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Abstract: While grasp detection is an important part of any robotic manipula-
tion pipeline, reliable and accurate grasp detection in SE(3) remains a research
challenge. Many robotics applications in unstructured environments such as the
home or warehouse would benefit a lot from better grasp performance. This paper
proposes a novel framework for detecting SE(3) grasp poses based on point cloud
input. Our main contribution is to propose an SE(3)-equivariant model that maps
each point in the cloud to a continuous grasp quality function over the 2-sphere S2

using a spherical harmonic basis. Compared with reasoning about a finite set of
samples, this formulation improves the accuracy and efficiency of our model when
a large number of samples would otherwise be needed. In order to accomplish
this, we propose a novel variation on EquiFormerV2 that leverages a UNet-style
encoder-decoder architecture to enlarge the number of points the model can han-
dle. Our resulting method, which we name OrbitGrasp, significantly outperforms
baselines in both simulation and physical experiments.
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1 Introduction

Figure 1. We infer an orbit of grasps (yellow ellipse) defined
relative to the surface normal (red arrow) at the contact point (pink
dot). Since our model is equivariant over SO(3), the optimal pose
(represented by the solid gripper) on the orbit rotates consistently
with the scene (left and right show a rotation by 90 degrees).

The ability to detect and evaluate good
grasp poses in a manipulation scene is
a critical part of robotic manipulation.
Despite extensive recent work in the
area, e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9],
grasp detection is still not accurate and
reliable enough for many practical ap-
plications. A key challenge here is ef-
fective reasoning over hand poses in
SO(3), i.e. the three dimensions of
orientation spanned by SE(3). Simply
representing orientations in SO(3) can
be a challenge due to classic problems
like gimble lock [10] and discontinu-
ity [11]. More importantly, it would be very helpful to be able to infer grasp quality over a contin-
uous range of orientations in SO(3) – something which is a major challenge for conventional grasp
methods. Finally, since SE(3) grasping problems are often equivariant (i.e. symmetric) in SO(3), it
is often desirable to encode symmetry assumptions into the model.

This paper addresses these challenges by leveraging recent innovations in equivariant point mod-
els [12, 13, 14, 15]. Specifically, we use a model that maps each point in a point cloud to a grasp
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quality function over the 2-sphere S2. For each point in the cloud, this function encodes grasp qual-
ity for the space of possible hand approach directions toward that point. An important question here
is how to represent this quality function over S2. Following recent work [1, 16, 8], our approach is
to leverage the spherical harmonic basis. Specifically, at each point in the cloud, the neural network
outputs a vector of Fourier coefficients to the spherical harmonic basis functions, thereby defining a
grasp quality function over hand approach directions. With this learned per-point grasp distribution,
we can evaluate the quality of a large number of potential grasp poses quickly and easily, thereby
more easily locating a grasp appropriate for a given downstream manipulation task.

To summarize, this paper introduces several key contributions. First, we propose a novel method
of using spherical harmonics to reason about an orbit (i.e. a S1 manifold embedded in S2) of
grasp approach directions defined relative to the surface normal at each contact point in the point
cloud, as shown in Figure 1. Second, we enhance the recently developed SE(3)-equivariant model,
EquiFormerV2 [17], by incorporating a U-Net backbone and thereby enabling the model to ac-
commodate a larger number of points in the point cloud. Finally, we evaluate our method against
multiple established baselines [5, 18, 8, 9], using the benchmark tasks proposed in [5]. The results
indicate that our approach, which we name OrbitGrasp, convincingly outperforms the baselines in
both single-view and multi-view settings, in both simulation and physical experiments.

2 Related Work

SE(3) Grasp Detection: Current 6-DoF grasping tasks in cluttered tabletop scenarios primarily
use a volumetric-based or point cloud-based scene representation as input and output one or more
optimal grasp poses [7, 3, 19, 2]. Volumetric Grasping Network (VGN) [5] and Grasp detection
via Implicit Geometry and Affordance ( GIGA) [18] use 3D convolutional models to reason about
a 3D truncated signed distance function (TSDF). However, these methods suffer from high memory
consumption and resolution limitations. In contrast, point clouds can provide higher resolution but
are more difficult to reason about due to the lack of structure. One approach to adding structure is to
leverage equivariant point cloud models [20, 21]. For example, EdgeGrasp [8] introduced a method
based on a vector neuron model. CAPGrasp [22] is another equivariant model that samples grasp
candidates while constraining the gripper approach direction to be within a certain angular distance
from the surface normal at the associated point. Other recent grasping methods leverage surface
reconstruction of the object to be grasped, including NeuGraspNet [23] and ICGNet [9].

Equivariance in Robot Learning: Using symmetry, i.e. equivariance, in robot learning tasks has
recently been used to improve sample efficiency and generalization. [24, 25, 26] introduce equiv-
ariant neural network models in the form of steerable convolutional layers [27, 28] to SE(2) manip-
ulation tasks. [29] applies similar models to transporter network [30], making it bi-equivariant and
significantly improving sample efficiency. EDF [31] introduces an equivariant energy model that
produces a continuous distribution over pose. Fourtran [32] extends [29] from SE(2) to SE(3) using
a Fourier representation of rotations. [33] develops a novel, dense, interpretable representation for
relative object placement tasks. RiEMann [34] presents the first near real-time SE(3)-equivariant
robot manipulation framework for point cloud inputs that addresses the problem of slow inference
over the SE(3)-manifold. Most relevant to this paper are [1] who obtain SE(2) equivariance using
steerable convolutional layers and [8] who use vector neurons to obtain SE(3) equivariance.

