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Abstract

Learning meaningful representations is at the heart of many tasks in the field of modern
machine learning. Recently, a lot of methods were introduced that allow learning of image
representations without supervision. These representations can then be used in downstream
tasks like classification or object detection. The quality of these representations is close
to supervised learning, while no labeled images are needed. This survey paper provides a
comprehensive review of these methods in a unified notation, points out similarities and
differences of these methods, and proposes a taxonomy which sets these methods in relation
to each other. Furthermore, our survey summarizes the most-recent experimental results
reported in the literature in form of a meta-study. Our survey is intended as a starting point
for researchers and practitioners who want to dive into the field of representation learning.

1 Introduction

Images often contain a lot of information which is irrelevant for further downstream tasks. A representation
of an image ideally extracts the relevant parts of it. The goal of representation learning is to learn an encoder
network fθ with learnable parameters θ that maps an input image x to a lower-dimensional representation
(embedding) y = fθ(x). The main purpose of this paper is to present and discuss the different approaches
and ideas for finding useful encoders. Note that in the machine learning literature this setup is also called
feature learning or feature extraction.

1.1 Supervised and Unsupervised Learning

Before categorizing the various methods of representation learning, we begin by distinguishing the two basic
settings of machine learning: (i) supervised learning learns a function given labeled data points, interpreted as
input and output examples, (ii) whereas in unsupervised learning we learn something given only data points
(unlabeled). It is possible to take the view that also for unsupervised learning the goal is to learn a function,
e.g., in clustering we learn a classification function and invent labels at the same time, in dimensionality
reduction (such as PCA, ISOMAP, LLE, etc.) we learn a regression function and invent lower-dimensional
embeddings simultaneously. In light of this, representation learning is an instance of unsupervised learning,
since we are only given a set of unlabeled data points and our goal is to learn an encoder, that maps the
data onto some other representation that has favorable properties.

1.2 Self-supervised Learning

Recently, new machine learning methods emerged, that have been labeled self-supervised learning. In a
nutshell, such methods create an encoder by performing the following two separate steps:

(i) Invent a supervised learning task by creating a target t for each given image x.

(ii) Apply supervised learning to learn a function from inputs x to targets t.

The mechanism that generates the targets can be manually designed or can include learned neural networks.
Note that the targets are not necessary stationary, but could change during training. Even though self-
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supervised learning applies classical supervised learning as its second step, it is overall best viewed as an
unsupervised method, since it only takes unlabeled images as its starting point.

1.3 Outline

This paper strives to give an overview over recent advances in representation learning. Starting from the
autoencoder, we will discuss different methods which we group in the following way:

• Pretext task methods solve an auxiliary task, e.g., by predicting the angle by which an input image
was rotated. The idea is that the representations learned along the way are also useful for solving
other tasks. We will discuss these methods further in Section 2.

• Information maximization methods learn networks that are invariant to various image transforma-
tions and at the same time avoid trivial solutions by maximizing information content. Section 3
presents some of these methods in detail.

• Teacher-student methods consist of two networks where one extracts knowledge from the other. We
will take a closer look at these methods in Section 4.

• Contrastive learning methods discriminate between positive and negative examples that are defined
by the method on-the-fly. In Section 5 we review these contrastive methods in detail.

• Clustering-based methods invent multiple class labels by clustering the representations and then train
a classifier on those labels. Section 6 summarizes the most relevant representation learning methods
that use clustering.

In Section 7 we further put the discussed methods in relation to each other and in Section 8 we summarize
experimental results that were reported in the literature in a meta study.

While we focus on approaches for visual representation learning in this paper, there exist further approaches
which are specialized for graphs (Grover & Leskovec, 2016; Perozzi et al., 2014; Kipf & Welling, 2016),
time-series (Eldele et al., 2021) or text (Mikolov et al., 2013b;a; Kenton & Toutanova, 2019), which we omit.

1.4 Notation

Before describing the specifics of the different representation learning methods, we start by defining the
notation used in this paper. Given a dataset of images, we write

X = [x1, . . . , xn] (1)

for a randomly sampled batch of images. Every representation learning method trains an encoder network
fθ, where θ are the learnable parameters. This encoder network computes a representation

Y = [y1, . . . , yn] = [fθ(x1), . . . , fθ(xn)] = fθ(X) (2)

of the images in X. Some methods additionally train a projection network gϕ, with parameters ϕ, that
computes projections

Z = [z1, . . . , zn] = [gϕ(y1), . . . , gϕ(yn)] = gϕ(Y ) (3)
of the representations in Y . There are methods that also train a prediction network qψ, with parameters ψ,
that computes a prediction based on z or y. Both, projections and predictions are only used to train the
network and after training the projection and prediction networks are discarded, and only the encoder fθ is
used for downstream tasks.

Most methods apply a transformation to the input image to obtain a view of the original image. We write
x

(j)
i = t(xi) for the j-th view of the original image xi, which was obtained by applying the transformation
t. Usually, these methods randomly sample transformations from a given set of transformations T and can
differ for each image in the batch. This is why we treat t as a random variable that is sampled for each
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image of the batch. In contrast to that, other methods use predefined transformations t(1), . . . , t(m) that are
fixed and do not change. In Section 3 we give more details and some examples of these transformations. We
write

X(j) = [x(j)
1 , . . . , x(j)

n ] = t([x1, . . . , xn]) = t(X) (4)

for the batch of the j-th view. We use a similar notation for the resulting representations Y (j) = [y(j)
1 , . . . , y

(j)
n ]

and projections Z(j) = [z(j)
1 , . . . , z

(j)
n ]. Some methods split the input image into patches, which we also

consider as a special case of transformation, where each patch is a view of the image. In that case we write
Xi = [x(1)

i , . . . , x
(m)
i ], which contains allm views of the image xi and denote the corresponding representations

and projections as Yi = [y(1)
i , . . . , y

(m)
i ] and Zi = [z(1)

i , . . . , z
(m)
i ].

In some cases, the calculation of the representations can be decoupled such that each view is processed
independently, i.e., Yi = [fθ(x(1)

i ), . . . , fθ(x(m)
i )] = fθ(Xi). If this is possible we call the corresponding encoder

a Siamese encoder. The same distinction can be made for the other networks (projector and predictor). A
Siamese projector computes Zi = [gϕ(y(1)

i ), . . . , gϕ(y(m)
i )] = gϕ(Yi) individually. However, as we will see

later, this is not always the case as some networks operate on multiple views simultaneously.

We use L to refer to the loss function that is used to train the parameters using stochastic gradient descent
(SGD). Sometimes the total loss consists of multiple components which we denote using the letter ℓ.

We use square brackets to access elements of vectors and matrices, e.g., the j-th element of vector v is written
as v[j] and the entry at column j and row k of matrix C is written as C[j, k]. Furthermore, we define the
softmax function that normalizes a vector v ∈ Rd to a probability distribution as

(softmaxτ (v))[j] = exp(v[j]/τ)∑d
k=1 exp(v[k]/τ)

for j = 1, . . . , d, (5)

where τ > 0 is a temperature parameter which controls the entropy of that distribution (Wu et al., 2018).
The higher the value of τ the closer the normalized distribution is to a uniform distribution. We write
softmax(v) when no temperature is used, i.e., when τ = 1.

Distance metrics and similarity measures. Throughout the paper, we use various concepts to compare
two vectors. We introduce these concepts in the following. First, we define the squared error between two
vectors v, w ∈ Rd as

dse(v, w) = ∥v − w∥2
2 = (v − w)⊤(v − w) =

d∑
j=1

(v[j]− w[j])2. (6)

Note that the squared error is the same as the squared Euclidean norm of the residuals. Sometimes, the
vectors v and w are normalized before the squared error is calculated. We denote the resulting distance
metric as normalized squared error

dnse(v, w) =
∥∥∥∥ v

∥v∥2
− w

∥w∥2

∥∥∥∥2

2
. (7)

We define the cosine similarity as

scos(v, w) = v⊤w

∥v∥2 ∥w∥2
. (8)

Note that dnse and scos are linearly related, i.e.,

dnse(v, w) = 2− 2 v⊤w

∥v∥2 ∥w∥2
= 2− 2 scos(v, w) (9)

⇔ scos(v, w) = 1− 1
2 dnse(v, w). (10)
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Figure 1: An autoencoder consists of two networks: an encoder fθ that maps the input image to a represen-
tation and a predictor qψ that is trained to reconstruct the original image from the representation.

To measure the distance between two discrete probability distributions described by the entries of two vectors
v and w, the cross-entropy can be used which is given as

dce(v, w) = −
d∑
j=1

v[j] logw[j]. (11)

Note that the cross-entropy does not fulfill the triangle inequality and is therefore no distance metric in a
mathematical sense. A common loss function for multiclass classification is the cross-entropy between scores
v ∈ Rd that are normalized using softmax and a one-hot distribution of the true class label c ∈ N, which we
denote by

dclassification(v, c) = dce(onehot(c), softmax(v)) (12)

= −v[c] + log

 d∑
j=1

exp v[j]

, (13)

where onehot(c) is a vector with 1 in the c-th component and 0 everywhere else.

2 Pretext Task Methods

In the introduction we have defined the concept of self-supervised learning which relies on defining a mecha-
nism that creates targets for a supervised learning task. There are many possibilities to invent such supervised
learning problems. These learning problems are usually called pretext tasks. The idea is that the features
learned by solving the pretext task are also helpful for solving other problems. In the following we present
works, that creatively came up with such tasks.

2.1 Autoencoders

Autoencoders (Le Cun, 1987) have been part of machine learning for a very long time and in the light of the
previous section, they can be seen as early instances of self-supervised learning: (i) the invented targets are
the inputs themselves and (ii) the learned function is a bottleneck neural network consisting of an encoder fθ
that maps an image xi to a low-dimensional representation yi = fθ(xi) and a predictor qψ that reconstructs
the input image x̂i = qψ(yi) from its representation. Given a batch of images X, the encoder and predictor
networks are jointly trained to minimize the reconstruction error

LAE
θ,ψ = 1

n

n∑
i=1

dse(x̂i, xi). (14)

There are many variants of the autoencoder: denoising autoencoder (Le Cun, 1987), stacked denoising
autoencoder (Vincent et al., 2010), contractive autoencoder (Rifai et al., 2011) or variational autoencoder
(VAE, Kingma & Welling, 2013).
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2.2 Rotation Network (RotNet)

The idea of the RotNet which was introduced by Gidaris et al. (2018) is to learn a representation that is
useful to predict the angle of a random rotation applied to the input image. The assumption is that a
representation that can predict the rotation is also valuable for other tasks. The authors show that even a
small number of rotations is sufficient to learn a good representation. Best results are obtained when the
number of rotations is four (0°, 90°, 180°, 270°). In that case the rotation augmentation can be efficiently
implemented using flips and transposes and no interpolation is needed.

t(j) fθ qψ
y

(j)
i

0
1
0
0

 0°
90°
180°
270°

view represent predict

Figure 2: RotNet solves the task of predicting image rotations to obtain representations for downstream
tasks.

