n EL(CX(X), C, T) is concave
on U+

n (hX) and by a continuity argument it will be concave on Un(hX). The concavity will allow us to prove
that the minimum of G is achieved in an extreme point of Un(hX) which is a membership matrix.
Proposition D.2. Let hX ∈ ΣN , L = L2 and suppose that CX(X) is CPD or CND. Then the function
G : T→ minC∈Rn×n EL(CX(X), C, T) is concave on Un(hX). Consequently theorem 4.1 holds.

Proof. We recall that F (T, C) := EL(CX(X), C, T) and G(T) = F (T, C(T)). From lemma D.1 we know
that C(T) is a minimizer of C → F (T, C) hence it satisfies the first order conditions ∂2F (T, C(T)) = 0.
Every quantity is differentiable on U+

n (hX). Hence, taking the derivative of G and using the first order
conditions

∇G(T) = ∂1F (T, C(T)) + ∂2F (T, C(T))[∇C(T)] = ∂1F (T, C(T)) . (53)
We will found the expression of this gradient. In the proof of lemma D.1 we have seen that

F (T, C) = cte + Tr((T⊤1N )(T⊤1N )⊤(C⊙C))− 2 Tr(T⊤CX(X)TC)
= cte + Tr(T⊤1N 1⊤

N T(C⊙C))− 2 Tr(T⊤CX(X)TC) .
(54)

Using that the derivative of T→ Tr(T⊤ATB) is A⊤TB⊤ + ATB and that CX(X) is symmetric we get

∂1F (T, C) = 1N 1⊤
N T(C⊙C)⊤ + 1N 1⊤

N T(C⊙C)− 2CX(X)TC⊤ − 2CX(X)TC . (55)

Finally, applying to the symmetric matrix C = C(T)

∇G(T) = ∂1F (T, C(T)) = 2
(
1N 1⊤

N T(C(T)⊙C(T))− 2CX(X)TC(T)
)

. (56)

In what follows we define
D(T) := diag(T⊤1N )−1 ∈ Rn×n , (57)

when applicable. Using the expression of the gradient we will show that G is concave on U+
n (hX) and we will

conclude by a continuity argument on Un(hX). Take (P, Q) ∈ U+
n (hX)× U+

n (hX) we will prove

G(P)−G(Q)− ⟨∇G(Q), P−Q⟩ ≤ 0 . (58)
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From lemma D.1 we have the expression (since P ∈ U+
n (hX))

G(P) = cte−∥D(P) 1
2 P⊤CX(X)PD(P) 1

2 ∥2
F , (59)

(same for G(Q)) and
C(Q) = D(Q)Q⊤CX(X)QD(Q) . (60)

We will now calculate ⟨∇G(Q), P⟩ which involves ⟨1N 1⊤
N Q(C(Q)⊙C(Q), P⟩ and ⟨CX(X)QC(Q), P⟩. For

the first term we have
⟨1N 1⊤

N Q(C(Q)⊙C(Q)), P⟩
= Tr(P⊤1N 1⊤

N QC(Q)⊙2) = Tr(1⊤
N QC(Q)⊙2P⊤1N )

= (Q⊤1N )⊤(C(Q)⊙C(Q))P⊤1N

= Tr(C(Q) diag(Q⊤1N )C(Q) diag(P⊤1N ))
= Tr

(
[D(Q)Q⊤CX(X)QD(Q)]D(Q)−1[D(Q)Q⊤CX(X)QD(Q)]D(P)−1)

= Tr(D(Q)Q⊤CX(X)QD(Q)Q⊤CX(X)QD(Q)D(P)−1)
= Tr(D(P)− 1

2 [D(Q)Q⊤CX(X)QD(Q)Q⊤CX(X)QD(Q)]D(P)− 1
2 )

= Tr(D(P)− 1
2 D(Q)Q⊤CX(X)QD(Q) 1

2 D(Q) 1
2 Q⊤CX(X)QD(Q)D(P)− 1

2 )
= ⟨D(P)− 1

2 D(Q)Q⊤CX(X)QD(Q) 1
2 , D(P)− 1

2 D(Q)Q⊤CX(X)QD(Q) 1
2 ⟩

= ∥D(P)− 1
2 D(Q)Q⊤CX(X)QD(Q) 1

2 ∥2
F .

(61)

For the second term
⟨CX(X)QC(Q), P⟩
= Tr(P⊤CX(X)QD(Q)Q⊤CX(X)QD(Q))
= Tr(D(Q) 1

2 P⊤CX(X)QD(Q) 1
2 D(Q) 1

2 Q⊤CX(X)QD(Q) 1
2 )

= ⟨D(Q) 1
2 P⊤CX(X)QD(Q) 1

2 , D(Q) 1
2 Q⊤CX(X)QD(Q) 1

2 ⟩

= ⟨D(Q) 1
2 P⊤CX(X)QD(Q) 1

2 , D(P) 1
2 D(Q)− 1

2 D(P)− 1
2 D(Q)Q⊤CX(X)QD(Q) 1

2 ⟩

= ⟨D(P) 1
2 P⊤CX(X)QD(Q) 1

2 , D(P)− 1
2 D(Q)Q⊤CX(X)QD(Q) 1

2 ⟩ .