OrbitGrasp: The method proposed in this paper, OrbitGrasp, is distinct from the work described
above in a couple of important ways. First, prior work in grasp detection is generally sample-based
[35, 7, 6], i.e., they evaluate grasp quality for a (large) finite set of samples or discrete voxel/pixel lo-
cations. In contrast, OrbitGrasp evaluates grasp quality for a continuous range of approach directions
by inferring the parameters of spherical harmonic basis functions over S2. This is simultaneously
more computationally efficient and more precise than sample-based methods. Another distinction
between OrbitGrasp and prior work is that the representation of rotation in terms of high degrees
of spherical harmonics encodes continuous equivariant constraints more accurately and, therefore,
models the grasp function better.
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Figure 2. OrbitGrasp takes the point cloud Bi (a neighborhood around center point ci) as input and outputs a
grasp quality function fp : S

2 → R for each point p in Bi. The model produces Fourier coefficients for each p
(represented as different channels in the network output), which are used to reconstruct fp based on spherical
harmonics, as in Equation 1. The Orbit Pose Sampler generates multiple poses for each p perpendicular to the
surface normal np and queries corresponding fp(·) to evaluate these grasp qualities along the orbit. The grasp
with the highest quality is then selected, thereby producing the optimal grasp pose a∗, as shown on the right.

3 Background
We introduce concepts from group theory and SE(3)-equivariant neural networks, which are key to
our method. For additional background, see, e.g., [36].

Representations of SE(3): Our work focuses on the special Euclidean group SE(3) = SO(3) ⋉
R3 of 3D rotations and translations. A representation of a group G is a homomorphism ρ : G →
GL(V ) mapping each group element g to an invertible linear operator on the vector space V . The
representation (ρ, V ) is an irreducible representation, or irrep, if no non-trivial subspace W ⊂ V is
closed under the action of G. The irreps of SO(3) are classified by positive integers l ∈ Z≥0 with
the irrep Vl of type l having dimension 2l+1. For example, l = 1 gives the standard rotation action
on R3. The group action on Vl is given by the Wigner D-matrices Dl : SO(3) → GL(Vl) of size
(2l+1)×(2l+1). Traditionally, the Wigner D-matrices are parameterized by Euler angles (α, β, γ)
and indexed symmetrically about 0 as Dl

m′m(α, β, γ) where −l ≤ m,m′ ≤ l.

Spherical Harmonics: The real spherical harmonics (SH) are functions on the sphere Y m
l : S2 → R

indexed by l ∈ Z≥0 and −l ≤ m ≤ l. As a set, they define an orthonormal basis of the Hilbert space
of square-integrable functions on the sphere L2

R(S
2) = {f : S2 → R :

∫
S2 |f |2 < ∞}. That is,

given f : S2 → R, we can write f(θ, ϕ) =
∑∞

l=0

∑l
m=−l Fm

l Y m
l (θ, ϕ) where Fm

l are the Fourier
coefficients of f . For a finite truncation at l ≤ L, the total number of Fourier coefficients is (L+1)2.
The mapping FT: f 7→ {Fm

l } is known as the spherical Fourier transform. Approximating f by
storing the Fm

l up to degree l ≤ L gives an efficient way to encode the spherical signal f . The
spherical harmonics are compatible with the SO(3) action on the sphere, making them suitable for
use in SO(3)-equivariant networks. The rotation of a spherical signal f can be computed in Fourier
space using Wigner D-matrices. Let g ∈ SO(3). Define f ′ = g · f to be the rotated spherical
signal defined (g · f)(u) = f(g−1 · u) for u ∈ S2. Denote the Fourier coefficients of f ′ by
FT(f ′) = {Fm′

l }. Then in terms of the Fourier coefficients of f we have F ′
l = Dl(g)Fl where Fl

denotes the vector Fl = (Fm
l )lm=−l.

EquiFormerV2: EquiFormerV2 [17] is a SE(3)-Equivariant Graph Neural Network (GNN)
that addresses the high computational costs and poor generalization of higher-degree irreps in
EquiFormer [37]. Unfortunately, since EquiFormer and EquiFormerV2 were developed for applica-
tions in computational biology, they have a hard time scaling to point cloud data, which generally
contain more points than molecules do atoms. To address this limitation, our paper proposes a
variation of EquiFormerV2 that uses a U-Net architecture to increase the capacity of the model.
Compared to [38], our new model can reason about higher-degree spherical harmonic functions.

4 Method
Problem Statement: Given a point cloud P ⊂ R3 captured by one or multiple depth cameras,
our objective is to identify a set of good grasp poses. Specifically, we want to estimate a function
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Γ: (P, a) 7→ [0, 1] which maps the point cloud P and the hand pose a ∈ SE(3) to the probability
of successful grasp. Notice that we expect Γ to be invariant to translations and rotations g ∈ SE(3),
i.e. we expect Γ(g · P, g · a) = Γ(P, a). This reflects an assumption that the probability that a grasp
is successful does not change when both the scene and the grasp pose transform in concert.

Summary of Approach: Figure 2 illustrates our model and approach. First, we downsample and
crop the point cloud into a small number of point neighborhoods B1, . . . , Bk. Then, we evaluate
our model for each Bi. For each point p ∈ Bi, the model predicts the grasp quality over the
space of possible hand approach directions, represented as a function fp : S

2 → R. We densely
sample this function over an orbit of approach directions orthogonal to the object surface normal
at p and obtain a single grasp that maximizes quality over the orbit. The result is a single-hand
orientation in SO(3) at each point in the cloud, corresponding to a good grasp at that point. This
produces a dense sampling of grasps that can be filtered further for grasping or other downstream
tasks. Figure 7 in the Appendix provides a detailed, zoomed-in visualization. This approach has
several important advantages. First, since our model outputs a continuous distribution over S2, it
generalizes better over orientation than would a sample-based approach. Second, since our model is
SE(3)-equivariant, it incorporates problem symmetry as an inductive bias into the model. Finally,
the approach only considers grasps that make contact parallel to the object surface normal, thereby
incorporating an additional geometric prior.