Given a batch of images X, we consider a single image xi. Four views x(j)
i = t(j)(xi) are created using the

rotation transformations t(1), t(2), t(3), t(4). The Siamese encoder fθ converts each view into a representation
y

(j)
i = fθ(x(j)

i ). The Siamese predictor qψ is then used to predict the index of the rotation that was applied
to the original image. Both networks are trained by minimizing the classification loss

LRotNet
θ,ψ = 1

n

n∑
i=1

4∑
c=1

dclassification(qψ(y(c)
i ), c) (15)

for each of the four rotations. After training, the classification head qψ is discarded and only fθ is used
to calculate representations (of images that were not rotated). The authors use a Network-in-Network
architecture (Lin et al., 2013) for their experiments on CIFAR-10 and the AlexNet architecture (Krizhevsky
et al., 2017) for experiments on ImageNet.

2.3 Solving Jigsaw Puzzles

Jigsaw (Noroozi & Favaro, 2016) is similar to RotNet in the sense that it also solves a classification task.
However, instead of rotating the image, the transformation consists of randomly permuting several patches of
the image like a jigsaw puzzle. The pretext task of the model is then to predict the class of the permutation
that was used to shuffle the patches. To facilitate the task, it is necessary to restrict the used permutations
to a subset of all permutations. In their work the authors use 1000 predefined permutations (instead of 9!
= 362 880 for a 3× 3 grid of tiles).

From an input image xi nine non-overlapping randomly permuted patches [x(1)
i , . . . , x

(9)
i ] are extracted,

where the order of the patches follows one of the predefined permutations. After that, the Siamese encoder

fθ qψ
Yi

0
1...
0

 8, 1, 3, 4, 9, 5, 2, 6, 7
5, 6, 7, 4, 9, 1, 8, 3, 2...
7, 2, 9, 1, 5, 3, 8, 6, 4

view represent predict

Figure 3: Jigsaw extracts patches from an image that are then permuted. The pretext task is to find
the permutation that was used to permute the images. The context-free network fθ processes each patch
separately and the representations are only joined in the latter layers.
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Yi
fθ qψ

view represent predict

Figure 4: The masked autoencoder predicts masked patches using vision transformers for the encoder and
predictor.

fθ converts each patch into a representation y
(j)
i = f(x(j)

i ). The predictor qψ is used to predict the index ci
of the permutation that was applied to the original image, given all patch representations Yi = [y(1)

i , . . . , y
(9)
i ]

at once. The networks are trained by minimizing the loss

LJigsaw
θ,ψ = 1

n

n∑
i=1

dclassification(qψ(Yi), ci) (16)

between the class scores and the index of the used permutation ci. The encoder fθ is implemented as a
truncated AlexNet. The representations Yi are concatenated to form the input of the classification head qψ,
which is implemented as a multi-layer perceptron (MLP). After training, the classification head is discarded
and the encoder is used to obtain image representations for other downstream task.

2.4 Masked Autoencoders (MAE)

Masked autoencoders (He et al., 2022) are similar to denoising autoencoders, where the input images are
corrupted and the autoencoder tries to reconstruct the original image. More specifically, the input image is
split into smaller non-overlapping patches, from which a random subset is masked out.

Given a batch of images X, we consider a single image xi. The image is split up into m patches Xi =
[x(1)
i , . . . , x

(m)
i ], some of which will be randomly chosen to be masked. We call the set of indices of the masked

patches Mmask
i and the set of unmasked indices Mkeep

i . The encoder fθ converts the unmasked patches into
patch representations Yi = [y(j)

i : j ∈Mkeep
i ] = fθ([x(j)

i : j ∈Mkeep
i ]), implemented as a vision transformer

(Dosovitskiy et al., 2021). The predictor qψ is another vision transformer that predicts the masked patches
X̂i = [x̂(j)

i : j ∈Mmask
i ] = qψ(Yi,Mmask

i ) from Yi with a mask token for each index in Mmask
i . See Figure 4

for an illustration. The loss is the mean squared error between the pixels of the predicted patches and the
masked patches

LMAE
θ,ψ = 1

n

n∑
i=1

∑
j ∈Mmask

i

dse

(
x̂

(j)
i , x

(j)
i

)
. (17)

Without precaution the model could “cheat” by predicting image patches from neighboring pixels, since the
information in natural images is usually very spatially redundant. To learn good representations, it is crucial
that the masking ratio is very high, e.g., 75%, to encourage the encoder to extract more high-level features.

3 Information Maximization Methods

Many self-supervised representation learning methods make use of image transformations. Jigsaw and Rota-
tion Networks, two approaches from the preceding section, apply selected transformations to image examples
with the aim to predict the transformation’s parametrization. In contrast, the following methods focus on
learning representations that are invariant to certain transformations. Such a task typically entails a pop-
ular failure mode, called representation collapse. It commonly describes trivial solutions, e.g., constant
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(a) Original image (b) Gaussian noise (c) Gaussian blur (d) Color jitter

(e) Grayscale (f) Random Crop (g) Flip (h) Sobel filter

Figure 5: Example transformations applied to an image of a puffin.

representations, that satisfy the invariance objective, but provide little to no informational value for actual
downstream tasks. Another perspective on the representation collapse is to view it as an information col-
lapse, concentrating a majority of the probability mass of the embedding in a single point, which leads to a
decrease of information content.

To avoid the representation collapse the so-called information maximization methods have been developed.
They form a class of representation techniques that focus on the information content of the embeddings
(Zbontar et al., 2021; Bardes et al., 2021; Ermolov et al., 2021). For instance, some methods explicitly
decorrelate all elements of embedding vectors. This effectively avoids collapse and results in an indirect
maximization of information content. In the following, we present methods that implement this technique
using the normalized cross-correlation matrix of embeddings across views (Zbontar et al., 2021), the co-
variance matrix for single views (Bardes et al., 2021), as well as a whitening operation (Ermolov et al.,
2021).

Transformations. The main idea of information maximization methods is that the learned representations
should be invariant with respect to certain transformations, i.e., the original image and the transformed
images should yield the same representations. We have already encountered two transformations in the
previous section, the rotation and jigsaw transformation. There are many more transformations possible:
the following transformations have been proven useful for the next methods to be described.

1. Horizontal flipping: Most natural images can be flipped horizontally without changing the semantics,
e.g., an image of a car still shows a car after being flipped. Vertical flipping can cause problems
when for example the sky is suddenly at the bottom of the image.

2. Blurring: Convolving an image with a Gaussian filter is another way to transform an image.

3. Adding Gaussian noise: Learned representations should also be (to some extent) invariant to the
application of noise.

4. Sobel filter: Applying a Sobel filter to an image highlights the edges of an image. These edges
usually still contain a lot of relevant information about the image.
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5. Cropping and resizing: Scaling the image to a different size should also keep the semantic information.

6. Color jittering: Changing the contrast, brightness and hue of an image yields another instance of an
image that shows the same content.

7. Grayscaling: Converting color-images to grayscale images is closely related to color jittering.

Note that these image transformations are closely related to dataset augmentation techniques used in super-
vised learning (Yang et al., 2022; Shorten & Khoshgoftaar, 2019).

3.1 Barlow Twins

t

fθ gϕ

t
fθ gϕ

X

X(1) Y (1) Z(1)

X(2) Y (2) Z(2)

view represent project

LBT
θ,ϕ

Figure 6: Barlow twins takes two views of the input batch and minimizes the correlation of the projected
representations.

The central idea behind this framework is the principle of redundancy reduction. This principle was intro-
duced by the neuroscientist Barlow (1961) and states that the reduction of redundancy is important for the
organization of sensory messages in the brain.

To implement this redundancy reduction principle, the Barlow Twins approach takes a batch of images X
and creates two views X(1) = t(X) and X(2) = t(X) of these images, where t ∼ T is a transformation that is
randomly sampled from T for every image and every view. A Siamese encoder fθ computes representations
Y (1) = fθ(X(1)) and Y (2) = fθ(X(2)), which are fed into a Siamese projector gϕ to compute projections
Z(1) = [z(1)

1 , . . . , z
(1)
n ] = gϕ(Y (1)) and Z(2) = [z(2)

1 , . . . , z
(2)
n ] = gϕ(Y (2)) for both views.

The idea of Barlow Twins is to regularize the cross-correlation matrix between the projections of both views.
The cross-correlation matrix is calculated as

C = 1
n

n∑
i=1

(
(z(1)
i − µ

(1))/σ(1)
)(

(z(2)
i − µ

(2))/σ(2)
)⊤
, (18)

where µ(j) and σ(j) are the mean and standard deviation over the batch of projections of the j-th view,
calculated as

µ(j) = 1
n

n∑
i=1

z
(j)
i , (19)

σ(j) =

√√√√ 1
n− 1

n∑
i=1

(z(j)
i − µ(j))2 . (20)

The loss function is then defined as

LBT
θ,ϕ =

d∑
k=1

(1− C[k, k])2 + λ

d∑
k=1

∑
k′ ̸=k

C[k, k′]2, (21)
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where d is the number of dimensions of the projection and λ > 0 is a hyperparameter. The first term pro-
motes invariance with regard to the applied transformations and the second term decorrelates the learned
embeddings, i.e., reduces redundancy. By using this loss, the encoder fθ is encouraged to predict embed-
dings that are decorrelated and thereby non-redundant. The Barlow Twins are trained using the LARS
optimizer (You et al., 2017). Note that this loss function is related to the VICReg method, where the first
term is called variance term and the second covariance term.

3.2 Variance-Invariance-Covariance Regularization (VICReg)

t

fθ gϕ

t
fθ gϕ

X

X(1) Y (1) Z(1)

X(2) Y (2) Z(2)

view represent project

LVICReg
θ,ϕ

Figure 7: VICReg takes two views of the input batch and minimizes the mean squared error between the
projected representations, while regularizing the covariance matrices of representations from individual views
to avoid representation collapse.

