
UniIF: Unified Molecule Inverse Folding

Zhangyang Gao 1,2, †, Jue Wang 1,2, †, Cheng Tan 1,2, †,
Lirong Wu 2, Yufei Huang 2, Siyuan Li 2, Zhirui Ye 2, Stan Z. Li 2, ∗

1 Zhejiang University 2 Westlake University

Abstract
Molecule inverse folding has been a long-standing challenge in chemistry and biol-
ogy, with the potential to revolutionize drug discovery and material science. Despite
specified models have been proposed for different small- or macro-molecules, few
have attempted to unify the learning process, resulting in redundant efforts. Com-
plementary to recent advancements in molecular structure prediction, such as
RoseTTAFold All-Atom and AlphaFold3, we propose the unified model UniIF for
the inverse folding of all molecules. We do such unification in two levels: 1) Data-
Level: We propose a unified block graph data form for all molecules, including
the local frame building and geometric feature initialization. 2) Model-Level: We
introduce a geometric block attention network, comprising a geometric interaction,
interactive attention and virtual long-term dependency modules, to capture the 3D
interactions of all molecules. Through comprehensive evaluations across various
tasks such as protein design, RNA design, and material design, we demonstrate
that our proposed method surpasses state-of-the-art methods on all tasks. UniIF
offers a versatile and effective solution for general molecule inverse folding.

1 Introduction
Molecule inverse folding plays a pivotal role in drug and material design, enabling scientists to
synthesize novel molecules with the desired structure. Previously, many studies focus on either
macromolecules [19, 33, 21, 9, 17, 4, 10, 17, 8, 34] or small molecules [6, 26, 16, 28, 14, 31]
separately, leaving the challenge of inverse folding general molecules. For example, the advanced
small molecule model [6, 31] take atoms as basic units; the macromolecule models [8, 10] consider
predefined microstructures (such as amino acids and nucleotides) as the basic units. Additionally,
even for the same molecule, different models employ varying strategies to extract geometric features.
Complementary to the great success of RoseTTAFold All-Atom [25] and AlphaFold3 [1] in molecular
structure prediction, we propose a unified model, UniIF, for the inverse folding of all molecules.

Unified Inverse Folding Model

20 Amino acids 4 Nucleotides 118 Atoms

Protein RNA Molecule

St
ru

ct
ur

e
To

ke
ns

Figure 1: Unified molecule inverse folding.

By comparing small- and macro-molecules, we
identify three challenges toward the unified model:
(1) Unit Discrepancy: The macromolecules takes
predefined microstructures (amino acids and nu-
cleotides) as the basic units, while small molecules
takes atoms as basic units. (2) Geometric Featur-
izer: Different studies employ various strategies
for extracting geometric features from structures,
such as distance, angles and tensor product; there
are lack of unified featurization strategy. (3) Sys-
tem Size: The small-molecules allow the full at-
tention transformer to learn long-term dependen-
cies, but the quadratic computing cost limits the
mechanism scalling up to macro-molecular sys-
tems. Alternatively, previous research use sparse
GNN, which suffers from the limited local receptive field that causes over-smoothing and over-
squashing [29]. In addition, developing a unified model working well for all molecules is challenging.

†Equal Contribution, ∗Corresponding Author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

The unit discrepancy makes it challenge to adapt methods across small- and macro-molecules, which
explains the divergence between these two research lines. As a solution, we propose a frame-based
block to unify the representation of amino acids, nucleotides, and atoms: a group of atoms with
varying size is treated as a block with fixed size. Each block includes decoupled equivariant basis and
invariant features, generalizing the representation of AlphaFold2 and other small-molecule methods.

The geometric featurizer is necessary to capture the geometric interactions between blocks. We
initialize the equivariant block basis using predefined rules or a learnable GNN layer, and then
constructing invariant block features based on these basis. The key operation is to use local coordinates
and dot product to capture the geometric interactions between virtual atoms. We reuse the featurizer
in each model layer to interactively learn updated geometric features, where the concept of directed
virtual atom is introduced to enhance the pairwise interactions. We show that the unified featurizer
works well across protein design, RNA design, and material design.

We use sparse GNN to address the system size issue, while maintaining the ability to capture long-
term dependencies. The transformer-style protein models like AlphaFold and RosettaFold require
a substantial amount of GPU memory. Sparse GNNs, on the other hand, are criticized for their
tendency to over-smooth and over-squash due to their limited local receptive field. To be efficient
while preserving the ability to capture long-term dependencies, we introduce global virtual blocks.
Each virtual block is connected to all real blocks, serving as an information exchange agent.

We conducted comprehensive experiments across various tasks, including protein design, RNA
design, and material design, to demonstrate the effectiveness of UniIF. The results show that UniIF
achieves state-of-the-art performance on all the tasks, which is non-trivial and may benefit the
machine learning, drug discovery, and material science communities.