(62)

This gives

⟨∇G(Q), P⟩ = 2∥D(P)− 1
2 D(Q)Q⊤CX(X)QD(Q) 1

2 ∥2
F

− 4⟨D(P) 1
2 P⊤CX(X)QD(Q) 1

2 , D(P)− 1
2 D(Q)Q⊤CX(X)QD(Q) 1

2 ⟩

= 2∥D(P)− 1
2 D(Q)Q⊤CX(X)QD(Q) 1

2 −D(P) 1
2 P⊤CX(X)QD(Q) 1

2 ∥2
F

− 2∥D(P) 1
2 P⊤CX(X)QD(Q) 1

2 ∥2
F .

(63)

From this equation we get directly that

⟨∇G(Q), Q⟩ = −2∥D(Q) 1
2 Q⊤CX(X)QD(Q) 1

2 ∥2
F

and ⟨∇G(Q), P⟩ ≥ −2∥D(P) 1
2 P⊤CX(X)QD(Q) 1

2 ∥2
F .

(64)

Hence
G(P)−G(Q)− ⟨∇G(Q), P−Q⟩

= −∥D(P) 1
2 P⊤CX(X)PD(P) 1

2 ∥2
F + ∥D(Q) 1

2 Q⊤CX(X)QD(Q) 1
2 ∥2

F

− ⟨∇G(Q), P⟩+ ⟨∇G(Q), Q⟩
eq. (64)= −∥D(P) 1

2 P⊤CX(X)PD(P) 1
2 ∥2

F − ∥D(Q) 1
2 Q⊤CX(X)QD(Q) 1

2 ∥2
F − ⟨∇G(Q), P⟩

eq. (64)
≤ −∥D(P) 1

2 P⊤CX(X)PD(P) 1
2 ∥2

F − ∥D(Q) 1
2 Q⊤CX(X)QD(Q) 1

2 ∥2
F

+ 2∥D(P) 1
2 P⊤CX(X)QD(Q) 1

2 ∥2
F .

(65)
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We note U = PD(P)P⊤ ∈ RN×N , V = QD(Q)Q⊤ ∈ RN×N , the previous calculus shows that

G(P)−G(Q)− ⟨∇G(Q), P−Q⟩ ≤ −Tr(UCX(X)UCX(X))− Tr(VCX(X)VCX(X))
+ 2 Tr(VCX(X)UCX(X)) ,

(66)

Now note that
U⊤1N = PD(P)P⊤1N = P diag(P⊤1N )−1P⊤1N = P1N = hX . (67)

Since U is symmetric we also have U1N = hX and similarly we have the same result for V. Overall
V⊤1N = U⊤1N and V1N = U1N . Since CX(X) is CPD or CND we can apply lemma D.3 below
which proves that −Tr(UCX(X)UCX(X)) − Tr(VCX(X)VCX(X)) + 2 Tr(VCX(X)UCX(X)) ≤ 0 and
consequently that G is concave on U+

n (hX). We now use the continuity of G to prove that it is concave on
Un(hX).

Take P ∈ U+
n (hX) and Q ∈ Un(hX) \ U+

n (hX) i.e. there exists k ∈ [[n]] such that Q:,k = 0. Without loss
of generality we suppose k = 1. Consider for m ∈ N∗ the matrix Q(m) = ( 1

m1N , Q:,2, · · · , Q:,n). Then
Q(m) → Q as m→ +∞. Also since Q(m) ∈ U+

n (hX) we have by concavity of G

G((1− λ)P + λQ(m)) ≥ (1− λ)G(P) + λG(Q(m)) , (68)

for any λ ∈ [0, 1]. Taking the limit as m→∞ gives, by continuity of G,

G((1− λ)P + λQ) ≥ (1− λ)G(P) + λG(Q) , (69)

and hence G is concave on Un(hX). This proves theorem 4.1. Indeed the minimization of T ∈ Un(hX)→
minC EL(CX(X), C, T) is a minimization of a concave function over a polytope, hence admits an extremity
of Un(hX) as minimizer. But these extremities are membership matrices as they can be described as
{diag(hX)P : P ∈ {0, 1}N×n, P⊤1n = 1N} (Cao et al., 2022).

Lemma D.3. Let C ∈ RN×N be a CPD or CND matrix. Then for any (P, Q) ∈ RN×N × RN×N such that
P⊤1N = Q⊤1N and P1N = Q1N we have

Tr(P⊤CQC) ≤ 1
2(Tr(P⊤CPC) + Tr(Q⊤CQC)) . (70)

Proof. First, since C is symmetric,

Tr
(
(P−Q)⊤C(P−Q)C

)
= Tr(P⊤CPC−P⊤CQC−Q⊤CPC + Q⊤CQC)
= Tr(P⊤CPC) + Tr(Q⊤CQC)− 2 Tr(P⊤CQC) .