Sampling k Center Points: We prepare the point cloud for processing by the prediction model as
follows. First, we downsample the input point cloud P to a tractable number of points P̄ (around 4k
to 6k). Rather than passing the entire point cloud through our model (which would be expensive), we
define smaller point clouds B1, . . . , Bk ⊂ P̄ which we evaluate over separately (k is usually around
10). The Bi are defined as neighborhoods of k center points c1, . . . , ck from P̄ selected as follows.
If a segmentation of the point cloud into objects is available, then these k center points could be the
3D positions of the centers of individual object masks. Otherwise, these centers could be random
samples obtained using farthest point sampling (FPS). In our experiments, we generate center points
using object masks during training to enhance the model’s object-centric awareness, and FPS during
inference to demonstrate generalization and performance without segmentation. A detailed descrip-
tion of our mask-based sample generation is provided in Appendix A. We then construct each Bi as
a neighborhood around ci as follows. First denote the set of points contained within radius rl ball
centered at ci by Bi = B(ci, rl) = {p ∈ P̄ | ∥p − ci∥ ≤ rl} for a parameterized radius rl. Since
the grasp quality at a point p depends on the geometry of a sufficiently large neighborhood of p to
avoid boundary effect, we then set Bi = N (ci,m) to be the m nearest neighbors of ci, where m is
chosen large enough such that Bi ⊂ Bi and Bi is larger by a fair margin. The larger point cloud Bi

is passed as input to the model, but the output grasp quality is only inferred over the smaller point
cloud Bi. This assures inference is only performed on points with sufficient geometric context.

Representing Grasp Quality Over S2: We model the grasp quality function Γ: (P, a) 7→ [0, 1]
with a neural network Γ̄ : Bi 7→

{
fp : S

2 → R | p ∈ Bi

}
that takes each of the k neighborhoods

B1, . . . , Bk in P̄ as input. For each Bi, the model outputs a spherical function fp : S
2 → R for each

p ∈ Bi. The function fp represents the grasp quality over all approach directions in S2 at the point
p. The function fp is represented by Fourier coefficients of the spherical harmonics,

fp(θ, ϕ) =

n∑
l=0

l∑
m=−l

Fm
l,pY

m
l (θ, ϕ). (1)

where Y m
l (θ, ϕ) denotes the spherical harmonic of degree l and order m evaluated at the point on S2

defined in spherical coordinates (θ, ϕ). Concretely, the model outputs the set of Fourier coefficients
{Fm

l,p} for at each p ∈ Bi.

Implementing Γ̄ as an Equivariant Neural Network: We implement Γ̄ using a modified version
of EquiFormerV2 [17], a fully SE(3)-equivariant, GNN-based network designed for handling node-
based data. In the original EquiFormerV2 [17], all nodes are fully connected. However, in order
to handle the larger number of points in our point clouds, we developed a UNet-style version of
the model, which has a greater capacity (inspired by [38]). Figure 2 illustrates the model architec-
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ture. Given the point cloud Bi, successive blocks in our model sequentially downsample the points
using FPS. As the number of points decreases, the radius of the edge in the graph increases, al-
lowing distant points to communicate, expanding the receptive field per block, and capturing global
features. To recover the features of each point in the original point cloud after downsampling, we
upsample point features back by inverting the edges: during downsampling, we record the source
and target edges in each block, and during upsampling, we swap these edges. This ensures that
features gathered during downsampling are effectively propagated back to the original points. In
addition, we employ skip connections between each downsample block and its corresponding up-
sample block to aggregate features and prevent degradation. Details of the architecture are in Ap-
pendix B. This model satisfies the desired SE(3) equivariance constraint described in Section 4,
Γ̄(gBi) = gΓ̄(Bi) =

{
g · fp : S2 → R | p ∈ gBi

}
. For g ∈ SO(3), if the input point cloud is

rotated gBi, the equivariance constraints ensure the output Fourier coefficients are also transformed
Dl(g)Fl,p. Evaluating at a transformed grasp g · u thus gives the same quality of a successful grasp
(g · fp)(g · u) = fp(g

−1 · g · u) = fp(u).

Figure 3. Green and blue denote
the y, z directions of the hand,
and np is the normal vector at p
(red). Black is the orbit of the
approach direction.

Inferring Grasp Pose: Since our neural network model only infers
grasp quality over S2, we must obtain the remaining orientation DoF
somehow. Following [8], we accomplish this by constraining one of
the two gripper fingers to make contact such that the object surface
normal at the contact point is parallel to the gripper closing direction
(see Figure 3). Specifically, for a point p ∈ Bi ⊂ Bi in region Bi

with object surface normal np, we constrain the hand y-axis (gripper
closing direction) to be parallel to np. Therefore, valid hand orienta-
tions form a submanifold in SO(3) homeomorphic to a 1-sphere S1

which we call the orbit at p

Op = {R = [r1, np, r3] ∈ SO(3)} (2)

where r1, np, r3 are the columns of the 3-by-3 rotation matrix R.
Valid orientations are determined by the z-axis of the gripper (the
approach direction of the hand) which may be any unit vector perpendicular to np. We may thus
specify valid grasps by their approach vector r3 ∈ Op = {r3 ∈ S1 : n⊤

p r3 = 0} since r1 =
−np × r3. The details of how we evaluate the fp can be found in Appendix C.