2 Related work
Unification. Unified molecular learning has attracted increasing attention in recent years.
RoseTTAFold All-Atom (RFAA) [25] and AlphaFold3 [1] are two representative models that have
achieved remarkable success in protein structure prediction. RoseTTAFold All-Atom uses an atom-
bond graph for small molecules and a frame graph for macromolecules. AlphaFold3 uses a bi-level
representations, i.e., atom representation and token representation, for all molecules. The token con-
cept is requivalent to the block concept in this paper, which means a group of atoms, such as a amino
acid or a nucleotide. GET [24] and EPT [20] are two recent models that use a block representation
for both small and macromolecules and introduce a new equivariant transformer backbone. Unlike
RFAA [25], which specifies a atom-bond graph for small molecules, our model employs a unified
block graph for all molecule types and do not require the atom-bond graph. Our model also differs
from AlphaFold3 [1], GET [24] and EPT [20] in the that we introduce the vector basis for each block.

Protein Inverse Folding. Recent research use k-NN graph to represent the 3D structure and employ
graph neural networks for protein inverse folding. GraphTrans [19] uses the graph attention encoder
and autoregressive decoder for protein design. GVP [21] proposes geometric vector perceptrons
to learn from both scalar and vector features. GCA [33] introduces global graph attention for
learning contextual features. In addition, ProteinSolver [32] is developed for scenarios where partial
sequences are known while not reporting results on standard benchmarks. Recently, AlphaDesign
[9], ProteinMPNN [4], ESMIF [17], LMDesign [40], KWDesign [8], VFN [27] achieves dramatic
improvements. A benchmark [11] is proposed to comprehensively evaluate protein design models.

RNA Inverse Folding. RNA inverse folding is a challenging task due to the complex secondary
structure and tertiary structure. Traditional methods [3] include colony optimization and constraint
programming, in addition to adaptive walk, simulated annealing and Boltzmann sampling. Recent
deep learning method RDesign [34] has achieved promising results and build a benchmark for AI
researchers to follow-up. RiboDiffusion [18] use diffusion decoder to generate RNA sequences
conditioned on the backbone structure embeddings.

Material Design. Deciding which chemical compositions are likely to form compounds is a critical
task in material design [28, 26, 14]. An important application is to substitute lattice-site elements or
ionic species within existing compounds that exhibit similar chemical behaviors. Wang et al. [36]
successfully employed the elemental substitution method to discover 18,479 stable compounds out
of a pool of 189,981 potential candidates. Recently, Jensen et al. [6] introduced a open dataset for
material design and established a benchmark for evaluating deep learning models in this domain.

2

3 Method

3.1 Overall Framework

As shown in Fig. 2, we propose the unified model for general molecule inverse folding. The key
insights include: (1) transforming all molecules into block graphs, where each block represents an
amino acid, nucleotide, or atom; (2) proposing a geometric featurizer to initialize geometric node and
edge features; and (3) introducing a new GNN layer with long-term dependencies to learn expressive
block representations. Our unified model achieves competitive results across diverse tasks, including
protein design, RNA design, and material design.

Micromolecules

Small molecules

Learned
Basis

Prior
Basis

Graph Featurizer

Protein Design

RNA Design

Bl
oc

k
Fi

el
d

At
te

nt
io

n

Bl
oc

k
Fi

el
d

At
te

nt
io

n

Bl
oc

k
Fi

el
d

At
te

nt
io

n

Bl
oc

k
Fi

el
d

At
te

nt
io

n

Pr
ed

ic
tio

n
H

ea
d

Block Graph Neural Network

Material Design

Tasks

Node feature

Edge feature

Unified Pipeline for All MoleculesAll Molecules

Figure 2: The Overall framework. (1) The model treat all types of molecules as block graphs. For macro-
molecules, we use predefined frames based on amino acids and nucleotides; for small molecules, we learn the
local frame of each block by one-layer GNN. (2) A geometric featurizer is used to initialize the geometric node
feature and edge features. (3) We propose the block graph attention layer, based on which we build the block
graph neural network to learn expressive block representations. (4) Finally, we show that the UniIF can achieve
competitive results on diverse tasks, ranging from protein design, RNA design and material design.

3.2 Block Graph

We introduce the block graph to represent all types of molecules, where the key insight is to transform
irregular set of atoms (varying size) as regular block representation (fixed size).

carbon atom
direction
Rotation vector

Block

P!

O5!
C5!

C4!

O4!

C1!

C2!
C3!

Base

O3!
O2!

O3!"#

P!$#

phosphorus atom

oxygen atom

carbon atom

ch
ai

n
di

re
ct

io
n

Block

RNA

nitrogen atom

alpha carbon atom

carbon atom

oxygen atom

BaseC1!

C2!
O!

𝑁!

C2!$#

𝑁!"#

Block

ch
ai

n
di

re
ct

io
n

Protein Small Molecules

alpha carbon atom

Figure 3: Blocks of different molecules. The basic building blocks include amino acids, nucleotides and atoms.

Atom-based Block Representation. A block B = {(xi, zi)}|B|
i=1 contains a set of atoms

{xi, zi}|B|
i=1, where xi ∈ R3 and zi ∈ Rd represent the equivariant coordinate and invariant

features, such as the atom type. The common block types include amino acids, nucleotides,
and atoms, which are represented as Bfold, Brna, and Bsmol, respectively. Formally, we write
Bfold = {(xi, zi)}i∈Vfold and Brna = {(xi, zi)}i∈Vrna , where Vfold = {N,C1,C2,O} and
Vrna = {P,C5,C4,C3,C2,C1,O5,O4,O3,O2} are the sets of atoms for amino acids and nu-
cleotides, respectively. For small molecules, each atom a represents a block Bsmol = {(xa, za)},
where 1 ≤ a ≤ 118. As the block size |B| varies for different types of blocks, the atom-based blocks
representation could not directly be applied for unified modeling.