VICReg was introduced by Bardes et al. (2021) and is a joint-embedding architecture that falls into the cate-
gory of information maximization methods. Figure 7 gives an overview of the architecture, which is identical
to Barlow twins, but uses a different loss function. It aims to maximize agreement between representations
of different views of an input, while preventing informational collapse using two additional regularization
terms. Specifically, VICReg defines regularization terms for variance, invariance and covariance.

Given a batch of images X, two views X(1) = t(X) and X(2) = t(X) are defined, where t ∼ T is, again,
randomly sampled from T for every image and every view. A Siamese encoder fθ computes representations
Y (1) = fθ(X(1)) and Y (2) = fθ(X(2)), which are fed into a Siamese projector gϕ to compute projections
Z(1) = [z(1)

1 , . . . , z
(1)
n ] = gϕ(Y (1)) and Z(2) = [z(2)

1 , . . . , z
(2)
n ] = gϕ(Y (2)). Each projection has d dimensions.

For each view, the covariance matrix of the projections is computed, which is defined as

C(j) = 1
n− 1

n∑
i=1

(
z

(j)
i − µ

(j)
)(

z
(j)
i − µ

(j)
)⊤
, (22)

where µ(j) is the mean over the batch of projections of the j-th view, i.e.,

µ(j) = 1
n

n∑
i=1

z
(j)
i . (23)

The variance term aims to keep the standard deviation of each element of the embedding across the batch
dimension above a margin b. Practically, this prevents embedding vectors to be the same across the batch
and thus is one of the two mechanisms that intent to prevent collapse. It can be implemented using a hinge
loss

ℓV(Z(j)) = 1
d

d∑
k=1

max
(

0, b−
√
C(j)[k, k] + ε

)
. (24)

where ε > 0 is a small hyperparameter for numerical stability. Bardes et al. (2021) used b = 1. On that
note, the variance term is closely related to the invariance term of Barlow Twins (Zbontar et al., 2021), but
applied with a different intention. While Barlow Twins practically maximizes the squared diagonals of the
normalized cross-correlation matrix to encourage correlation of embedding elements across views, VICReg
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t

fθ gϕ

t
fθ gϕ

X

X(1) Y (1) Z(1)

··
·

··
·

··
·

X(k) Y (k) Z(k)

view represent project

dse

whitening

whitening

Figure 8: WMSE training: The batch of input images X are randomly transformed and fed into the encoder
network fθ. The representations are then projected using the projection head gϕ. Next, whitening is applied
to the projections. The networks are trained by minimizing the normalized MSE between the projections.

maximizes the square root of the diagonals of the covariance matrix of single views in order to prevent
collapse. Note, that the maximization in Barlow Twins is restricted by the preceding normalization of the
embeddings. As VICReg does not apply a normalization, the margin loss is used to restrict this optimization.

The covariance term decorrelates elements of embedding vectors for single views in order to reduce re-
dundancy and prevent collapse. This is achieved by minimizing the squared off-diagonal elements of the
covariance matrix C(j) towards 0, i.e.,

ℓC(Z(j)) = 1
d

d∑
k=1

∑
k′ ̸=k

(
C(j)[k, k′]

)2
. (25)

Note, that this is similar to the redundancy reduction term used in Barlow Twins (Equation 21, right
summand), the main difference being again that Barlow Twins applies it across views, but with a similar
intention.

Finally, the invariance term is used to maximize the agreement between two projections z(1)
i and z(2)

i of the
same image, thus inducing invariance to the transformations that were applied to xi. For this, Bardes et al.
(2021) apply the mean squared error between the projections

ℓI(Z(1), Z(2)) = 1
n

n∑
i=1

dse

(
z

(1)
i , z

(2)
i

)
. (26)

Notably, it is the only loss term in VICReg operating across different views.

Overall, the loss of VICReg can be defined as the weighted sum of all three regularizations for the given
views

LVICReg
θ, ϕ (X) = λV[ℓV(Z(1)) + ℓV(Z(2))] + λC[ℓC(Z(1)) + ℓC(Z(2))] + λIℓI(Z(1), Z(2)), (27)

where λV, λI, λC > 0 are hyperparameters that balance the individual losses.

3.3 Self-Supervised Representation Learning using Whitening (WMSE)

Whitening linearly transforms a set of data points, such that the resulting data points are decorrelated and
have unit variance, i.e., the covariance matrix becomes the identity matrix. The method WMSE (Ermolov
et al., 2021) applies this idea to the embeddings of images to prevent the representation collapse.

Given a batch of images X, random transformations are applied to obtain m views X(j) for all j ∈ {1, . . . ,m}.
A Siamese encoder fθ maps the views onto representations Y (j) = fθ(X(j)), which are then fed into a Siamese
projector gϕ to compute projections Z(j) = [z(j)

1 , . . . , z
(j)
n ] = gϕ(Y (j)). All projections are then concatenated

into a single matrix Z = [z(1)
1 , . . . , z

(1)
n , . . . , z

(m)
1 , . . . , z

(m)
n ]. This matrix is whitened to obtain Z̃ by removing

10
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the mean and decorrelating it using the Cholesky decomposition of the inverse covariance matrix, i.e.,

Z̃ = [z̃(1)
1 , . . . , z̃(1)

n , . . . , z̃
(m)
1 , . . . , z̃(m)

n ] = WZ

Z − 1
nm

n∑
i=1

m∑
j=1

z
(j)
i 1⊤

nm

, (28)

where 1nm is an all-ones vector with nm entries and WZ is the Cholesky factor of the inverse covariance
matrix PZZ (also known as the precision matrix), i.e., WZW

⊤
Z = PZZ . Note that the Cholesky decomposition

is differentiable which allows to backpropagate through it during training.

To train the models, the normalized squared error between all pairs of the whitened projections is minimized,
i.e., the loss function is defined as

LWMSE
θ,ϕ = 1

n

n∑
i=1

2
m(m− 1)

m∑
j=1

m∑
k=j+1

dnse

(
z̃

(j)
i , z̃

(k)
i

)
. (29)

The constant 2/(m(m − 1)) is the number of comparison per image. The whitening step is essential to
prevent the representations from collapsing. The objective maximizes the similarity between all augmented
pairs while also preventing representation collapse by enforcing unit covariance on the projections.

Batch slicing. One problem of the original method is that the loss has a large variance over consecutive
training batches. To counteract this issue, Ermolov et al. (2021) employ so-called batch slicing: the idea of
batch slicing is that different views of the same image z(1)

i , z
(2)
i , . . . , z

(m)
i should not be in the same batch

when the whitening matrix is calculated. For this, Z is partitioned into m parts. The elements of each part
are then permuted using the same permutation for each of the m parts. Finally, each of the parts is further
subdivided into d subsets which are then used to calculate the whitening matrix for that specific subset. In
that way, the loss minimization is dependent on m · d covariance matrices that need to satisfy the identity,
leading empirically to lower variance.

4 Teacher-Student Methods

Methods based on teacher-student learning are closely related to information maximization methods. Similar
to information maximization methods, the student learns to predict the teacher’s representations across
different image transformations. This allows the student to learn invariant representations that are robust to
different transformations of the same image. These methods consist of two branches, where one is considered
the student and the other the teacher. To prevent representational collapse as defined in Section 3, the teacher
provides stable target representations for the student to predict. To provide stable targets, the teacher is
not updated using gradient descent and its parameters are fixed when updating the student. Sometimes a
momentum encoder is used between the teacher and student to update the fixed targets. That is, the weights
from the student are slowly copied to the teacher to provide more recent targets. The teacher usually has
the same architecture as the student, but does not necessarily have the same parameters. The teacher can
be a running average of the student’s representations, where, e.g., a momentum encoder is used to update
the teacher network with the student’s weights. For some teacher-student methods the teacher shares the
student’s weights and an additional predictor network has to predict the teacher’s representation.

4.1 Bootstrap Your Own Latent (BYOL)

BYOL (Grill et al., 2020) is inspired by the observation that learning representations by predicting fixed
representations from a randomly initialized target network avoids representational collapse albeit with sub-
par performance. This naturally entails a teacher-student architecture where the teacher (target network)
provides stable representations for the student (online network) to learn on.

11
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t(1)
fθ gϕ qψ

t(2)
fθ̄ gϕ̄ sg

momentumx

x(1) y(1) z(1) ẑ(1)

x(2) ȳ(2) z̄(2) dnse

view represent project predict

student

teacher

Figure 9: BYOL consists of a student and teacher network. The teacher network is not updated via gradient
descent (stop-gradient) and thus provides stable representations for the student network to learn. The teacher
network is updated iteratively via an exponential moving average of the student. The student branch has a
predictor which is trained to match the fixed representations of the teacher.

BYOL defines two different networks: a student network and a teacher network. The architecture is shown
in Figure 9, the student network and teacher network consist of the following parts:

• Student network: encoder fθ, projector gϕ, predictor qψ

• Teacher network: encoder fθ̄, projector gϕ̄

The encoder f and projector g are present in both the student and teacher networks, whereas the predictor
q is only part of the student network.

Learning augmentation-invariant features from the teacher. Like information-maximization meth-
ods, teacher-student methods learn representations by applying different transformations to the images (see
Section 3). Given an image xi, BYOL applies randomly-sampled transformations t ∼ T to obtain two dif-
ferent views x(1)

i = t(xi) and x
(2)
i = t(xi). The student network computes representations y(j)

i = fθ(x(j)
i ),

projections z(j)
i = gϕ(y(j)

i ), and predictions ẑ(j)
i = qψ(z(j)

i ) for both views j ∈ {1, 2}. The views are also fed
to the teacher network to obtain target projections z̄(1)

i = gϕ̄(fθ̄(x
(1)
i )) and z̄

(2)
i = gϕ̄(fθ̄(x

(2)
i )).

BYOL minimizes two normalized squared errors: (i) between the prediction of the first view and the target
projection of the second view, (ii) between the prediction of the second view and the target projection of the
first view. The final loss function is

LBYOL
θ,ϕ,ψ = 1

n

n∑
i=1

[
dnse(ẑ(1)

i , z̄
(2)
i ) + dnse(ẑ(2)

i , z̄
(1)
i )
]
. (30)

Note that the loss is minimal when the cosine similarity between the vectors is 1. Thus, representations are
learned that are similar for two different transformations. In other words, the information content in the
learned representations is maximized.