(71)

We note U = P−Q. Since P⊤1N = Q⊤1N we have U⊤1N = 0. In the same way U1N = 0. We introduce
H = IN − 1

N 1N 1⊤
N the centering matrix. Note that

HUH = (U− 1
N

1N (1⊤
N U))H = UH = U− 1

N
(U1N )1⊤

N = U . (72)

Also C is CPD if and only if HCH is positive semi-definite (PSD). Indeed if HCH is PSD then take x such
that x⊤1N = 0. We then have Hx = x and thus x⊤Cx = x⊤(HCH)x ≥ 0. On the other hand when C
is CPD then take any x and see that x⊤HCHx = (Hx)⊤C(Hx). But (Hx)⊤1N = x⊤(H⊤1N ) = 0. So
(Hx)⊤C(Hx) ≥ 0.

By hypothesis C is CPD so HCH is PSD and symmetric, so it has a square root. But using eq. (72) we get

Tr
(
(P−Q)⊤C(P−Q)C

)
= Tr(U⊤CUC) = Tr(HU⊤HCHUHC)
= Tr(U⊤(HCH)U(HCH))
= ∥(HCH) 1

2 U(HCH) 1
2 ∥2

F ≥ 0 ,

(73)

For the CND case is suffices to use that C is CND if and only if −C is CPD and that
Tr

(
(P−Q)⊤C(P−Q)C

)
= Tr

(
(P−Q)⊤(−C)(P−Q)(−C)

)
which concludes the proof.

26



Under review as submission to TMLR

E Algorithmic details

We detail in the following the algorithms mentioned in Section 4 to address the semi-relaxed GW divergence
computation in our Block Coordinate Descent algorithm for the DistR problem. We begin with details on
the computation of an equivalent objective function and its gradient, potentially under low-rank assumptions
over structures C and C.

E.1 Objective function and gradient computation.

Problem statement. Let consider any matrices C ∈ Rn×n, C ∈ Rm×m, and a probability vector h ∈ Σn.
In all our use cases, we considered inner losses L : R×R→ R+ which can be decomposed following Proposition
1 in Peyré et al. (2016). Namely we assume the existence of functions f1, f2, h1, h2 such that

∀a, b ∈ Ω2, L(a, b) = f1(a) + f2(b)− h1(a)h2(b) (74)

More specifically we considered

L2(a, b) = (a− b)2 =⇒ f1(a) = a2, f2(b) = b2, h1(a) = a, h2(b) = 2b,

LKL(a, b) = a log a

b
− a + b =⇒ f1(a) = a log a− a, f2(b) = b, h1(a) = a, h2(b) = log b

LBCE(a, b) = a log a

b
+ (1− a) log 1− a

1− b
=⇒ f1(a) = a log a + (1− a) log(1− a), f2(b) = − log(1− b),

h1(a) = a, h2(b) = log b

1− b
(L2)

In this setting, we proposed to solve for the equivalent problem to srGWL :

min
T∈Un(h)

F (T) (srGW-2)

where the objective function reads as

F (T) := ⟨F1(C, T)− F2(C, C, T), T⟩
= ⟨1N 1⊤

N Tf2(C), T⟩ − ⟨h1(C)Th2(C)⊤, T⟩
(75)

Problem srGW-2 is usually a non-convex QP with Hessian H = f2(C)⊗ 11⊤ − h2(C)⊗K h1(C). In all cases
this equivalent form is interesting as it avoids computing the constant term ⟨f1(C), hh⊤⟩ that requires O(N2)
operations in all cases.

The gradient of F w.r.t T then reads as

∇TF (C, C, T) = F1(C, T) + F1(C⊤
, T)− F2(C, C, T)− F2(C⊤, C⊤

, T) (76)

When CX(X) and CZ(Z) are symmetric, which is the case in all our experiments, this gradient reduces to
∇TF = 2(F1 − F2).

Low-rank factorization. Inspired from the work of Scetbon et al. (2022), we propose implementations
of srGW that can leverage the low-rank nature of CX(X) and CZ(Z). Let us assume that both structures
can be exactly decomposed as follows, CX(X) = A1A⊤

2 where A1, A2 ∈ RN×r and CZ(Z) = B1B⊤
2 with

B1, B2 ∈ Rn×s, such that r << N and s << n, can differ respectively from respective dimensions p and d
(e.g. for used squared Euclidean distance matrices r = p + 2 and s = d + 2 ). For both inner losses L we
make use of the following factorization:

L = L2: Computing the first term F1 coming for the optimized second marginal can benefit from being
factored if d2 << n. Indeed, as f2(CZ(Z)) = CZ(Z)2 = (B1B⊤

2 ) ⊙ (B1B⊤
2 ), one can use the flattened

out product operator described in Scetbon et al. (2022, Section 5), to compute CZ(Z)2T⊤1N = x in
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O(min(n2, ns2)). This way F1(T) results from stacking N times x in O(1) operations for a total number
of computions of N + O(min(n2, ns2)).And its scalar product with T to compute the loss comes down to
O(Nn) additional operations.
Then computing F2(T) and its scalar product with T can be done following the development of Scetbon
et al. (2022, Section 3) for the corresponding GW problem, in O(Nn(r + s) + rs(N + n)) operations. So the
overall complexity at is O(Nn(r + s) + rs(N + n) + min(n2, ns2)).