3

Atom-based Block (varying size)

Frame-based Block (fixed size)

Fe
at
ur
es

Used for Unified Modeling

Vector
Basis

Figure 4: Unified molecule inverse folding.

Frame-based Block Representation. We introduce
frame-based block representation to unify the model-
ing of all molecules. A block B = (F,f) contains
the equivariant frame F and invariant feature vector
f ∈ Rd. The local frame F (R, t) contains the axis
matrix R = [e1, e2, e3, · · · , eu] and translation vec-
tor t. We set t as the coordinate of the representative
atom, i.e., C1 of macromolecules and the atom itself of
small molecules. Following AlphaFold2, we consider
the special case that R ∈ R3,3 is orthogonal. However,
additional experiments show that the model can also
work well with non-orthogonal axis matrix. For macro-
molecules, the axis matrix R is predefined based on
amino acids and nucleotides, while for small molecules,
we learn the axis matrix R as it does not have prior common structure patterns. The frame-based block
representation decouples geometric information: (1) the local frame basis describe the equivariant
pose; (2) the invariant feature vector could embed the atom type and invariant local structure patterns
for different tasks. More importantly, the dimension of the frame-based block representation is fixed,
which is beneficial for the unified modeling; we build block features in Sec. 3.3.

Frame-based Block Graph. Given a moleculeM = {Bs}ns=1 containing n blocks, we build the
block graph G({Bs}ns=1, E) using kNN algorithm. In the block graph, the s-th node is represented as
Bs = (Fs,fs), and the edge between (s, t) is represented as Bst = (Fst,fst). The relative frame is
defined as Fst = F−1

s ◦ Ft. Inspired by [22, 10, 27], we modify PiFold featurizer to initialize the
geometric node feature fs and edge feature fs,t; refer to Sec. 3.3.

Relation to Other Methods. The frame-based block is a generalized data form of AlphaFold2
and other methods. If R is required to be a rotation matrix, the frame-based block is equivalent to
AlphaFold2’s local frame; otherwise, it is equivalent to represent the atom as invariant feature h and
equivalent vector x, similar to GVP [21] and DimeNet [12].

3.3 Block Graph Featurizer

Learning Local Frame. For small molecules, there is no predefined local frame, and we need to
learn the local frame for each atom. Given the the moleculeM = {(xs, zs)}|M|

s=1, we use a 1-layer
of GNN to initialize the atom representation {zs}|M|

s=1 ← BlockGAT({xs, zs}|M|
s=1), where the inital

local frames are T (I, 0). The rotation vector rs of the s-th atom is constructed by message passing:

rs = (rx, ry, rz) =
∑
k∈Ns

eMLP(zs,zt)∑
k∈Ns

eMLP(zs,zk)

xk − xs

||xk − xs||
(1)

Ns is the s-th atom’s neighbor system. Let the direction (rx, ry, rz) =
rs

||rs|| and magnitude θ = ||rs||
represent the rotation axis and angle, we compute the quanternion qs and rotation matrix Rs:

qs = [w, x, y, z] = [cos
θ

2
, rx sin

θ

2
, ry sin

θ

2
, rz sin

θ

2
]

Rs = [ex, ey, ez] =

1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw
2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw
2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2

 (2)

Finally, the local frame of the s-th atom is Ts(Rs, ts), where ts is the atom coordinate. Experiments
show that learning rotation vectors consistently outperforms learning Schmidt-orthogonalized axises.

Node Geometric Feature. The invariant block feature captures the atom type and the local structure:
zpos
i = RT

s (xi − ts) = F−1
s ◦ xi Equivalent to invariant features, local structure

fs =
1

|Bs|
∑
i∈Bs

MLP(zi, z
pos
i) Pooling atom features as block features, embed atom type (3)

4

The inverse frame operation T−1
s project the equivalent global coordinates to the invariant local

coordinate, i.e., xlocal = F−1
s ◦ xglobal = RT

s (x
global − ts). We use MLP to embed atom type and

local coordinates. All atom features in the same block are pooled to get the block feature fs.

Edge Geometric Feature. We initialize pairwise features following the principle that

Edge features capture the directed 3D interactions.

Instead of using mutually constructed distance and angle features, we concatenate the local coordinates
of two blocks to fully describe their 3D positions. Given Bs and Bt with global coordinate matrices
as Xs ∈ R|vs|,3 and Xt ∈ R|vt|,3, the invariant edge features following s← t direction is

fs,t = T−1
s ◦ ([Xs∥Xt]) (4)

where T−1
s = (RT

s ,−RT
s ts) projects equivariant global coordinates to invariant local coordinates.