In the above discussion, notice that we have constrained two DoFs of orientation, which could
suggest that our model fp should infer only one DoF of orientation, not two. This raises the question:
Why is fp defined over S2 (the spherical harmonics) rather than S1 (the circular harmonics)? The
answer is interesting and important. Defining the output of fp over S1 would require choosing a
gauge, i.e. a mapping of S1 to the tangent plane at each point. Assuming S1 were parameterized
by an angle θ, we would need to select a vector that defined θ = 0. Notice that it would be hard to
make this selection in a consistent way across the point cloud. In contrast, by defining the output of
fp over S2, we avoid this problem because we can express this function in a single global coordinate
system for all points in the cloud. One way to think about this is that we have gained consistency in
representation by adding an extra dimension, i.e. going from S1 to S2.

5 Experiments

Simulation Environment: We evaluated our model in simulation using PyBullet [39]. Our setting
is the same as that used in [18, 5, 8, 9]. The workspace size is a 30 cm3 cube and contains varying
numbers of objects randomly placed within it. The object dataset includes 303 training and 40 test
objects from [40, 41, 42, 43]. A Franka-Emika Panda floating gripper is used to grasp objects in
the workspace. We evaluated two camera configurations. The first is a single-view setting where a
camera is positioned randomly on a spherical region around the workspace. The second is a three-
camera multi-view setting. Following [5], we evaluate two different grasping tasks: a Pile setting
where objects are randomly dropped into the workspace and a Packed setting where objects are
placed upright in random poses. For more details, see Appendix D.
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Setting Method Packed Pile
GSR (%) DR (%) GSR (%) DR (%)

Single-
view

GIGA [18] 89.9 ± 1.7 87.6 ± 2.0 76.3 ± 2.4 80.9 ± 4.1
GIGA-HR [18] 91.4 ± 1.5 88.5 ± 1.4 86.5 ± 1.2 80.8 ± 1.9
EdgeGrasp [8] 92.5 ± 0.9 94.3 ± 1.1 91.5 ± 1.3 92.5 ± 1.3

VNEdgeGrasp [8] 91.6 ± 1.7 94.4 ± 1.5 92.0 ± 1.8 92.2 ± 2.1
ICGNet [9] 97.7 ± 0.9 97.5 ± 0.3 92.0 ± 2.6 94.1 ± 1.4

OrbitGrasp (3M) 98.4 ± 0.5 98.8 ± 0.3 96.3 ± 0.3 97.7 ± 0.7
OrbitGrasp (6M) 98.3 ± 0.7 98.8 ± 0.6 96.7 ± 1.1 97.9 ± 0.5

Multi-
view

VGN [5] 89.8 ± 2.0 82.6 ± 3.2 63.2 ± 1.1 45.6 ± 0.7
VNEdgeGrasp [8] 97.1 ± 1.3 96.1 ± 0.5 95.1 ± 1.0 95.5 ± 1.5
OrbitGrasp (3M) 98.6 ± 0.3 99.1 ± 0.5 98.6 ± 0.7 98.5 ± 0.5
OrbitGrasp(6M) 99.0 ± 0.6 99.2 ± 0.3 98.5 ± 0.6 98.2 ± 0.6

Table 1. We compared the OrbitGrasp with various baselines in terms of grasp success rate (GSR) and declutter
rate (DR), the same metrics as used in [8]. For the single-view setting, we tested pretrained models from [8] and
obtained results for GIGA, GIGA-HR, and ICGNet directly from [9]. For the multi-view setting, we retrained
VNEdgeGrasp and tested the pretrained VGN model for comparison. OrbitGrasp (3M) is trained on the 3M
dataset, which is similar in size to that used to train ICGNet and EdgeGrasp. OrbitGrasp (6M) is trained on the
full 6M dataset and reaches a slightly higher level of performance. The best results are marked with bold and
the second best results are underlined.

Generating Training Data: We generate data in simulation by loading a random number of objects
into the workspace and then generating point clouds in both single-view (one depth camera) and
multi-view settings (three depth cameras spaced evenly around the workspace). We add Gaussian
noise sampled from N(0, 0.001) to the point cloud to make the model more robust to real world
sensor noise. After creating the scenes, we must generate training data for the grasp model. First,
object masks are obtained using the Segment Anything Model (SAM) [44] (see Appendix A). We
use SAM to generate object masks for training only, and for inference, SAM is not required. For
each masked object, we randomly select a set of candidate grasp points and evaluate 36 candidate
grasp orientations per point that satisfy Equation 2, i.e. where the gripper z axis is orthogonal to
the object surface normal at contact. In total, approximately 6M grasp poses (approximately 2.5M
positive and 3.5M negative) are generated for each camera setting: 4M from 2,500 Pile scenes and
2M from 800 Packed scenes. The data is split with 90% for training and 10% for validation.

Training Details: Since our training data is segmented into objects, we use the center of every mask
as the center point ci and obtain the local point neighborhood Bi. During training, we balance the
positive and negative grasp labels in each Bi. The model is trained using the AdamW optimizer[45],
starting with a learning rate of 1e-4 and using a cosine annealing scheduler [46]. We apply binary
cross-entropy loss for each grasp pose and a dropout rate [47] of 0.1 to prevent overfitting. Our
network is trained for 15 epochs, taking approximately 25 hours on 22k point clouds. Each SGD
step takes 0.25 seconds with a batch size of 1. The model is trained on an NVIDIA RTX 4090 GPU.