L = LKL: In this setting f2(CZ(Z)) = CZ(Z) and h1(CX(X)) = CX(X) naturally preserves the low-rank
nature of input matrices, but h2(CZ(Z)) = log(CZ(Z)) does not. So computing the first term F1, can be
performed following this paranthesis order 1N ((1⊤

N T)A1))A⊤
2 ) in O(N(n + s)) operations. While the second

term F2 should be computed following this order A1((A⊤
2 T) log(CZ(Z))) in O(Nnr + rn2) operations. While

their respective scalar product can be computed in O(Nn). So the overall complexity is O(Nnr + n2r).
Similar considerations can be applied to LBCE .
Notice that in the gaussian kernel case for neighbor embedding methods, where [CZ(Z)]ij = exp(−∥zi− zj∥2

2)
up to some normalization. We have [h2(CZ(Z))]ij = −∥zi − zj∥2

2 which admits a low-rank factorization such
that we can recover the complexity illustrated above for L = L2.

E.2 Solvers.

We develop next our extension of both the Mirror Descent and Conditional Gradient solvers first introduced
in Vincent-Cuaz et al. (2022a), for any inner loss L that decomposes as in equation 74 .

Mirror Descent algorithm. This solver comes down to solve for the exact srGW problem using mirror-
descent scheme w.r.t the KL geometry. At each iteration (i), the solver comes down to, first computing
the gradient ∇TF (T(i)) given in equation 76 evaluated in T(i), then updating the transport plan using the
following closed-form solution to a KL projection:

T(i+1) ← diag
(

h
K(i)1n

)
K(i) (77)

where K(i) = exp
(
∇TF (T(i))− ε log(T(i))

)
and ε > 0 is an hyperparameter to tune. Proposition 3 and

Lemma 7 in Vincent-Cuaz (2023, Chapter 6) provides that the Mirror-Descent algorithm converges to a
stationary point non-asymptotically when L = L2. A quick inspection of the proof suffices to see that this
convergence holds for any losses L satisfying equation 74, up to adaptation of constants involved in the
Lemma.

Conditional Gradient algorithm. This algorithm, known to converge to local optimum (Lacoste-Julien,
2016), iterates over the 3 steps summarized in Algorithm 1: .

Algorithm 1 CG solver for srGWL

1: repeat
2: F(i) ← Compute gradient w.r.t T of equation 76.
3: X(i) ← minX1m=h

X≥0
⟨X, F(i)⟩

4: T(i+1) ← (1− γ⋆)T(i) + γ⋆X(i) with γ⋆ ∈ [0, 1] from exact-line search.
5: until convergence.

This algorithm consists in solving at each iteration (i) a linearization ⟨X, F(i)⟩ of the problem equation srGW-2
where F(T(i)) is the gradient of the objective in equation 76. The solution of the linearized problem provides
a descent direction X(i) −T(i), and a line-search whose optimal step can be found in closed form to update
the current solution T(i). We detail in the following this line-search step for any loss that can be decomposed
as in equation 74. It comes down for any T ∈ Un(h), to solve the following problem:

γ = arg min
γ∈[0,1]

g(γ) := F (T + γ(X−T)) (78)
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Observe that this objective function can be developed as a second order polynom g(γ) = aγ2 + bγ + c. To find
an optimal γ it suffices to express coefficients a and b to conclude using Algorithm 2 in Vayer et al. (2018).

Denoting X⊤1n = qX and T⊤1n = qT and following equation 75, we have

a = ⟨1n(qX − qT )⊤f2(C)⊤ − h1(C)(X−T)h2(C)⊤, X−T⟩
= ⟨F1(X)− F1(T)− F2(X) + F(T), X−T⟩

(79)

Finally the coefficient b of the linear term is

b = ⟨F1(T)− F2(T), X−T⟩+ ⟨F1(X−T)− F2(X−T), T⟩ (80)

F Appendix of experimental section

We report in the following subsections of this section:

• F.1: implementation details, validation of hyperparameters, datasets and metrics.

• F.2: comparison with COOT clustering.

• F.3: Best trade-off between metrics using t-SNE with l2 symmetrization and UMAP.

• F.4: complete scores on all datasets for all kernels relating to PCA, t-SNE and UMAP.