3.4 Block Graph Attention Module

Geo-Interaction

Gated Edge Attention

FFN

Edge Update

Block Graph Construction

Gated Edge AttentionGeo-Interaction

(b) Equi- virtual atoms

(c) Inv- relative coords

(a) Inv- edge feat

Real+Virtual Blocks

Frame-based Block Graph

Atom-based Block Graph

Global Virtual Frames Global Virtual Featurs

 Invariant Features
Real FeaturesReal Frames

 Equivariant Frames

(a) (b) (c) (d)

Figure 5: Block Graph Attention Module. (a) Virtual Block for Long-term Dependencies. (b) Geometric
Interaction Extractor for learning pairwise features. (c) Gated Edge Attention for updating node features.

Frame-based SE-(3) Module Design. Given the geometric transformation y = Wx, we decom-
pose W = RtΣR

T
s using SVD and explain y = RtΣR

T
s x as:

1. Projecting x as the local coordinate xlocal using the frame Fs(Rs,0), i.e., xlocal = RT
s x.

2. Updating local coordinates via gated attention, i.e., xlocal ← Σxlocal.

3. Translating xlocal as the global coordinate using frame Tt(Rt,0), i.e., y = Rtx
local.

If we parameterize Σy as fθ(y), and considers the effects of translation, i.e., Ts(Rs, ts), Tt(Rt, tt),
the general principle of designing SE-(3) networks could be:

ẑ = R−1
s (x− ts) = T−1

s ◦ x Equivalent to invariant
ẑ ← fθ(ẑ) Invariant update, one can use GNN or Transformer
x̂ = Rtŷ + tt = Tt ◦ ẑ Invariant to equivalent

(5)

The well-known AlphaFold actually follows such a design, where they parameterize fθ as the IPA
module. In this work, we replace fθ with an enhanced graph neural network:

f (l+1)
s ,f

(l+1)
st ← fθ(f

(l)
s ,f

(l)
st |Ts, Tst, E) (6)

where f
(l)
s and f

(l)
st represent the input node and edge features of the l-th layer. In Fig. 5, we show

the design of the Block Graph Attention Module, consisting of three components: (1) geometric inter-
action extractor, (2) virtual block for long-term dependencies, and (3) the edge attention mechanism.
We show the detailed design of the Block Graph Attention Module in the following sections.

5

Long-term Dependency via Virtual Blocks. The GNN is criticized by local receptive field,
yielding the problem of over-smoothing and over-squashing [2, 5, 29, 13]. Transformers overcome
these problems using direct paths between distant nodes, while suffering from the O(n2) computing
cost. We introduce n′ virtual blocks {Bi}n+n′

i=n as information agents for a graph. Each virtual
block directly connects to all the real blocks, resulting in (2 · n · n′) additional directed edges. As
n′ ≪ n, we claim that the computing cost is close to original GNN. All the virtual blocks, i.e.,
Tn+1(R

′, t′), Tn+2(R
′, t′), · · · , Tn+n′(R′, t′), share the same rotation R′ and translation t′:
X = [x1,x2, · · ·] All the coordinates of the molecule
XTX = UΛV T SVD
R′ = UV T = [ex, ey, ez]

t′ =
∑N

i=1 xi

N Center of Mass

(7)

The invariant features of virtual blocks are different, as we hope they learn diverse interactions. We
encode the index to initialize block features f ′

i = Embedding(i) for i ∈ {1, 2, · · · , n′}.

Local Position Interaction Dot Product Interaction

Figure 6: Geometric Interactions.

Geometric Interaction Extractor. We enhance
edge features with geometric interactions using
the local coordinates of virtual inter-atoms and dot
products of virtual intra-atoms. Previous works,
such as PiFold [10], introduced virtual atoms in
the featurizer to capture informative side-chain ge-
ometry beyond protein backbones, resulting in per-
formance gains. VFN [27] extended this idea by
allowing GNN layers to update the virtual atoms.
However, these efforts are limited to learning vir-
tual intra-atoms conditioned on node features. In-
stead, we propose virtual inter-atoms conditioned
on edge features, allowing the same node to exhibit different virtual states specified by edges. Ad-
ditionally, inspired by small molecule modeling, we use the dot product of virtual intra-atoms to
capture angle information. We show the geometric interactions in Fig. 6, and formulate it as:

h
(l)
st ,h

(l)
t = MLP(f (l)

st), MLP(f
(l)
t) ∈ Rm,3 Edge feature

ẑ
(l)
st = (Tst ◦ h(l)

st)∥h
(l)
st Local coordinates of virtual inter-atoms

ast = hT
s R

T
s Rtht Geometric dot product of virtual intra-atoms

g
(l)
st = MLP(ẑ(l)

st , qst, rst,ast)

f
(l)
st ← MLP(f (l)

st , g
(l)
st)

(8)

where Tst = T−1
s ◦Tt = (R−1

s Rt, R
−1
s (tt− ts)), qst = vec(Rst) ∈ R9 is the flatten rotation matrix

of Tst, and rst = ||ts − tt|| indicates the pairwise distance. All qst, rst an ast are invariant features.
We highlight the difference to previous researches in color.