Teacher-student momentum encoder. At each training step, the loss is minimized with respect to θ,
ϕ, and ψ. That is, only the weights of the student are updated by the gradient of the loss function using
the LARS optimizer (You et al., 2017). The weights of the teacher are updated by the exponential moving
average (Lillicrap et al., 2019), i.e.,

θ̄ ← τ θ̄ + (1− τ)θ, (31)
ϕ̄← τ ϕ̄+ (1− τ)ϕ, (32)

where τ ∈ [0, 1] controls the rate at which the weights of the teacher network are updated with the weights
of the student network.

12
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Figure 10: DINO consists of two ViTs, one acting as a student and the other as teacher. The embeddings
of the ViT’s are transformed into a Softmax distribution which produces soft labels for both the student
and the teacher. The knowledge of the student is then iteratively distilled onto the teacher, which provides
stable targets for the student.

The authors show that BYOL’s success relies on two key components: (i) keeping the predictor qψ near
optimal at all times by predicting the stable target representations, and (ii) updating the parameters in the
direction of ∇θ,ϕ,ψLBYOL and not in the direction of ∇θ̄,ϕ̄LBYOL. In other words, the proposed loss and
update do not jointly optimize the loss over θ, ϕ and θ̄, ϕ̄, which would lead to a representation collapse. Chen
& He (2021) provide further insight on how this is related to the predictor: regarding (i) it is observed that
keeping the learning rate of the predictor fixed instead of decaying it during training improves performance,
which supports the fact that the predictor should learn the latest representations. Regarding (ii) Chen &
He (2021) use a predictor that maps the projection to the identity. They argue that the gradient of the
symmetrized loss with an identity predictor, i.e., between the two projections cancels out the stop-gradient
operator. In this case the gradient of the symmetrized loss between the two projections is in the same
direction, hence leading to a collapsed representation. Note that this analysis was performed for SimSiam
(Chen & He, 2021), which does not use a momentum encoder. It is feasible however that the predictor plays
the same role for BYOL.

4.2 Self-Distillation With No Labels (DINO)

One of the main contributions of DINO (Caron et al., 2021) is adapting the teacher-student architecture
closer to the knowledge distillation framework (Gou et al., 2021), where instead of matching the output
embeddings directly, the teacher provides soft labels by applying a softmax operation on its output. The
authors show that this facilitates preventing a representation collapse.

DINO defines a student and a teacher network. The student consists of an encoder fθ and a projector gϕ
with parameters θ and ϕ. The encoder is implemented as a vision transformer (ViT, Dosovitskiy et al.,
2021) and the projector as an MLP. The teacher consists of an encoder fθ̄ and a projector gϕ̄ with the same
architecture as the student, but a separate set of parameters θ̄ and ϕ̄.

DINO uses a multi-crop strategy first proposed by Caron et al. (2020) to create a batch of m views Xi =
[x(1)
i , . . . , x

(m)
i ] of an image xi. Each view is a random crop of xi followed by more transformations. Most

crops cover a small region of the image, but some crops are of high resolution, which we refer to as local
and global views, respectively. Let Mi be the set of indices of the global views. The idea is that the student
has access to all views, while the teacher only has access to the global views, which creates “local-to-global”
correspondences (Caron et al., 2021). See Figure 11 for an illustration.

The student computes representations y(j)
i = fθ(x(j)

i ) and projections z(j)
i = gϕ(y(j)

i ) for each view. The
teacher computes target projections z̄(j)

i = gϕ̄(fθ̄(x
(j)
i )) for the global views j ∈Mi.
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Teacher

x1

x2

Student

x1 x2

xk

. . .

Figure 11: Two sets of augmented crops for the teacher and student as defined by the multi-crop augmentation
strategy. The teacher set contains two global views which cover at least 50% of the augmented image. The
student set is made up of k patches that cover less than 50% of the other augmented version of the input
image.

Preventing collapse. Caron et al. (2021) experimentally discover two forms of collapse: Either the com-
puted probability distribution is uniform, or one dimension dominates, regardless of the input. This motivates
two countermeasures:

1. To prevent collapse to a uniform distribution, the target distribution of the teacher is sharpened by
setting the temperature parameter τ to a small value.

2. To prevent one dimension from dominating, the output of the teacher is centered to make it more
uniform. This is accomplished by adding a centering vector c as a bias to the teacher, which is
computed with an exponentially moving average

c← βc+ (1− β)z̄, (33)

where β ∈ [0, 1] is a decay hyperparameter determining to what extent the centering vector is
updated and

z̄ = 1
n

n∑
i=1

1
|Mi|

∑
j ∈Mi

z̄
(j)
i (34)

is the mean of all projections of the teacher in the current batch.

Learning invariant features via soft labels. DINO formulates the task of predicting the target pro-
jections as a knowledge distillation task. The projections of the teacher and the student are converted to
probability distributions by applying the softmax function over all components. Hereby, the cross-entropy
loss can be applied, where the teacher computes soft labels for the student. The total loss function matches
every view of the student to every global view of the teacher (except the same global views), i.e.,

LDINO
θ,ϕ = 1

n

n∑
i=1

∑
j ∈Mi

∑
k ̸=j

dce(softmaxτ (z̄i(j) − c), softmaxρ(z(k)
i )), (35)

where τ, ρ > 0 are hyperparameters controlling the temperature of the distributions (see Section 1.4) for
the teacher and the student, respectively. Overall, the parameter updates are very similar to BYOL’s, since
the student network is updated by minimizing the loss LDINO

θ,ϕ using the AdamW optimizer, and the teacher
network is updated by an exponential moving average of the student, i.e.,

θ̄ ← αθ̄ + (1− α)θ, (36)
ϕ̄← αϕ̄+ (1− α)ϕ, (37)
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where α ∈ [0, 1] controls the rate at which the weights of the teacher network are updated with the weights
of the student network.

The authors identify interesting properties when training ViTs in a self-supervised manner. ViTs trained
via self-supervision are able to detect object boundaries within a scene layout which is information that
can be extracted within the attention layers. Furthermore, the learned attention maps learn segmentation
masks, i.e., the objects are separated from the background in the attention masks. These attention masks
allow DINO to perform well on downstream tasks simply by using a k-nearest-neighbor classifier on its
representations.

4.3 Efficient Self-Supervised Vision Transformers (EsVit)

Li et al. (2021) keep the same teacher-student architecture as Caron et al. (2021), but replace the ViTs in
Caron et al. (2021) with multi-stage transformers. As an optimization to the transformer architecture, a
multi-stage transformer subsequently merges image patches together across every layer to reduce the number
of image patches that have to be processed. The authors show that the merging process destroys important
local to global correspondences which are learnt in common transformers. Therefore, an additional region
matching loss is proposed that mitigates the lost semantic correspondences during the merging process in
multi-stage transformer architectures.
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Figure 12: Multi-stage transformer: An image is decomposed into image patches, which are merged and
applied self-attention to subsequently. This results in a smaller number of patches being processed simulta-
neously, while also learning hierarchical embeddings. At the end, either average pooling is performed over
the outputs or the output sequence is used as it is.

Multi-stage vision transformers. Vaswani et al. (2021) reduce computational complexity of a standard
transformer by reducing the number of patches that go through the transformer at each layer. For this, a
special image patch merging module merges the patches at each layer and attention is calculated between
them via sparse self-attention modules. This process is repeated multiple times. An illustration of the
procedure is provided in Figure 12. Overall, the number of tokens, i.e., feature maps that have to be
evaluated by one self-attention module is reduced through each subsequent layer, while allowing for more
diverse feature learning due to the different self-attention heads processing different merged patches, allowing
for hierarchical correspondences to be learned.

Extending the loss function for region level feature matching. Li et al. (2021) propose to extend
DINO’s loss for multi-stage transformers in order to learn the local-to-global correspondences lost during the
merging process. As EsVit is an extension of DINO, the teacher network and student network are defined as
in Section 4.2. Li et al. (2021) propose a loss function that consists of a view-level loss ℓview and a region-level
loss ℓregion. The view-level loss is the same loss used to train DINO, i.e.,

ℓview = 1
n

n∑
i=1

∑
j ∈Mi

∑
k ̸=j

dce(softmaxτ (z̄i(j) − cview), softmaxρ(z(k)
i )). (38)
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where cview is the centering vector for the view-level loss.

The region-level loss of EsVit is computed from the encoder outputs for each image patch Yi =
[y(1,1)
i , . . . , y

(m,T )
i ] directly (see Figure 12), where T is the sequence length, i.e., the number of patches

for a given view j. Then the region-level loss is defined as

ℓregion = 1
n

n∑
i=1

∑
j ∈Mi

∑
k ̸=j

T∑
t=1

dce(softmaxτ (z̄(j,s∗)
i − cregion), softmaxρ(z(k,t)

i )). (39)

where s∗ = argmaxs scos(z̄(j,s), z(k,t)), T is the number of image patches, and cregion is the centering vector
for the region-level loss. The idea is to match every image patch projection of the student z(k,t) to the
best image patch projection of the teacher z̄(j,s∗). That is, for every projection as defined by the multi-crop
strategy in Figure 11, the region-level loss matches the most concurring image patches of the student and
teacher. The final EsVit loss combines the view-level and region-level loss, i.e.,

LEsVit
θ,ϕ = ℓview + ℓregion (40)

The authors show that when only training with the view-level loss on a multi-stage transformer, the model
fails to capture meaningful correspondences, such as the background being matched for two augmentations of
the same image. Adding the region-level loss mitigates the issue of lost region-level correspondences in multi-
stage transformer architectures and recovers some of the correspondences learnt inherently by monolithic
transformer architectures.

4.4 Simple Siamese Representation Learning (SimSiam)

t

fθ gϕ qψ

t fθ gϕ qψ

sg

sg
x

x(1) y(1) z(1) ẑ(1)

x(2) y(2) z(2) ẑ(2)

scos

scos

view represent project predict

Figure 13: SimSiam maximizes the cosine similarity between the projected representations. Both networks
use the same parameters. The stop gradient operator interrupts the backward-flow of the gradients and
thereby preventing the representational collapse.

SimSiam was introduced by Chen & He (2021) and uses a similar architecture and loss function as BYOL.
However, teacher and student share the same parameters and hence a momentum encoder is not used as in
previously presented teacher-student methods.

Given a batch of images X, for each image xi two views x(1)
i = t(xi), x(2)

i = t(xi) are created using random
transformations t ∼ T that are sampled for each image and each view. For each of these views, a Siamese
encoder fθ computes a representation y

(j)
i = f(x(j)

i ) and a Siamese projector gϕ computes a projection
z

(j)
i = gϕ(y(j)

i ). Finally, the projection is fed through a predictor qψ to obtain a prediction ẑ
(j)
i = qψ(z(j)

i ).