• F.5: study homogeneity vs silhouette score for various numbers of prototypes.

• F.6: study homogeneity vs k-means score for various numbers of prototypes.

• F.7: Benchmark between Spectral and Kmeans clustering

• F.8: study sensitivity w.r.t the embedding dimension d on spectral methods.

• F.9: computation time study.

• F.10: Proofs of concepts with hyperbolic DR kernels.

F.1 Experimental setting

Sequential methods. We detail in the following the sequential methods DR→C and C→DR considered
in our benchmark. DR→C representations are constructed by first running the DR method (Section 2.1)
associated with (L, CX , CZ) thus obtaining an intermediate representation Z̃ ∈ RN×d. Then, spectral
clustering (Von Luxburg, 2007) on the similarity matrix CZ(Z̃) is performed to compute a cluster assignment
matrix T̃ ∈ RN×n. The final reduced representation in Rn×d is the average of each point per cluster, i.e.
the collection of the centroids, which is formally diag(h̃)−1T̃⊤Z̃ ∈ Rn×d where h̃ = T̃⊤1N . For C→DR,
a cluster assignment matrix T̂ ∈ RN×n is first computed using spectral clustering on CX(X). Then, the
cluster centroid diag(ĥ)−1T̂⊤X, where ĥ = T̂⊤1N , is passed as input to the DR method associated with
(L, CX , CZ).

Implementation. Throughout, the spectral clustering implementation of scikit-learn (Pedregosa et al.,
2011) is used to perform either the clustering steps or the initialization of transport plans. For all methods,
Z is initialized from i.i.d. sampling of the standard Gaussian distribution N (0, 1) and further optimized
using PyTorch’s automatic differentiation (Paszke et al., 2017) with Adam optimizer (Kingma and Ba, 2014).
OT-based solvers are built upon the POT (Flamary et al., 2021) library. k-means is performed using the
scikit-learn (Pedregosa et al., 2011) implementation.

Validated hyperparameters. For the SEA and UMAP based similarities, we validated perplexity across
the set {20, 50, 100, 150, 200, 250}. For UMAP, we further optimized before learning prototypes, the coefficients
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a and b involved in the parameterized Student kernel for CZ using the algorithm provided by McInnes et al.
(2018). For all kernels, the number of output samples n spans a set of 10 values, starting at the number of
classes in the data and incrementing in steps of 20. For the computation of T in DistR (see Section 4.1), we
benchmark our Conditional Gradient solver, and the Mirror Descent algorithm whose hyperparameter ε is
validated in the two first values within the set {10i}3

i=−3 leading to stable optimization.

Datasets. We provide details about the datasets used in our study. For image datasets, we use COIL-203

(Nene et al., 1996), MNIST and fashion-MNIST4 (Xiao et al., 2017). Regarding single-cell genomics datasets,
we rely on PBMC 3k5 (Wolf et al., 2018), SNAREseq6 chromatin and gene expression (Chen et al., 2019)
and the scRNA-seq dataset7 from (Zeisel et al., 2015) with two hierarchical levels of label. Dimensions are
provided in Table 1 When the dimensionality of a dataset exceeds 50, we pre-process it by applying a PCA in
dimension 50, as done in practice (Van der Maaten and Hinton, 2008).

Table 1: Dataset Sizes.
Number of samples Dimensionality Number of classes

MNIST 10000 784 10
F-MNIST 10000 784 10

COIL 1440 16384 20
SNAREseq (chromatin) 1047 19 5

SNAREseq (gene expression) 1047 10 5
Zeisel 3005 5000 (8, 49)

PBMC 2638 1838 8

Scores. The homogeneity and NMI scores are taken from Torchmetrics (Detlefsen et al., 2022). The other
scores used in the experiments are computed as follows.

i) Silhouette: The first step is to do a weighted majority vote and associate a label ỹk to each prototype
zk. This label is defined by the y maximizing

∑
i∈[[N ]] Tik1yi=y where yi is the true class label of the input

data point xi. Then, to incorporate the relative importance wj = [hZ ]j of each prototype zj , we define the
weighted mean intra-cluster and nearest-cluster distances that read

∀k ∈ [[n]], ak(Z, Y, w) =
∑

j∈[[n]] 1ỹj=ỹk
wjd(zj , zk)∑

j∈[[n]] 1ỹj=ỹk
wj

and bk(Z, Y, w) = min
k′ ̸=k

∑
j∈[[n]] 1ỹj=k′wjd(zj , zk)∑

j∈[[n]] 1ỹj=k′wj

(81)
such that the silhouette coefficient is sk(Z, Y, w) = bk−ak

max(bk,ak) and the final silhouette score reads as

S(Z, Y, w) =
∑

k∈[[n]]

wksk(Z, Y, w) . (82)

ii) k-means: We first run the k-means algorithm on the prototypes {zk}k∈[[n]] giving us the predicted label
ỹk for each k ∈ [[n]]. The predicted label for each input data point i ∈ [[N ]] is then given by its prototype’s
predicted label i.e. ŷi = ỹarg maxk Tik

. Then we compute the NMI score (Kvålseth, 2017) between (ŷi)i∈[[N ]]
and the ground-truth class labels (yi)i∈[[N ]].