Gated Edge Attention. We modify PiFold’s GNN to capture the geometric interactions when
updating node features. For molecular design tasks, we find that aggregating edge features only leads
to consistent performance gains. We understand this phenomenon as the model can pay more attention
on learning 3D interactions under such a model design. In addition, we use a gated mechanism to
control how the edge features are injected to node features. The gated edge attention module is:

wst = AttMLP(f (l)
s ||f (l)

st ||f
(l)
t)

ast =
expwst∑

k∈Ns
expwsk

h
(l)
t = EdgeMLP(f (l)

st) Only conditiond on edge
∆f

(l)
s =

∑
t∈Ns

asth
(l)
t

f
(l+1)
s = f

(l)
s + σ(MLP(∆f

(l)
s))⊙∆f

(l)
s Update node feature via forget gate

(9)

where ⊙ is element-wise product operation, and σ(·) is the sigmoid function. We highlight the
difference between PiGNN and the proposed module in color.

6

FFN & Edge Updating. Analogous to the transformer model, the FFN is a MLP. The edge updating
layer remains the same as PiFold:

fst = EdgeMLP(fs||fst||ft) (10)

The proposed module could be equivalently implemented as a transformer module using matrix
multplication. However, we find that padding proteins to the maximum length would grealy increase
the computing cost in both GPU occupancy and runtime; We suggest using GNN without padding.

Regularization. We find that the proposed model fit training data better than PiFold and more
likely to suffer from overfitting. To address this issue, we randomly drop out the nodes/edges with a
probability of p to prevent overfitting. We find that controlling the dropout rate could result in models
with different fitting abilities. The best performance is achieved when p = 0.05.

4 Experiments

We show the effectiveness of UniIF via multiple inverse folding tasks and ablation studies. We briefly
introduce molecular design tasks as follows:

• Protein Design (T1): Designing protein sequences folding into the target structure.
• RNA Design (T2): Designing RNA sequences folding into the target structure.
• Material Design (T3): Discoverying stable composition from a known material structure.

4.1 Protein Design (T1)

Task Description Protein design aims to design protein sequences that fold into target structures.
Given a protein backbone structure X = {Xi ∈ Rm,3 : 1 ≤ i ≤ n}, where m is the maximum
number of points belonging to the i-th residue, n is the number of residues and the natural proteins
are composed by 20 types of amino acids, the goal is to learn a function Fθ:

Fθ : X 7→ Ŝ. (11)

The parameters θ are learned by minimizing the cross-entropy loss, i.e., L(Fθ(X),S) =
−
∑n

i=1 log sip(ŝi|X , θ). The task is challenging due to the combinatorial search space of amino
acids and the complex relationship between sequence and structure.

Settings We evaluate of UniIF on the CATH4.3 dataset [30] following prior works [11, 8]. The
dataset is split by the CATH topology classification code, yielding 16,631 training, 1,516 validation,
and 1,864 testing samples. To assess generalization, we adopt a time-split strategy, considering the
use of pretrained ESM2 models by some baselines, which risk data leakage. The time-split evaluation
assigns data before a specific date to the training set and data after that date to the test set. For
structural time-split evaluation, we use the CASP15 dataset [11], containing novel crystal structures
not seen during training. For sequence time-split evaluation, we use the NovelPro dataset [8], which
includes 76 protein sequences released within 30 days before November 23, 2023, with structures
predicted by AlphaFold2. UniIF consists of 10 layers of BlockGAT with a hidden dimension of 128.
It is trained using the Adam optimizer with a learning rate of 1e-3 and a batch size of 8 for 50 epochs.

Metrics & Baselines We report the median recovery rate of the top-1 predicted sequences, repre-
senting the percentage of correctly predicted residues. The ESM2-free baselines include StructGNN
[19], GraphTrans [19], GCA [33], GVP [21], AlphaDesign [9], ProteinMPNN [4], and PiFold [10].
The ESM2-based baselines include LMDesign [17] and KWDesign [8]. While we prefer open-source
baselines, we also re-implement VFN [27] for a comprehensive comparison.

Conclusion We provide results under different settings (with and without ESM2) and across
diverse datasets (CATH4.3, CASP, NovelPro). Using a pure inverse folding model without ESM2,
UniIF achieves the best performance on all datasets, demonstrating its effectiveness. Notably, UniIF
outperforms the strong baseline PiFold with fewer learnable parameters. In time-split evaluations,
UniIF surpasses all baselines, including ESM2-based methods, by a significant margin. On NovelPro,
which features novel sequences, UniIF outperforms LMDesign and KWDesign that use ESM2
for sequence refinement. This indicates UniIF’s superior generalizability, crucial for real-world

7

Model Rec % ↑ (CATH4.3) Rec % ↑ Rec % ↑ Params
w ESM length L < 100 100 ≤ L < 300 300 ≤ L < 500 Full CASP NovelPro

!
LMDesign [17] 0.47 0.56 0.61 0.56 0.48 0.59
KWDesign [8] 0.51 0.61 0.69 0.60 0.56 0.64