5.1 Comparison With Baseline Methods in Simulation

Baselines: We compare our method with several strong baselines. In the single random view setting,
we compare it with volumetric-based methods: GIGA and GIGA-HR (high resolution) [18]. Since
GIGA was trained under a fixed view, we compare it with the results from [9], which retrains it
under a random view setting. We also compare our method with EdgeGrasp and VNEdgeGrasp [8],
two point cloud-based methods, where VNEdgeGrasp is SE(3)-invariant. Finally, we compare our
method with ICGNet [9], an approach focused on partial observation to object-centric grasping
that reconstructs the full 3D shape of objects before finding grasps. In the multi-view setting, we
compare our method with VGN [5], which takes a TSDF as input and generates a single grasp pose
per voxel, as well as VNEdgeGrasp [8] trained in the multi-view setting.

Results: We report the comparison result in Table 1 under two different settings, single-view
and multi-view, and two different tasks, Packed and Pile. For a fair comparison with the base-
lines, we also trained our model on a similar amount of data (3M labeled grasp poses uni-
formly randomly downsampled from the original 6M dataset.), consistent with EdgeGrasp [8]
and ICGNet [9]. Additional performance details under different amounts of data are pro-
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Figure 4. Real world Experiment Setting. (a) Robot platform setup. (b) Upper: Packed object set with 10
objects. Bottom: Packed scene (c) Upper: Pile object set with 25 objects. Bottom: Pile scene

vided in the Appendix E. Performance is evaluated based on two metrics: (1) Grasp Suc-
cess Rate (GSR) = num of successful grasps/num of total grasps, and (2) Declutter Rate (DR) =
num of grasped objects/num of total objects. For each task, we conducted five iterations of testing,
with each iteration containing 100 rounds (5 objects per round). A round ends when either all objects
are cleared or two consecutive grasp failures occur.

The results in Table 1 indicate that our method outperforms all baselines across both settings and
tasks in terms of both GSR and DR, in both the 3M and 6M training sets. The high GSR indicates that
our model can predict accurate grasp quality. On the other hand, the high DR signifies that our model
infers accurate grasp poses that do not move objects outside of the workspace. Notably, our model
performs well even though point centers are selected differently at training time (centered on object
segments) and test time (selected using FPS), i.e., as described in Section 4. This demonstrates that
the grasp quality function Γ̄ output by our method exhibits strong robustness to different point cloud
geometries.

5.2 Physical Experiments

Setting Method Packed Pile
GSR (%) DR (%) GSR (%) DR (%)

Single-
view

VNEdgeGrasp [8] 88.9(96/108) 96.0(96/100) 88.2(97/110) 97.0(97/100)
OrbitGrasp 92.5(98/106) 98.0(98/100) 93.2(97/104) 98.0(98/100)

Multi-
view

VNEdgeGrasp [8] 90.1(100/111) 100.0(100/100) 92.1(93/101) 97.0(97/100)
OrbitGrasp 95.2(100/105) 100.0(100/100) 94.3(99/105) 99.0(99/100)

Table 2. We compared the results of OrbitGrasp with VNEdgeGrasp [8] using the same metrics as in the simu-
lation experiments. Our experiment settings for single-view and multi-view are shown in Figure 4. Sometimes,
a single trial resulted in grasping two objects simultaneously.

To assess our method’s real-world performance, we conduct physical experiments involving two
tasks under two camera settings, replicating those in the simulation. We directly transfer the trained
model from the simulation to the real-world setting to evaluate the performance gap between them.

Setup: As shown in Figure 4 (a), a UR5 robot arm is equipped with a Robotiq-85 Gripper. We mount
and calibrate 4 RealSense D455 cameras on the table. In the multi-view setting, 3 low-mounted
cameras capture the scene for full observation. In the single view setting, we use the top-mounted
camera. After obtaining the point cloud, we crop it to the workspace, filter outliers, and calculate the
surface normals at each point. We do not crop the table from our point clouds. Objects are placed on
the table as follows. In the Packed setting, we draw 5 objects uniformly at random from the set of
10 objects shown at the top of Figure 4 (b) and place them in upright orientations with a randomly
selected planar position and orientation. In the Pile setting, we draw 5 objects uniformly at random
from the set of 25 objects shown at the top of Figure 4 (c) and dump them onto a tabletop out of
a box. We conduct 10 rounds of experiments for the Packed scene and 4 rounds for the Pile scene
for each view setting. We configure our method as follows. We use k = 10 center points selected
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Model #Params Packed Pile
GSR (%) DR (%) GSR (%) DR (%)

PointNet++ [48] 14M 78.1 ± 2.9 78.8 ± 1.9 60.5 ± 1.8 54.1 ± 2.7
OrbitGrasp (l = 1,m = 1) 4M 94.2 ± 1.2 96.3 ± 1.3 93.9 ± 0.5 97.0 ± 0.7
OrbitGrasp (l = 2,m = 2) 8M 97.4 ± 0.5 98.5 ± 0.6 96.3 ± 1.0 97.6 ± 0.7
OrbitGrasp (l = 3,m = 2) 14M 98.3 ± 0.7 98.8 ± 0.6 96.7 ± 1.1 97.9 ± 0.5

Table 3. Comparison results between non-equivariant and equivariant networks with varying degrees of SH.

using height-thresholded FPS to form the neighborhoods B1, . . . , Bk. From the orbit of each point,
we evenly sample 36 grasp poses and evaluate them based on the grasp quality function from the
network. After filtering out unreachable and low-quality poses (i.e. grasp poses with a quality <
0.95), we select the pose with the highest Z value.

Results: We baseline our method against VNEdgeGrasp [8]. The results are shown in Table 2. In the
single view Packed task, the GSR of our model outperformed VNEdgeGrasp by an average of 3.6%
and by 5% in the single view Pile task. In the multi-view setting, our model’s GSR outperformed by
5.1% on the Packed task and by 2.2% on the Pile task. We analyze the failure modes we encountered
in Appendix F.