F.2 Comparison with COOT clustering

The CO-Optimal-Transport (COOT) problem, proposed in (Redko et al., 2020), is as follows,

min
Tr∈U(hr,hr)

min
Tc∈U(hc,hc)

∑
ijkl

(Xik − Zjl)2[Tr]ij [Tc]kl , (COOT)

where hr ∈ ΣN , hr ∈ Σn, hc ∈ Σp and hc ∈ Σd. One can seek to optimize the above objective with respect
to Z to obtain a competitor method to DistR. This problem is called COOT clustering in Redko et al. (2020).
In the latter, Tr then plays the role of a soft clustering matrix of the rows of X while Tc can be seen as a
soft clustering matrix of its columns. The above is thus a linear DR model.

3https://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
4taken from Torchvision (Marcel and Rodriguez, 2010).
5downloaded from Scanpy (Wolf et al., 2018).
6https://github.com/rsinghlab/SCOT
7https://github.com/solevillar/scGeneFit-python
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Z methods CX / CZ COIL MNIST FMNIST PBMC SNA1 SNA2

R2

DistR (ours) SEA / St. 99.50 (0.60) 97.80 (0.00) 93.40 (0.00) 97.10 (0.00) 100.00 (0.00) 100.00 (0.00)
DR→C - 98.10 (0.50) 93.30 (3.40) 94.30 (2.80) 96.30 (0.90) 100.00 (0.00) 100.00 (0.00)
C→DR - 100.00 (0.00) 97.80 (0.00) 93.40 (0.00) 97.10 (0.00) 100.00 (0.00) 100.00 (0.00)
COOT NA 43.90 (0.70) 9.80 (3.00) 8.50 (0.90) 15.90 (1.90) 44.00 (4.60) 49.70 (8.60)

R10

DistR (ours) ⟨, ⟩Rp / ⟨, ⟩Rd 96.80 (0.70) 97.00 (0.90) 93.40 (0.00) 97.10 (0.40) 80.50 (0.00) 100.00 (0.00)
DR→C - 73.30 (1.80) 98.30 (3.40) 93.20 (1.90) 90.20 (1.40) 72.70 (6.00) 90.00 (20.00)
C→DR - 83.70 (0.00) 100.00 (0.00) 93.40 (0.00) 93.30 (0.00) 80.50 (0.00) 100.00 (0.00)
COOT NA 45.50 (1.60) 13.70 (2.10) 9.30 (2.80) 16.10 (2.40) 45.60 (5.90) 76.50 (16.60)

Table 2: Best homogeneity scores for n validated in a span up to 200 with increments of 20.

In Table 2, we display the homogeneity values obtained with COOT along with the methods described
Section 5. Precisely, it measures to what extent the clustering given by Tr groups points with the same
ground truth label. One can notice that COOT falls short compared to its competitors that leverage affinity
matrices as in state-of-the-art (non-linear) DR methods.

F.3 Best trade-off between metrics using t-SNE and UMAP
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Figure 6: Complements to Figure 3 of the main paper for t-SNE with l2 symmetrization and UMAP : Best
trade-off between homogeneity vs silhouette (2 first plots), and homogeneity vs NMI (2 last plots). Scores
are normalized in [0, 1] via min-max scaling over a dataset. Small markers are scores per dataset for 5 runs,
while big ones are their mean. We illustrate the 20-80% percentiles of scores per method as a colored surface.
.

F.4 Complete scores

We complete the results shown in Section 5 by providing the scores obtained on all datasets and models. Scores
are plotted in Figure 7 for the PCA model, in Figure 8 for the t-SNE model with entropic symmetrization,
then in Figure 9 with l2 symmetrization, and Figure 10 for the UMAP model.
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Figure 7: Scores (×100) with respect to the number of prototypes (in R10) produced by DistR using the
PCA model: ⟨, ⟩Rp similarity for CX (Van Assel et al., 2023), ⟨, ⟩Rd for CZ and loss L2.
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Figure 8: Scores (×100) with respect to the number of prototypes (in R2) produced by DistR using the t-SNE
model: SEA similarity for CX (Van Assel et al., 2023), Student’s kernel for CZ and loss LKL.
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Figure 9: Scores (×100) with respect to the number of prototypes (in R2) produced by DistR using the t-SNE
model with l2 symmetrization: EA similarity for CX (Van der Maaten and Hinton, 2008), Student’s kernel
for CZ and loss LKL.
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Figure 10: Scores (×100) with respect to the number of prototypes (in R2) produced by DistR using the
UMAP model: t-conorm of the smoothed nearest neighbors vj|i = e−∥xi−xj∥2−ρi/σi for CX (McInnes et al.,
2018, Eq.16), parameterized Student’s kernel for CZ (McInnes et al., 2018, Eq.17) and loss LBCE .
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F.5 Dynamics between homogeneity and silhouette scores across numbers of prototypes