%

StructGNN [19] 0.30 0.34 0.40 0.34 0.36 0.40 1.4M
GraphTrans [19] 0.29 0.34 0.39 0.34 0.35 0.40 1.5M
GCA [33] 0.32 0.36 0.41 0.36 0.40 0.43 2.1M
GVP [21] 0.33 0.38 0.45 0.38 0.39 0.42 0.9M
AlphaDesign [9] 0.37 0.43 0.47 0.42 0.42 0.46 3.6M
ProteinMPNN [4] 0.38 0.44 0.52 0.44 0.44 0.52 1.7M
PiFold [10] 0.43 0.52 0.59 0.51 0.47 0.57 5.8M
UniIF (ours) 0.45 0.54 0.61 0.53 0.51 0.66 5.4M

A
bl

at
io

n VFN [27] 0.45 0.53 0.60 0.52 0.48 0.63 5.4M
-GDP 0.45 0.53 0.61 0.52 0.50 0.65 5.3M
-EAttn 0.44 0.53 0.60 0.52 0.48 0.63 5.7M
-VFrame 0.45 0.53 0.61 0.52 0.49 0.64 5.4M

Table 1: Protein Design results. The best and suboptimal results are labeled with bold and underlined. "VFN"
means that we replace the geometric interaction operation with VFN’s operation [27]. "-GDP" means that
we remove the geometric dot product features. "-EAttn" means that we replace the gated edge attention with
PiGNN’s attention module [10]. "-VFrame" means that we remove the global virtual frames.

applications. Ablation studies show that the proposed geometric featurizer, gated edge attention, and
global virtual frame enhance performance. On CATH4.3, the overall improvement is slight due to
strong baselines, but time-split evaluation highlights UniIF’s superiority in generalization.

4.2 RNA Design (T2)

Task Description Similar to protein design, RNA design aims to design RNA sequences that fold
into target structures. Specially, previous work [34] use the RNA secondary structure as additional
input to guide the design process, since the tertiary structure is limited. In this work, we only use the
tertiary structures as input for the reason of unification, which is more challenging than the baselines.

Datasets & Baselines We conduct experiments RNA on the dataset collected by RDesign [34],
consisting of 2218 RNA tertiary structures, which are divided into training (1774 structures), testing
(223 structures), and validation (221 structures) sets based on their structural similarity. Following
RDesign’s benchmark, baseline methods include SeqRNN, SeqLSTM, StructMLP, StructGNN, and
StructGNN, GraphTrans [19], PiFold [10] and RDesign [34]. Given the small number of data samples,
we report the median recovery and its standard deviation for theree independent runs.

Table 2: The recovery of RNA design. The best and suboptimal results are labeled with bold and underlined.

Method Recovery (%) ↑
Short Medium Long All

SeqRNN (h=128) 26.52±1.07 24.86±0.82 27.31±0.41 26.23±0.87
SeqRNN (h=256) 27.61±1.85 27.16±0.63 28.71±0.14 28.24±0.46
SeqLSTM (h=128) 23.48±1.07 26.32±0.05 26.78±1.12 24.70±0.64
SeqLSTM (h=256) 25.00±0.00 26.89±0.35 28.55±0.13 26.93±0.93
StructMLP 25.72±0.51 25.03±1.39 25.38±1.89 25.35±0.25
StructGNN 27.55±0.94 28.78±0.87 28.23±1.95 28.23±0.71
GraphTrans [19] 26.15±0.93 23.78±1.11 23.80±1.69 24.73±0.93
PiFold [10] 24.81±2.01 25.90±1.56 23.55±4.13 24.48±1.13
RDesign [34] 37.22±1.14 44.89±1.67 43.06±0.08 41.53±0.38
UniIF (drop 0.05) 48.21 ±0.95 49.66 ±1.28 37.29 ±0.17 48.94 ±0.37
UniIF (drop 0.0) 42.86 ±0.87 48.45 ±1.04 39.23 ±0.09 44.29 ±0.29
UniIF (drop 0.1) 45.21 ±0.98 51.70 ±1.26 40.30 ±0.14 46.00 ±0.38
UniIF (drop 0.2) 46.97 ±1.04 48.11 ±1.37 42.00 ±0.18 47.19 ±0.45

Conclusion As shown in Table 2, UniIF achieves the best performance in all cases. The improve-
ment is significant, as previous strong baselines like PiFold only excelled in protein design. To
our knowledge, UniIF is the first model to achieve state-of-the-art performance in both protein and
RNA design tasks, demonstrating its versatility and effectiveness. Compared to RDesign, which
uses additional secondary structure features, UniIF relies solely on tertiary structure input and still
performs better. UniIF successfully unifies the protein and RNA design processes, paving the way for
a unified inverse folding model for protein-RNA complexes in future developments.

8

4.3 Material Design (T3)

Task Description Discovering stable atom compositions from known material structures is crucial
for new material discovery [28, 26, 14]. This task is challenging due to the large composition
space and the lack of large-scale data. Thanks to recent benchmark efforts [6], we can evaluate the
performance of UniIF on this novel task.

Method Rec % ↑
Random 1.6±0.0
GCN [23] 49.6±0.1
PMLP [39] 46.1±0.0
GraphSAGE [15] 49.1±0.4
GAT [35] 46.1±0.0
GraphUNet [7] 55.2±7.9
GIN [38] 58.7±0.2
EdgeCNN [37] 63.2±0.9
UniIF (ours) 75.3±1.2
- frame 54.9±2.8
- quat 65.2±3.9

Table 3: CHILI-3K Results.