5.3 Ablation Study

In our ablation study, we measure the significance of network equivariance by comparing to Point-
Net++ [48], a well-known non-equivariant model under a single random camera setting, keeping
all settings identical except for the network structure. For fairness, we set up PointNet++ so that
it has the same number of parameters as our method. We also measure the influence of different
degrees of spherical harmonics, where higher degrees correspond to more basis functions and larger
numbers of Fourier coefficients. The results, shown in Table 3, indicate that PointNet++ performs
poorly (GSR of 60.5% versus 96.7% for the Pile task), presumably due to the lack of equivariance
in SO(3) space. Interestingly, even with spherical harmonic basis functions of degree 1, our net-
work performs well (GSR of 93.9% for the Pile task), a result we attribute to the capabilities of our
UNet-based EquiFormerV2, which effectively captures both local and global information. As the
degree increases, the performance improvement from additional parameters diminishes. Although
the performance of ours (l = 3,m = 2) is slightly better (GSR of 96.7% for the Pile task) than
(l = 2,m = 2), it requires nearly double the parameters. This trade-off should be considered when
computing power is limited. We also analyze the impact of larger neighborhoods Bi on performance
in simulation, along with the effect of different training data generation methods (Mask versus FPS)
in the real world, as detailed in Appendix G.

6 Conclusion and Limitations

In this paper, we propose OrbitGrasp, a grasp detection method that exploits SE(3)-equivariance
to achieve state-of-the-art performance. Our model learns a continuous grasp function over S2 for
each point in the point cloud. Using a geometric prior, we constrain potential grasp poses around the
surface normal direction of each candidate contact point, forming an orbit. By evaluating densely
sampled poses along the orbit with the learned grasp function, multiple good grasp poses can be
identified. Simulation experiments demonstrate that our model outperforms several strong baselines
across different grasping tasks and settings. Physical experiments show high grasp success rates and
good generalization across diverse objects.

Our work has several limitations. First, as discussed in Appendix E, the inference time is relatively
long because PyTorch’s lack of optimization for the geometric operations used in EquiFormerV2
and the need to evaluate multiple point neighborhoods, B1, . . . , Bk. One potential approach is to
incorporate gauge equivariance [49] and predict directly in the tangent space [50], which would
lower the computational complexity and dimensionality of the problem and speed up inference.
Another limitation is the absence of a direct mechanism for constraining grasps to specific objects
or object parts. Future work may address this challenge by integrating methods for conditioning on
language or object crops.
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A Mask-Based Sample Generation

Figure 5. The mask-centric point cloud representation.
Each mask is rendered in a distinct color. Points that
belong to multiple masks are rendered with only one
color.

To obtain object masks on a point cloud, all
RGB-D images are first cropped to focus on the
workspace area. The Segment Anything Model
(SAM) is then applied to each RGB image to
acquire 2D segmentation masks of all objects.
Given the pixel-wise correspondence between
the RGB image, masks, and depth map, we
can map these 2D masks onto the point cloud.
Note that each point pi may belong to multi-
ple masks, such as pi ∈ Ma and pi ∈ Mb,
where Ma and Mb are different masks. By
combining the point clouds and mask informa-
tion from multiple cameras, a raw mask-centric
point cloud representation is reconstructed. Af-
ter preprocessing and filtering, we finally obtain
the refined mask-centric point cloud scene, illustrated in Figure 5.

In our implementation, we use the centers of the individual object masks as center points to construct
Bi for generating grasp poses during training data collection. This method provides more balanced
object-level point sampling compared to the FPS-based method, as it assigns a center point to each
object (mask), regardless of size. In contrast, FPS tends to allocate more points to larger objects
and fewer to smaller ones, which leads to an uneven distribution of grasp points. Additionally, it
avoids generating many unstable poses on the edges and corners of objects. Although FPS is still
used to construct Bi during inference, we found that our model effectively reduces the probability
of grasping the edges or corners of objects.

B Model Architecture

The detailed architecture of EquiFormerV2, as mentioned in Implementing Γ̄ as an Equivariant Neu-
ral Network in Section 4, is illustrated in Figure 6. Compared to the original structure, we have made
several key modifications. The original SO(3) embedding has been replaced with a single SO(3)-
equivariant linear layer that directly takes the point coordinates and normal directions as input. This
embedding is then used in subsequent blocks. After the first equivariant graph attention block, we
apply FPS to downsample the point cloud. For each downsampled point, we use KNN to find its
neighbors and build edges between them. During upsampling, we reverse these edges from each
downsampling block by swapping the source and destination of these edges. This allows us to grad-
ually transfer information from the downsampled points to those points in the upsampling blocks.
Meanwhile, this process aggregates information from distant points and gradually extends this in-
formation to local points. The theoretical foundation and mathematical proof of EquiFormerV2 can
be found in [17, 37, 51].

Figure 7 visualizes the process of evaluating grasp poses along the orbit of point p in the point cloud.
Starting with the point’s normal vector np and the set of Fourier Coefficients {Fm

l,p} output by the
network, the spherical harmonics basis functions are multiplied with these coefficients to reconstruct
the spherical signal on S2, according to Equation 1. This signal serves as the grasp quality function,
i.e., fp : S2 → R. The grasp sampler then uses the normal vector np to generate a set of approach
vectors {r3 ∈ Op = r3 ∈ S1 : n⊤

p r3 = 0}, representing possible grasp poses. These vectors are
then used to query fp to yield the quality of each grasp pose.
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Figure 6. Overview of the EquiFormerV2 architecture. (a) shows the overall structure of EquiFormerV2,
while (b), (c), and (d) illustrate the submodules of (a). Multiple EquiFormerV2 blocks, incorporating FPS and
KNN layers for connectivity, are stacked to form our UNet-style architecture.