The goal of the predictor is to predict the projection of the other view. Therefore, the loss computes the
negative cosine similarity between the prediction of the first view and the projection of the second view, and
vice versa, i.e.,

LSimSiam
θ,ϕ,ψ = − 1

n

n∑
i=1

1
2

[
scos(ẑ(1)

i , sg(z(2)
i )) + scos(ẑ(2)

i , sg(z(1)
i ))

]
, (41)
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where sg(·) is the stop gradient operator that prevents gradients from being backpropagated through this
branch of the computational graph.

The encoder fθ is implemented as a ResNet (He et al., 2016). The projector gϕ and the predictor qψ are
MLPs. The authors show empirically that a predictor is crucial to avoid collapse. Chen & He (2021) argue
that the gradient of the symmetrized loss with a predictor that is the identity is in the same direction as
the gradient of the symmetrized loss between the two projections, such that the stop-gradient operation is
cancelled out, thus leading to representation collapse. Using a random predictor does not work either and
Chen & He (2021) argue that the predictor should always learn the latest representations. This argument is
similar to Grill et al. (2020) in Section 4.1, where the predictor should be kept near optimal at all times.

Another crucial ingredient to their method is batch normalization (Ioffe & Szegedy, 2015), which is used for
both fθ and gϕ. Furthermore, the authors experiment with the training objective by replacing it with the
cross-entropy loss. Their experiments show that this also works, however the performance is worse. The key
advantage of SimSiam is that training does not require large batch sizes allowing the use of SGD instead of
LARS.

5 Contrastive Representation Learning

Contrastive methods prevent representation collapse by decreasing the similarity between representations
of unrelated data points. Given a data point x∗ called the anchor, one defines mechanisms to generate
positive samples and negative samples for the anchor. The positives should retain the relevant information
of the anchor, while the negatives should contain information different from the anchor. For vision tasks, the
positives could, e.g., be random transformations of the same image, while the negatives are (transformations
of) other images. The goal of contrastive methods is to move representations of positives closer to the
representation of the anchor while moving representations of negatives away from the anchor.

More formally, given an anchor x∗ we define the conditional distributions of positives ppos(x+|x∗) and neg-
atives pneg(x−|x∗). These distributions are induced by the mechanisms that generate the positives and
negatives and are not explicitly known. Let y∗ = fθ(x∗), y+ = fθ(x+), and y− = fθ(x−) be the corresponding
representations, calculated with an encoder fθ parameterized by θ. The task of contrastive representation
learning methods is to maximize the likelihood of positive representations ppos(y+|y∗) while minimizing the
likelihood of negative representations pneg(y−|y∗). Note that we continue to use representations y in this
introduction, but the same methods can be applied to projections z equivalently.

Noise Contrastive Estimation (NCE). The idea of noise contrastive estimation (Gutmann & Hyväri-
nen, 2010) is to formulate the task of contrastive representation learning as a supervised classification prob-
lem. One assumption of NCE is that the negatives are independent from the anchor, i.e., pneg(x−|x∗) =
pneg(x−). In this context, the negatives are often called noise. There are two widely used approaches, the
original NCE and InfoNCE (van den Oord et al., 2018). Roughly speaking, NCE performs binary classifica-
tion to decide whether an individual sample is a positive or negative, whereas InfoNCE performs multiclass
classification on a set of samples to decide which one is the positive. In the following we will explain InfoNCE
in more detail.

InfoNCE. For each anchor x∗, InfoNCE generates one positive sample from ppos(x+|x∗) and n− 1 negative
samples from pneg(x−). Let X = [x1, . . . , xn] be the set of those samples, where xc is the positive with index
c ∈ {1, . . . , n}. In the context of representation learning we further compute representations using an encoder
fθ and obtain the set Y = [y1, . . . , yn].

InfoNCE now defines a supervised classification task, where the input is (y∗, Y ) and the class label is the index
of the positive c. A classifier pψ(c|Y, y∗) with parameters ψ is trained to match the true data distribution of
the labels pdata(c|Y, y∗). A common supervised learning objective is to minimize the cross-entropy between
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the data distribution and the model distribution, i.e.,

min
ψ,θ

EY,y∗ [H(pdata(c|Y, y∗), pψ(c|Y, y∗))] (42)

= min
ψ,θ

EY,y∗
[
Ec|Y,y∗ [− log pψ(c|Y, y∗)]

]
. (43)

Note that this is an anticausal prediction problem, where the underlying cause (label) is predicted from its
effect (input) (Schölkopf et al., 2012). In InfoNCE we know the underlying mechanism (since we generate
the labels artificially), so we can derive the optimal classifier using Bayes’ theorem.

First, we write down the data distribution of a set Y given a label and an anchor, i.e.,

pdata(Y |c, y∗) =
n∏
i=1

pdata(yi|c, y∗) =
n∏
i=1

{
ppos(yi|y∗), if i = c,

pneg(yi), if i ̸= c,
(44)

= ppos(yc|y∗)
∏
i ̸=c

pneg(yi) = ppos(yc|y∗)
pneg(yc)

n∏
i=1

pneg(yi), (45)

where we assume conditional independence among the samples in Y . InfoNCE further assumes that the
labels are sampled uniformly, i.e., pdata(c) = 1

n . Now we apply Bayes’ theorem:

pdata(c|Y, y∗) = pdata(Y |c, y∗) pdata(c)∑n
c′=1 pdata(Y |c′, y∗) pdata(c′) (46)

=
ppos(yc|y∗)
pneg(yc)

∏n
i=1 pneg(yi) 1

n∑n
c′=1

ppos(yc′ |y∗)
pneg(yc′ )

∏n
i=1 pneg(yi) 1

n

(47)

=
ppos(yc|y∗)
pneg(yc)∑n

c′=1
ppos(yc′ |y∗)
pneg(yc′ )

. (48)

An optimal classifier with zero cross-entropy would match this distribution. We can see that the optimal
probability of a class is the density ratio ppos(yc|y∗)

pneg(yc) , normalized across all classes. It describes the likelihood
of yc being a positive sample for y∗ versus being a negative sample. This motivates the choice of the classifier
of InfoNCE, which is defined similar to Equation 48:

pψ(c|Y, y∗) = sψ(y∗, yc)∑n
c′=1 sψ(y∗, yc′) , (49)

where sψ(y∗, y) is a predictor that computes a real-valued positive score. Minimizing the cross-entropy from
Equation 42 brings the model distribution pψ(c|Y, y∗) closer to the data distribution pdata(c|Y, y∗), which
ensures that sψ approaches the density ratio of the data, i.e., sψ(y∗, y) ≈ ppos(y|y∗)

pneg(y) (in fact, it only needs
to be proportional to the density ratio). The density ratio is high for positive samples and close to zero for
negative samples, which means that sψ(y∗, y) learns some similarity measure between the representations.
Since ψ and θ (i.e., predictor and encoder) are optimized jointly, the encoder is encouraged to learn similar
embeddings for an anchor and its positive, and to learn dissimilar embeddings for an anchor and its negative
samples (as long as the predictor is not too expressive). In other words, the encoder is encouraged to extract
information that is “unique” to the anchor and the positive sample. Moreover, van den Oord et al. (2018)
show that this objective maximizes the mutual information between y∗ and y+, which is a lower bound on
the mutual information between x∗ and x+.

By combining the negative logarithm and the classifier (Equations 43 and 49) the general InfoNCE loss for
(y∗, Y, c) is defined as

InfoNCEsψ (y∗, Y, c) = − log
(

sψ(y∗, yc)∑n
c′=1 sψ(y∗, yc′)

)
. (50)

For the sake of notation in the following sections, we slightly adjust this definition. All considered methods
compute the exponential of some score to obtain positive values for sψ, which is why we include it directly in
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the loss function. In this case the InfoNCE loss computes the commonly used softmax cross-entropy. Instead
of specifying the class label we denote the positive by y+ and the set of negatives by Ȳ . Thus, our final
definition of the InfoNCE loss for a score function sψ(y∗, y) is

InfoNCEsψ (y∗, y+, Ȳ ) = − log
(

exp(sψ(y∗, y+))
exp(sψ(y∗, y+)) +

∑
ȳ ∈ Ȳ exp(sψ(y∗, ȳ))

)
. (51)

5.1 Contrastive Predictive Coding (CPC)

view represent project

t fθ

gϕ

qψl

InfoNCE

Figure 14: In CPC training an image is transformed and split into overlapping patch encodings, where the
top rows (blue) act as the anchor. The positive samples (purple) lie in a column below the exact anchor
position and every other patch of the whole dataset is a negative. InfoNCE is applied to distinguish between
both distributions.

CPC (van den Oord et al., 2018) is an influential self-supervised representation learning technique which is
applicable to a wide variety of input modalities such as text, speech and images. It is based on the theory
of predictive coding, which originated in the neuroscience literature by observing the learning behavior of
biological neural circuits (Huang & Rao, 2011; Bastos et al., 2012). In short, a model tries to predict future
outcomes given the past or context. Thus, the learned representation of the context should incorporate all
information necessary for prediction while removing unimportant noise. This predictive coding task is solved
by formulating it as a contrastive learning problem. CPC operates on sequential data, which is a natural
choice for audio data, but can also be applied to vision tasks by splitting images into sequences of patches.

Given a batch of images X, we consider a single image xi. The image is split into m patches [x(1)
i , . . . , x

(m)
i ].

Note that the patches are overlapping and that an additional image augmentation is applied to each patch.
A Siamese encoder fθ converts each patch into a representation y

(j)
i = fθ(x(j)

i ). The context of a patch are
the patches in the same row and all patches in the rows above. Let C(j)

i ⊂ {1, . . . ,m} be the set of indices of
those patches. A projector gϕ computes a context representation z

(j)
i = gϕ([y(k)

i : k ∈ C(j)
i ]) for each patch.

The network gϕ is implemented by a masked CNN (PixelCNN, van den Oord et al., 2016) that restricts its
receptive field to the patches in the context.