Datasets & Baselines We evaluated UniIF on the CHILI-3K
dataset [6], which consists of nanomaterial graphs derived from
mono-metal oxides. The dataset includes 53 metallic elements
and one non-metallic element (oxygen), comprising 3,180 graphs,
6,959,085 nodes, and 49,624,440 edges. Following the official
benchmark, the dataset is randomly split into training (80%), vali-
dation (10%), and testing (10%) sets. Baselines include GCN [23],
PMLP [39], GraphSAGE [15], GAT [35], GraphUNet [7], GIN [38],
and EdgeCNN [37]. Experiments are repeated three times with dif-
ferent seeds, using early stopping with a patience of 50 epochs, and
trained up to 1000 epochs.

Conclusion In Table 3, UniIF outperforms all baselines by a large
margin. Ablation studies demonstrate the crucial role of the learned
local frame in enhancing interaction feature extraction. In addition, how to learn the local frame
is also important. In the "- quat" ablation, we try to learn the x, y, and z axes with Householder
orthogonalization directly, but found it less effective, with the recovery rate dropping from 75.3% to
65.2%. This highlights the value of the proposed local frame learning mechanism.

4.4 Case Study

In Fig. 7, we show the designed protein and RNA sequences.In addition, we use AlphaFold3 [1] to
re-fold the designed sequences into structures. The ground truth (gray), PiFold (green), and UniIF
(pink) structures are alinged and compared. We observe that UniIF improves both the recovery and
RMSD of the designed protein and RNA, demonstrating its effectiveness in inverse folding tasks.

Rec:0.625 →	0.76 RMSD:8.57 →	8.32

PDB

RDesign

UniIF

PDB

PiFold

UniIF

PiFold

UniIF

Rec:0.565 →	0.65 RMSD: 0.341 →	0.257

Rec:0.5 →	0.73 RMSD:9.90 →	9.14 Rec:0.67 →	0.76 RMSD: 3.70 →	3.60Rec:0.375→0.75 RMSD: 8.07 →	5.76

Rec:0.468 →	0.56 RMSD: 0.440 →	0.309

Figure 7: Designed examples. The ground truth (gray), PiFold (green), and UniIF (pink) structures are alinged.

5 Conclusion

We propose the first unified model, dubbled UniIF, for general molecule inverse folding. The key
points include unifying the data representation, the featurizer and the model architecture without a
drop in performance. Extensive experiments show that UniIF surpasses baseline methods on all tasks.
Ablation studies reveal that the geometric interaction extractor, gated edge attention, and virtual
long-term dependency modules contribute to performance gains. We believe that the proposed model
can benefit multiple domains, such as machine learning, drug design, and material design.

9

Acknowledgements

This work was supported by National Science and Technology Major Project (No. 2022ZD0115101),
National Natural Science Foundation of China Project (No. U21A20427), Project (No.
WU2022A009) from the Center of Synthetic Biology and Integrated Bioengineering of Westlake
University and Integrated Bioengineering of Westlake University and Project (No. WU2023C019)
from the Westlake University Industries of the Future Research Funding.

References
[1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf

Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pages 1–3, 2024.

[2] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2020.

[3] Alexander Churkin, Matan Drory Retwitzer, Vladimir Reinharz, Yann Ponty, Jérôme Waldispühl,
and Danny Barash. Design of rnas: comparing programs for inverse rna folding. Briefings in
bioinformatics, 19(2):350–358, 2018.

[4] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep
learning based protein sequence design using proteinmpnn. bioRxiv, 2022.

[5] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and
Michael M Bronstein. On over-squashing in message passing neural networks: The impact
of width, depth, and topology. In International Conference on Machine Learning, pages 7865–
7885. PMLR, 2023.

[6] Ulrik Friis-Jensen, Frederik L Johansen, Andy S Anker, Erik B Dam, Kirsten MØ Jensen, and
Raghavendra Selvan. Chili: Chemically-informed large-scale inorganic nanomaterials dataset
for advancing graph machine learning. arXiv preprint arXiv:2402.13221, 2024.

[7] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pages 2083–2092. PMLR, 2019.

[8] Zhangyang Gao, Cheng Tan, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, and Stan Z Li.
Kw-design: Pushing the limit of protein deign via knowledge refinement. In The Twelfth
International Conference on Learning Representations, 2023.

[9] Zhangyang Gao, Cheng Tan, Stan Li, et al. Alphadesign: A graph protein design method and
benchmark on alphafolddb. arXiv preprint arXiv:2202.01079, 2022.

[10] Zhangyang Gao, Cheng Tan, and Stan Z. Li. Pifold: Toward effective and efficient protein
inverse folding. In International Conference on Learning Representations, 2023.

[11] Zhangyang Gao, Cheng Tan, Yijie Zhang, Xingran Chen, Lirong Wu, and Stan Z Li. Proteinin-
vbench: Benchmarking protein inverse folding on diverse tasks, models, and metrics. Advances
in Neural Information Processing Systems, 36, 2024.

[12] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. arXiv preprint arXiv:2003.03123, 2020.