Figure 7. Visualization of grasp poses sampling and evaluation. To enhance clarity, this procedure is il-
lustrated with a single point p in the point cloud. The Fourier coefficients of p, denoted as {Fm

l,p}, and the
spherical harmonics basis functions SH , are used to reconstruct the grasp quality function fp : S

2 → R on the
2-sphere S2, as described in Equation 1. The Orbit Pose Sampler generates potential grasp poses, which are
then evaluated using fp(·). The circle at the top right, viewed along the normal direction of point p, shows the
grasp quality of each sampled pose, with redder colors indicating higher quality.

14



C Additional Details in Inferring Grasp Pose

The spherical signal fp, output by the model, evaluates grasp orientations via the approach vector
r3. Notice that the unit vector r3 is a direction that can be described by spherical coordinates
(θ, ϕ). While fp may hypothetically be evaluated at any u ∈ S1, in practice, we evaluate it only at
u ∈ Op during training and inference. Using Equation 1, fp is evaluated over Op and the pose that
maximizes fp is selected through dense sampling of Op. To prevent the object from rotating when
one finger makes contact before the other, we apply an offset along the gripper’s closing direction to
center the object between the fingers.

D Simulation Additional Details

We provide several figures (Figure 8, 9) to give more information about the simulation environment
and grasp pose evaluation process. Figure 8(a) shows a pile scene with objects randomly dropped
onto the table while Figure 8(b) indicates a packed scene with objects placed upright in random
poses. Figure 9(a)(b)(c) presents the downsampled point cloud, the orbital sampled grasp poses, and
the optimal pose within the entire scene, respectively.

Figure 8. (a) and (b) illustrate examples of “pile” and “packed” scenes, respectively.

Figure 9. (a) The downsampled point cloud. (b) All sampled grasp poses at the points, with the pose that has
the highest grasp quality in each of the 10 Bi, where a more intense green color indicates higher quality. For
simplicity, only 18 of the 36 sampled poses per point are displayed. (c) The best grasp poses selected from all
B1,...,n.
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Setting Data Model Packed Pile
GSR (%) DR (%) GSR (%) DR (%)

Single-
View

6M
l = 1,m = 1 94.2 ± 1.2 96.3 ± 1.3 93.9 ± 0.5 97.0 ± 0.7

l = 2,m = 2 97.4 ± 0.5 98.5 ± 0.6 96.3 ± 1.0 97.6 ± 0.7

l = 3,m = 2 98.3 ± 0.7 98.8 ± 0.6 96.7 ± 1.1 97.9 ± 0.5

3M
l = 1,m = 1 95.2 ± 0.9 96.7 ± 1.1 94.7 ± 1.0 97.1 ± 0.4

l = 2,m = 2 98.1 ± 0.6 98.7 ± 0.5 96.6 ± 0.5 98.0 ± 0.5

l = 3,m = 2 98.4 ± 0.5 98.8 ± 0.3 96.3 ± 0.3 97.7 ± 0.7

1M
l = 1,m = 1 94.7 ± 1.2 96.0 ± 0.8 94.2 ± 0.6 96.6 ± 0.7

l = 2,m = 2 96.9 ± 0.5 98.3 ± 0.8 93.8 ± 1.4 96.2 ± 1.2

l = 3,m = 2 97.3 ± 0.7 98.7 ± 0.4 94.1 ± 0.6 97.0 ± 0.3

Multi-
View

6M
l = 1,m = 1 98.3 ± 0.7 98.4 ± 0.6 97.7 ± 0.8 97.9 ± 0.7

l = 2,m = 2 99.1 ± 0.4 99.0 ± 0.6 98.2 ± 0.4 98.0 ± 0.5

l = 3,m = 2 99.0 ± 0.6 99.2 ± 0.3 98.5 ± 0.6 98.2 ± 0.6

3M
l = 1,m = 1 98.4 ± 0.6 98.6 ± 0.2 97.8 ± 0.5 97.5 ± 0.8

l = 2,m = 2 98.6 ± 0.6 99.2 ± 0.3 97.9 ± 0.5 97.9 ± 1.0

l = 3,m = 2 98.6 ± 0.3 99.1 ± 0.5 98.6 ± 0.7 98.5 ± 0.5

1M
l = 1,m = 1 97.7 ± 0.7 97.9 ± 0.8 97.3 ± 0.3 97.8 ± 0.6

l = 2,m = 2 98.7 ± 0.3 99.1 ± 0.4 98.2 ± 0.4 98.2 ± 0.6

l = 3,m = 2 99.0 ± 0.7 99.2 ± 0.4 98.4 ± 0.2 98.0 ± 0.4

Table 4. Comparison of results across different amounts of training data, camera settings, and model SH
degrees.

E Efficiency and Inference Time Analysis

Training Data Efficiency. While we use 6M labeled grasp poses (both positive and negative) to
train our model to ensure sufficient data for learning and to prevent data limitations from being a
bottleneck, our method also performs well with less training data. To demonstrate this, we trained
our model with 3M data points (matching the amount used in EdgeGrasp [8] and ICGNet [9]) and
with 1M data points (a significantly smaller dataset). Table 4 indicates that our model consistently
outperforms the baselines across all scenarios. Even with just 1M data points, our method still
performs strongly and surpasses other methods, as seen in Table 1. These findings emphasize the
efficiency and robustness of our method.