Given a context representation z(j)
i , the predictive coding task of CPC is to predict representations of future

patches, which are the patches in the column below the patch. Let F (j)
i = [k(j)

i,1 , . . . , k
(j)
i,K ] ⊂ {1, . . . ,m} be

the set of indices of those patches. The prediction task is solved by minimizing an InfoNCE loss for each
future representation. For the l-th future representation with patch index k = k

(j)
i,l , a separate predictor

qψl computes the anchor ŷ(k)
i = qψl(z

(j)
i ) from the context representation, and the positive is the future

representation y
(k)
i . The negatives can be any unrelated representations, e.g., the representations of all

patches outside the context and the future, as well as all representations from other images in X. We denote
the set of negatives by Ȳ (j)

i . The loss function accumulates the InfoNCE losses over all contexts and futures
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y(1)

y(m)

··
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··
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InfoNCE
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Ȳ (m)
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fθ1
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Figure 15: CMC assumes there are different interfaces to the world, that collect information about a shared
source. The goal is to find a consensus about the perceived information coming from the different modalities.
This is done by extracting the view-invariant features in order to learn a shared representation.

across the batch, i.e.,

LCPC
θ,ϕ,ψ = 1

n

n∑
i=1

1
m

m∑
j=1

∑
k∈F (j)

i

InfoNCEs(ŷ(k)
i , y

(k)
i , Ȳ

(j)
i ), (52)

where the similarities are calculated using the dot product s(ŷ, y) = ŷ⊤y, and the parameters of all predictors
are combined in ψ = [ψ1, . . . , ψK ]. See Figure 14 for an illustration of the method.

CPC v2. The second version of CPC (Henaff, 2020) targets the problem of sample efficiency. So far,
contrastive methods require a large amount of data, especially the need to find hard negatives, to perform
well on common benchmarks such as ImageNet (Bardes et al., 2021). This work focuses on the improvement
of training routines rather than modifying the general idea behind CPC. The most notable changes are
improved image augmentations, larger network sizes, using layer normalization (Ba et al., 2016) instead of
batch normalization (Ioffe & Szegedy, 2015), which creates an unintentional co-dependency between the
patches, and extending the prediction task to all four directions, instead of predicting bottom from top
patches only.

5.2 Contrastive Multiview Coding (CMC)

CMC (Tian et al., 2020) considers multiple views of the same scene and tries to maximize the mutual
information between those views. For each view, a view-specific encoder extracts view-invariant features. A
contrastive learning objective forces the encoders to be as informative as possible about the other views. In
general, the views could be different sensory inputs of the same scene (e.g., color, depth, surface normals).
For vision tasks that only have access to RGB images, the different views could be individual color channels.
In this paper, the authors consider the L and ab channels of an image after converting it to the Lab color
space. Note that the views can be interpreted as image augmentations, however, each view uses the same
image augmentation for all images, which is in contrast to other methods.

To apply CMC to images, we define m fixed image transformations [t(1), . . . , t(m)]. Let X be a batch of
images that gets transformed into X(j) = t(j)(X) for each view j ∈ {1, . . . ,m}. The encoders fθ1 , . . . , fθm
compute view-specific representations y(j)

i = fθj (x
(j)
i ) for each j ∈ {1, . . . ,m}. The representation used for

downstream tasks can either be the representation of a specific view or the concatenation of representations
across multiple or all views.

The idea of CMC is to apply the InfoNCE loss to pairs of views. Specifically, the anchor is the representation
y

(j)
i of the j-th view, the positive is the representation y(k)

i of the same image but from the k-th view, where
k ̸= j, and the negatives are representations from other images but also from the k-th view. We denote the
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set of those negatives images by Ȳ
(k)
i which are obtained using a memory bank (Wu et al., 2018). With

memory banks, large batches of negative samples can be obtained efficiently, at the cost of slightly outdated
representations.

The loss for a single image xi accumulates the InfoNCE losses of all ordered pairs of views, so the total loss
function across the batch is given as

LCMC
θ = 1

n

n∑
i=1

m∑
j=1

m∑
k=1; k ̸=j

InfoNCEsτ(y
(j)
i , y

(k)
i , Ȳ

(k)
i ), (53)

where the similarities are calculated as sτ (y, y′) = scos(y, y′)/τ , i.e., as cosine similarity divided by a tem-
perature hyperparameter τ > 0, and where θ = [θ1, . . . , θm] combines the parameters of all encoders. See
Figure 15 for an illustration of the method.

5.3 A Simple Framework for Contrastive Learning of Visual Representations (SimCLR)

t

fθ gϕ

t
fθ gϕ

X

X(1) Y (1) Z(1)

X(2) Y (2) Z(2)

view represent project

InfoNCE

Figure 16: SimCLR defines the views in the batch that were constructed from different images as negative
examples.

The architecture used for SimCLR (Chen et al., 2020a) is similar to previous methods like VICReg or
Barlow Twins. Given a batch of images X, two views X(1) = t(X) and X(2) = t(X) are created using random
transformations t ∼ T . A Siamese encoder fθ calculates representations Y (1) = fθ(X(1)) and Y (2) = fθ(X(2))
which are then fed into a Siamese projector gϕ to obtain projections Z(1) = [z(1)

1 , . . . , z
(1)
n ] = gϕ(Y (1)) and

Z(2) = [z(2)
1 , . . . , z

(2)
n ] = gϕ(Y (2)). Figures 16 gives an overview over this process.

SimCLR uses a contrastive loss to maximize the similarity between the two projections of the same im-
age while minimizing the similarity to projections of other images. Specifically, for an image xi two
InfoNCE losses are applied. The first one uses the anchor z

(1)
i , the positive z

(2)
i , and the negatives

Z̄i = [z(1)
1 , z

(2)
1 , . . . , z

(1)
n , z

(2)
n ] \ {z(1)

i , z
(2)
i }, which are all projections from other images in the batch. The

second InfoNCE loss swaps the roles of anchor and positive but uses the same set of negatives. Therefore,
the loss function is defined as

LSimCLR
θ,ϕ = 1

n

n∑
i=1

1
2

[
InfoNCEsτ(z

(1)
i , z

(2)
i , Z̄i) + InfoNCEsτ(z

(2)
i , z

(1)
i , Z̄i)

]
, (54)

where the similarities are calculated as sτ (z, z′) = scos(z, z′)/τ , i.e., the cosine similarity divided by a tem-
perature hyperparameter τ > 0.

The transformations consist of a random cropping followed by a resize back to the original size, a random
color distortion, and a random Gaussian blur. A ResNet is used as encoder fθ and the projector gϕ is
implemented as an MLP with one hidden layer. To train SimCLR large batch sizes are used in combination
with the LARS optimizer (You et al., 2017). The authors note that their method does not need memory
banks (Wu et al., 2018) as it is the case for other contrastive methods and is thus easier to implement.
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Figure 17: MoCo computes projections of different views with a student and a teacher network, and mini-
mizes the contrastive InfoNCE loss. The projections z∗ and z+ are computed on-the-fly, whereas negative
projections are cached in a queue of the most recent versions of z+ from previous iterations, significantly
improving computational efficiency.

5.4 Momentum Contrast (MoCo)

Momentum Contrast (He et al., 2020) is a contrastive learning approach that uses a momentum encoder
with an encoding queue to bridge the gap between contrastive end-to-end and memory bank methods (Wu
et al., 2018). In essence, it allows the optimization of a contrastive objective with significantly reduced
computational costs, both in terms of time and GPU memory (Chen et al., 2020b). Figure 17 gives an
overview of the architecture.

Similar to teacher-student methods (Section 4), MoCo defines a student network consisting of an encoder
fθ and a projector gϕ with parameters θ and ϕ, and a teacher network consisting of an encoder fθ̄ and a
projector gθ̄ with parameters θ̄ and ϕ̄. Given an image xi, two views x∗

i = t(xi) and x+
i = t(xi) are created

using random transformations t ∼ T . The student computes the representation y∗
i = fθ(x∗

i ) and projection
z∗
i = gϕ(y∗

i ), while the teacher computes the representation y+
i = fθ̄(x+

i ) and projection z+
i = gϕ̄(y+

i ).

MoCo minimizes the InfoNCE loss to learn projections that are similar for two views of the same image and
dissimilar to projections of views of other images. In our notation, the student computes the anchor z∗

i , the
teacher computes the positive z+

i , and the selection of the negatives Z̄i is described below. The loss of MoCo
is then defined as

LMoCo
θ,ϕ = 1

n

n∑
i=1

InfoNCEsτ(z∗
i , z

+
i , Z̄i), (55)

where the similarities are calculated using the dot product sτ (z∗, z) = z⊤z∗/τ divided by a temperature
hyperparameter τ > 0. The teacher is updated by an exponential moving average of the student, i.e.,

θ̄ ← αθ̄ + (1− α)θ, (56)
ϕ̄← αϕ̄+ (1− α)ϕ (57)

where α ∈ [0, 1] controls the rate at which the weights of the teacher network are updated with the weights
of the student network.

In an end-to-end setting, the negatives are computed on-the-fly in one batch (see SimCLR, Section 5.3),
resulting in relatively large resource consumption. In contrast, memory banks (Wu et al., 2018) describe
the concept of saving projections for all items in the dataset, drastically reducing resource consumption but
introducing potential negative effects from inconsistent or outdated projections. MoCo aims to combine the
benefits of both end-to-end training and memory banks. Similar to memory banks, MoCo only computes
projections of the positives and saves them for reuse in later iterations. Instead of saving projections for
all images in the dataset, MoCo uses a queue to cache only the last K computed projections, thus avoiding
outdated projections. Since older projections are removed from the queue, saved projections no longer require
momentum updates. The teacher provides the projections that are to be cached, while the student is updated
via backpropagation using the contrastive loss.
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MoCo v2. The second version of MoCo (Chen et al., 2020b) introduces several smaller changes to further
improve downstream performance and outperform SimCLR. The most notable changes include the replace-
ment of the linear projection layer of MoCo with an MLP, as well as the application of a cosine learning
rate scheduler (Loshchilov & Hutter, 2017) and additional augmentations. The new 2-layer MLP head was
adopted following SimCLR. Note, that the MLP is only used during unsupervised training and is not in-
tended for downstream tasks. In terms of additional augmentations, MoCo v2 also adopts the blur operation
used in SimCLR.

5.5 Pretext-Invariant Representation Learning (PIRL)

In the previously introduced pretext tasks we compute the representations of transformed images to predict
properties from specific transformations, i.e., rotation angles (Noroozi & Favaro, 2016) or patch permu-
tations (Gidaris et al., 2018). In this way, representations are encouraged to be covariant to the specific
transformation, but are not guaranteed to capture the same underlying semantic information regardless of
the transformation used. Although such covariance is advantageous in certain cases, we are more interested
in representations that are semantically meaningful, so it is desirable to learn representations that are in-
variant to the transformation. In order to achieve this, Misra & Maaten (2020) refined the pretext task loss
formulation and developed an approach called Pretext-Invariant Representation Learning (PIRL) which also
makes use of memory banks (Wu et al., 2018).