[13] Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D Malliaros.
On the trade-off between over-smoothing and over-squashing in deep graph neural networks.
In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, pages 566–576, 2023.

[14] Sean D Griesemer, Yi Xia, and Chris Wolverton. Accelerating the prediction of stable materials
with machine learning. Nature Computational Science, 3(11):934–945, 2023.

10

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[16] Geoffroy Hautier, Christopher C Fischer, Anubhav Jain, Tim Mueller, and Gerbrand Ceder. Find-
ing nature’s missing ternary oxide compounds using machine learning and density functional
theory. Chemistry of Materials, 22(12):3762–3767, 2010.

[17] Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
Alexander Rives. Learning inverse folding from millions of predicted structures. bioRxiv, 2022.

[18] Han Huang, Ziqian Lin, Dongchen He, Liang Hong, and Yu Li. Ribodiffusion: Tertiary
structure-based rna inverse folding with generative diffusion models. bioRxiv, pages 2024–04,
2024.

[19] John Ingraham, Vikas K Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for
graph-based protein design. 2019.

[20] Rui Jiao, Xiangzhe Kong, Ziyang Yu, Wenbing Huang, and Yang Liu. Equivariant pretrained
transformer for unified geometric learning on multi-domain 3d molecules. arXiv preprint
arXiv:2402.12714, 2024.

[21] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learn-
ing from protein structure with geometric vector perceptrons. arXiv preprint arXiv:2009.01411,
2020.

[22] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[23] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[24] Xiangzhe Kong, Wenbing Huang, and Yang Liu. Generalist equivariant transformer towards 3d
molecular interaction learning. arXiv preprint arXiv:2306.01474, 2023.

[25] Rohith Krishna, Jue Wang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek Kalvet,
Gyu Rie Lee, Felix S Morey-Burrows, Ivan Anishchenko, Ian R Humphreys, et al. Generalized
biomolecular modeling and design with rosettafold all-atom. Science, 384(6693):eadl2528,
2024.

[26] Yue Liu, Tianlu Zhao, Wangwei Ju, and Siqi Shi. Materials discovery and design using machine
learning. Journal of Materiomics, 3(3):159–177, 2017.

[27] Weian Mao, Muzhi Zhu, Zheng Sun, Shuaike Shen, Lin Yuanbo Wu, Hao Chen, and Chun-
hua Shen. De novo protein design using geometric vector field networks. arXiv preprint
arXiv:2310.11802, 2023.

[28] Bryce Meredig, Ankit Agrawal, Scott Kirklin, James E Saal, Jeff W Doak, Alan Thompson,
Kunpeng Zhang, Alok Choudhary, and Christopher Wolverton. Combinatorial screening for
new materials in unconstrained composition space with machine learning. Physical Review B,
89(9):094104, 2014.

[29] Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In
International Conference on Machine Learning, pages 25956–25979. PMLR, 2023.

[30] Christine A Orengo, Alex D Michie, Susan Jones, David T Jones, Mark B Swindells, and
Janet M Thornton. Cath–a hierarchic classification of protein domain structures. Structure,
5(8):1093–1109, 1997.

[31] Rafael Sarmiento-Perez, Tiago FT Cerqueira, Sabine Korbel, Silvana Botti, and Miguel AL
Marques. Prediction of stable nitride perovskites. Chemistry of Materials, 27(17):5957–5963,
2015.

11

[32] Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M Kim.
Fast and flexible protein design using deep graph neural networks. Cell Systems, 11(4):402–411,
2020.

[33] Cheng Tan, Zhangyang Gao, Jun Xia, and Stan Z Li. Generative de novo protein design with
global context. arXiv preprint arXiv:2204.10673, 2022.

[34] Cheng Tan, Yijie Zhang, Zhangyang Gao, Bozhen Hu, Siyuan Li, Zicheng Liu, and Stan Z Li.
Hierarchical data-efficient representation learning for tertiary structure-based rna design. In
The Twelfth International Conference on Learning Representations, 2023.

[35] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

[36] Hai-Chen Wang, Silvana Botti, and Miguel AL Marques. Predicting stable crystalline com-
pounds using chemical similarity. npj Computational Materials, 7(1):12, 2021.

[37] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics
(tog), 38(5):1–12, 2019.

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[39] Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. arXiv preprint arXiv:2212.09034, 2022.

[40] Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-
informed language models are protein designers. bioRxiv, pages 2023–02, 2023.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our experimental results support the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: The limitation is that we do not do wet-experiments. But we think this is out
of scope for the AI paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

13

Justification: Not applicable as the paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided the model and training details in Section 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [No]

Justification: The code will be released upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided such information in the experimental section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided the standard deviation in the RNA design and material design
tasks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: All experiments are conducted on an NVIDIA A100 with 80G memory. The
longest training time is about 1 day.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This is a computational technical paper and does not have conducted realistic
biological application.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets are introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

	Introduction
	Related work
	Method
	Overall Framework
	Block Graph
	Block Graph Featurizer
	Block Graph Attention Module

	Experiments
	Protein Design (T1)
	RNA Design (T2)
	Material Design (T3)
	Case Study

	Conclusion