For each method depending on some hyperparameters, models performing the best on average across all
numbers of prototypes are illustrated in Figure 11 for spectral methods and in Figure 12 for neighbor
embedding ones.
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Figure 11: Trade-off between homogeneity vs silhouette scores using PCA model across various numbers of
prototypes n. The illustration follows the same principal than fig. 3
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Figure 12: Trade-off between homogeneity vs silhouette scores using t-SNE model across various numbers of
prototypes n. The illustration follows the same principal than fig. 3

F.6 Dynamics between homogeneity and NMI scores across numbers of prototypes

For each method depending on some hyperparameters, models performing the best on average across all
numbers of prototypes are illustrated in Figure 13 for spectral methods and in Figure 14 for neighbor
embedding ones.
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Figure 13: Trade-off between homogeneity vs silhouette scores using PCA model across various numbers of
prototypes n. The illustration follows the same principal than fig. 3
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Figure 14: Trade-off between homogeneity vs silhouette scores using t-SNE model across various numbers of
prototypes n. The illustration follows the same principal than fig. 3

F.7 Benchmark between Spectral and Kmeans clustering

We compare in the following the performances of the joint DR/clustering algorithm across different clustering
strategies. Namely for C → DR and DR→ C, we compare our default choice of the Spectral Clustering (SC)
algorithm with a Kmeans algorithm. Then for DistR, we compare the use of both algorithms to initialize
the transport plans. Performances for both PCA and t-SNE kernels with KL projection are reported in
Figure 15. On average across datasets, we can observe that DistR (SC), the default for the method, achives
a better trade-off w.r.t the silhouette and Kmeans NMI scores than DistR (Kmeans), while maintaining
similar homogeneity scores. A similar behavior is observed for C→DR using PCA like kernels, whereas overall
higher performances are observed for C→DR (SC) than C→DR (Kmeans). Therefore SC appears as a better
clustering strategies to maximize performances for both DistR and C→DR, where DistR (SC) remains the
most competitive methods. Finally, DR→C (Kmeans) consistently leads to higher homogeneity scores with
comparable silhouette scores than DR→C (SC), but their respective trade-off between homogeneity and
Kmeans NMI are more erratic.
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Figure 15: Best trade-off between homogeneity vs silhouette (left), and homogeneity vs NMI (right). Scores
are normalized in [0, 1] via min-max scaling over a dataset. Small markers represent scores averaged over
5 runs for a given dataset, while big ones are their mean over datasets. The illustration follows the same
principal than fig. 3
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F.8 Sensitivity analysis w.r.t the embedding dimension
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Figure 16: Sensitivity analysis w.r.t the embedding dimension d for the spectral method analog to PCA
with CX(X) = XX⊤ and CZ(Z) = ZZ⊤. Over three datasets, we make vary the embedding dimension from
d ∈ {12, 14, ..., 20}.
.

F.9 Computation time comparison

We compare in the following the computation time for all methods benchmarked in Table 1
when using a spectral method and a SNE method. For fair comparison across methods,
we do not apply here the low-rank factorizations used for experiments of the main paper. All experiments
were done on a server using a GPU (Tesla V100-SXM2-32GB) and composed of 18 cores Intel(R) Xeon(R)
Gold 6240 CPU @ 2.60GHz. All DR steps benefit from our GPU compatible implementation, while spectral
clustering (SC) was performed on CPU using scikit-learn implementation running on CPUs.
Notice that to run our experiments we precomputed and saved SC steps for the maximum number of
prototypes ran on the input structure CX(X), for all benchmarked methods e.g CDR used for clustering or
DistR and COOT used for initialization of the transport plans. As DRC performs SC over learned embeddings
using CZ(Z) it cannot be precomputed, so we include the time of performing SC for all n for all methods to
achieve a fair comparison. Results for three datasets of increasing sample sizes SNA1, ZEISEL and MNIST
(See Appendix E.1) are reported in Figure 18 with pre-computation and in Figure 17 without.
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Figure 17: Computation time comparison depending on the number of prototypes n for all methods over 3
datasets, for 5 different initializations, while precomputing spectral clustering on the input structure CX(X).

4 44 84 124 164 204
number of prototypes

100

101

102

ru
nt

im
es

 (s
)

SNA1
DistR
DistR
DRC
CDR
COOT

48 88 128 168 208
number of prototypes

101

102
ZEISEL

10 50 90 130 170 210
number of prototypes

101

102

MNIST

, Rp / , Rd : runtimes without precomputing

4 44 84 124 164 204
number of prototypes

100

101

ru
nt

im
es

 (s
)

SNA1
DistR
DistR
DRC
CDR
COOT

48 88 128 168 208
number of prototypes

101

ZEISEL

10 50 90 130 170 210
number of prototypes

101

102

MNIST
SEA / Student : runtimes without precomputing

Figure 18: Computation time comparison depending on the number of prototypes n for all methods over
3 datasets, for 5 different initializations, without precomputing spectral clustering on the input structure
CX(X).