The goal of PIRL is to train an encoder network fθ that maps images x
(1)
i = xi and transformed im-

ages x(2)
i = tπ(xi) to representations y(1)

i and y
(2)
i , respectively, which are invariant to the transformations

used. Analogous to Section 2.3, tπ denotes a jigsaw transformation consisting of a random permutation of
image patches, where π is the corresponding permutation. The loss formulation of pretext tasks as defined
in Section 2 emphasizes that the encoder learns representations that contain information about the transfor-
mation rather than semantics. Let z(1)

i = gϕ(fθ(x(1)
i )) and z

(2)
i = gψ(fθ(x(2)

i )) be the projections obtained
by the encoder fθ and two separate projectors gϕ and gψ. The network is trained by minimizing a convex
combination of two noise contrastive estimators (NCE) (Gutmann & Hyvärinen, 2010)

LPIRL
θ,ϕ,ψ = 1

n

n∑
i=1

λℓNCE

(
mi, z

(2)
i , M̄i

)
+ (1− λ)ℓNCE

(
mi, z

(1)
i , M̄i

)
, (58)

where mi is a projection from a memory bank corresponding to the original image xi, each positive sample is
assigned a randomly drawn set of negative projections M̄i of images other than xi obtained from the memory
bank, and λ ∈ [0, 1] is a hyperparameter. In contrast to the previously introduced pretext tasks, the loss
formulation of PIRL does not explicitly aim to predict particular properties of the applied transformations,
such as rotation or patch indices. Instead, it is solely defined on images and their corresponding transformed
counterparts. NCE applies binary classification to each data point to distinguish positive and negative
samples. Here, the NCE loss is formulated as

ℓNCE(m, z, M̄) = − log[h(m, z, M̄)]−
∑
m̄∈ M̄

log[1− h(z, m̄, M̄)], (59)

where h models the probability that (xi, x′
i) is derived from X as

h(u, v, M̄) = exp(scos(u, v)/τ)
exp(scos(u, v)/τ) +

∑
m̄∈ M̄ exp(scos(m̄, v)/τ) (60)

for a temperature τ > 0. Considering that the projections depend on the intermediate representations, the
individual terms in Equation 59 encourage y(1)

i to be similar to y
(2)
i and also y

(2)
i to be dissimilar to the

representations of other images. Since this formulation alone does not compare features between different
untransformed images, the authors propose to use the convex combination of two NCE losses as defined in
Equation 58. An overview of this approach is illustrated in Figure 18. The encoder network fθ consists of
the final layer of ResNet50 (He et al., 2016), average pooling and a 128-dimensional fully connected layer.
As for the image transformation in the lower branch of Figure 18, we first extract nine image sections and

23



Under review as submission to TMLR

apply them individually to fθ to obtain patch representations y(2,k)
i . These are then randomly concatenated

and sent through another fully connected layer to obtain the 128-dimensional representation y(2)
i . Although

the authors focus their work on the Jigsaw pretext task, their approach can be generalized to any other
pretext task. For demonstration purposes, the authors also conduct experiments with the rotation pretext
task and its combination with the Jigsaw task. In this way we have to adapt the lower branch of Figure 18
by transforming the image at the beginning and feeding forward the transformed image to achieve the
representation y

(2)
i directly. Thus, using a secondary fully connected layer is not necessary anymore.

fθ gϕ

t
fθ gψ

concatenate +
project

x

y(1) z(1)

y(2,k) y(2) z(2)

NCE

NCE

memory bank

view represent project

Figure 18: Architecture of PIRL. Minimizing a contrastive loss promotes similarity between the representa-
tions of the image and its corresponding transformation.

Note that PIRL can also be classified as a pretext task approach as defined in Section 2. However, it also
uses ideas of contrastive representation learning which is why we decided to discuss it at this point.

6 Clustering-based Methods

So far, some of the presented representation learning methods define a classification problem with hand-
crafted labels to solve an auxiliary task (see Section 2). Instead of specifying these class labels by hand,
clustering algorithms, e.g., k-means Lloyd (1982), can be used to create the labels in an unsupervised fashion.

The objective of clustering-based representation learning is to group images with similar representations into
clusters. In contrastive learning, for example, this would allow us to discriminate between cluster assignments
rather than individual images or representations, which significantly increases efficiency. Over the time,
numerous clustering-based methods have been developed, each with its own strengths and weaknesses. In
the subsequent sections, we present the most significant approaches.

6.1 DeepCluster

The first approach that implements the idea of clustering for representation learning is DeepCluster (Caron
et al., 2018), which alternates between inventing pseudo-labels via cluster assignments and adjusting the
representation to classify images according to their invented labels. The motivation behind this is to increase
the performance of convolutional architectures that already exhibit a strong inductive bias, as these already
perform reasonably well with randomly initialized weights (Noroozi & Favaro, 2016). Overall, the authors
propose to repeatedly alternate between the following two steps to further improve the encoder network:

1. Group the representations yi = fθ(xi) produced by the current state of the encoder fθ to k clusters
(e.g., by using k-means clustering).
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2. Use the cluster assignments from step 1 as pseudo-labels βi for supervision to update the weights,
i.e.,

LDeepCluster
θ,ψ

1
n

n∑
i=1

dclassification(qψ(yi), βi), (61)

where a predictor network qψ tries to predict the cluster assignments of the representations
yi = fθ(xi).

In their experiments, the authors utilize a standard AlexNet (Krizhevsky et al., 2017) with k-means and
argue that the choice of the clustering algorithm is not crucial.

6.2 Self Labelling (SeLa)

A common weakness of the naive combination of clustering and representation learning is its proneness to de-
generate solutions where, for example, all representations are assigned to the same cluster. To circumvent this
issue, Asano et al. (2019) have developed an refined alternating update scheme, called Self Labelling (SeLa),
which imposes constraints on the labels such that each cluster is assigned the same amount of data points.
The pseudo-labels corresponding to images x1, . . . , xn are encoded as one-hot vectors β1, . . . , βn ∈ {0, 1}k.
To assign the pseudo-labels β1, . . . , βn and fit encoder and predictor networks fθ and qψ, respectively, the
authors consider the optimization problem

min
β,θ,ψ

1
n

n∑
i=1

dce(qψ(fθ(xi)), βi), (62)

s.t.
n∑
i=1

βi[j] = n

k
, βi[j] ∈ {0, 1} for j ∈ {1, . . . , k}, (63)

which they solve by alternating between the following two steps:

1. The problem of assigning the pseudo-label to the images is formulated as an optimal transport
problem which is solved using a fast variant of the Sinkhorn-Knopp algorithm (Cuturi, 2013).

2. Fix the pseudo-labels from step 1 and update the parameters θ and ψ by minimizing the cross-entropy
loss.

Note that step 2 is the same as used in DeepCluster. However, in DeepCluster it is possible for all data points
to be grouped into a single cluster, which results in a constant representation being learned and consequently
the minimum being achieved in both optimization steps.

6.3 Swapping Assignments Between Multiple Views of the Same Image (SwAV)

In general, contrastive methods are computationally challenging due to the need for numerous explicit
pairwise feature comparisons. However, Caron et al. (2020) propose an alternative algorithm, called SwAV,
that circumvents this problem by data clustering while promoting consistency among cluster assignments
across different views. In contrast to DeepCluster and SeLa, SwAV is an online clustering-based approach,
i.e., it does not alternate between a cluster assignment and training step. An encoder network fθ is used
to compute image representations y(1) and y(2) of two views of the same image x. These representations
are then mapped to a set of k parameterized prototypes Cψ = [c1, . . . , ck], resulting in corresponding codes
q(1) and q(2). Next, a swapped prediction problem is addressed, where the codes derived from one view are
predicted using the encoding from the second view. To achieve this, we minimize

LSwAV
θ,ψ = 1

n

n∑
i=1

ℓ(q(1)
i , y

(2)
i ) + ℓ(q(2)

i , y
(1)
i ), (64)

where ℓ(q, y) = dce(q, softmaxτ (C⊤y)) quantifies the correspondence between the representation y and the
code q for a temperature τ > 0. For an overview of the architecture we refer to Figure 19. Note that,
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Figure 19: SwAV does not actually measure the similarity between image representations of different views,
but instead compares the representations with codes obtained by assigning the features to parameterized
prototypes.

although SwAV takes advantage of contrastive learning, it does not require the use of a large memory bank
or a momentum network.

In addition to this method, the authors also propose the augmentation technique called multi-crop, which was
also used for DINO (see Section 4.2). Instead of using two views with full resolution, a mixture of views with
different resolutions is used. In this approach, multiple transformations are compared by using considerably
smaller ones, which leads to a further improvement of previous methods such as SimCLR, DeepCluster and
SeLa.

7 Taxonomy of Representation Learning Methods

As we have seen in this survey, there are several ways to learn meaningful representations of images. These
include solving specific tasks for pre-training such as predicting the rotation angle of an image, maximizing
the mutual information between different views of the same image, using a contrastive loss in order to
separate positive and negative samples in latent space, learning from a teacher network and clustering and
subsequently self-labeling images. Based on these distinctions, we adapt and expand the taxonomy, proposed
by Bardes et al. (2021) in the following section, which includes the following five categories:

1. Pretext Tasks Methods

2. Information Maximization

3. Teacher-Student Methods

4. Contrastive Representation Learning

5. Clustering-based Methods

Note that some methods fit into multiple categories, as they combine different approaches. CPC (v2) and
CMC, e.g., both use a contrastive loss, as well as information maximization. PIRL includes solving a pre-text
and a contrastive loss to learn representations.

Figure 20 gives a visual overview on all methods within the proposed taxonomy. The inner nodes show
the five categories that are connected to each reviewed method. Methods that can be assigned to several
categories have multiple ingoing edges. As an additional overview, Table 1 lists all methods including their
primary class assignment and the URL to the original implementation on Github1, if available.

1https://github.com
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Figure 20: Graphical overview of the taxonomy of image representation learning methods.

8 Meta-Study of Quantitative Results

Accessing the quality of the learned representations can be tricky. One approach that has become established
in literature is to evaluate the obtained representations on downstream computer vision tasks, such as image
classification, object detection, or instance segmentation. In this section we explain the evaluation process
for representation learning methods and take a closer look at the most common evaluation tasks in literature.
We compare all reviewed methods with regard to their performance and report the results on three different
datasets. We perform a quantitative comparison and provide some insights on potential future directions to
further evaluate and compare the reviewed methods.