Inference Time. Rapid inference of grasping poses is critical for grasp detection methods. Al-
though our approach requires dense sampling of grasp poses for each point in the point cloud, this
process is efficient because it only requires a single forward pass through the model per region Bi.
Specifically, one forward pass yields a vector of spherical harmonic coefficients at each point in Bi.
To find the optimal grasp, we identify the argmax of the grasp quality function by sampling values on
S2 and taking the maximum. This sampling is performed efficiently through matrix multiplication
with spherical basis functions, as described in Equation1, which eliminates the need for additional
forward passes.

To validate our approach efficiency, we report the inference, pre-processing, and post-processing
times under a single-view setting in Table 5. For k = 1, object-centric grasping is employed, where
a segmentation model is used to locate the target object and crop the point cloud for prediction. This
is similar to conditional grasping, as it focuses on a specific target. For k = 10, 10 regions B1,...,10

are generated. This configuration helps our method to understand the entire scene and generate
potential grasp poses for all points, which is suitable for scenarios with multiple objects or when the
target is not predefined. The quantitative results suggest that our method can respond within 0.25
seconds when grasping a target object and evaluate grasp poses for nearly the entire scene in 1.5
seconds—fast enough for typical open-loop grasping tasks. While our inference time is comparable
to VN-Edgegrasp for k = 1, it is slower for k = 10. However, given that our method outperforms
theirs in accuracy and can evaluate almost the entire scene, this difference in speed is acceptable.
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Model number of k Inference Latency

l = 3,m = 2
k = 1 0.126 s 0.133 s
k = 10 0.856 s 0.678 s

l = 2,m = 2
k = 1 0.122 s 0.116 s
k = 10 0.743 s 0.659 s

l = 1,m = 1
k = 1 0.095 s 0.117 s
k = 10 0.455 s 0.654 s

VN-EdgeGrasp [8] ✗ 0.153 s 0.154 s

Table 5. The runtime for different degrees of SH and the baseline is measured on an RTX 4090 GPU with
an Intel i9-12900k CPU. ’Inference’ refers to the model’s running time, while ’Latency’ includes both pre-
processing and post-processing times.

F Physical Experiments Additional Details

Implementation Details. Although our design initially selects the grasp pose with the highest Z
value after filtering, we observed that this highest Z pose can sometimes be unstable on the physical
robot, unlike in simulations. To address this, since our method generates a series of grasp poses
for each point, we also consider poses within a 3cm range below the highest one. If a pose within
this range offers the best grasp quality (i.e., surpasses the highest pose and all other candidates), we
select it instead. This approach effectively reduces failures caused by weak grasps and mitigates the
sim-to-real gap.

Failure Mode Analysis. In the single-view setting, we observe that the GSR of our method for the
Packed scene is lower than that for the Pile scene, which is inconsistent with the simulation results.
The primary failure mode (5/8) involves a white bottle that blends with the table mat color. This
blending results in inaccurate depth and point cloud shape estimation by the camera, which prevents
the gripper from being inserted deeply enough to provide sufficient friction. For the Pile task, the
primary reason for failure is the thickness of the objects. Thin objects tend to merge with the table
in the point cloud, distorting the shape of objects and leading to inaccurate normal estimation and
unreasonable poses generated by our model. Additionally, smooth surfaces and specific shapes, like
those of stones, lead to insufficient friction and cause them to slip from the gripper. In the multi-
view setting, the overall tendency of failure is similar to the single-view setting. While multiple
perspectives help reduce distortion, introducing more cameras also introduces calibration errors.
These errors, in turn, transfer to noises that appear in the point cloud.

G Full Ablation Results

Larger Point Cloud as Input to Provide Sufficient Context. As mentioned in Sampling k Center
Points in Section 4, using a larger point cloud Bi = N (ci,m) instead of just the local point cloud
Bi = B(ci, rl) is crucial for eliminating boundary effects by providing more context for evaluating
the grasp quality of each point in Bi. To evaluate this, we compared the performance of these two
input formats. The results, shown in Figure 10, indicate that using the larger point cloud as input
significantly improves performance, with a 40% reduction in validation loss and a 10% increase in
prediction accuracy. These findings highlight the importance of larger point clouds for providing
sufficient context.

Performance Comparison Between Mask-Based and FPS-Based Training Data. We compared
the effects of mask-based versus FPS-based training data. Although both methods perform similarly
in simulations, differences appear in real-world experiments. As shown in Figure 11, with the same
input, the grasp quality distribution from the mask-based trained network is more uniform and cen-
tered around the object’s center of mass (e.g., the banana, hammer, and shoe). This indicates that the
mask-based trained network can evaluate a wide range of grasp poses more effectively. In contrast,
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(a). The validation loss trends. (b). The predicted accuracy of all validation poses.

Figure 10. Ablation Study Results with Larger Point Cloud Input. The prediction accuracy on the validation
set is calculated by evaluating all grasp poses, including both positive and negative poses, to determine the
overall accuracy.

the FPS-based trained network tends to produce grasps biased toward the object’s edges or specific
small regions. These edge-focused poses are generally less stable than those around the center of
mass. We interpret this as a result of FPS-based training lacking object-centric awareness, which
causes the network to focus on specific areas and struggles to assess grasps across the object. Mask-
based training data, however, incorporates object-centric information. This enables the network to
evaluate grasp poses more evenly across the entire object. Therefore, even when FPS is used for
input during inference, the network trained with mask-based data maintains enough robustness to
handle unseen geometric variations.
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Figure 11. Grasp quality distribution for different training data generation strategies. The highest grasp
quality of all sampled poses at each point represents that point’s quality. The left column displays the original
point cloud. The middle column shows predictions from the network trained with mask-based data. The right
column shows predictions from the network trained with FPS-based data.
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