Overall our DistR models are competitive with all benchmarked methods in terms of computation time
too and can be run (and further validated) in a few seconds using a GPU after precomputing the spectral
embeddings for medium size dataset (N=10000 for MNIST), by efficiently leveraging low-rank kernels often
used in the DR literature.
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F.10 Proofs of concepts with hyperbolic kernels

Hyperbolic spaces (Chami et al., 2021; Fan et al., 2022; Guo et al., 2022; Lin et al., 2023) are of particular
interest as they can capture hierarchical structures more effectively than Euclidean spaces and mitigate the
curse of dimensionality by producing representations with lower distortion rates. For instance, Guo et al.
(2022) adapted t-SNE by using the Poincaré distance and by changing the Student’s t-distribution with a
more general hyperbolic Cauchy distribution. Notions of projection subspaces can also be adapted, e.g. Chami
et al. (2021) use horospheres as one-dimensional subspaces. To match our experiments with the neighbor
embeddings in Euclidean settings, we adapt the Symmetric Entropic Affinity (SEA) from Van Assel et al.
(2023) for CX and the scalar-normalized student similarity for CZ (Van der Maaten and Hinton, 2008), by
simply changing the Euclidean distance by an hyperbolic distance.

Implementation details. Computations in Hyperbolic spaces are done with Geoopt (Kochurov et al., 2020)
and the RAdam optimizer (Bécigneul and Ganea, 2018) replaces Adam. A Wrapped Normal distribution in
Hyperbolic spaces (Nagano et al., 2019) is used to initialize Z in the hyperbolic setting. All the computations
were conducted in the Lorentz model (Nickel and Kiela, 2018), which is less prone to numerical errors. We used
the distance function from Nickel and Kiela (2018) to form CZ . Specifically, we employed a scalar-normalized
Gaussian kernel, where the distances between points are computed as in Nickel and Kiela (2018, Equation
1). After optimization, results are projected back to the Poincaré ball for visualization purposes. In this
hyperbolic context, we adopted the formulation of Guo et al. (2022) which generalizes Student’s t-distribution
by Hyperbolic Cauchy distributions (denoted as H-Student in the results). Notice that Guo et al. (2022)
considered weighted sums of DR objective depending respectively on L2 and LKL, including 2 additional
hyperparamaters, plus various validated curvature levels for the inner hyperbolic distances. In the following
experiments, we only kept LKL for comparison with the Euclidean SNE-based methods illustrated in Section 5
and previous Sections of F, while validating the same hyperparameters and setting the space curvature to 1.
The silhouette score was adapted to this kernel considering the Hyperbolic distance instead of the Euclidean
one, and we implemented a Hyperbolic Kmeans whose barycenters are estimated using the RAdam optimizer
to compute the NMI scores.

Results. We first report in Figure 19 a relative comparison of the best trade-off between local and global
metrics achieved by all methods. Similarly to visualizations of the main paper, we considered for each method
and dataset, the model maximizing the sum of the two normalized metrics to account for their different ranges.
DistR, being once again present on the top-right of all plots, provides on average the most discriminant
low-dimensional representations endowed with a simple geometry, seconded by C→DR.
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Figure 19: Best trade-off between homogeneity vs silhouette (2 first plots), and homogeneity vs NMI (2 last
plots). Scores are normalized in [0, 1] via min-max scaling over a dataset. Small markers represent scores
for 5 runs for a given dataset, while big ones are their mean. For each method we illustrate the 20-80%
percentiles of normalized scores as a colored surface.

Then we report in Figure 20 absolute performances for all methods and all datasets across various n, as done in
Appendix F.4. We can observe that both DistR and C→DR achieve fairly high NMI and homogeneity scores
across all settings, while DistR performs significantly better on average across the tested number of prototypes
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n. However, DR→C struggles significantly to learn both globally and individually discriminant prototypes.
Notice that DR→C’s homogeneity scores are significantly lower on average than both benchmarked Euclidean
kernels. This mitigates drastically the significance of the silhouette scores computed for this method, letting
essentially DistR and C→DR to compare. Even though DistR outperforms consistently C→DR w.r.t silhouette
scores, these scores remain significantly lower than with the other t-SNE kernels. As the latter is equivalent
to a null curvature, this indicates that further fine-tuning of the curvature within these hyperbolic kernels
could be beneficial. Nevertheless, these results confirm the versatility of our DistR approach, capable of
operating on non-Euclidean geometries.
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Figure 20: Scores (×100) with respect to the number of prototypes (in R10) produced by DistR using the
Hyperbolic Student model.
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