8.1 Evaluation of Representation Learning Methods

The performance of representation learning models is often measured and compared by letting pre-trained
models solve downstream tasks such as image classification. For pre-training, a base architecture is chosen
as encoder and trained in a self-supervised manner without the use of labels. Many authors experiment with
multiple architectures. One default architecture for image classification is the ResNet-50 (He et al., 2016),
newer methods often use Vision Transformers (ViT) (Dosovitskiy et al., 2020) as encoder. The learned
representations are then evaluated on different downstream tasks. We give more details on the evaluation
protocols later in this section.

We identified five datasets that were most commonly used to evaluate representation learning methods:
ImageNet (Russakovsky et al., 2015), the Pascal visual object classes (VOC) (Everingham et al., 2009),
Microsoft common objects in context (COCO) (Lin et al., 2014), CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009) and Places205 (Zhou et al., 2014). All listed datasets include one or multiple of the following tasks:
image classification (IC), object detection (OD) and instance segmentation (Seg). Table 2 shows which of
the most common datasets are used for evaluating each method.

To get a sense of the performance of all reviewed methods at a glance, we conduct a quantitative comparison
in the following. We report the evaluation results for ImageNet, Pascal VOC and Microsoft COCO and
identify gaps where further evaluation would be interesting. All methods have been pre-trained on the
ImageNet training set before further evaluation.

ImageNet. Image classification on ImageNet, which includes 1000 different classes and has established as
an evaluation standard for representation learning methods, is mostly evaluated in two ways. A linear classi-
fier is either trained on top of the frozen pre-trained representations, or the model weights are initialized with
the pre-trained weights and fine-tuned on 1% and 10% of the labeled ImageNet training data, respectively.
Table 3 shows the accuracy for each method either using a ResNet-50 encoder for better comparability or
a different architecture. We report both the top-1, as well as the top-5 accuracies. Among the methods
evaluated with a ResNet-50, DINO and SwAV perform best, nearly reaching the performance of a super-
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Table 2: Overview on datasets (ImageNet, Pascal VOC, Microsoft COCO, CIFAR and Places-205) and
tasks (image classification, object detection and instance segmentation) each representation learning method
has been evaluated on. The numbers underneath indicate how many of the shown 20 methods used the
corresponding dataset for evaluation.
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Rotation ✓ ✓ ✓ ✓ ✓ ✓
Jigsaw ✓ ✓ ✓ ✓
DINO ✓ ✓ ✓
MAE ✓ ✓ ✓ ✓
EsViT ✓ ✓ ✓ ✓ ✓ ✓
BYOL ✓ ✓ ✓ ✓ ✓ ✓
VicReg ✓ ✓ ✓ ✓ ✓ ✓
Barlow Twins ✓ ✓ ✓ ✓ ✓
SimSiam ✓ ✓ ✓ ✓
W-MSE ✓ ✓ ✓
SimCLR ✓ ✓ ✓ ✓ ✓
MoCo ✓ ✓ ✓ ✓
MoCo v2 ✓ ✓
CPC ✓
CPC v2 ✓ ✓
CMC ✓
PIRL ✓ ✓ ✓ ✓
DeepCluster ✓ ✓ ✓ ✓ ✓
SeLa ✓ ✓ ✓ ✓ ✓ ✓ ✓
SwAV ✓ ✓ ✓ ✓ ✓ ✓

# Total 20 11 13 5 7 7 8 7 8
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Table 3: Top-1 and top-5 accuracy on ImageNet classification for a linear evaluation (on the left) and semi-
supervised learning, where the classifier is fine-tuned on 1% and 10% respectively of the labeled ImageNet
data (on the right). The upper part shows performance for a ResNet-50 encoder and the lower part shows
more results where other architectures have been used. We also report the number of parameters for each
network.

#Params Top-1 Top-5 Top-1 Top-5
Method 1% 10% 1% 10%

ResNet-50

Supervised (Zbontar et al.) 24M 76.5 - 25.4 56.4 48.4 80.4
DINO 24M 75.3 - - - - -
BYOL 24M 74.3 91.6 53.2 68.8 78.4 89.0
VicReg 24M 73.2 91.1 54.8 69.5 79.4 89.5
Barlow Twins 24M 73.2 91.0 55.0 69.7 79.2 89.3
SimSiam 24M 71.3 - - - - -
SimCLR 24M 69.3 89.0 48.3 65.6 75.5 87.8
MoCo 24M 60.6 - - - - -
MoCo v2 24M 71.1 90.1 - - - -
CPC v2 24M 63.8 85.3 - - - -
CMC3 24M 66.2 87.0
PIRL 24M 63.6 - 30.7 60.4 57.2 83.8
SeLa 24M 61.5 84.0
SwAV w multi-crop 24M 75.3 - 53.9 70.2 78.5 89.9

other architectures

Rotation4 55.4 77.9 - - - -
Jigsaw4 44.6 68.0 - - - -
MAE (ViT-H) 643M 76.6 - - - - -
DINO (ViT-B/8) 85M 80.1 - - - -
EsViT (Swin-B) 87M 80.4 - - - - -
BYOL (ResNet-200x2) 250M 79.6 94.8 71.2 77.7 89.5 93.7
W-SME 4 (ResNet-18) 79.0 94.5 - - - -
SimCLR (ResNet-50x4) 375M 76.5 93.2 - - 85.8 92.6
MoCo (ResNet-50x4) 375M 68.6 - - - - -
CPC (ResNetv2-101) 28M 48.7 73.6 - - - -
CPC v2 (ResNet-161) 305M 71.5 90.1 - - - -
CPC v2 (ResNet-33) - - 52.7 73.1 78.3 91.2
CMC3 (ResNet-50x2) 188M 70.6 89.7 - - - -
DeepCluster (AlexNet) 62M 41.0 - - - - -

3trained with RandAugment (Cubuk et al., 2020).
4reported numbers are from Kolesnikov et al. (2019).

vised trained ResNet50. Considering the reported top-5 accuracy, BYOL performs best, right before VicReg
and Barlow Twins. For other, bigger architectures, EsViT and DINO both perform best, while utilizing
architectures with a comparatively little number of parameters.

Figure 21 shows the accuracy of all methods on the ImageNet training set using a ResNet-50 encoder in
chronological order of their first publication on arXiv2. Note that not every reviewed method appears in
the Figure, because some methods have not been evaluated with a ResNet-50 architecture on ImageNet. It
would be interesting to measure the performance of every method under the same conditions to make them
comparable. Nevertheless, the plot reveals some interesting points, e.g., that CPC v2 and CMC perform
better than most other early published self-supervised methods and SwAV has not been beaten by any of
the compared methods.

2https://arxiv.org/
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Figure 21: Reviewed methods Top-1 accuracy on ImageNet using a ResNet-50 encoder, sorted by their first
publication on arXiv2. The gray line marks the supervised benchmark.

The goal of every representation learning method is to extract meaningful features from images that are
useful for various tasks. The quality of extracted features learned on the ImageNet data can therefore be
further assessed by transferring them to solve tasks on other datasets like the Pascal VOC and COCO object
detection and instance segmentation. To evaluate the features on other tasks, the learned weights serve as
initialization for a network and a linear classifier is trained on top, while the network layers are fine-tuned.
Usually, the features are extracted from different layers of the network, while freezing the weights of the
others. The best values are reported for each method. In the following we take a closer look at the results
on the Pascal VOC and Microsoft COCO datasets. The goal when performing object detection on these two
datasets is to predict bounding boxes for every object shown on the image. The task of instance segmentation
is conducted pixel-wise, where every pixel is classified separately.

Pascal VOC. With only 20 classes, the Pascal VOC (Everingham et al., 2009) dataset is rather small
and designed to resemble a real world setting. The data includes annotations for image classification, object
detection, as well as instance segmentation. The standard metrics for the classification and object detection
task are mean average precision (AP) with different intersection over union (IoU) threshold values. For the
task of segmentation the mean IoU is reported. For a detailed overview on the aforementioned metrics we
refer to the work of Padilla et al. (2020).

The first five columns of Table 4 show the results for the Pascal VOC tasks side by side for different
architectures. For the object detection task Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren et al.,
2015) are most widely used. SwAV with multicrop performs best on the image classification task, just before
VicReg and Barlow Twins. Barlow Twins and SwAV also perform best on the object detection task. From
all methods that have been evaluated on the segmentation task, BYOL, by far, outperforms every other
method. However, the results cannot be deemed as representative due to a lack of comparative values for
other methods.

COCO. The Microsoft COCO dataset is a large dataset for object detection and segmentation including
objects from 91 different classes, depicted in their natural setting. In the second half of Table 4 we present
the average precision for object detection and instance segmentation. In the case of object detection it is
the bounding box (BB) AP and in case of the segmentation it is the AP of the segmentation mask (MK).
Note that we again report values for different encoder architectures. The most commonly used architecture
for both object detection and segmentation is a Mask R-CNN (He et al., 2017) model with either the C4
or feature pyramid network (Lin et al., 2017) encoder. For both tasks the overall AP is best for MAE,
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other values are missing and EsViT outperforms every other method for the AP50 and AP75. Again, for a
profound insight a more detailed experimental evaluation is necessary.

8.2 Future Directions

To conclude our quantitative meta-study we want to point out some interesting insights and suggest some
experiments to conduct in the future.

As the comparison of all representation learning methods has shown, the performance strongly depends on
the used network architecture. Some architectures, datasets and tasks have been utilized throughout various
works to evaluate the quality of self-supervised trained image representations. Nevertheless, there is no
standardized benchmark for a consistent comparison of methods, yet. Goyal et al. (2019) suggest a range of
tasks as benchmark to cover many aspects and obtain a detailed comparison of methods in the future.

One main contribution of this meta-study is the categorization and comprehensive presentation of different
approaches to the overall aim to learn meaningful representations of images. In Section 7 five main categories
have been described into which different approaches can be grouped. There already are some methods that
combine multiple approaches that work well, which shows that the combination of different representation
learning methods holds potential for future research.

9 Conclusion

The goal of self-supervised representation learning is to extract meaningful features from unlabeled image
data and use them to solve all kinds of downstream tasks. In this work we saw different strategies for
representation learning and how they are related. We gave an extensive overview of methods that have been
developed over the last years and adapted a framework to categorize them.
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